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Abstract. This paper presents attacks targeting the FPGAs of AWS F1 instances
at the electrical level through power-hammering, where excessive dynamic power is
used to crash FPGA instances. We demonstrate different power-hammering attacks
that pass all AWS security fences implemented on F1 instances, including the FPGA
vendor design rule checks. In addition, we fingerprint the FPGA instances to observe
the responsiveness of the instances, which indicates a successful denial-of-service
attack. Most importantly, we provide an FPGA virus scanner framework, which was
improved to support large datacenter FPGAs for preventing such attacks, including
virtually all currently demonstrated side-channel attacks. Our experiments showed
that an AWS F1 instance crashes immediately by starting an FPGA design demanding
369W. By using FPGA-fingerprinting, we found that crashed instances are unavailable
for about one to over 200 hours.
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1 Introduction

The flexibility and power efficiency of FPGAs is increasingly used for cloud computing.
For instance, [Inc14] reports that FPGA acceleration can achieve 25x better performance
per watt and 50 — 70x latency improvement compared to CPU/GPU implementations.
Major shifts towards FPGA-enabled Cloud Services include the Microsoft project Catapult
for accelerating their Bing search engine [PCC*14], and the introduction of Amazon Web
Service F1 FPGA instances [Amal9b] in 2012 and 2016, respectively.

However, opposed to using FPGAs as components in systems where only one party
defines the configuration of the FPGA, integrating FPGAs into a cloud uses two designs:
1) a shell (i.e. the infrastructure design) provided by the cloud service provider (CSP) or
FPGA vendor and 2) the user design providing the acceleration functionality. The latter
allows users to mount attacks in their design to gather sensitive data of potentially both
the CSP and other tenants [Jak20]. This is possible due to the low-level programmability
of FPGAs. This includes 1) designs containing short-circuits or thermal hotspots, which
can induce faults or damage a chip [HUS99, BKT08] and 2) soft-logic sensors to enable
remote side-channel attacks [MS19b].

To prevent this, CSPs implemented several fences to protect the FPGA equipment and
to ensure stable and secure operation across all clients. As will be discussed in detail in
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Section 4.2, these fences include: 1) inspecting FPGA designs for potentially malicious
circuits, 2) generation of configuration bitstreams by the CSP, 3) a low-level API that
blocks direct access to the FPGA configuration port, and 4) runtime monitoring of the
FPGA.

We will show that fence 1) is insufficient to detect different classes of malicious circuits
and that fence 4), can be bypassed. By bypassing fence 1), we remove fences 2) and 3)
because we can generate and ultimately deploy malicious bitstreams on (AWS) cloud
FPGAs. By bypassing fence 4), harm caused by malicious designs may propagate to other
parts of a system (e.g., through voltage fluctuations on a shared power supply).

We will discuss and demonstrate multiple scenarios of denial-of-service attacks (DoS)
that had been deployed on FPGA instances. To verify whether the launched attacks
were successful and to measure the impact on the availability of AWS F1 cloud instances,
we implemented a fingerprinting technique (in Section 8). The proposed fingerprinting
technique can serve as a convert channel to leak data across different FPGA boards,
which we demonstrated by measuring device temperatures. Additionally, user designs can
measure power fluctuations with high accuracy, which allows further side-channel analysis.
This could be used to reverse engineer CSP scheduling policies and physical information
about the cloud infrastructure. To mitigate these attacks, we proposed fixes to the existing
fences and added a fence that analyzes the FPGA bitstream before it is used to configure
an FPGA. For the latter, we reimplemented the FPGADefender Virus scanner [LMG™20]
to scale to large datacenter FPGAs. The main contributions of this paper include:

1. An evaluation of different (malicious) power-hammering designs with respect to an
attack on FPGA-based cloud computing instances (in Section 4.3);

2. Using of the FPGA-fabric as a sensor for temperature monitoring and for finger-
printing (through physical unclonable functions, PUFs) on AWS F1 instances (in
Section 4.5);

3. A denial-of-service (DoS) demonstration on AWS F1 FPGA cloud instances (in
Section 4.6);

4. Mitigation strategies, including custom design rule checks (DRCs) for the vendor tool
flow and a reimplementation if the FPGADefender FPGA virus scanner [LMG™20]
(in Section 5).

Furthermore, we provide backgrounds of FPGA technology, FPGA development and
deployment on AWS in Section 2, a literature review on current attacks and countermeasures
on FPGA-based systems in Section 3, a discussion in Section 6, and a conclusion in Section 7.

2 Backgrounds

This section provides backgrounds on FPGA technology, the tool flow to implement
user circuits on FPGAs, and the basics required to register and run user FPGA applications
on AWS with respect to FPGA security vulnerabilities related to AWS F1 instances. This
paper focuses on attacking AWS F1 because these instances are widely used and had been
among the first public offerings. The CSPs Alibaba, Huawei, Nimbix offer FPGA instances
featuring the same Xilinx-VU9P device that is used for AWS F1, and these CSPs use
the same Xilinx vendor DRC checks and provide an equivalent security architecture than
AWS. Therefore, the here presented attacks and countermeasures are deployable in other
FPGA cloud settings. Microsoft Azure uses both Xilinx and Intel FPGAs. Xilinx and
Intel FPGAs are similar and share fundamentally the same vulnerabilities. For instance,
power-hammering on Intel Stratix-10 was researched in [PHT20).
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Figure 1: a) Illustration of an FPGA fabric with configurable logic blocks (CLBs) and routing
channels, b) CLB details. The red path in b) shows a controllable ring-oscillator.

We assume a scenario where an attacker (eventually using a counterfeit identity) deploys
power-hammering designs on AWS F1 instances. This scenario cannot be prevented
through protocols for secure remote reconfiguration of FPGAs that prevent tampering of
configurations, as shown in [JCM15]. Such approaches are useful for closed systems, but
cannot be used by a CSP who wants to provide an easy usable service to a large customer
base. Therefore, CSPs are using a security infrastructure that inspects user designs before
FPGA deployment and that monitor the FPGA at runtime, as presented in Section 4.

2.1 FPGA Technology

As illustrated in Figure 1, an FPGA consists of a regular fabric with configurable logic
blocks (CLBs) connected by routing channels. The CLBs provide a switch matrix with
programmable multiplexers for setting connections (for implementing the routing of a user
circuit running on an FPGA). Inside a CLB, there are one or more look-up tables (LUTS)
to implement Boolean functions as a truth table. The LUTs are small memories that are
written when configuring the FPGA (along with the multiplexer configuration information)
and read when using the LUT as a Boolean function generator. Therefore, a LUT can
implement any Boolean function limited only by the size of the LUT. Datacenter FPGAs
commonly use 6-input LUTs that can alternatively be used as two independent 5-input
LUTs with shared inputs. Typically, each LUT output can be passed through a flip-flop,
which stores the states of a digital circuit.

The red path in Figure 1b) shows a ring-oscillator. If input a of the LUT is 1’ then
output f = NOT b, otherwise the output is >0’ (here input ¢ is unused ’-’). As we will
show in Section 4.3, such oscillators can run at a few GHz with a corresponding power
footprint. Because of the programmable routing, FPGAs are slower than dedicated ASICs
where routing is carried out through direct metal wire connections without any switching
on the paths. Therefore, FPGAs designs usually run at a few hundred MHz and certainly
much slower than the previously described ring-oscillator. Because datacenter FPGAs
provide over a million LUTs, and by driving the fast switching oscillator signal to the
routing wires, dynamic power demand could scale to over a kilowatt. However, this demand
is a theoretical value because no system could deliver or sustain such power levels.

We use the term power-hammering potential P to express this theoretical value. User
designs with a large P may break down the power supply and can leave the safe operational
supply voltage margins. Power-hammering creates voltage drops in the FPGA itself but
also in neighboring pieces of equipment. This is a possible risk if an FPGA board under
attack shares some hardware infrastructure, like power supplies or cooling facilities.

Because the speed of a ring oscillator depends on the supply voltage and device
temperature, such circuit can measure voltage fluctuations (e.g., for power analysis attacks)
or the device’s temperature. Such sensors can be implemented in cloud FPGAs. Moreover,
ring-oscillator frequencies may vary at different positions inside an FPGA and across
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Figure 2: FPGA development for AWS F1 instances.

different FPGAs due to process variations, which we will use for FPGA fingerprinting.

FPGAs provide further blocks, including I/O blocks (for the communication to the
outside world), memory blocks (to provide small on-chip caches/memories), and arith-
metic blocks (called DSPs). Typically, a cloud FPGA configuration provides some basic
infrastructure (commonly called a shell) that is in charge of all off-chip communication.
User logic will only connect to ports provided by the shell, but never directly to I/O (such
as PCle). A cloud user cannot access to any configuration port. Threrefore, users will
only use logic cells, memory blocks, and DSPs that are not occupied by the shell. This is
enforced and verified by the FPGA design tools.

The CLBs of datacenter FPGAs commonly provide dedicated carry logic to implement
fast adders and counters. Other features in CLBs include multiplexers to build larger
function generators from a set of adjacent LUTs. Consequently, there are many possibilities
to implement ring-oscillators and circuits that can draw excessive power.

2.2 Implementation of FPGA Designs

This paragraph describes the design process for FPGA designs all the way to a configuration
bitstream that can be loaded onto an FPGA for acceleration. The basic flow is shown in
Figure 2 and includes three major stages:

1. Logic Design: Here, users specify the hardware functionality of the FPGA (us-
ing Hardware Description Languages (HDL) like Verilog or VHDL or a high-level
programming language such as C, C++, OpenCL).

2. Resource Mapping: At this step, the logic design is synthesized into Boolean logic
functions, which are mapped into the available FPGA primitives (e.g., the LUTs
and DSP blocks). The result forms a graph called netlist where the nodes represent
the primitives and the edges model connections. This graph is then mapped onto
the physical FPGA by placing the primitives and computing the routing (i.e. the
multiplexers settings, as shown in Figure 1). The result of this process is again a
netlist that includes the placement and routing information. For the rest of this
paper, we use the term netlist to refer to this fully implemented netlist.

3. Configuration Data (Bitstream) Generation: This step generates the config-
uration binary to be used for programming the FPGA. There exists a one-to-one
correspondence between the netlist and the bitstream.

The top row in Figure 2 shows a path where the entire tool-chain is executed at user-side.
Alternatively, AWS provides cloud instances for running the flow. For executing a design
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Figure 3: Lifecycle of an Amazon EBS-backed EC2 instance. This figure is adopted from [Ama20b].

on AWS F1 instances, users have to provide a netlist to AWS for the final configuration
data generation.

2.3 Registering of User Designs on AWS

AWS does not allow clients to upload their own bitstreams and instead requires a netlist.
During a registering phase, a user netlist is translated into a configuration bitstream. As
can be seen in Figure 2, registering includes the steps Design Rule Checking (DRC) and
FPGA Image Generation. The latter process generates a configuration bitstream and
some metadata (e.g., the shell version), which is packaged into an Amazon FPGA Image
(AFI) [Ama20a]. Note that the netlist provides user design details, which force clients to
share their IP with AWS. Users can upload their own netlist in an encrypted format, but
that is only obfuscating a netlist, as shown in Section 4.2.

All user bitstreams are generated by AWS to guarantee the compatibility with the shell,
and, most importantly, to perform checks (see Section 4.2) to ensure that the bitstream
is not damaging the FPGA hardware (e.g., through short-circuits [BKT08, ACC195,
ACCT96, HUS99]). A more comprehensive overview of FPGA security aspects will be
discussed in Section 4.2. Once an AFI-image is created, it will be stored by AWS.

2.4 Deployment of User Designs on AWS

Before running an AFI on a cloud FPGA, a user needs to create an F1 instance and
accesses it through a hypervisor to program the FPGA and load the software application
stack. AWS F1 instances use Elastic Block Store (EBS) instances which mount external
disks for storage [Ama20c]. Therefore, an EBS-backed instance can preserve user data
after instance termination or stop. We use this feature to log system states even in the
case an attack may result in a connection drop to the client.

Throughout its lifecycle, an AWS instance will go through several states, as shown in
Figure 3. In the pending state, the hypervisor finds an instance and boots the machine.
After the instance is ready, it enters the state running where a user can load the AFI file
with the user configuration.

Users are only billed when the instance is in the running state or preparing to hibernate.
Other states are not billed. This is of interest for mounting denial-of-service attacks where
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the goal is to use minimum cost to maximize the time an instance is occupied without
billing.

3 Attacks and Countermeasures on FPGA-based Systems

The number of involved parties and the physical proximity between an attacker and
the victim FPGAs are different between client-based FPGA usage and cloud-based usage,
resulting in different attack scenarios, as discussed in the following paragraphs.

3.1 Client-based FPGA Usage

In client-based usage, FPGA accelerators (consisting of user, vendor, or third-party IPs) are
integrated and deployed into an FPGA system. In this model, clients access own data and
no other party can compromise the user data. However, an attacker with physical access
can extract information stored in the system by using a wide range of techniques. Attack
scenarios can vary from cheap modifications such as bitstream manipulation for causing
Malicious Electrical Level Threats (MELT) [HUS99, BKTO08] to complicated setups such
as electromagnetic analysis [DMBO05]. For example, an attacker can use an oscilloscopes to
extract power traces to deploy power analysis attacks [SOQP04, SMPQ06, MDS99, OOP03];
or it is possible to use inductive probes to sense electromagnetic emission from the chip to
deploy electromagnetic analysis attacks [DMBO5].

In the client-based model, stealing IPs is the attacker’s primary motivation. Conse-
quently, most related attacks target IP theft and only a few studies address the availability
aspect [GOT17, BKTO08]. To mitigate such threats, FPGAs can be configured with
encrypted biststreams [McN10, TM08, TM17].

3.2 Cloud-based FPGA Usage

The Cloud computing model involves the CSP, the FPGA vendor, the client, and other
cloud users. Cloud-based FPGA usage allows data leakage, fault injection, and denial-

of-service attacks. See [Che20] for a comprehensive overview of security issues related to
FPGA usage in the cloud.

3.2.1 Information Leakage

Cloud-based information leakage attacks require remote sensors. For instance, we can
measure the speed of a circuit running on an FPGA, to measure temperature and voltage.
To measure the speed of a design, we have to distinguish between synchronous and arbitrary
designs running on the FPGA.

Synchronous designs are the norm for accelerator designs. Here, synchronous refers to
register-transfer level designs (RTL), where all states are stored in flip-flops (i.e. registers)
and where logic circuits form acyclic paths between flip-flops. In order to measure the
speed of a path between flip-flops in a synchronous design, we have to overclock a circuit.
For instance, we can set all bits on one input of an overclocked adder to ’1” (i.e. int -1) and
adding a 1 on the other input, will propagate a carry through the adder and successively
changing the sum result bits from ’0°’ to ’>1’. Therefore, by overclocking the adder such
that we sample the sum result faster than what the critical path delay is allowing, we can
measure the speed of the adder and consequently frequency and temperature of the FPGA.

A CSP has to decide for security (possible information leakage) or user demands. While
in most practical applications overclocking is not acceptable, it was shown in [SOYT20] to
be beneficial for machine learning inference where a design was overclocked by up to 40%
without a substantial loss in accuracy.
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However, overclocked synchronous circuits are less suited for sensing than oscillators,
and virtually all demonstrated remote attacks on leaking information from FPGAs use
oscillators. In [LMG™20], it was reported that ring-oscillators on FPGAs could run at
6GHz, which allows measuring supply voltage fluctuations with high accuracy and RO-
based sensors have been used for remote power side-channel attacks [SGMT18, ZS18];
crosstalk attacks [GRS19, RGE19, RPD"18]; and thermal-covert channels [TS19, Sze20)].

Basic ring-oscillators are prohibited on AWS instances and will be detected by the
vendor DRCs (see Section 4.2). Table 2 provides a list of alternative oscillator circuits that
bypass the DRC, and that had been deployed on AWS instances. Note that the oscillators
are free-running and do not depend on an external clock.

3.2.2 Fault-Injection Attacks

The dynamic power consumption from fast oscillation can cause voltage drops inside an
FPGA, on the FPGA board power distribution network, and the power supply feeding
an FPGA board. This can trigger timing violations and consecutive errors and uses
the same effect that was used in the previous paragraph for information leakage. But
instead of sensing voltage fluctuations, they are used to slow-down circuits for injecting
faults [KGT18, MS19a], and for DoS attacks. DoS attacks are a core issue examined in
this paper. Given the situation that none of the major cloud vendors offer multi-tenant
FPGA sharing in their cloud infrastructures [Amal9b, Ali19, Hual9, Bail9, Ten19, Nim19,
Mic19, OVH19], denial-of-service attacks are posing a severe and direct threat to most
established cloud FPGA vendors. However, even multi-tenancy is not used by today,
there are infrastructure components that are shared among multiple tenants. For example,
excessive heat production may impact neighboring instances or power supply rails are
typically shared such that a voltage drop from one FPGA instance may potentially impact
another instance. Finally, consuming excessive power may damage equipment.

3.2.3 Countermeasures

Systems can be designed to be robust against fault injection attacks (e.g., through incorpo-
rating extra timing slack and randomizing clocks) [Man07, KK99]. Another strategy is to
monitor a system to detect malicious behavior [ML08, ZSZF13]. Other studies advocated
the necessity of detecting malicious designs prior to its execution [KGT19, LMG™*20]. For
preventing denial-of-service attacks, scanning of designs is currently the most important
protection. Other countermeasures, like power and temperature monitoring, are still
relevant but can only act as a secondary measure after scanning ensures that a system
stays in well-defined operational conditions. The here presented paper-hammering attacks
can ramp up power demand from a few watts to (theoretically) over a kilowatt in just a
few nanoseconds, which is much faster than any monitoring system could report or react
on.

A design scan should be robust enough to confidently prevent all critical attacks while
preventing false positives. It is therefore vital to understand the exact surface of attack in
order to tune scanners and design rule checks.

4 Denial-of-Service Attacks on Cloud FPGAs

In this section, we will present a denial-of-service (DoS) attack on AWS F1 instances and
we will investigate the security fences implemented by AWS (in Section 4.2). As mentioned
in Section 2, our attacks should work directly for other CSPs that offer Xilinx FPGAs
because all CSPs rely on the vendor DRCs, which our attacks bypass. The attacks used in
this paper use the low-level programmability of FPGAs and some related attacks had been
shown for other vendors (e.g., Intel [PHT20, PRPT19, RPD" 18] and Lattice [KGT19]).
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Table 1: Current AWS protection fences: Fence 1 — Design Inspection; Fence 2 — Bitstream
Generation; Fence 3 — FPGA low-level API; Fence 4 — FPGA runtime monitoring

Measures Description
Integrity Check Checks for design tampering (*.dcp)
~ | Unrouted-Net Check | Checks for completeness of the design implementation
§ AWS Shell Check Checks compatibility with AWS Shell
& | Device DNA Check prevent user designs to access DNA__PORT (device ID)
DRCs Checks for unrouted nets, dangling nets, timing violations,
combinatorial loops, and other design errors
E CSP-side Bitstream | FPGA bitstreams are generated by AWS (users cannot
é Generation use their own bitstreams)
)
8 Virtual Programming | AWS restricts access to bitstreams and programming of
é FPGA through a custom (hypervisor) API
< | Power Warning Power monitoring and assertion of power warnings
8 | Clock Gating Gate user clock if power consumption reaches a threshold
é Over-Temperature Triggers shutdown sequence when temperature exceeds
Shutdown the critical value to prevent permanent damages

We crashed AWS F1 instances through power-hammering (i.e. drawing excessive power)
such that the instance disappears temporarily from the pool of available instances. Without
proof, our power-hammering will operate the FPGA outside its safe operational power
envelope, which can impact the stable operation of other parts in the cloud datacenter due
to shared infrastructure (e.g., through shared power-supply rails). Moreover, an attacker
may deploy an attack not isolated, as being done in this paper, but coordinated over a
larger number on instances simultaneously (e.g., to blow a fuse in a rack). Also, the attacks
presented here could be used to gather information about the cloud datacenter (e.g., the
physical neighborhood of specific nodes). In our examined scenario, an attacker aims at
temporarily reducing the number of ready-to-use F1 instances at minimum cost.

4.1 Attack Model

We consider a CSP (here AWS) hosting multiple users reliably. The attacker can be a cloud
service user (e.g., registered using a counterfeit identify and credit card to hide identity)
or an IP core provider in the AWS marketplace (or a similar IP distribution system
for clouds). In the latter case, the attacker is using other users to run the attack. For
instance, an attacker may provide a popular bitcoin-mining accelerator with an embedded
power-hammering Trojan to crash a large number of instances simultaneously.

The attack itself uses FPGA configurations that create excessive waste power through
dynamic FPGA power consumption for crashing or damaging F1 instances (i.e. a DoS
attack). The effects of power wasting maybe amplified through dynamic power consumption
patterns (e.g., for triggering resonance effects in power regulator circuits [GOT17]).

4.2 The AWS FPGA Security Architecture

AWS (as all other cloud service providers that are offering FPGA instances) has imple-
mented multiple security fences to protect their equipment and to ensure stable operation
for all users. The following sections introduce these fences in more detail.
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4.2.1 Fence 1 — Design Inspection

This fence is executed during accelerator registration, where a design is made available to
be later used in the deployment phase. To implement any designs on AWS, users must
follow a strict design flow (see Section 2.2). All designs have to pass the DRCs, as listed
in Table 1. The input to the registration process is a netlist in the vendor propriety design
checkpoint format (DCP).!

First, an integrity check (a SHA-256 hash) confirms that the DCP file has not been
corrupted. Then a scan for unrouted nets detects malicious designs that try tapping into
other parts of the system (e.g., the cloud shell). The PR region check confirms that the
static shell (AWS shell) will not be compromised [Xil19a]. This check is done by analyzing
the user DCP, which includes both the shell (provided by AWS) and the user logic. The
Device DNA check prevents users from accessing an FPGA-specific ID. The device DNA is
normally used for access control or cryptography protocols [Xil20]. Without access to the
device DNA, users have no trivial way to identify their allocated FPGAs.

The FPGA vendor Design Rule Checks scan for design violations, including unrouted
nets, dangling nets, combinatorial loops, etc. The design tool Vivado 2019.1.3 provides
more than 5000 DRCs with the severity of critical warnings and errors, which would
prohibit the flow from generating bitstreams, if used. The severity level (e.g., error) of
many DRCs can be changed, and it is the duty of the CSP to use the right DRC receipt.
Note that only 3 DRCs scan for combinatorial loops (which allows implementing fast
ring-oscillators and softlogic voltage/temperature sensors). The DRCs include:

e LUTLP-1 and LUTLP-2 check for LUT-based combinatorial loops.

e RPCL-1 detects "any" combinatorial loops in the design. Here, "any" refers to the
vendor information. However, this test fails to detect several combinatorial loop
designs, as listed in Table 2.

Additionally, the design inspection checks for timing, 10, and power violations. However,
this step only provides reports and violations will not prevent the AFI generation. This
allows an attacker to deploy overclocked designs for implementing side channel attacks, as
mentioned in Section 3.2.1.

AWS provides a few default clocks a user can choose of. However, using these clocks
is not enforced (as demonstrated in Section 4.4) and users can generate their own clocks
with higher clock speeds than the default clocks. This is a security threat for both
power-hammering and implementing voltage/temperature sensors.

4.2.2 Fence 2 — Bitstream Generation

After passing the design inspection, the AFT is generated. This is a file consisting of the
configuration bitstream and some metadata (that we ignore here). The FPGA vendor
bitstream generation tool ensures the correct translation of the netslist (given as a DCP file)
into a bitstream. It is important to understand that, due to the low-level implementation
of the actual FPGA fabric, it is possible to create short-circuit situations that can draw
excessive current. While an individual short circuit is not a concern (about a few mA per
short circuit) [BKTO8], an attacker could possibly deploy hundreds of thousands of shorts
with corresponding consequences.

Because attackers cannot inject their own bitstreams, we cannot bypass this fence.
Consequently, we have not been able to attack a cloud FPGA with short circuits (as this
require bitstream manipulations). All designs passing Fence 1 will pass Fence 2 and 3.

1Users can provide encrypted DCP files to protect their IP. However, the CSP could brake the
cryptographic mechanism. For example, attackers can generate the bitstream from the DCP and annotate
the logic functions back to the DCP netlist [BSHO8, PHK17]. Therefore, users have to trust the CSP for
IP protection. However, this aspect is outside of the scope of this paper and is covered in [SVFT21].
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Table 2: Malicious designs that are currently deployable on AWS.

Design Side-channel | DoS Attacks | Suited for sen{ Provisional
Attacks sors & PUFs | power gain (W)

1: MUX7 ROs v v v 463

2: MUXS8 ROs v x* v 123

3: CARRYS8 ROs v X* v 123

4: DSP ROs v X* v 25

5: Latch ROs v v v 980

6: FF Glitch Generator | v/ v X 519

7: LUT Glitch Gen. v v X 1141

8: Glitch Amplification | v/ v X 2721

9: Enhanced CARRYS8 | v/ v v 369

Designs 1,2,3,4,5,6,7 are taken from [LMG120]. Design 8 is taken from [MLPK20]. Design 9 is an
enhancement of Design 3 (See Figure 5b). *: On their own, Designs 2,3,4 are not well suited for DoS
attacks. However, DOS is possible using additional glitch amplification.

4.2.3 Fence 3 - FPGA API

After the AFT is generated, it can be loaded to the FPGA fabric. However, AWS blocks any
direct access to the generated AFI as well as the programming and debugging processes.
AWS is providing a set of command-line tools to program and debug the FPGA [Amal9a],
and programming is only possible through an AWS-provided API. For programming,
the command fpga-load-local-image is encapsulating the vendor programming mechanism
[Xil19¢c]. For debugging, AWS provides users with virtual LEDs, virtual DIP switches, and
virtual JTAG [Amal9a]. This is available through the PCle connection.

Like with the bitstream generation, we cannot bypass Fence 3, which is active when
deploying a design. Security Fence 3 prevents attackers from directly accessing the
configuration bitstream (AFT) and the configuration port.

4.2.4 Fence 4 — FPGA Monitoring

At runtime, AWS uses three safety mechanisms. The first one is power monitoring. The
Xilinx VU9P datacenter FPGAs provide a system monitor mechanism featuring three
10-bit 200kSPS ADCs to read FPGA temperature sensors and core voltages [Xill9b].
Related work suggests that the available sampling rate is insufficient to detect quick
voltage transients [ZSZF13] and to generate power warnings, if excessive power is ramped
up rapidly. While the present mechanism is sufficient for virtually all practical benign
designs, it is insufficient for the malicious circuits that we deployed in this work.

The second safety mechanism allows slowing down a user design to limit power con-
sumption below a certain threshold (= 100W). When exceeding this power budget, the
shell will gate all user clocks to stop switching activity and corresponding dynamic power.

As the last safety mechanism, AWS uses a failsafe mechanism that is built into the
FPGA for protecting the device from overheating. AWS has set the critical temperature
to 125°C (which is the default value). When exceeding this temperature threshold, the
FPGA is triggering the shutdown sequence, which deactivates all drivers of the FPGA
(including all drivers for clock nets and most other resources). This is activated globally
ind will cut off the PCle connection between the FPGA and the host.

4.3 Power-hammering Attacks on AWS EC2 F1 Instances

Since AWS F1 instances are equipped with Xilinx UltraScale+ VU9P FPGAs, we ran
experiments under lab conditions using an FPGA board featuring the same FPGA (we used
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Figure 4: Oscillator designs deployable on AWS F1 instances: (a) transparent latch, (b) flip-
flop with asynchronous preset, (c) ring oscillators implemented through carry-chain logic, (d) a
self-oscillating circuit using glitch amplification.

an Alveo U200 datacenter card) to measure power increments caused by different power-
hammering circuits. This allows us calibrating our power-hammering attacks without the
need to measure power on AWS hardware. Furthermore, we used the AWS tool flow for
tuning our designs to pass the design inspection (Fence 1).

Chip power dissipation consists of both static and dynamic power. In benign designs,
dynamic power can contribute to 20% to 70% of the total power dissipation [SGDK92].
The dynamic power consumption depends on switching activity which is expressed by
the activity factor « that denotes how often a signal can toggle within one clock period.
Because « is data-dependent, estimates are commonly used to model this effect. E.g.,
the power estimator from Xilinx sets « to 12.5% by default [Xil19d]. However, malicious
circuits can switch 100X faster [LMG™20], and the power estimator is not well suited to
catch such designs.

Figure 5 and Table 2 show attacks that bypass the security Fences 1-3. The reported
power gains had been derived on a small region of the FPGA (= 10% of the total resources)
and than scaled up according to the user FPGA resources available on AWS F1 instances.
We divided the malicious designs into two groups: 1) designs using combinatorial loops
and 2) designs creating glitches. The latter is shown in Figure 4d), which uses a toggle
flip-flop where the output is routed to an XOR, but with different latencies in order to
create glitching at double the frequency than the toggle flop itself. This amplified clock is
fed back to the flop, causing a self-propelled oscillation. We used this concept to amplify
the glitching of signals, which are then used to drive a large number of routing wires.
This results in the 2.7 KW power gain level reported for design 8. Amplifying switching
activity is a pattern that allows boosting slow oscillators to much higher frequencies with
corresponding power-hammering potential.

For the denial-of-service experiments deployed on AWS F1 instances, we used a variant
of design 3 using the carry-chain primitive (CARRYS8) and modify it to implement 8
combinatorial loops for each primitive (see Figure 5b). The enable signal is used to control
the oscillation.

4.4 Bypassing Fence 4 — FPGA Monitoring

When exceeding certain power levels, F1 instances trigger different exceptions. We observed
a power warning when power consumption reached 85W. When reaching about 105W,
the shell stops all user clocks. To bypass this clock gating mechanism, we implement a
clock source using a ring-oscillator using a transparent latch. As shown in Figure 5a),
this oscillator was used to sequentially activate a chain of power-hammering circuits, see
Figure 5b). This was slowed down using a prescaler resulting in a power rising level of
0.4W/sec. With this, we linearly increase dynamic power over time such that the time
corresponds to the power consumed. This allows us to observe the FPGA monitoring
behavior even if the shell applies clock gating. For the experiment, we instantiated a chain
with 81,920 CARRYS primitives for power-hammering. We have deployed this design on
AWS, and the result is shown in Figure 5c. We observed that when increasing power
beyond the clock gating point (105W), the SSH terminal freezes at about 134W, which
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may have triggered an over-temperature shutdown. All power levels had been measured
indirectly through measuring the time. For improving accuracy, we used a reference
counter to measure the speed at which the power-hammering circuits are activated. Our
experiments confirm that 1) the cock gating can be bypassed and 2) exceeding 134W can
freeze an instance with a loss of the SSH connection.

4.5 FPGA Fingerprinting on AWS EC2 F1

PUF Responses of two FPGA instances

Create f1.2xlarge
instance

4350
4300
4250
g Step 1: Start/Launch
< 4200 Instance
£ 4150
S Load PUF design then
5 4100 J"‘W’V\/\,\M/JW '
b 2050 Step 2: Get PUF response
) 2 =~ 7\
= 4000 _J VIV N MV
3950 ) Crash instance by
Step 3: power-hammering
3900 design
14 71013161922252831343740434649525558
Counter
Instance
e INStance #1 @7W Instance #1 @67W Instance #2 @7W
Figure 6: AWS F1 FPGA PUF responses. Figure 7: AWS attack flow.

In the last paragraph, we presented an experiment that crashed an AWS F1 FPGA
instance. In order to investigate the behavior of an instance after being crashed, we need to
identify individual FPGAs (or corresponding instances) to determine their availability for
measuring that a DoS attack was mounted successfully. AWS does not provide an identifier
that could be used to identify a specific physical instance or FPGA (e.g., a serial number,
MAGC, etc.). Additionally, AWS prevents users from accessing factory-programmed keys on
the FPGA, including the 96-bit factory-programmed unique DNA (Device DNA) or the
32-bit user-defined eFUSE [Xil20]. Therefore, we implemented a PUF for fingerprinting
the FPGAs. Note that these PUFs are not used for any security protocols, and security
concerns against PUFs would not apply in our context. PUF implementations on FPGAs
are well studied [DPGV15] and our contribution is providing an implementation that is
deployable on AWS F1 instances where combinatorial feedback loops cannot be used (see
also 4.2.1).

Recently, a group from Yale University used DRAM decay to fingerprint AWS F1
instances [TXG"20]. That approach uses the fact that each FPGA chip has access to
four dedicated DRAM modules. However, we have not considered this method because
1) DRAMsS are removable; 2) the method requires three AFI loading steps, which means
tripling the time for experiments; and 3) it is trivial to be mitigated by AWS. This is
because the attack uses two different user designs, one with a memory controller and
one without. The second design is used to temporarily disable DRAM refreshes, with
the resulting decay being the fingerprint signature. However, AWS could mitigate this
in Fence 3 by i) simply not allowing to change between designs that once use and once
not use memory, which would be a rather unusual case and therefore not affecting benign
customers or ii) including a memory blanking phase that could be applied transparently
to the user.

As an alternative, we implemented an oscillator-based PUF for fingerprinting. We
implemented 60 ROs using transparent latches. We constrained all ROs with the same
physical routing paths and the cycle path delay was reported be 456ps each (by the Xilinx
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Vivado tool). For the fingerprinting, we counted the response of each RO separately over
a time period of 2048ns. Since the VU9P FPGA used in AWS has 3 super-logic regions
(SLRs), which are separate dies integrated together on an interposer, we used 3 identical
PUFs (one per SLR) to increase the confidence level of our fingerprinting. The unique ID
of each SLR is represented through a set of 60 count values. We identify the match of two
PUF responses by calculating the Pearson Correlation Coefficient between 2 counter value
sets. In our experiments, we defined that two sets match if the correlation coefficient is
larger than 85%.

Figure 6 shows 3 PUF responses where the first and last traces were derived from the
same FPGA but at different power levels (7TW and 67W). These traces show a strong
correlation (94%) in the shape of the count values but with a temperature-related offset.
Therefore, the PUF responses are robust to temperature changes. The trace in the middle
was derived from a different FPGA as a reference. These experiments allow 1) measuring
temperature of an FPGA (which could, for example, reveal information of a previous
design) and 2) fingerprinting an FPGA to derive secrets of the cloud service provider. This
can include the number of total instances or scheduling policies.

4.6 DoS on AWS — Deployment & Attack

Time between continuous Monetary comparison between attack
running instances cost and consequences
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0.8 u: W!thout CF?Sh'”g (Step 3) $1,000 M : Attacker cost
> M : With crashing 5 4800 M : Downtime lost
% 0.6 2
© = $600
3 o
© 04 3
a S $400 $259
02 I $200 $129 o l $110
$14
o l - - 0 hal | — |
0-5 0-10 10-30 30-60 60-720 >720 fl.2xlarge fl.4xlarge fl.16xlarge
Time interval (minutes) F1instances
Figure 8: Time interval between two running Figure 9: Estimated attack cost and loss after
instances. 100 attacks with an attack time of 5 minutes

and downtime of 52 minutes.

We conducted experiments on the on-demand f1.2xlarge instances in the North
Virginia us-east-1 region. The attack was mounted from Apr 17, 2020 to Apr 28, 2020.
For the power-hammering experiments, we used a moderate power level of 396W to crash
the FPGAs (ramped-up rapidly) as our intention was not to damage equipment. It is
worth mentioning that we applied this power constant and that by creating resonance
effects in the power regulation circuit (by using a pulsed stimulus of defined frequency
and duty cycle), less power is likely sufficient to crash the board or to cause potential
damages [GOT17].

The attack was performed, as shown in Figure 7. After creating an instance, we firstly
fingerprinted the FPGA and then crashed it using power-hammering. After this, we started
the attack with the next instance. As a reference, we ran experiments without crashing
the instance (without Step ) to measure the time it takes under normal conditions to
receive the same FPGA instance again. With this, we confirmed that an F1 instance stays
on the same host computer if it is left running [Ama20b]. After five tries, we observed that
without crashing, it took less than five minutes to i) establish an instance, ii) fingerprint
it, and iii) shut it down, and we always got the same FPGA instance. After this, we run
another 96 experiments including crashing of the instance. As shown in Figure 8, we
observed that on average it took about an hour before we were able to start a new instance
after a crash and the longest waiting time was up to 22 hours.

Interestingly, when comparing the PUF responses, we found that the minimum time
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Table 3: Comparison of current mitigation methods.

Attacks on Availability Attacks on Confidentiality
RO- Glitch- RO- Cross- Fault In- Using
Methods based based based talk jection Cost Reuse FPGA
Power- Power- Power- Leakage Resources
hammering hammering analysis
Hardware vl e vl vl e VERY- v X
HIGH
Design Guidelines v v v v v HIGH v X
Runtime Monitoring vl e vl X e MID v v
Design Inspection v X2 v v X2 LOW v X

T. Works robust only for small power-hammering levels. ?: Could be done, but not implemented so far.

to get a previously crashed F1 instance re-allocated is about 52 minutes. And we found
only one occasion where the same FPGA was allocated in two consecutive experiments.
This value is much below the rates reported in [TXG™20] with 25% and our reference
experiments. This is a strong indication that the host machine needs to re-initialize the
crashed FPGA and the minimum downtime is close to one hour. Our experiments also
show that the crash behavior is not consistent. This could be an indicator that it required
a human operator to bring up an attacked instance.

The here presented DoS attack can potentially be deployed in different scenarios. In
one, a malicious design is placed in the AWS market place, and after a forced crash, users
will experience extensive delays for receiving new instances. Note that because we can use
routing resources that are left unused in a particular design to build power-hammering
circuits, the extra cost for embedding this attack would be neglectable. Alternatively, an
attacker could temporarily prevent AWS of selling the service of crashed F1 instances.
Given the service is billed in second (if it runs for less than a minute, then cost is rounded
up to the next minute) [Int20], we can estimate the monetary loss. Figure 9 shows the
estimated cost and possible loss when running 100 attacks. As we can see, the downtime
loss is about an order of magnitude greater than the attacking cost. The ratio could
potentially be higher if an attacker can prevent AWS from fulfilling quality of service
agreements.

Because we do not want to cause potential damage to AWS equipment, we have
not conducted experiments with greater power-hammering potential (e.g., using glitch
amplification). With higher power-hammering potentials, there is a potential loss in
customer confidence and possible loss of equipment, which states a greater financial risk.

5 Mitigation Strategies

Oscillators can be used for leaking information, as shown in Section 2 and (most
importantly) for DoS attacks, as demonstrated in the last section. By using glitch
amplification and high fanout nets, any oscillator circuit could be used for power-hammering
with a potential exceeding well above 1KW. Therefore, it is important to prevent any
oscillator to be deployed. Without this, any FPGA monitoring could easily be overwhelmed,
and the risk of power-hammering would be virtually unmanageable.

The following lists categorizes the most prominent mitigation strategies (see also
Table 3):

1. Hardware: By designing FPGA boards with greater capabilities for supplying
power and cooling and by over-provisioning power supplies, systems can be built
more robust. This is the most costly mitigation strategy but has the advantage
that it can mitigate almost any type of attack transparently to users. However, this
approach is limited to moderate power-hammering levels and cannot be thought
of as the only method because it is unfeasible to entirely mask power-hammering
potentials that can reach kilowatts.
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2. Design Guidelines: This requires designers to follow strict coding guidelines such
that potentially malicious designs (e.g., asynchronous elements) are prohibited. This
either requires a certified supply chain or design inspection to enforce the design
guidelines. Moreover, this approach may result in poor customer satisfaction due to
the imposed guidelines.

3. Runtime Monitoring: Runtime monitoring of power and temperature, as done by
AWS in Fence 4, is useful for managing the benign operation of the FPGA hardware.
However, similar to designing the hardware more robust, monitoring can only serve
as a mitigation strategy for attacks at low to moderate power-hammering levels.
Considering a possible power-hammering potential in the kilowatt domain would not
allow us to monitor or react fast enough to prevent unstable operation or equipment
damage.

4. Design Inspection: This is the key protection applied in Fence 1 by AWS. This, in
particular, includes checking for design errors (DRCs). However, the present DRCs
offered by the Xilinx vendor tools had been created mainly to identify design errors
and not for spotting malicious circuits. This is the main reason why we found multiple
design that bypass Fence 1 (see Table 2). Nevertheless, design inspection is virtually
for free and protects against the most severe power-hammering threats, which makes
security manageable for the previous mitigation strategies. However, this implies
that the inspection is robust to catch all critical designs. In Section 5.1, we will
demonstrate that the most severe hardware security issues for FPGA cloud computing
(short circuits and self-oscillating circuits) can be reliably detected through design
inspection. However, even design inspection is cheap to implement, this process
needs continuous maintenance. Design inspection could be performed at the netlist
level or bitstream level. The latter provides users with better IP protection.

FEach approach has its pros and cons in terms of cost and effectiveness. To mitigate attacks
on availability, we believe that design inspection should be the preferred method. In
the present AWS security ecosystem, this would add more tests to Fence 2, which is the
bitstream and AFI generation. With this, we can limit the power-hammering potential
that can be mounted on an FPGA. Opposed to this, hardware robustness and monitoring
are strategies that mitigate attacks that are running on the FPGA.

In practice, similar to the present deployment strategy that is in place at AWS, we
believe that it needs a hybrid solution where design inspection detects all severe threats such
that hardware robustness and runtime monitoring operate in their acceptable operational
conditions. This is a non-trivial task and will require continuously maintaining the design
inspection tools to ensure that 1) possible future threats are detected and 2) benign designs
are not rejected (false positives). We believe that this model is feasible as the basic design
principles that can be used for attacks are rather limited (due to the limited number of
FPGA primitive types available). This potentially allows implementing a holistic scanner
solution for catching FPGA hardware security issues such as oscillators for side channels
and power-hammering. An example of an FPGA virus scanner for datacenter FPGAs was
proposed in [LMG™20], and an extension of this scanner is presented in Section 5.1. The
scanner is supposed to complement the vendor DRC checks.

5.1 Netlist/Bitstream Scanning Mechanisms

In [LMG*20] and [MLPK20], the open-source FPGA virus-scanner framework FPGADe-
fender for Xilinx UltraScale+ devices was introduced. The framework retrieves the netlist
from a bitstream (via an academic tool BitMan [PHK17]) and scans for a set of pre-defined
virus signatures (i.e. properties of the design provided). For this work, we provide two
contributions to FPGADefender: 1) a reimplementation of the scanner that can handle
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large datacenter FPGA designs (see Section 5.2) and 2) we provide an input path to scan
for malicious circuits directly from the Xilinx vendor-proprietary DCP netlist file format.
This is shown in Figure 10 through the block Netlist Transformer. The latter allows both
end users and cloud providers to embed the FPGADefender scans as an add-on to existing
DRCs. The checks performed by FPGADefender include:

o A Combinatorial Feedback Loop Scanner is used to scan designs for combinatorial
loops in a similar way to the vendor DRCs. This scanner covers all possible com-
binatorial feedback loop paths, including paths through carry-chains, transparent
latches, DSP blocks, and cascading multiplexers, which are all not detected by the
Xilinx vendor DRC (see also Table 2).

o Fanout Detection is used to detect drivers with a large fanout, which can indicate
malicious designs that may use high fanout nets for controlling the attack and for
using routing resources for power-hammering.

 Disallowed Port Detection allows detecting usage of specific ports on the FPGA (e.g.,
for disallowing the design from accessing any of the shell resources). This can be
used to disallow access to specific FPGA primitives or to whole areas of the FPGA,
without limiting routing through these areas.

e Disallowed Path Detection detects the usage of specific wires, to prevent designs from
using unsafe wires in the FPGA. Disallowing specific wires can prevent malicious
designs from being able to extract data from nearby wires belonging to other parts
of the design (e.g., for exploiting crosstalk effects [GRS19, RGE19)).

e Short Circuit Detection is used to ensure that the encoding of the switchboxes is
valid, and will not cause a short circuit. This situation should never occur from
bitstreams generated by the vendor tools, but can be created trivially by bitstream
manipulations. Therefore, only a cloud service provider that allows customers to
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Table 4: Comparison of Virus Scanner Implementations (C++ refers to the new implementation and
Python refers to the implementation presented in [LMG™20]).

Design ‘ C++ Memory Python Memory ‘ C++ Runtime | Python Runtime
Dring_osci | 2997 Mb 10369 Mb 40s 15m

2full_vadd | 3162 Mb 10524 Mb 44s 2h 36m 38s

3 4xeuro 5183 Mb > 11080 Mb 1m 30s > 30h

Dring_ osci is a single ring oscillator on an mostly empty F1 FPGA.

2)full_vadd is a medium size HLS generated design (= 1/3rd of the FPGA capacity).

3)4xeuro is a large HLS generated design, which fills the chip. The Python scan for this design was
stopped after 30 hours uncompleted.

upload their own bitstreams is vulnerable; providers who enforce cloud-side synthesis
are not affected. Therefore, this check is only used for bitstream scanning and not
for analyzing netlists (i.e. design checkpoints).

e Glitch Detection is used to calculate the worst-case dynamic power consumption of
a design. Glitches in an FPGA design can be created through carefully designed
combinatorial logic and its physical implementation. For example, a 6-input XOR
can create 6 glitches in a clock cycle leading to a corresponding high dynamic
power consumption [MLPK20]. The work in [MLPK20] showed that the vendor
power estimator cannot reliably detect power-hammering created through glitch
amplification.

The different detectors generate numerical scores that indicate the maliciousness of a
design (with a low score indicating a relatively benign design, and a high score indicating
problematic designs). Cloud vendors can use these scores to decide if a design will be
accepted or not (e.g., for generating an AWS AFT).

5.2 FPGADefender for Datacenter FPGAs

When testing the original FPGADefender implementation [LMG'20], we found that
scanning large designs, as usually deployed on datacenter FPGAs, took over a day to
complete. To enable virus scanning on large FPGAs, a C++ implementation was developed,
with a focus on runtime.

Several techniques are utilized to improve the speed of the scanning engine. The
python data structures and algorithms are re-written in C++, using the C++ STL data
structures. The C++ scanners graph implementation generates internal pointer arrays, for
faster netlist traversal. The C++4 scanner uses efficient algorithms for scanning, such as
Tarjans algorithm for finding cycles. The LUT netlist calculation is simplified and external
dependencies are removed. For instance, [LMG™'20] uses the Espresso logic minimization
library [BHMSV84] to scan for unused LUT imputs and we replaced this part with own
functions. Additionally, the FPGA chip description data structures have been optimized
for the access patterns of the netlist generator.

A comparison of the C++ and Python implementations in Table 4 shows the difference
in scanning speed and our reimplementation reduces scanner speed from over a day to
minutes.

6 Discussion

When we realized that power-hammering could be deployed on AWS instances with
theoretically over 1IKW power-hammering potential, we contacted AWS. We got permission
to run tests on their production system. However, the here presented attacks do not
exploit the full potential of the attack, both in terms of the power wasted and in terms
of power-hammering pattern. We limited our attack as we only want to point out the
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problem and not cause serious harm to AWS. We would also like to stress that most of
the attack circuits listed in this paper are published and rather trivial to implement. Our
main contribution in this paper is to explore the AWS FPGA security ecosystem in a more
systematic way.

To enable CSPs to protect their equipment, we developed a DRC receipt that uses the
vendor DRC and static timing analysis to perform more robust design inspection in Fence
2. This can be seen as a patch and is integrated through a single TCL script. The patch
will detect all oscillator circuits that we tested on AWS instances. The custom DRC is
available under:
https://github.com/FPGA-Research-Manchester/XilinxTCL_utilities/
tree/master/01_CustomDRCs_CombinatorialLoopCheck

We want to stress that our findings are not bound to AWS or a specific FPGA vendor.
The attacks presented in this paper would work very similarly on FPGAs from other
vendors (e.g., [RPDT18] examined power-hammering and ring-oscillator designs on Intel
FPGASs). The reason why we (and most researchers) base research on Xilinx is due to
being the market leader and because their tools provide powerful APIs. While this may
allow attackers to use those interfaces, it is providing the means to implement independent
scanners, and most importantly, providing overall trust in tools and the hardware. We
believe that FPGA hardware security in cloud settings is manageable in similar ways to
managing security threats in other pieces of IT equipment. Moreover, the relative openness
of Xilinx (and other vendors like Lattice Semiconductor) in terms of documentation and
tool APIs allows implementing more trustworthy security solutions.

7 Conclusion

In conclusion, this paper presents the first demonstrated DoS attack deployed on AWS
F1 FPGA cloud instances. Our attack is based on FPGA power-hammering, which is
drawing an excessive amount of dynamic power. By using FPGA fingerprinting through
PUFs, we found that crashed instances are typically unavailable for at least about an hour,
which is a strong indication that our attack was successful and that it may even require
the intervention of a human operator.

Most important, we have proposed scanning mechanisms that can mitigate all attacks
presented in this paper and that can be seamlessly embedded into the AWS security
infrastructure for AWS FPGA instances. This includes an FPGA virus scanner and a
new design rule check receipt to be used with the Xilinx vendor tools. This scanner can
distinguish between user accelerators and malicious designs that can waste one to two
orders of magnitude more power than benign accelerators would usually do.

With this work, we want to contribute to the currently very active research on FPGA
hardware security in order to understand possible threat scenarios better and for providing
mitigation mechanisms. While there is more research needed, we strongly believe that
multi-tenancy as well as FPGA-as-a-Service can be accepted from a security point of
view, and that design inspection at bitstream and/or netlist level provides the technology
foundation to enable this movement.
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