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Abstract. Hard learning problems are important building blocks for the design of var-
ious cryptographic functionalities such as authentication protocols and post-quantum
public key encryption. The standard implementations of such schemes add some con-
trolled errors to simple (e.g., inner product) computations involving a public challenge
and a secret key. Hard physical learning problems formalize the potential gains that
could be obtained by leveraging inexact computing to directly generate erroneous
samples. While they have good potential for improving the performances and physical
security of more conventional samplers when implemented in specialized integrated
circuits, it remains unknown whether physical defaults that inevitably occur in their
instantiation can lead to security losses, nor whether their implementation can be
viable on standard platforms such as FPGAs. We contribute to these questions in the
context of the Learning Parity with Physical Noise (LPPN) problem by: (1) exhibiting
new (output) data dependencies of the error probabilities that LPPN samples may
suffer from; (2) formally showing that LPPN instances with such dependencies are
as hard as the standard LPN problem; (3) analyzing an FPGA prototype of LPPN
processor that satisfies basic security and performance requirements.
Keywords: Learning Parity with Noise · Physical Assumptions · Physical Defaults
· Security Reductions · FPGA Implementations · Side-Channel Security

1 Introduction
For more than two decades, learning in the presence of errors has been considered as an in-
teresting source of computationally hard problems [Kea93, Hås97], which have in turn found
many applications in the design of provably secure cryptographic schemes [Reg10, Pie12].
Among the possible instances of such hard problems, the Learning Parity with Noise (LPN)
problem is probably the simplest one. It has given rise to a wide literature about efficient
authentication protocols, starting with the scheme of Hopper and Blum (HB) [HB01] and
extended in various directions [JW05, GRS08a, KPC+11, DKPW12, HKL+12]. It can also
be used to build one way-functions [BFKL93], secret-key encryption schemes [GRS08b],
public-key encryption schemes [DV13], pseudorandom functions [YS16] or hash func-
tions [YZW+19]. Extensions of the LPN problem turn out to be even more versatile.
For example, the Learning With Errors (LWE) problem introduced by Regev [Reg05]
can additionally be used to build identity-based encryption [GPV08, CHKP10] or fully
homomorphic encryption [Gen09, BV11]. Its variants are the basis for many post-quantum
cryptographic schemes [BL17] and are in particular the core assumption for CRYSTALS-
Dilithium [DKL+18], CRYSTALS-Kyber [BDK+18], which are both finalists of the NIST
Post-Quantum (PQ) cryptography competition.1 Finally, large-modulus LPN has re-

1 https://csrc.nist.gov/projects/post-quantum-cryptography.
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cently found advanced applications in secure multi-party computation [BCGI18, BCG+19],
arithmetic cryptography [AAB17] and indistinguishability obfuscation [JLS20].

Whenever such primitives become practical to the point of being deployed, their secure
and efficient implementation naturally becomes a critical problem to solve. This is for
example the case of LNP-based authentication protocols and PQ schemes. In this respect,
various results showed that the conceptual simplicity of LPN-based protocols does not
directly translate into concrete advantages [BL12, AHM14]. This is in part due to the cost
of generating random numbers that those solutions require. Similarly, while it could be
expected that the simple algebraic structure of LPN-based protocols could directly lead to
implementations secure against side-channel attacks, it turned out the need to protect its
(additive) Bernoulli noise implies significant overheads as well [GLS14].

As a result of these limitations, Kamel et al. observed that by leveraging recent advances
in inexact computing (a trend that is of independent interest in view of the miniaturization
of electronic devices [GR10]), one could implement LPN-based schemes without explicitly
generating random numbers [KSD+20]. They formalized the corresponding problem as the
Learning with Physical Noise (LPPN) problem, and highlighted its potential advantages in
terms of implementation cost (since it removes the need to explicitly generate randomness
for the additive errors) and implementation security (since it prevents the trivial attack
probing the randomness in a leaking implementation). A first ASIC prototype of LPPN
processor was then described in [KBS+18] and its side-channel security has been evaluated
in [KBBS20]. Nevertheless, and despite these promising and quite unique features, the
understanding of the security and applicability of LPPN remains limited.

On the one hand, LPPN is a physical assumption (in contrast with the mathematical
LPN assumption), raising the question whether the errors generated thanks to inexact
computing (which may not exactly follow a Bernoulli distribution) are leading to hard
problems? For example, the investigations in [KSD+20, KBS+18] showed that the error
probability of LPPN samples may depend on the Hamming weight of the corresponding
challenges, and provided heuristic evidence that these dependencies can be limited.

On the other hand, the prototype implementations in these previous works were heavily
relying on an accurate control of frequency and voltage over-scaling, raising the question
whether such ideas are applicable with off-the-shelf devices like FPGAs?
Our contributions to these questions are threefold:

First, we further study the physical imperfections that can affect the security of the
LPPN problem. In particular, we show that besides the dependencies of the LPPN
error probability on its input challenges, LPPN prototypes can also suffer from output
dependencies. That is, the probability of error of LPPN samples can depend on the
(correct) value of its output. We also show that certain types of implementations lead to
“structured errors” (i.e., the error at cycle i depends on the output at cycle i-1). We then
discuss options to mitigate these issues, which turn out to be easy to fix by design for
the structured errors, and hard to completely cancel for the output dependencies. Hence,
these observations question the equivalence between LPPN and LPN.

Second, and since it is well known that tweaking the LPN problem can make it
weaker [AG10], we formalize the exhibited output dependencies as a (new) LPN problem
with Output Dependencies (LPN-OD) and we show that solving the LPN-OD problem is
as hard as solving an LPN problem with adapted security parameters (depending on the
output dependencies). This reduction allows us to gain provable confidence that certain
types of physical imperfections do not completely ruin the hardness of LPPN problems. It
also opens the way towards formalizing other imperfections with similar reductions.

Third, we describe and analyze a prototype LPPN processor running on a Xilinx
FPGA, showing that inexact computing can also be leveraged on such general-purpose
platforms. In particular, we describe an error control mechanism based on a fully digital
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variable delay line that can reach a level of control similar to what can be achieved with an
ASIC prototype. We additionally analyze the input and output dependencies of the error
probability that our implementation leads to, and conclude that secure LPPN samples can
be generated with it. A side-channel security evaluation is also given in Appendix.

As a side-result, we finally discuss how much masking the LPPN implementation, which
is required in order to reach high security levels against side-channel attacks, can also be
used to mitigate the error dependencies of LPPN samples.2 This observation strengthens
the relevance of the LPPN assumption, since it implies additional concrete advantages in
the practically important context of side-channel secure implementations.

Overall, the LPPN assumption is admittedly a provocative one, and a lot of work
remains needed to gain confidence in its security and usability. Besides, its strongest
potential use case is for the side-channel secure implementation of PQ cryptographic
algorithms and most of them rely on more general LWE problems (for which a physical
counterpart is also outlined in [KSD+20]). Yet, we believe understanding the security of
LPPN in front of possible physical imperfections (like input or output error dependencies),
and its implementation in FPGAs, are necessary first steps in this direction. We hope
our results can be used as a seed towards both the theoretical investigation of other hard
physical learning problems and the practical investigation of inexact computing in this
context. We also believe such a risky research path is justified by the high importance of
obtaining secure and efficient PQ cryptographic implementations in the future.

2 Background
2.1 The LPN problem
The LPN problem can be specified as follows [LF06]:

Definition 1 (LPN problem). Let 〈., .〉 denote the binary inner product, k be a random
n-bit secret, ε ∈ [0, 1

2 ] be a noise parameter, Berε be the Bernoulli distribution with
parameter ε (if e← Berε, then Pr[e = 1] = ε), and Dε

k be the distribution defined as:

Dε
k =: {(x, 〈x,k〉 ⊕ e) : x← {0, 1}n; e← Berε}.

Let Oεk denote an oracle outputting independent samples according to the distribution Dε
k.

The LPNnε problem is said to be (q, t,m, θ)-hard to solve if for any algorithm A,

Pr[k← {0, 1}n : AO
ε
k(1n) = k] ≤ θ,

and A runs in time < t, with memory < m and makes at most q queries to Oεk.

2.2 The LPPN problem
The LPPN problem, introduced in [KSD+20], is a variant of the LPN problem where a
physical function directly computes incorrect inner products. Its specification requires the
definition of physical function adapted from [AMS+11] which we recall next:

Definition 2 (Physical function). A physical function PFd,α is a probabilistic procedure
based on a physical device d, which can be stimulated with an input x ∈ {0, 1}ni , making
d respond with a (probabilistic) output y ∈ {0, 1}no , with α a set of parameters.

In the LPPN case, d will be an implementation of inexact inner product computations
(implying ni = n and no = 1), which we define next, and α is the set of parameters
determining its error distribution (e.g., the clock frequency or supply voltage).

2 The high-level intuition that masking helps against such dependencies is already given in [KSD+20]
but we further detail it and connect it with side-channel security requirements.
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Definition 3 (Physical inner product). Let k ∈ {0, 1}n be a random n-bit secret stored
in a device dk. A physical function PFdk,α is called an ε-Physical Inner Product (ε-PIP) if,
on uniform public input x ∈ {0, 1}n, it outputs 〈x,k〉 with estimated error probability:

P̂r[PFdk,α(x) 6= 〈x,k〉] = ε.

The LPPN problem can then be defined as follows:

Definition 4 (LPPN problem). Let PFdk,α be an ε-PIP. The LPPN n,ε
dk,α

problem is said
to be (q, t,m, θ)-hard to solve if for any algorithm A running in time < t, memory < m
and making at most q uniformly random queries to an ε-PIP, it holds that:

Pr[k← {0, 1}n : APFdk,α(1n) = k] ≤ θ.

The main difference between the LPN and LPPN problems is that assuming the LPN
problem to be hard is a mathematical assumption, while assuming the LPPN problem to
be hard is a physical assumption. In particular, we have no guarantee that the LPPN
error distribution is exactly equal to the one specified in Definition 1. In the next section,
we show that concrete instances of physical functions can be affected by various defaults
of the noise distribution, hence questioning the equivalence of these problems.

3 LPPN physical imperfections
It has already been put forward in [KSD+20, KBS+18] that the errors of an ε-PIP may
exhibit input data dependencies. For example, denoting the bitwise AND between x and k
as x·k and the Hamming weight function as HW(.), it is known that the error probability of
a serial implementation of ε-PIP based on frequency or voltage over-scaling decreases with
HW(x · k). It has also been shown that such input dependencies are significantly reduced
in the case of parallel ε-PIP architectures. Given the easier error control of serial ε-PIP
architectures, this has led the authors of [KSD+20, KBS+18] to consider mixed (parallel
then serial) ε-PIP implementations as a good tradeoff for secure LPPN instances. In this
section, we complement these first analyses of LPPN physical defaults by analyzing the
output data dependencies and possible structure of physical errors. For this purpose, we
simulate an ASIC design that is essentially similar to the one in [KBS+18] and is comprised
of three parts: an inner product architecture, a variable delay line and an error controller.
By controlling the output sampling clock thanks to the variable delay line, this design
allows accurately controlling the error rate. Implementation details are not necessary for
the understanding of this section, but are given in Appendix A for completeness.

3.1 Output data dependencies of the errors and mitigation
In the LPN setting, the error e ← Berε is completely independent on the output of the
inner product, since it is generated separately thanks to a Random number Generator
(RNG) or Pseudo-Random Number Generator (PRNG). By contrast, in the LPPN setting,
inexact computations are deployed to implement a noisy inner product with embedded
errors. Since these errors are generated by sampling the output incorrectly, it is therefore
natural to investigate whether the error probability depends on the output data.

3.1.1 Evaluation settings

Our goal in this first subsection is to show that LPPN samples can be affected by output
dependencies, and that these dependencies can to some extent be mitigated thanks
to adequate architectural choices. For this purpose, we next analyze various solutions
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Figure 1: ε-PIP architectures.

to compute 32-bit LPPN samples and compare the output dependencies of their error
probabilities.3 The cases we consider are listed next and illustrated in Figure 1:

• Case A (parallel architecture). The 32-bit ε-PIP is implemented with a tree of depth
6 (1 AND stage & 5 XOR stages). The glitches are minimized since there are limited
imbalances between the routing paths of parallel architecture. The variable delay
line (used to control the output sampling clock) is fed with an ideal clock source.

• Case B (serial architecture). The 32-bit ε-PIP is implemented with 32 sequential
stages (1 AND stage & 31 XOR stages). The amount of glitches increases with the
logic depth of the combinatorial design because the imbalances between the routing
paths are maximized. Minimum sized gates provided by the foundry are used (next
denoted as 0.5X). The variable delay line is fed with an ideal clock source.

• Case C (parallel architecture with jitter). This is the same parallel architecture as
described above (in case A), but with a jittery clock source feeding the variable delay
line such that the output is sampled with some random inaccuracies. As a result,
the errors are due to both deterministic and probabilistic (jitter) effects.

• Case D (serial architecture with power gating). This case uses the same serial
architecture as described above (in case B) but we add some power gating cells to
the ground net in order to reduce the current that drives a zero. It allows balancing
the propagation time of the 0←1 and 1←0 transitions and implies a more balanced
generation of glitches towards 0 or 1, aimed to reduce the output dependencies.

• Case E (serial architecture with balanced gates and power gating). This is the same
as case D but we use bigger and more balanced gates (next denoted as 4X).

3 A 32-bit architecture is chosen to limit the simulation time of the comparisons in this section. But a
more practically-relevant 512-bit architecture will be analyzed in Section 6.



D. Bellizia, C. Hoffmann, D. Kamel, H. Liu, P. Méaux, F.-X. Standaert, Y. Yu 395

Our case studies were implemented in a 65nm TSMC CMOS technology using the
regular voltage threshold (RVT) flavor. Pre-layout simulations were performed using
ULTRASIM within the CADENCE environment. We used 104 uniformly distributed
random 32-bit input x vectors and a single uniformly distributed random 32-bit secret
key k.4 The supply voltage is fixed at nominal 1.2V and the clock frequency is 2MHz.
For each case, an adapted variable delay line is designed in order to sample the output of
the inner product incorrectly, aiming to achieve an error probability close to 0.25. In the
parallel with jitter case, we used a clock source with 200ps RMS jitter (the latter refers to
the standard deviation of the jitter’s Gaussian distribution). Finally, we took advantage of
the readily available power gating standard cells of the 65nm TSMC CMOS technology in
order to implement the serial architecture with power gating (i.e., case D).

In our evaluations, we estimate the error probability of our ε-PIPs in two parts. First
the error probability ε0 if 〈x,k〉 = 0, second the error probability ε1 if 〈x,k〉 = 1. Then,
we compute the following normalized difference between the error probabilities as:

∆ =

∣∣∣P̂r[e← ε0-PIP]− P̂r[e← ε1-PIP]
∣∣∣

2 ·

3.1.2 Output data dependencies results

The output data dependencies captured by ∆ for all the case studies are shown in Figure 2
and lead to a number of useful observations that we list next:

1. The error probability of the parallel architecture (case A) shows significant data
dependencies (∆ ≈ 4.2%). Their main explanation is that the errors in this case are
mostly generated by the incorrect sampling of the previous correct output bit by an
ideal clock source. In other words, these are structured errors (as will be discussed
in the next subsection) and they are mostly deterministic, since they depend on the
propagated data. The fact that the first stage of the ε-PIP is an AND then favors an
output zero rather than one. Hence, the probability of having an error given that the
correct output is one is higher than in the opposite case, leading to an imbalance.

2. The errors of the serial architecture (case B) suffer from significant data dependencies
as well (∆ ≈ 3.7%). However, the reason is quite different than in the parallel case.
In the serial architecture the errors are generated by sampling the deterministic
glitches. We posit that imbalanced glitches are in cause in this case. Indeed, we used
minimum sized gates that provide different propagation times in case the gate output
goes from high to low or the inverse. More precisely, these gates switch their outputs
faster to zero than they do to one. As a result, we observe a higher probability of
error given that the correct output is one than in the opposite case.

3. Adding a jittery clock source to the parallel architecture (case C) is a nice solution
to reduce the errors’ data dependencies below 1%. Intuitively, a jittery clock implies
more probabilistic (random) inaccuracies in the sampling process of the output. As
a result, even though the error is still the result of sampling the previous correct bit,
the use of a jittery clock masks the data dependency to a good extent.

4. As an attempt to mitigate the errors’ data dependencies for the serial architecture,
we considered a gate-level solution that reduces the current that drives a zero by
means of power gating cells applied only to the ground net (case D). As it is clear
from Figure 2, this proposal reduced the errors’ data dependencies (∆ ≈ 1.6%).

4 Since the calibration phase to set the error control is adapted to the key (see Appendix A), the
conclusions in this section are not significantly affected by the value of this key.
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Figure 2: Output data dependencies of the probability of error of different ε-PIP architec-
tures. Case A: parallel architecture. Case B: serial architecture with minimum sized gates.
Case C: parallel architecture with jitter. Case D: serial architecture with minimum sized
gates and power gating. Case E: serial architecture with bigger gates and power gating.

5. Finally, we explored differently sized gates that have more driving strength (therefore
are bigger) and more balanced propagation time (i.e., the time needed for the gate’s
output to go from high to low is close to the time it needs to go from low to high)
along with power gating applied to the ground net (case E). Clearly, this solution
significantly reduces the errors’ data dependencies so that ∆ is below 1%.

We conclude from these preliminary simulations that significant output dependencies
can be observed in LPPN samples. These dependencies can be reduced thanks to ASIC
design tweaks and their detailed analysis and improvement is an interesting scope for
further research. However, it is unlikely to cancel such physical defaults completely. We
use this result as an important motivation for analyzing these dependencies and proving
that they do not cancel the hardness of the LPPN problem in Section 4.

3.2 Structured errors in parallel implementations and mitigation
Besides the output data dependencies of the error distribution, another physical default
which is quite specific to parallel ε-PIPs is the fact that LPPN errors can be structured.
More precisely, when two consecutive (parallel) inner products are computed, namely
〈x1,k〉 and 〈x2,k〉, the result of the second inner product can either be correct (i.e., equal
to 〈x2,k〉) or incorrect and equal to the previous correct value 〈x1,k〉 (but wether it is
one or the other option that is observed remains unknow to the adversary).

To demonstrate this physical default, we estimated the probability that the second
error corresponds to the correct output value given by the first inner product computation,
that is Pr[e2 = 〈x1,k〉], for both the parallel (A) case and serial (B) case of the previous
subsection. For the parallel implementation, this probability was worth 0.98 while it was
of 0.53 for the serial one. The (much) less structured errors of the serial implementation
are explained by the fact that errors are then sampled from glitches and therefore, there is
a nearly balanced chance that the glitch is equal to the previous correct output.

We note that such structured errors are easy to prevent at the design level. One option
is to output one every two inner product computations (which halves the throughput). This
way the neglected output conceals the previous correct one. A more efficient solution would
be to use a dual-edge clock implementation, where the inputs are sampled at both the
rising and falling edges of the clock, and only considering the output due to one of the clock
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edges. Most interestingly, this problem also vanishes in case we mask the implementation
since inner product computations are randomized in this case. Since structured errors are
quite specific to parallel implementations and easy to fix by design, we do not formalize
them further and next focus on the more critical issue of output data-dependent errors.

4 Reduction between LPN and LPPN
The previous section showed that the ε-PIPs generating LPPN samples may be affected
by physical defaults that can create output dependencies in the error distribution. Due to
their physical nature, it is unlikely to completely cancel these dependencies at the design
level. In this section, we therefore aim to demonstrate that despite these dependencies,
the security provided by the corresponding LPPN samples does not fundamentally differ
from the security of LPN samples. For this purpose, and as usual when reasoning about
physical primitives, we face a trade-off between the generality of security claims and their
practical relevance. That is, in theory, there are as many LPPN instances with output
dependencies as there are physical functions. But providing a separate formal treatment
for each physical function is not possible. We deal with this issue by specifying a family
of LPN problems that covers classes of imperfections that may be observed in practice,
which we denote as the LPN with Output Dependencies (LPN-OD) problem. We then
show a self-reduction of the LPN-OD problem, which gives in particular an equivalence
between the LPN-OD problem and the standard LPN problem, with given parameters.
The equivalence ensures the intractability of LPN-OD from the one of LPN. We show how
to use it to estimate parameters for our physical problem at the end of the section.

4.1 Notations
We first define the LPN problem with output error dependencies as follows:

Definition 5 (LPN problem with output dependencies). Let 〈., .〉 denote the binary inner
product, k be a random n-bit secret, ε ∈ [0, 1

2 ] be a noise parameter, Berε be the Bernoulli
distribution with parameter ε and Dε0,ε1

k be the distribution defined as:

Dε0,ε1
k =: {(x, 〈x,k〉 ⊕ e) : x← {0, 1}n; e← Berε0 if 〈x,k〉 = 0, e← Berε1 otherwise}.

Let Oε0,ε1k denote an oracle outputting independent samples according to the Dε0,ε1
k . The

LPN-ODnε0,ε1 problem is said to be (q, t,m, θ)-hard to solve if for any algorithm A,

Pr[k← {0, 1}n : AO
ε0,ε1
k (1n) = k] ≤ θ,

and A runs in time < t, with memory < m and makes at most q queries to Oε0,ε1k .

Proposition 1 (LPN-OD alternative characterization). Let n ∈ N,k ∈ Fn2 \ {0}, ε0, ε1 ∈
[0, 1/2]. Samples (a, b) ∈ Fn2×F2 follow Dε0,ε1

k if and only if a follows a uniform distribution
and the following equations hold:

Pr [b = 1] = 1
2 + ε0 − ε1

2
,

Pr [〈a,k〉 = 0 | b = 0] = 1− ε0
1− ε0 + ε1

,

Pr [〈a,k〉 = 0 | b = 1] = ε0
1 + ε0 − ε1

·

Proof. Let (a, b) ∈ Fn2 × F2 be sampled from Dε0,ε1
k with b = 〈a,k〉+ e.
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First, we prove that, for b ∈ {0, 1},Pr [〈a,k〉 = b] = 1
2 . Let j = min {i ∈ [n] |ki = 1} (j

is well defined since k 6= 0), therefore 〈a,k〉 =
(∑
i 6=j

aiki

)
+ aj . Since aj is uniformly

random over F2 and b ∈ {0, 1}, it gives Pr [〈a,k〉 = b] = 1
2 . We can then show:

Pr [b = 1] = Pr [〈a,k〉 = 0 ∩ e = 1]+Pr [〈a,k〉 = 1 ∩ e = 0] = 1
2(ε0+1−ε1) = 1

2 + ε0 − ε1
2

,

Pr [〈a,k〉 = 0 | b = 0] = Pr [b = 0 | 〈a,k〉 = 0] Pr [〈a,k〉 = 0]
Pr [b = 0] = 1− ε0

1− ε0 + ε1
,

Pr [〈a,k〉 = 0 | b = 1] = Pr [b = 1 | 〈a,k〉 = 0] Pr [〈a,k〉 = 0]
Pr [b = 1] = ε1

1 + ε0 − ε1
·

For the reverse implication, since a is uniformly distributed and the three probabil-
ities Pr [b = 1], Pr [〈a,k〉 = 0 | b = 1] and Pr [〈a,k〉 = 0 | b = 1] uniquely define the pair
Pr [b = 1 | 〈a,k〉 = 0] = ε0 and Pr [b = 0 | 〈a,k〉 = 1] = ε1, it allows to conclude.

Remark. LPN-OD is a more general problem than LPN. Indeed, for ε0 = ε1, LPN-ODnε0,ε1(k)
is equivalent to LPNnε0(k). Besides, the two problems defined above are so-called search
problems, where the goal of the adversary is to recover k. One could also define a decision
version of these two problems, that will not be studied in this paper.

4.2 Reduction
We next show that the standard LPN (resp., LPN-OD) problem is as hard as the LPN-OD
(resp., standard LPN) problem and there is both a polynomial reduction from LPN-OD
to LPN and from LPN to LPN-OD. To do so, we use a self-reduction of the LPN-OD
problem and show that we can transform in polynomial time an instance of LPN-OD into
a noisier one with the same key and a possibly different balance between the two noise
parameters. Precisely, we show that a probabilistic polynomial time algorithm can produce
an instance of LPN-ODnε′0,ε′1(k) from an instance of LPN-ODnε0,ε1(k) (for noise parameters
satisfying restrictions specified later). Fixing ε′0 = ε′1 gives a reduction from LPN-OD to
LPN (breaking LPN breaks LPN-OD) and fixing ε0 = ε1 gives a reduction from LPN to
LPN-OD (breaking LPN-OD breaks LPN). The algorithm has access to an oracle sampling
Dε0,ε1

k with ε0 and ε1 known, and the reduction is based on two main ideas: the control of
the (un)-balancedness of the b part, and the addition of two Bernouilli distributions.

First, as seen in Proposition 1, the probability Pr [b = 1] depends on the noise parame-
ters. Hence, the algorithm uses a method of rejection sampling in order to produce samples
with b having the target probability of samples from D

ε′0,ε
′
1

k . Second, a standard idea to
turn LPN samples into noisier samples in a black-box manner is to add a Bernoulli on the
b component. Using this idea, LPN-OD samples have two noise parameters linked with
the value of the correct inner product computation and the algorithm acts differently on
these two parameters, adding two Bernouilli’s next denoted as t0 and t1, and choosing
which one to add based on the value given by the rejection sampling.

We first let SampleLPN-ODnε0,ε1(k) describe the oracle Oε0,ε1k (from Definition 5) that
returns samples from the distribution Dε0,ε1

k for a key k in Algorithm 1.
We then use this sampler in Algorithm 2. The idea is to start by fixing the b of the

output in order to ensure that it follows the good distribution. We then control the output
probabilities by adding different Bernoulli errors t0, t1 depending on the fixed value of b.
The correctness of our algorithm is given with the following lemma:
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Algorithm 1: SampleLPN-ODnε0,ε1(k)
Output: A LPN-OD sample (a, b)
a

$←− Fn2 , e
$←− Berεi where i = 〈a,k〉;

(a, b)← (a, 〈a,k〉+ e);
return (a, b)

Algorithm 2: AltSampleLPN-ODnε0,ε1,t0,t1,m(k)
Input: A sampling upper limit m ∈ N, error parameters ε0, ε1 ∈

[
0, 1

2
]
, Bernoulli

parameters t0, t1 ∈
[
0, 1

2
]
with t0 + t1 6= 1

Output: A sample (a, b) ∈ Fn2 × F2 following the distribution Dε′0,ε
′
1

k

ε′0 = 2 ε0t0−(2 (2 ε0−1)t0−2 ε0+1)t1−ε0
t0+t1−1 ;

ε′1 = (2 ε1−1)t0−2 ((2 ε1−1)t0−ε1)t1−ε1
t0+t1−1 ;

if ε′0 /∈
[
0, 1

2
]

or ε′1 /∈
[
0, 1

2
]
then

return ⊥0
end
b′

$←− Ber
1
2 +

ε′0−ε
′
1

2

;

cnt := 0;
do

(a, b′′) $←− SampleLPN-ODnε0,ε1(k);
e′

$←− Bertb′ ;
(a, b)← (a, b′′ + e′);
cnt ← cnt +1;

while b 6= b′ and cnt ≤ m;
if cnt = m then

return ⊥
end
return (a, b)

Lemma 1. For any non-zero k ∈ Fn2 , m ∈ N, error parameters ε0, ε1 ∈
[
0, 1

2
]
, t0, t1 ∈[

0, 1
2
]

such that t0 +t1 6= 1, if both
{

ε′0 = 2 (ε0(2 t1−1)−t1)t0−ε0(2 t1−1)+t1
1−t0−t1

ε′1 = (2 ε1(2 t1−1)−2 t1+1)t0−ε1(2 t1−1)
1−t0−t1

remain in
[
0, 1

2
]
,

then the output of AltSampleLPN-ODn
ε0,ε1,t0,t1,m(k) follows the distribution D

ε′0,ε
′
1

k , which
is the same distribution as SampleLPN-ODn

ε′0,ε
′
1
(k)’s output.

Proof. We study the sample output probabilities of algorithm 2 and use Proposition 1 to
show that it follows the distribution Dε′0,ε

′
1

k . First, note that a is chosen uniformly. We
aim at comparing the output probabilities with those of a regular sampler.

Keeping the notations of the algorithm, we have that Pr [b = 1] = Pr [b′ = 1] = 1
2 + ε′0−ε

′
1

2 .
Therefore, it verifies the first equality of Proposition 1.

We now need to express Pr [〈a,k〉 = 0 | b = 0] and Pr [〈a,k〉 = 0 | b = 1] with the inputs
and parameters of Algorithm 2: ε0, ε1, t0, t1. Note that the sum of two Bernoulli variables
of parameters ε, ε′ is a Bernoulli variable of parameter ε+ ε′ − 2εε′. With that in mind, for
i, j ∈ {0, 1}, we introduce new error parameters Ei,j = εi+tj−2εitj . Since b = 〈a,k〉+e+e′

is computed as the sum of a LPN-OD sample and a Bernoulli, where e $←− Berε〈a,k〉 and e′
$←−

Bertb′ , and inside the loop, (a, b) follows an independent distribution DE0,b′ ,E1,b′

k , applying
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Proposition 1 gives us

 Pr [〈a,k〉 = 0 | b = 0] = 1−E0,b′

1−E0,b′+E1,b′

Pr [〈a,k〉 = 0 | b = 1] = E0,b′

1+E0,b′−E1,b′

. After the loop condition

filtering b = b′, for i ∈ {0, 1}, we get Pr [〈a,k〉 = 0 | b = i] = Pr [〈a,k〉 = 0 | b′ = i], and:{
Pr [〈a,k〉 = 0 | b = 0] = 1−E0,0

1−E0,0+E1,0
,

Pr [〈a,k〉 = 0 | b = 1] = E0,1
1+E0,1−E1,1

·

We can now put in relation those three equations with the ones given by Proposition 1
for the output of a LPN-OD sampler (Algorithm 1):

1−E0,0
1−E0,0+E1,0

= 1−ε′0
1−ε′0+ε′1

E0,1
1+E0,1−E1,1

= ε′0
1+ε′0−ε′1

⇐⇒

{
ε′0 = 2 (ε0(2 t1−1)−t1)t0−ε0(2 t1−1)+t1

1−t0−t1
,

ε′1 = (2 ε1(2 t1−1)−2 t1+1)t0−ε1(2 t1−1)
1−t0−t1 ·

The equivalence allows us to conclude that the output of AltSampleLPN-ODnε0,ε1,t0,t1,m(k)
follows Dε′0,ε

′
1

k , the same distribution as SampleLPN-ODnε′0,ε′1(k)’s output.

Remark. Using the lemma, one can either:

− Use a LPN sampler to simulate an asymmetric LPN-OD one.

− Use a LPN-OD sampler to simulate a symmetric LPN one.

Theorem 1. The LPN problem is polynomially equivalent to the LPN-OD problem. More
precisely LPNn

ε is exactly LPN-ODn
ε,ε, and there is a polynomial reduction from LPN-

ODn
ε0,ε1 to LPN-ODn

ε′0,ε
′
1

for all ε0, ε1, ε′0, ε′1 verifying the equations given by Lemma 1.

Proof. From Lemma 1, Algorithm 2 allows to simulate Dε′0,ε
′
1

k from Dε0,ε1
k with the appro-

priate parameters. Hence, we must show that, with m polynomial in n, Algorithm 2 is a
probabilistic polynomial time algorithm, and it returns ⊥ with negligible probability.

First, note that Lemma 1 requires ε′0, ε′1 ∈
[
0, 1

2
]
. Hence, the probability of returning

⊥0 is 0. Then, since the number of calls to SampleLPN is bounded by m and the sampler
Algorithm 1 runs in constant time, for m polynomial in n the execution time is polynomial
in n. The algorithm returns ⊥ only if the samples given by the sampler have the wrong value
of b for m consecutive trials, hence we can study this probability using a binomial law. The
probability of returning ⊥ is Pr [b′ = 1] ·Pr [b = 0 | b′ = 1]m+Pr [b′ = 0] ·Pr [b = 1 | b′ = 0]m.
Let i ∈ {0, 1}, we show that the probabilities Pr [b′ = i] and Pr [b = i | b′ = 1− i] always
belong to [ 1

4 ,
3
4 ]. The value of b′ is given by a Bernouilli of parameter 1

2 + ε′0−ε
′
1

2 where
ε′0, ε

′
1 ∈ [0, 1

2 ]. Based on the analysis in the proof of Lemma 1, Pr [b = i | b′ = 1− i] is given
by a Bernouilli of parameter 1

2 + E0,b′−E1,b′

2 , and we show that E0,b′ , E1,b′ are also in [0, 1
2 ].

These quantities are obtained as x+ y − 2xy where x, y ∈ [0, 1
2 ]. Fixing y, we define the

function fy(x) on [0, 1
2 ] as fy(x) = x(1 − 2y) + y, its derivative (1 − 2y) is positive for

y 6= 1
2 and null otherwise. Hence the maximum of fy(x) is reached in 1

2 , and the minimum
in 0. It allows concluding that 0 ≤ x+ y − 2xy ≤ 1

2 . Finally, the probability of failure is
at most 2

( 3
4
)m+1, therefore negligible in n.

4.3 Concrete security estimation
Theorem 1 gives a general self-reduction of the LPN-OD problem, encompassing the
equivalence between LPN-OD and LPN. But in order to quantify the security we can
expect from the real samples we obtain from our prototype LPPN processor in Section 6.4,
we only need the reduction from LPN-OD to LPN. For this purpose, we simply consider
that these samples are the ones of a LPN-OD problem (Definition 5) and we determine an
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instance of a classical LPN problem which can be converted to it. Since we can assume that
an adversary recovering the key from LPPN samples could break LPNnε (k), we can estimate
the security of the instances of Section 6.4 with the complexity of the best known attacks
on LPN with a noise parameter ε (assuming the polynomial reduction has a negligible
cost compared to this complexity). This (LPN-OD to LPN) reduction is a particular case
of Theorem 1. We state it in the following corollary. This result shows that for noise
parameters of LPN-OD centered around the same value, the less these two parameters
differ, the higher is the parameter of the LPN problem it reduces to.

Corollary 1. For any n,m > 1, non-zero k ∈ Fn2 , ε′ and ∆ error parameters such that
0 ≤ ε′ −∆ ≤ ε′ + ∆ ≤ 1

2 , if an adversary is able to retrieve the key k given m samples
from LPN-ODn

ε′−∆,ε′+∆(k) then a polynomially equivalent adversary can retrieve the key
from LPNn

ε (k) using m samples, where ε = ε′−∆
1−2∆ .

Proof. It corresponds to the particular case where the adversary uses the polynomial
reduction from LPN-ODnε0,ε1 to LPN-ODnε′0,ε′1 with ε0 = ε1 = ε′−∆

1−2∆ , ε′0 = ε′ − ∆ and
ε′1 = ε′ + ∆. We check if these values of ε0, ε1, ε′0 and ε′1 verify the equations of Lemma 1.
The relations 0 ≤ ε′ −∆ ≤ ε′ + ∆ ≤ 1

2 give ε′ ∈ [0, 1
2 ] and ∆ ∈ [0, 1

2 [, hence ε0, ε1 ∈ [0, 1
2 ].

Then, taking t0 = 2∆
2∆+1 and t1 = 0 we get t0, t1 ∈ [0, 1

2 ], t0 + t1 6= 1 and:{
ε′0 = 2 (ε0(2 t1−1)−t1)t0−ε0(2 t1−1)+t1

1−t0−t1 = ε′ −∆,
ε′1 = (2 ε1(2 t1−1)−2 t1+1)t0−ε1(2 t1−1)

1−t0−t1 = ε′ + ∆,

ε′ ± ∆ ∈ [0, 1
2 ] hence the 4 parameters verify the equations. In conclusion, Theorem 1

gives a polynomial reduction from LPNnε (k) to LPN-ODnε′−∆,ε′+∆(k). Since the reduction
conserves the number of samples, m, it gives the final result: an adversary breaking
LPN-ODnε′−∆,ε′+∆(k) with m samples implies the existence of a (polynomially equivalent)
adversary breaking LPNnε (k) with m samples.

Remark. By ensuring a smaller output unbalancing parameter ∆ (e.g., thanks to implemen-
tation tweaks), we manage to reduce the LPN-OD problem to a stronger LPN problem (with
higher parameter). Indeed, for all ε′ ∈

[
0, 1

2
]
, we can introduce the function fε′ defined for

∆ ∈
[
0, 1

2
[
as fε′ (∆) = ε′−∆

1−2∆ . This function returns the parameters of the LPN problem
our LPN-OD instance reduces to. Its derivative is such that f ′ε′ (∆) = − 1−2ε′

(1−2∆)2 ≤ 0, which
means that f increases when ∆ decreases. Accordingly, the smaller the ∆, the bigger the
ε, and the more secure the corresponding LPN problem is. Note that a similar corollary
applies for LPN-ODnε′+∆,ε′−∆ and LPNnε , by inverting the roles of t0 and t1 in the proof.

5 Masked LPPN
The previous section showed that the LPN-OD problem is hard. Yet, it also suggests
that its hardness increases if designers of LPPN-based implementations are able to limit
the output data dependencies of the error probability. In this section, we briefly discuss
how much masking an ε-PIP can help to mitigate such data dependencies. Admittedly,
the high-level idea behind our observations was already given in [KSD+20], and we only
specialize it to LPN-OD. In view of the general difficulty to model physical leakages, our
following discussion is not based on security reductions but on attack-based arguments.
We leave their formalization as an open problem and use it to argue that masking can
significantly mitigate “filtering attacks” exploiting output-dependent errors.

Our starting observation for this purpose is the following one. Imagine that an ε-PIP
is implemented in a masked manner. That is, rather than computing y = ε-PIP(x,k) in
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an incorrect manner, one would compute y = ε-PIP(x,k1) + 〈x,k2〉+ . . .+ 〈x,kd〉, where
d−1 shares k1,k2, . . . ,kd−1 are picked up uniformly at random and k = k1 +k2 + . . .+kd.
In this case, an adversary willing to filter the (incorrect) outputs in order to take advantage
of the data-dependent errors would not have access to the output of the ε-PIP causing the
errors, let’s denote it as z = ε-PIP(x,k1), but only to its leakage, denoted as l.

Besides the fact that such a masking improves security against Differential Power
Analysis (DPA), as discussed in [KBBS20], it also reduces the ∆ of the corresponding LPN-
OD problem as follows. First, assume that the incorrect computation of z indeed suffers from
output data dependencies of the error probability such that Pr[e = 1| 〈x,k1〉 = 0] = ε0 and
Pr[e = 1 | 〈x,k1〉 = 1] = ε1. Using the notations of Section 3, it means that ε0 = ε+ ∆ and
ε1 = ε−∆ so that |ε0− ε1| = 2∆. Then assume that the leakage does only allow recovering
z with a certain probability given by Pr[z = 0 | l] = 1

2 + δ and Pr[z = 1 | l] = 1
2 + δ.5

As a result, we directly have that the actual imbalance between the probabilities of
error that the adversary will be able to exploit to filter is given by:

ε′0 = ε0 ·
(

1
2 + δ

)
+ ε1 ·

(
1
2 − δ

)
,

ε′1 = ε1 ·
(

1
2 + δ

)
+ ε0 ·

(
1
2 − δ

)
.

If δ = 1
2 , then the recovery of z is perfect so that we have ε′0 = ε0 and ε′1 = ε1. If δ = 0,

then there is no leakage so that we have ε′0 = ε′1 = ε. So the latter shows that in case an
implementation is masked and the adversary does not exploit the leakage, then exploiting
the output data dependencies with a filtering attack is not possible.

Quite naturally, the situation when an adversary exploits the leakage will fall in between
(i.e., actual δ values will be between 0 and 1

2 ). But it is important to see that the secret z
to recover is an ephemeral one, so this adversary will be limited to Simple Power Analysis
(SPA). We will discuss concrete values in Section 6. Note that the proposal in this section
is aimed at hiding the output error dependencies, since it needs to be addressed for current
prototypes of LPPN processors. But in case input dependencies become critical, the same
idea can be used to mask x. Note also that the proposal in this section induces the errors
on a single share, which is interesting since it maintains the level of control needed on
the error probability equal to the one of an unprotected implementation. If the error was
spread over multiple shares, its probability would be lower on each share (as per the piling
up lemma), leading to a more challenging calibration of the error probability.6

6 FPGA prototype
In this section, we present a first FPGA implementation of LPPN processor, demonstrating
feasibility on a cheap and reprogrammable commercial device. Integrating the LPPN idea
within standard FPGA resources increases its applicability, making it more attractive for
a broader range of applications where the cost factor and design time are critical. We first
describe our design, then verify its functional correctness and follow by investigating the
(input and output) dependencies of its error probabilities. A side-channel evaluation is
deferred to Appendix C, since it does not bring significantly new insights compared to
what was observed for ASIC prototypes. Details about the area cost of our prototype
and and comparisons with classical RNG-based LPN are in Appendix D. We conclude by
discussing the security of our prototype based on the reduction of Section 4.

5 As usual in side-channel analysis, we assume a leakage function with additive and data-independent
noise so that the complexity of recovering z is the same whether it is zero or one.

6 The side-channel based filtering attacks discussed in this section, which target the leakage of an
ε-PIP’s (unbalanced) incorrect output, are different from side-channel attacks targeting the correct output
of LPN implementations, formalized in [DFH+16] with the Learning with Leakage (LPL) problem.
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6.1 FPGA design
The proposed architecture of the LPPN processor is depicted in Figure 3A. The inner
product block receives the input secret k and challenge x (both as 512-bit vectors) and
implements an ε-PIP, by means of a specific sampling clock clk_del, generated by a
Variable Delay Line (VDL) and having the role of producing a precise skew to obtain the
desired (and inbound) probability of error. An enable signal is used to engage the LPPN
processor to perform a single bit computation. The same enable signal is used as input for
an on-chip voltage sensor, that provides an estimation of the working condition. As we will
discuss later, the sensor is designed to detect changes in power supply voltage that may
be related to the presence of static changes or voltage glitches during the inner product
computation. Finally, a finite state machine handles the calibration of the VDL through
a Successive Approximation Register (SAR) approach, based on the computation of the
probability of error. In the following, we discuss these blocks more in detail.

Inner product block. The first investigations of LPPN prototypes (both the simulated
ones in [KSD+20] and the tape out in [KBS+18]) pointed out that the probability of error
of such prototypes exhibit dependencies in the Hamming weight of their input, which can
be mitigated by using a mixed (parallel then serial) architecture for the inner product
computations. Our FPGA implementation adopts the same architecture, which we depict
in Figure 3B. The vectors k and x are initially multiplied in GF(2), which corresponds
to a bitwise AND operation performed fully in parallel. The sum of this product is then
implemented with a mix of parallel and serial XORs. More in detail, the parallel XOR
tree receives 512 bits from the AND layer, that are XORed in parallel through six XOR
layers (numbered from 1 to 6), providing an intermediate output sum vector of 8 bits. The
output of the last layer of the parallel XOR stage is then forwarded as input to the serial
XOR tree which recombines the 8 bits to the final sum of the inner product. The serial
XOR net is made of 7 XOR gates, and since paths between its inputs and the final output
are not balanced, the probability of generating glitches at this stage is very high.

The output bit P of the inner product net is sampled by two flip-flops in parallel. One
is clocked by the properly skewed system clock, namely clk_sk, which always samples a
stable value of the P signal, producing the correct output bit P corr

out . A second flip-flop, in
parallel with the first one, is clocked by a specifically skewed replica of the clock, namely
clk_del. This flip-flop has the critical role to sample a metastable and/or glitched output
of the inner product network. It is clear that to ensure the sampling of a non-stable P
value, clk_del has to have less skew than clk_sk, as shown in Figure 3B-3C. By means of
a specifically reduced skew, setup/hold violations may occur on this specific flip-flop, and,
therefore, Pout represents the inexact computing of the inner product network.

Fully digital variable delay line. The key aspect to ensure that the LPPN processor
is able to guarantee a bounded probability of error (and therefore, security level) is to
design a control system and a VDL that are able to set the skew of clk_del to capture
the non-stable state of the P signal. Possibilities to design a fine-grain VDL on FPGAs
are reduced compared to ASICs, due to the limited degrees of freedom such off-the-shelf
devices provide. Specifically, the ε-PIP needs fine granularity to provide a reliable control
range over the probabilities of error. Post-place&route simulations performed on Xilinx
ISim have suggested that the VDL has to be designed adopting a 2-part architecture: fixed
delay part, needed to compensate the parallel XOR stage, and a variable delay part, to
capture the glitches of the serial stage. To implement the fixed delay part, we have used
LookUp Tables (LUTs) and routing delays, using 9 LUTs configured as buffers (providing
∼6ns of delay for our target FPGA). The FPGA implementation of the variable delay part
of the VDL is based on the custom placing and configuration of CARRY4 chain primitives,
as seen in other works such as [YRG+18, ZHL+13], along with a compact multiplexer



404 Learning Parity with Physical Noise: Imperfections, Reductions and FPGA Prototype

Inner Product

Variable Delay 

Line

Err. 

Control 

&

FSM

x<511:0>
k<511:0>

enable

clk

clk_del

Pout

Pout

locked

ctrl_err<5:0>

Pout

en0_out

en1_out

LPPN Processor

vt_sens<3:0>

L
- | . |

=
THRSH rst_v

rs
t_

v

corr

V
o

lta
g

e

S
en

so
r

(A)

5

1

2

 

A

N

D

X
O

R
1

X
O

R
2

X
O

R
3

X
O

R
4

X
O

R
5

X
O

R
6

512

512

512

512

512
x

k

Pout

Serial XOR 

tree

Parallel 

XOR tree

cl
k

_
sk

cl
k

_
d

el

en
0

_
o

u
t

en
1

_
o

u
t

Pout
corr

cl
k

en
ab

le

clk clk_sk

VDL
6

CNTL
clk_del

...
...

P

(B)

clk

clk_del

clk_sk

P

Pout

Pcorr
out

(C)

Figure 3: Architecture of the LPPN processor (A). Details of the inner product network
(B) and corresponding timing diagram for inexact sampling (C).

built upon the SLICEL units. The CARRY4 primitives are widely used to implement high
performance mathematical units, and their internal structure is designed to provide a fast
path for carry bits propagation. In order to reach a tuning range of [0ns,∼2ns], we have
placed 16 CARRY4 primitives, taking advantage of dedicated column routing to build
our delay chain. We have obtained a total of 64 taps by using each CO output from all
placed CARRY4 units. Post-place&route simulations have shown that each tap provides
an average delay of 30ps. A compact 64:1 multiplexer has been designed according to the
application note from Xilinx [Cha14], in vertically adjacent SLICEL sites, to route the
selected tap to the dedicated flip-flop, in order to sample the output bit. This sub-block
has been designed making use of 4:1 muxes in LUT6_L and in-slice MUXF7-MUXF8
primitives. This strategy allows ensuring a maximum usage of in-slice routing resources,
thus minimizing delays and unpredictability. An additional LUT6 multiplexer has been
used to generate the final output layer of our VDL, as shown in Figure 4.
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Figure 4: Architecture of the fully digital Variable Delay Line (VDL).

Fault detection scheme. To detect faulty working conditions during the authentication
phase, we designed a fault detector based on an on-chip voltage sensor. The sensor has to be
able to detect changes in the power supply voltage (since they are critical for the calibration
of the processor) and the reaction to a positive detection has to be performed within 1
clock cycle. The sensor is implemented as a Time-to-Digital Converter (TDC) [UHO15]
and its architecture is shown in Figure 5. It is constituted by a delay line of 93 LUTs,
for which 8 non-evenly distributed taps are redirected to 8 flip-flops (sampled by the
reference/nominal clock), in order to estimate a power supply voltage from 600mV up to
1.4V.7 Each tap/bin of the resulting thermometric code represents approximately 100mV.
A 0→1 transition of the enable signal triggers the sensor to perform a measurement. The
higher the power supply, the faster is the transition of the enable signal across the delay
line, as shown in Figure 5. As a result, more registers will consecutively sample a 1 at their
input, providing a thermometric representation of the propagation delay/voltage measure.
The thermometric-encoded output of the sensor is then converted to a 4-bit value, by means
of a simple encoder. The output of the sensor is finally used to detect significant changes
in the power supply voltage after the calibration phase. An additional register latches the
output of the sensor at the end of the calibration, to use it as a reference. At the beginning
of the computation of each requested inner product during the authentication phase, the
sensor is triggered to produce a new measure, and the difference with the calibration value
is computed. If the absolute value of the difference is higher than a certain threshold (e.g.,
100mV worked best in our experiments), the LPPN processor is reinitialized. Consequently,
the locked signal is reset to 0 (see Figure 3A) and a new calibration has to be performed.
Using this approach, the LPPN processor is able to detect static changes (or even glitches)
that an adversary could make (or inject) to alter the security of the LPPN processor.

Error control module. During the calibration phase, the LPPN processor computes 7
batches of 1024 challenge-secret inner products in order to set the variable delay line.
During each batch, the Error Control module computes the XOR between the correct

7 A uniform distribution of the taps would not be optimal for sampling since VDD ≈ 1/tpd,LUT .
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Figure 5: On-chip FPGA voltage sensor.

output P corrout with the inexact output POUT and it accumulates the result. At the end of
each batch, the Error Control compares the accumulated results with a threshold (256, to
eventually achieve Pr[e = 1] = 0.25), and upon this comparison, it sets bit-by-bit, from
the MSB to the LSB, the 6-bit CNTL signal, used to drive the VDL. Concretely, the
value of CNTL is set to 0 at the beginning of the calibration. At the end of the 7th

batch, the LPPN is locked and the flip-flop sampling P corrout is disabled in order to reduce
possible side-channel leaks. It has to be noted that in case of a positive detection of a
faulty working condition, both the inner product and the error controller modules are
reinitialized, and a new calibration is therefore required to generate new samples.

6.2 Functional (and other) validation(s)

We now present results about the functional validation of the proposed FPGA implemen-
tation of the LPPN processor, in nominal working conditions (VDD = 1.2V, 25◦C). To
perform our validation, we have used a Sakura-G board. The LPPN processor is hosted
on the main FPGA, namely a Xilinx Spartan-6 LX75, while the clock, inputs and PC
interfacing are deployed within the control FPGA, a Xilinx Spartan-6 LX9. The clock
frequency has been set at 13.56MHz, according to popular choices for RFID authentication
tokens. In Figure 6, the probability of error (top) and value of the 6-bit CNTL signal
(bottom) in nominal condition versus the SAR algorithm’s steps in the error control module
are shown. The final probability of error is 0.28, which is within the bounds targeted
in [KSD+20, KBS+18], while the value of the CNTL signal is 34 in decimal representation.
Clearly, the device is able to lock into secure operating conditions.

An evaluation of the proposed LPPN processor under different voltage and temperature
working conditions is additionally reported in Appendix B. In short, it exhibits a good
tolerance to changes of the temperature and a stronger dependency of the error probability
in the supply voltage, justifying the previous fault detection scheme. A side-channel
evaluation of the FPGA processor is also given in Appendix C. It estimates the side-
channel Signal-to-Noise Ratio (SNR) of different target intermediate computations in the
different (AND and XOR) stages of the LPPN processor [Man04]. Those results confirm
the ASIC ones in [KBBS20] and show that the best targets are the AND stage and the
last XOR stage, both of them exhibiting quite low SNRs though (in the 10−5 range).
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Figure 6: LPPN processor calibration: error probability (top) and control signal (bottom).

6.3 Data dependencies and mitigations
As discussed in the first sections of the paper, the probability of error of concrete ε-PIPs
can suffer from data dependencies. So far, we did not discuss the input dependency issue
(leveraging the observation that it is limited in the parallel then serial architectures we
considered) and we showed a reduction proving that the LPN problem remains hard with
output dependencies. In this section, we therefore study how much these dependencies
can be observed in our FPGA prototype. We confirm that input dependencies are limited
by design, highlight stronger output dependencies and discuss tracks to reduce them.

Input dependencies. To investigate the effect of input data dependency on the probability
of error, we have performed filtering attacks on the FPGA implementation of the LPPN
processor. In such attacks, the adversary isolates input challenges that she expects to
lower the error probability. In particular, and as observed in [KSD+20, KBS+18], input
challenges with low Hamming weights have a reduced error probability. So the main
question for the security of an LPPN processor is the amount of filtering needed to
significantly reduce the error probability. For this purpose, we analyzed this probability of
error for input challenges with various Hamming weights, and also compared the situation
when LSBs and MSBs are set to zero. The latter is motivated by the observation that
the serial part of our implementation is asymmetric. Furthermore, we did not limit the
investigation to forcing bits to zeros but also considered forcing them to ones. Concretely,
we mimicked filtering attacks by setting the number of zeros or ones to 0, 128, 256 and 384.
Experiments have been structured as follows. For each filtering attack, we have collected
105 bits that have been generated using a random fixed key. The LPPN processor has been
calibrated at the beginning of each experiment with the same fixed key but with random
challenges (we assume that the adversary has no control of the challenges, since the LPPN
does not output anything during this phase), operating at 1.2V and room temperature.

In Figure 7, the input data dependency effect on the output probability of error is
shown for the considered filtering attacks. Attacks exploiting the MSBs show that the
probability of error collapse to 0 when the adversary forces 384 bits (to zero or one).
Attacks exploiting the LSBs show that the probability of error already collapses to 0 when
the adversary forces 256 bits (to zero or one). Even in that case, keeping one challenge
out of 2256 is not a practical attack path against our 512-bit LPPN processor (since it is
more than the security that the corresponding LPN problem guarantees). The fact that
filtering the LSBs leads to stronger reductions of the error probability can be explained by
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Figure 7: Inputs’ filtering attack on the proposed LPPN processor.

the asymmetry of our design. Precisely, MSB-based filtering attacks infer a certain value
of the bits that experience longer logical paths in the serial stage, and therefore a 256-bit
attack would force a 0 (or 1) on 3 XOR gates’ input. On the other hand, LSB-based
filtering attacks targeting 256 bits would force a 0 (or a 1) on 4 XOR gates’ input. This
difference is directly reflected in the capability of the serial XOR stage to produce glitch
events, making the latter attack case more powerful. This observation is enforced by the
linearity of the delay distribution over the serial XOR stages towards the P output with
the depth of the logical cone, as remarked by the static timing analysis tool.

Output dependencies. We similarly investigated output dependencies of our LPPN
samples’ error probability by estimating this error probability in function of the correct
output of the inner product computations. These estimated probabilities versus the
number of queries are depicted in Figure 8. The normalized difference between the error
probabilities of our baseline design after 105 bits is ∆=8.2%, indicating that this prototype
implementation suffers from non negligible output dependencies. As a first step in order to
mitigate this issue, we have designed an improved version of our design that makes use of
dummy (data-independent) processing stages. That is, to reduce the normalized difference
∆, we have complemented the basic LPPN design in Figures 3A-3B with a dummy circuit
that generates additional data-independent glitches. This dummy circuit computes the
parity of a 128-bit string, adopting a 7-layer parallel XOR tree structure that has the
same logical depth as the AND layer plus the parallel XOR stages in the inner product
combinational network of Figure 3B. The output bit is XORed twice to the serial XOR
stage of the LPPN design. More precisely, the output of the dummy circuit is XORed in
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the first and in the last stages of the serial XOR part, in order to increase its effectiveness
in generating glitches while removing its functional value, as shown in Figure 9. Adopting
a dummy circuit conceived this way can be justified as follows. First, designing a parity
circuit with a logical cone that is similar to logical cones that produce the 8-bit vector used
as input for the serial stage of the LPPN processor has good timing features. In fact, the
output bit of the dummy circuitry arrives at the serial stage with a delay that is similar to
the other bits entering in the same stage. Thus, no modification on the LPPN processor
are required to ensure a correct timing of the circuit (regarding the VDL). Next, since
those dummy bits remain unknown to the adversary and cannot be filtered, the glitches
they cause consequently reduce the output data dependencies, as depicted in Figure 8.
The normalized difference using a single dummy bit is already ∆=5.8%.

d

x6x7 x5 x4 x3 x2 x1 x0

P

Figure 9: Modified implementation of the serial XOR stage with a dummy bit.

We assume more dummy bits could further reduce those dependencies, which we leave
as an interesting scope for further research, together with other design tweaks that could
be investigated such as the exploitation of dual-rail logic styles [TV04].

6.4 Putting things together
We conclude by evaluating the security that our LPPN processor provides, by plugging our
estimated ∆’s into the bounds of Section 4. Concretely, we consider three cases. The first
two cases are the baseline FPGA design (∆ ≈ 8.2%) and the one improved with dummy
operations (∆ ≈ 5.8%) of the previous subsection. The third case is a masked LPPN.

In this last case, we refer to the SNR values given in Appendix C which are in the
10−5 range.8 Given that (i) the data complexity of a side-channel attack against a target
intermediate computation is inversely proportional to the SNR, and (ii) the attack against
the incorrect shared inner product that we target is an SPA, we can directly conclude that

8 We computed this SNR based on the incorrect output value and obtained similar results.
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the δ value of Section 5 will be close to 1
2 in our case (e.g., it is lower than the success

rate for n = 1 estimated in [KBBS20] which exhibits larger SNR values). As a result, the
security of the (masked) LPPN samples will be close to the one of LPN samples.

As for the two first cases, assuming the LPPN processor provides LPN-OD samples
with error parameters 0.25±∆ and 0.25∓∆, Corollary 1 shows that retrieving the key
from these samples is at least as hard as solving LPN with parameter ε where ε = 0.25−∆

1−2∆ .
We therefore base the security of LPN-OD512

0.25±∆,0.25∓∆(k) on the complexity of the best
known attacks on LPN512

0.25−∆
1−2∆

(k). Indeed, breaking our instances with a lower complexity
would imply better attacks on the well established LPN problem. Concretely, our LPPN
processor relies on the security of LPN512

0.217(k) and on LPN512
0.200(k) for ∆ = 8.2%. For

such parameters, we estimate a security of 80 bits. According to the work [BTV16], LF2
is the best attack against LPN instances with n = 512 and ε ≈ 0.25. It gives a theoretical
time complexity of 99 bits (for a query complexity of 88 bits). To find these numbers, we
used the formulas and methods of [BTV16]. To conduct LF2, an adversary can fix two
parameters a and b such that a · b > n, where n is the size of our key (512). The best
attacks were reached for a = 6 and b = 86. We take a safety margin over the theoretical
security of 99 bits to cover possible gaps between theoretical and practical results for LF2.

7 Conclusions and further research
Our results suggest that inexact computing is a promising candidate for the secure and
efficient implementation of LPN-based authentication protocols. They show that some
of the defaults that inevitably occur when instantiating cryptographic primitives based
on hard physical learning problems can be captured by formal reductions to known
(mathematical) hard learning problems. These results naturally suggest the study of the
Learning with Physical Errors (LWPE) problem outlined in [KSD+20] and its application
to the secure and efficient implementation of PQ cryptography as a challenging next step.
That is, can we generate samples following more complex distributions (e.g., as needed
for LWE) with physical processes and can we reduce their imperfect implementations to
known (mathematical) hard learning problems in this case as well? The evaluation and
analysis of our proposed designs on other FPGAs is another interesting open problem.
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A The ASIC LPPN prototype
The ASIC design of LPPN is similar to the one in [KBS+18]. It consists of three parts:

• A 512-bit (64-bit parallel then 8-bit serial) inner product architecture;

• A variable delay line that outputs a delayed version of the clock to sample the output
of the inner product block during its glitchy period. It features digitally-controlled
delay elements with shunt capacitors via NMOS switches;

• A controller that regulates the delay of the clock through a 6-bit control signal.
The operation is done in two steps. First, a calibration phase during which the

error control is adjusted in order to maintain the required error probability ε during
authentication. Second, the actual authentication. Concretely, the inner product block
computes 〈x,k〉, where k is the secret key and x is the input, and generates a glitchy
output parity bit (P ). The variable delay line is designed such that it outputs a delayed
clock that samples the inner product block output (P ) while it is still in its glitchy period.
During calibration only, the correct output Pcorrect is also sampled such that the error
controller computes the error signal e which is then counted via a 10-bit error counter over
1024 evaluations. To achieve the required error probability, we finally compare the error
count to the target count (e.g., 256 for ε = 0.25). Then, the 6-bit control signal is adjusted
in a successive approximation scheme in order to set the delay of the variable delay line.

B Voltage and temperature validation
The outcome of the authentication phase for different voltage-temperature conditions is
shown in Figure 10. It highlights that the LPPN processor is able to reach in-bound
probabilities of error under the analyzed temperature variations, while more significantly
suffering from voltage variations. The latter justifies the relevance of the sensor described
in Section 6.1, which can detect voltage below 0.8V or above 1.3V.

C Side-channel security evaluation
We performed a preliminary evaluation of the side-channel leakage that our LPPN processor
provides. To enable a simple interpretation of its outcome, we adopted Mangard’s Signal-
to-Noise Ratio (SNR) as a security metric [Man04]. The SNR provides an intuitive
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Figure 10: Probability of error (A) and value of the 6-bit CNTL signal (B) after the
calibration phase, in function of the power supply voltage and working temperature.

quantification of the observed side-channel leakages and the complexity of a DPA targeting
an intermediate computation with a given SNR is inversely proportional to this SNR.

The SCA evaluation of the proposed FPGA implementation has been carried out
adopting a Picoscope 5244B as digital oscilloscope, running at 500MSa/s with 12-bit
of vertical resolution. We have used a Tektronix CT-1 inductive probe to measure the
current absorbed by the device during the LPPN computation post-calibration in nominal
condition. A properly generated trigger signal ensured a good synchronization of the
power traces. In total, we have collected 4×106 traces. The challenge and the secret have
been changed randomly for each trace, in order to stimulate as much as possible all the
logical paths inside the LPPN processor. We have conducted a thorough evaluation on
each bit of the Inner Product module in Figure 3B. Maximum peaks of SNR for each
bit are reported in Figure 11A and their average values are in Figure 11B. These figures
show similar trends as for the ASIC prototype in [KBBS20]. Namely, the best SNR is
observed for the initial AND gate, while digging through the inner product computations
first reduces this SNR before increasing it. Overall, this trend can be explained by the
combined effect of the algorithmic noise (which is maximum in the early stages) and the
accumulated jitter (which is maximum in the last stages), leading to the worst results in
the middle stage where both effect are combined in a noisy fashion.

Concretely, since exploiting the leakage of the AND gate is also the easiest option from
an algorithmic viewpoint, as it enables simple divide-and-conquer attacks, we conclude
that this is the sweet spot for an adversary. (Exploiting the leakage of the output bit
would require mounting more complex analytical attacks). Yet, even for this sweet spot,
the observed SNR values are still quite small (in the range of 5 × 10−5) which would
be easily combined with countermeasures like masking. For example, taking a factor 10
of security margin to cover multivariate attacks, we would remain with leakage metrics
significantly below 10−3, so that a few shares would make the complexity of a side-channel
attacks against such an LPPN prototype prohibitive [DFS19]. Combined with the key-
homomorphic feature of the inner product computations which enable masking with linear
time and randomness overheads, we can conclude that the proposed LPPN prototype is
an interesting candidate for cost-effective countermeasures against side-channel attacks.

D Implementation figures and discussion
In this appendix, we finally discuss the area requirements and performances of our LPPN
prototype on Xilinx Spartan-6 FPGAs. We then briefly discuss its pros and cons compared
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Figure 11: Maximum peaks of SNR by bit of the inner product module (AND and parallel
XOR) (a), and average among peak values of the whole inner product module by layer (b).

to a classical LPN-based implementation leveraging a RNG. A detailed summary of the
area requirement of our design is reported in Table 1. It is straightforward to notice that
the Inner Product submodule is dominant on the overall cost, both in terms of LUTs and
flip-flops, accounting for respectively 79.4% and 94.6% of the whole LPPN processor. Since
the errors of the LPPN prototype are generated physically (by means of glitching events
and occurrence of metastability), the Inner Product has not been optimized in terms of
LUTs occupation and therefore all the AND and XOR gates discussed in Section 6 have
been implemented as 2-input LUTs. The VDL has a very small impact on the overall
design (7.1% of combinational resources), being optimized to be compact and leveraging
the CARRY4 and MUXF7/8 units to obtain a fine-grain delay. The Error Control has a
negligible impact on the overall utilization too, as its design requires only few LUTs and
registers. The Voltage Sensor requires 8.1% of the overall LUT count, hence is comparable
to the VDL in terms of cost, and it is able to provide resilience against post-calibration
alteration of the working conditions. (It may not be needed in a threat model where the
adversary cannot alter the power voltage supply of the LPPN processor). The maximum
operating frequency of the LPPN prototype is 66.65MHz. It is imposed by the Inner
Product architecture and leads to a throughput at maximum frequency of 1.04Mbps.

Table 1: Resource utilization of the LPPN processor on the Xilinx Spartan-6 FPGA.

Module LUTs Regs

LPPN 1290 (100%) 1086 (100%)
Inner Product 1024 (79.4%) 1027 (94.6%)

VDL 92 (7.1%) -
Error Control 50 (3.9%) 39 (3.6%)
Voltage Senser 104 (8.1%) 8 (0.7%)

Others 20 (1.5%) 1074 (1.1%)

Comparing the LPPN assumption with a classical LPN implementation relying on a
RNG is not straightforward. The design philosophy behind LPPN aims at removing the
need of a RNG from the construction, embedding the generation of errors by means of
inexact inner product computations. So it would require comparing the cost of an explicit
RNG, the design of which is in itself a non-trivial design challenge: it usually requires
good design skills and understanding of the physics behind the circuits that harvest and
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Table 2: Summary of RNGs implementations on Xilinx Spartan-6 from [PMB+16].

RNG Type Area Special Macros Bit Rate Feasibiliy
(LUTs/Regs) [Mbps] & Repeatability

ERO 46/19 No 0.0042 Very Good
COSO 18/3 No 0.54 Very Poor
MURO 521/131 No 2.57 Good
PLL 34/12 Yes 0.44 Medium
TERO 39/12 No 0.625 Very Poor
STR 346/256 No 154 Poor

digitize entropy to generate random bits.9 Especially on FPGAs, designing RNGs is a
delicate task, due to the limited degrees of freedom they offer. Many aspects have to be
considered for such designs, including area cost and throughput but also feasibility and
reliability (e.g., in terms of possibilities to move the macro inside the FPGA and still
have it functional). In [PMB+16], an interesting survey of different FPGA-suitable RNG
architectures is reported, tailoring three commercial FPGAs as a case study. In Table 2,
we report a summary of RNG implementation results from this reference, focusing on the
Xilinx Spartan-6 FPGA case. It has to be noted that achieving at the same time high
throughput, small area footprint and feasibility/reliability is quite hard. Besides, the error
generation is a security-critical ingredient for LPN-based implementations, and therefore
it requires robustness against different working conditions. So while the investigation of
LPPN prototypes is still in an early stage, we use these results as an indication that the
way these prototypes generate erroneous outcomes with reasonable security guarantees
against environmental changes may be competitive with standard LPN implementations,
in particular in situations where side-channel security is a concern.

9 We do not consider PRNGs as an option for the generation of the LPN errors since it would require
side-channel countermeasures to reach the same physical security guarantees as our LPPN prototype
provides. By contrast, using a PRNG is a natural option for generating the (public) challenges.
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