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Abstract. In this work, we are concerned with the hardening of post-quantum key
encapsulation mechanisms (KEM) against side-channel attacks, with a focus on the
comparison operation required for the Fujisaki-Okamoto (FO) transform. We identify
critical vulnerabilities in two proposals for masked comparison and successfully attack
the masked comparison algorithms from TCHES 2018 and TCHES 2020. To do so, we
use first-order side-channel attacks and show that the advertised security properties
do not hold. Additionally, we break the higher-order secured masked comparison from
TCHES 2020 using a collision attack, which does not require side-channel informa-
tion. To enable implementers to spot such flaws in the implementation or underlying
algorithms, we propose a framework that is designed to test the re-encryption step
of the FO transform for information leakage. Our framework relies on a specifically
parametrized t-test and would have identified the previously mentioned flaws in the
masked comparison. Our framework can be used to test both the comparison itself and
the full decapsulation implementation.

Keywords: Lattice-Based Cryptography - Side-Channel Attack - Fujisaki-Okamoto
transform

1 Introduction

Conventional public-key cryptography, like RSA and ECC, suffers from an ever-increasing
threat as large-scale quantum computers advance closer to reality. As a consequence, a
public effort to standardize post-quantum cryptography (PQC) was initiated by NIST in
2017 [NIS16]. With the NIST process recently reaching the third round, implementation
security and protection against side-channel or fault attacks is emerging as an important
criterion for standardization [AASAT20].

So far, several works have shed light on the side-channel vulnerabilities of lattice-based
PQC schemes. Authors exploit vulnerabilities at different levels, including but not limited
to, building blocks like the number theoretic transform (NTT) [PPM17], message encod-
ing [ACLZ20], or the Fujisaki-Okamoto (FO) transform [DTVV19, GIN20, RRCB20]. A com-
monly applied countermeasure to protect implementations against side-channel attacks is to
mask every sensitive step of the algorithm. An important observation is that lattice-based key
encapsulation mechanisms (KEM) achieve semantic security with respect to chosen-ciphertext
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attacks (CCA) by application of the FO transform [FO99, HHK17]. Even though the addi-
tional operations in this transform do not directly process secret information, they still have to
be protected against leakage as the processed data depends on the secret key. The importance
of this aspect has recently been demonstrated by side-channel attacks [DTVV19, RRCB20] on
lattice-based schemes and more recently a timing attack [GJN20] on FrodoKEM [NAB™*20].

Besides reports of first-order masked implementations of a scheme similar to NewHope
in [OSPG18] and Saber in [BDK"20], the need to protect the FO transform has also
led to works that specifically look into building blocks and also their higher-order secu-
rity. While arithmetic masking to protect arithmetic operations in the polynomial ring
R,=74[X]/(X™+1) can be scaled to higher orders easily due to the linearity of the opera-
tion, it is not trivial to achieve this property for polynomial sampling [SPOG19] or the final
comparison step! [BPO'20] of the FO transform.

In short, securing the FO transform and the required hashing, re-encryption and com-
parison is non-trivial. And while works like [OSPG18, BPO™20] provide a security proof, it
is still important to check the correctness of their assumptions and arguments. This aspect
is reinforced by the fact that small leakages or inconsistencies in the security reasoning can
already be devastating. In many scenarios (e.g. [DTVV19, RRCB20, GIN20]) an attacker
can retrieve the full secret key by any information on whether data processed by the FO
transform differs between different input ciphertexts.

Contributions

In this work, we focus on flaws in previously proposed masked comparisons that were used
as part of the FO transformation. We show that the approach for a first-order masked
comparison from [OSPG18] leads to a vulnerable implementation. Moreover, we describe
two attacks on the higher-order masked comparison from [BPO™20]. One is a collision attack
that does not require any side-channel information. The second attack breaks the scheme
by a first-order side-channel attack. We show that all these attacks allow an adversary to
efficiently retrieve the secret key by applying it on a Kyber implementation that uses the
aforementioned vulnerable masked comparisons.

As a result, we indicate that the masked comparison should be an atomic operation
applied to all inputs, such that no comparison result on a subset of coefficients is leaked. We
then fix [OSPG18] using the strategy of [BDK20], and we propose a correction of the flaw
in the [BPO™20] scheme.

We also highlight an issue in the leakage testing done by the original authors [OSPG18,
BPO™20], namely the existence of non-malevolent output leakage. This non-malevolent
leakage can obfuscate real leakage, making it harder to capture real vulnerabilities as for
example the ones reported in this paper. In response, we introduce a framework that is
explicitly designed for leakage testing in security-critical parts of the FO transform. To
validate our approach, we show that our framework makes it easier to catch the problems
present in [OSPG18] and [BPO™20].

2 Preliminaries

In this section, we introduce our notation and provide details on the Kyber KEM. In addition,
we recall previous work on masked implementations of lattice-based KEMs and the protection
of the comparison operation in the FO re-encryption against side-channel attacks.

1Note that the term ‘equality check’ might be more appropriate here. However, we choose to stick to
the terminology used in literature.
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2.1 Notation

For z €R, we write [z] to mean the closest integer to z (where [y+ 3| :=y+1 for y €Z). For

a,beZ, we write a mod™) b for the unique integer a=a mod b such that 0 <a <b, and sim-
ilarly a mod™® b denotes the integer a=a mod b such that —b/2<a <b/2. We extend these
definitions to tuples, vectors, matrices, and polynomials a over Z component-wise. When the
exact representation is not important, we simply write a mod b. Let Z, denote the quotient
ring Z/qZ for an integer ¢ > 1. Let R=Z[X]/(f), where usually f = X"+1 for n a power of 2,
and Ry =R/(q) =Z4[X]/(f) for some positive integer . Welet R¥ (resp. R¥) be aring module
of dimension k over R (resp. R;). We identify equivalence classes in R, with their representa-
tive polynomial with coefficients mod*) ¢. By {0,1}* we denote the set of z bits and by {0,1}"
we denote the set of bits of arbitrary length. We use the notation a; or a[é] for i=0,....,n—1 to
access the i-th coefficient of a. Matrices of elements in R, are denoted as upper case letters.

For a given set S and a probability distribution D over S, we use s+ D to mean s€ S

sampled according to D using coins r. In addition, we use s &S to mean s € S sampled
uniformly at random from .S. Hereby, U(q) denotes the uniform distribution on R, whereas
X denotes an error distribution to be defined for the specific algorithm.

If a variable v gets overwritten as part of a loop (e.g. v < v/2), we may refer to the
variable v after step i of the loop as v[4 (e.g. vl «—vl?=11/2). A plain variable A that is split
into integer S shares is denoted in bold notation as A. The plain value of an arithmetically
shared A mod ¢ (in Zq,Ry, or R’;) is reconstructed as A:ZleA(j) mod ¢. To make clear
that we refer to shares we use round brackets in the A) notation to refer to the j-th share for
1<j<S. We also use the notation A € ZSIS) to denote that A is split into S shares and each
share is in Z4. Individual shares, e.g. AWM are denoted in bold to make it easier to identify
them in algorithms. By || we denote the concatenation operation. The input to a comparison
algorithm COMPARE is usually denoted as A and A and may be in Z4,Rq,{0,1}* depending
on the context. The result of COMPARE(A,A) is either true if A=A and false otherwise.

2.2 The Kyber Key Encapsulation Mechanism

In this work, we use the Kyber KEM to showcase our attacks and countermeasures. Kyber is
an IND-CCA2-secured KEM and a finalist in round three of the NIST PQC standardization
process [SABT20]. Kyber was first described in [BDK " 18] and uses the Fujisaki-Okamoto
(FO) transformation [FO99, HHK17]. The FO transform is applied to an intermediate
chosen-plaintext attack (CPA) secured public-key encryption (PKE) to achieve IND-CCA2
security. The three parameter sets Kyber512, Kyber768, and Kyber1024 are claimed to have
a security level equivalent to the security of AES-128, AES-192, and AES-256, respectively.
All Kyber variants share the parameters n =256, ¢= 3329, 7o =2 and the security level is
defined by appropriately setting k, 11, d¢, dy, and d,,. Computations in Kyber are performed
in the ring Ry =7Z4[X]/(X"+1) and by M ={0,1}" we denote the plaintext space, where
each message m € M can be seen as a polynomial in R, with coefficients in {0,1}. Kyber uses
ciphertext compression to reduce the size of the ciphertext following standard techniques
also applied by other lattice-based schemes. The Kyber compression is defined as:

COMPRESS, (z,d) = [(2?/q)-2| mod™) 27, (1)
DECOMPRESS, (7,d) = [(q/2%)-x]. (2)

For later reference, we provide a simplified? version of the public-key encryption scheme
KYBER.CPA = (KYBER.CPA.GEN, KYBER.CPA.ENC, KYBER.CPA.DEC) as in Algo-
rithms 1, 2, and 3. We set x,, as the centered binomial distribution with support {—7,...,n},

2We use a more straightforward description of the sampling procedures and encoding into byte arrays.
To avoid a notation clash on the use of r we renamed the MLWE secrets to sy in key generation and se
in encapsulation.



Shivam Bhasin, Jan-Pieter D’ Anvers, Daniel Heinz, Thomas Péppelmann, Michiel Van Beirendonck 337

Algorithm 1: KyBER.CPA.GEN. Algorithm 2:
$ 256 256 KvyBER.CPA .ENC.
1 (pa0)<_{071} X{Oal} ; Input' kaPA:(E p)
2 ALU(q)F* Input: me M
ok koo
3 (89:€) < Xy X Xy Input: 7 < {0,1}25
4 854 NTT(sg); ALUg)kk
it Q)"
5 ¢« NTT(e);
? A A (62 . (56’61762)%)(12,771 XX]:L,T)Q X Xn,nz 5
o tedosgtes 5 NTT(s,) :
t kopa=(t,p),skcpai=>5, ; © =)
7 return pkopai=(Lp),skopa=3; ; weINTT(Aos,)+e ;

v INTT(fod)+ea+[L]-m) ;
¢1 < COMPRESS, (u,dy,) ;

¢ < COMPRESS, (v,dy) ;
return c:=(c1,c2) ;

Algorithm 3: KYBER.CPA .DEC.
Input: skcpa=3,
Input: c¢=(u,v)

1 u4 DECOMPRESS,(u,dy,) ;

2 v<— DECOMPRESS,(v,d,) ;

3 m=COMPRESS,(v—

INTT(§ZONTT(u)),1) ;
4 returnm;

o N O Uk W N

and let ), ,, be the distribution of polynomials of degree n with entries independently sampled
from x,. When we apply the NTT to a vector of polynomials, the NTT gets applied to each
polynomial individually.

2.3 The Fujisaki-Okamoto Transform and Physical Attacks

The FO transformation [FO99, HHK17] of Kyber requires, besides access to Algorithms 1, 2,
and 3, two different hash functions H and G as well as a key derivation function (KDF). For
future reference, we now provide a simplified® description of the IND-CCA2 Kyber KEM
in Algorithms 4, 5, 6. The main idea of the conversion is to check the validity of a ciphertext
in KYBER.CCAKEM.DECAPS after decryption by performing a so-called re-encryption.
In Algorithm 6, a candidate ciphertext ¢ := KYBER.CPA.ENC(pk,m’,r’) (see Line 4) is
obtained and then compared with the input ciphertext c. The goal is to detect maliciously
crafted ciphertexts that could be used to reveal the secret key. In Figure 1, an overview of
the application of the FO transformation on Kyber KEM is given, where operations that
depend on the secret key are indicated in grey.

The security properties of the FO transform only hold if an adversary is not able to learn
information on intermediate values processed during the re-encryption operation. This is
because the input to the re-encryption depends on the decryption which uses the secret key.
The only information that an attacker should get is an accept or a failure. This information
can either be provided explicitly as a reject/fail flag or implicitly by outputting either the
correct key or in case of a failure a random/constant key. Thus, side-channel leakage in any
form from the FO transform could lead to serious security flaws.

D’Anvers et al. [DTVV19] first presented an implementation attack, using timing in-
formation present in the error correction of LAC and Ramstake. Timing leakage was also
exploited in [GJN20], this time in the FO validation check of FrodoKEM. Even constant-time
implementations can still be vulnerable to other types of side-channel leakage. Electromag-
netic radiation from a hashing step in the FO transform has similarly been exploited as a

3We removed details on the encoding of the key and ciphertext into byte arrays.
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Algorithm 4: Algorithm 6:
KYBER.CCAKEM.GEN. KYBER.CCAKEM.DECAPS.
L8 0 1}256 i Input: Ciphertext of CCAKEM ¢
2 (pk sk;) :K\}BER CPA.CGEN() ; Input: Secret key of CCAKEM sk
k‘7— B k| [H -k; B ’ 1 Extract (sk'||pk||H(pk)||#) from sk ;

8 shi=(sk'||pk|[H(pk)|2) ; 2 m’:=KyYBER.CPA.DEC(sk’c) ;
4 return pk,sk ; o e R

s (Ka)=Gl|HGh) :

. 4 ¢ :=KYBER.CPA.ENC(pk,m' 1) ;
Algorithm 5: e if c—¢ then (p )
KYBER.CCAKEM.ENCAPS. ‘ K= KDF(K'||[H ]

Input: Public key of CCAKEM pk j else T (K'[[H(e))
8 256
1 m+{0,1}77; s | K:=KDF(z|[H(c));
2 mf—H(m); o end
3 (K,r):=G(m||H(pk)) ; 10 return K ;
4 ¢:=KyBER.CPA.ENc(pk,m,r) ;
5 K:=KDF(K|H(c)) ;
6 return ck ;
1 |
¢ —(KyBER.CPA.DEC }— " —={KvBER.CPA.ENC} ¢/
>m/ T
)
yes no
(return KDF (K'|[H(c)) | (return KDF (=[|H(c)))

Figure 1: Decapsulation of Kyber. All operations in grey are influenced by the long term
secret sk.

covert channel in [RRCB20], highlighting the need for side-channel countermeasures on top
of constant-time implementation.

In this paper, we specifically look at the protection of the comparison operation. We will
summarize the two masked comparison operations analyzed in this paper below.

2.4 Masked Comparison from [OSPG18]

To goal of [OSPG18] is to compare a public polynomial A with a sensitive and first-order
masked polynomial A, which is split in two shares A1), A so that A= AW + A@) | The main
idea of the OSPG method is to introduce an additional hashing step before the comparison.

Variables A,AM) A2 A can be defined as polynomials in R, or just coefficients of a
vector in Zg as the ring structure of R, is not relevant and the only required operation is
coefficient-wise addition mod ¢. The main idea is that the hashing step prevents leakage
of the sensitive polynomial A. Thus, the comparison is rewritten as

AW L A@ —— 4 (
& AW ==4-A? (
& H(AW)==H(A-A®), (

Tt W
= = T
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where the last step relies on the collision-resistance of a cryptographic hash function
H: R, — {0,1}* with d output bits (e.g., d = 256). The attacker does not learn addi-
tional information on A in case of a failed comparison as the unmasking is done on a hashed
value. This approach is illustrated in Algorithm 7.

Algorithm 7: Masked Comparison of sensitive A split into shares AW AR with
public A [OSPG18, Algorithm 5]

Input :AM, A® R, such that AV 4+ AP =Amod ¢, Ac R,

Output cAL A
1 AD—A-AM
DWW H(AW)
D® +H(A®)
return (DM @ D®)

[Z-I ]

?

0

'

In [OSPG18], there are three input ciphertext components, ¢, ¢, and & that must be
compared to their re-encrypted counterparts ¢, co, and ¢4 The authors mention that the
adversary can adaptively change ¢ or ¢4 and use the output leakage of COMPARE(cg,é2)
(resp. COMPARE(c4,¢4)) to distinguish the decrypted mep,. They note that the same does not
apply to the input component ¢;, and propose to first execute COMPARE(c¢1,¢1 ) individually.
Only if this final comparison is valid, the other two comparisons may be conducted [OSPG18,
Section 3.4]. Note that we show in Section 3.2 that this assumption is incorrect and that
even the output of COMPARE(c1,¢1) leaks sensitive information.

2.4.1 Application to Saber

For their implementation of Saber [BDK™20], the authors focus on first-order security and
therefore re-use the masked comparison of [OSPG18]. In Saber, it is required to check two
sensitive and shared re-encrypted ciphertext components ¢y € RZ(,Q) and cq € R§2) for equality
with the user-provided ciphertext ¢, € R, and ¢é; € R;. Different from the original method,
the authors implement only a single check. In order to do so, they instantiate the hash
function as H: R, x Ry — {0,1}d with a simple concatenation of the inputs. In other words,
it is checked whether

H(e( S ZH((@ — ) || (22— ). (6)

2.5 Masked Comparison from [BPO*20]

A method to achieve higher-order security for the masked comparison was presented by
Bache, Paglialonga, Oder, Schneider, and Giineysu in [BPO™120]. They took a significantly
different approach, as it is unclear how the hashing-based approach from [OSPG18] can be
used with a higher-order masking scheme. Moreover, a straightforward solution based on
a higher-order protected A2B conversion would seem to be too inefficient.

For consistency with related algorithms and our introduction of Kyber, we change the
notation used in [BPOT20] when recalling the BPO approach. By n’ we denote the number
of input coefficients to the comparison algorithm. As the algorithm does not exploit any ring
structure, the number of input coefficients n’ (originally k) may be n’ =n for a polynomial
in R, but could also be the concatenated vector representation of various polynomials in
R, (e.g., n' = kn to account for the modular structure in Kyber). Inputs can be in Z,
(originally F,) for a prime ¢. A prime modulus is required by the security proof and thus the
approach would not be directly applicable to Kyber, due to compression, or Saber, due to the
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Algorithm 8: MaskedSum of m-th set according to [BPO™20, Algorithm 5]
Input :An m-th subset A consisting
of shared coefficients A1,...,A; EZSIS) such that ZleAl(-j) =A; mod g,
An m-th subset A consisting of coefficients A;,...,A; € Zq

Output: B,,,B,, €Z,

1 (BW)1<icn 0

2 B, <0

3 Bmeo

4 fori =1toldo

5 Ry ﬁZq

6 | Rl

7 for j =1 to Sdo

8 B%)eBg)qL(Az(-j)JrRl)-Rg mod g
9 end

10 BmeBm—&—(zﬁL—&—n-Rl)-RQ mod ¢
11 end

12 for j =1 to S do

13 Bm<—Bm+BT(,j) mod ¢
14 end

15 return Bm,Bm

power-of-two modulus. The comparison algorithm requires the sensitive input A to be shared
in S (originally n) shares. The shares of A are compared with the unshared public value A.
The idea of [BPOT20] is to perform this comparison on summed up and randomized

subsets of A and A. The value A is assumed to be a vector of n’ coefficients in Z((IS) and A is
assumed to be a vector of n’ coefficients in Z,. The actual value of n’ depends on the scheme
in which the masked comparison is instantiated, e.g., n’ = (k+1)n for Kyber. To run the
comparison, both are split into x sets of cardinality /= Z (originally, k is used instead of z)
assuming that [ divides n’. Then Algorithm 8 is run on each m-th subset and for each result
COMPARE(B,,,B,,) for 0 <m <z is run. If all comparisons return true, the final result is
true. Note that we follow the notation of [BPO™20] to avoid a notation clash by denoting
the m-th subsets A,, and A,, just as A and A in Algorithm 8 to be able to use the subscript
for accessing individual coefficients?.

3 Attack

In this section, we present three attacks against masked comparison algorithms, one against
the comparison proposed in [OSPG18] and two against [BPOT20]. Our attacks make use
of the fact that it is possible to submit slightly modified ciphertexts and observe whether
a decryption failure occurs. These attacks invalidate the implicit assumption of [OSPG18]
and [BPOT20] that the output of the masked comparison on a subset of coefficients is not
sensitive information.

We will first detail how plaintext checking oracles, i.e. an oracle that tells if a ciphertext
is decrypted correctly so that m =m’, can assist in full key recovery. As in [GIN20], we
target the specific binary information from a decryption failure oracle in the FO validation
check. In contrast to this work which targets FrodoKEM, we also consider schemes that use

4The reader might substitute AW by A&? [z] in Algorithm 8 to resolve this.

7
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ciphertext compression such as Kyber. This compression prohibits gaining exact equations
in the secret in our case, which diminishes the information we retrieved from the oracle.
To counter this, we show that we can still retrieve approximate equations in the secret key
which, combined with the leaky-LWE framework of Dachman-Soled et al. [DDGR20], allows
to effectively retrieve the secret key.

Finally, we describe how to obtain efficient plaintext checking oracles for implementations
that use the masked FO validation checks of [OSPG18] and [BPO'20]. For the latter, on
top of an oracle assisted by side-channel traces, we construct an oracle that takes advantage
of collisions in the validation check, and that does not need any side-channel information.
As opposed to the attacks in literature, due to the side-channel protections in place, we have
to limit the attack to modifying only one coefficient of a valid ciphertext. The reason for
this restriction will become clear later.

3.1 Generic key recovery from decryption failure oracles

An inherent feature of many lattice-based encryption schemes is the possibility of decryption
failures and the resilience to noisy ciphertexts. Algorithm 3 shows the CPA-secure decryption
of Kyber. Momentarily disregarding the compression and NTT operations, the decryption
is essentially a two-step approach. First, the decompressed ciphertext components (u, v)
are combined with the secret key s to find the intermediate polynomial x':

T

2’ =v—sTu=w+/[q/2]-m mod™® . (7)

In this equation, w is a secret error term that has components both due to compression, as
well as the sampled noise elements of MLWE. We refer to [SABT20] for the full details. After
this first step, x’ is compressed as in Equation 1 to find m/:

2
m/ = Compress, (¢',1) ==z’ mod ™) 2. (8)
q

In Compress, (2',1), each coefficient of the polynomial 2’ gets decoded into exactly one
message bit. If —q/4 < 2'[i] < g/4, the resulting message bit m/[i] is zero, and when the
inverse is true, m’[i] is equal to one.

This means that a decryption failure indicates:

(v—T[q/2]-m—s"umod™® ¢)[i] < —q/4, or: 9)
(v—=Tg/2)-m—s"umod™ q)[i] >q/4. (10)

for at least one coefficient i. Parameters are typically chosen such that a decryption failure
for valid ciphertexts happens with only negligible probability.

The polynomials u, v and m are part of the input and are typically known to the adversary.
Fluhrer [Flul6] showed that knowledge of whether m’ equals m, i.e. a decryption failure,
is enough to recover the secret key s by successively adapting u, v and observing whether
a decryption failure occurs.

Due to practical constraints, we will limit our attack to adapting only one coefficient of a
valid ciphertext. A possible attack would proceed as follows. Consider an adversary that sub-
mits noisy input ciphertexts (u, v+e-X?) for a given i € [0,n— 1], where u and v are correctly
generated, but with e- X? € R, an additional noise term with only one non-zero coefficient
e. In Equation 7, this noise term will appear as an additive term to the secret error term w:

o'=w+e X)) —sTu=(wt+e X)+[q/2]-m, (11)

which leads to the decryption failure conditions:
(v—Tq/2]-m—s"umod® q)[i] < —q/4—e, or: (12)
(v—Tg/2)-m—s"umod™ q)[i] > q/4—e. (13)
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+e—1

Figure 2: Visualization of a border-failure error e in KYBER.CPA.DEC without compression.

Note that we assume a failure will in this scenario only happen at the adapted coeflicient
i, since the failure probability of valid ciphertexts is negligible.

An adversary that can submit multiple such ciphertexts, can adaptively tweak e to look
for decryption failures. If he finds an error e that does trigger a decryption failure, while
e—1 does not trigger a decryption failure, he learns the following equation in the secret:

(v—[g/2]-m—5"umod™ q)[i]=[q/4] —e. (14)
Similarly, an error e that does trigger a decryption failure, while e+1 does not, indicates:
(v—[q/2]-m—s"umod™ q)[i]=—[q/4]—(e+1) (15)

We will call a polynomial e- X* that triggers one of these two conditions a border-failure
error. Such a border-failure error is illustrated in Figure 2 for m[i] =0, where the error term
with coefficient e results in a decryption failure (m/[i]=1), but the error term with e—1 still
results in a correct decryption (m/[i]=0).

By performing a binary search as discussed in [GJN20], one can find a border-failure
error, and thus an exact equation, in at most [log,(q)] iterations (e.g. 12 iterations for
Kyber768), by carefully selecting the value of e; in each iteration to divide the search space
in two. Further, by obtaining kn independent equations, it is possible to fully retrieve the
secret error term w and to construct exact equations in the coefficients of s.

In theory, the Fujisaki-Okamoto transformation [FO99] of IND-CCA2-secure lattice-based
encryption schemes prevents such attacks by checking if a ciphertext is valid and rejecting
adapted ciphertexts. However, an adversary that is able to construct a plaintext checking
oracle would be able to circumvent the security of the FO transform and execute this attack.

Compression An additional challenge occurs when applying this technique for key recovery
of schemes with compression (e.g. Kyber), which is not covered by [GJN20]. For schemes that
do not perform compression on the ciphertext term v it is possible to obtain exact equations in
the secret key as explained above. Compressed ciphertexts, on the other hand, are of the form

c1=Compress, (u,d,) (16)
co=Compress, (v,d,). (17)

This obstructs an adversary to input fine-grained errors e in v, as these small errors would
be removed due to the compression.
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w

Figure 3: Visualization of triggering decryption error in KYBER.CPA.DEC with error F,
with compression.

However, it is possible to inject errors F into the term co, which will result in coarse-grained
errors e~q/2% E in the decompressed ciphertext after compression.

v+e- X' =Decompress, ((c2+E-X"),d), (18)

This means that the space of possible noise values for e is effectively reduced to rounded
multiples of 7.

Ciphertext compression thus prevents us from freely choosing the noisy input ciphertext
v+e- X, which in turn prevents us from getting exact equalities. However, similar to the
procedure above we can search for values of E, where E does trigger a decryption failure
while E — 1 does not trigger a failure. From such an observation we learn approximate
equalities in the secret of the form:

L0/ E)] < (0 [a/2) -m—s"u)[i] < [ (04— (B )], (19)

which can be written as an approximate equation:

(v=s"wlil~ | 4 (a/4- E+1/2)]. (20)

Figure 3 visualizes the injection of coarse-grained errors when compression is in place.
Given a border-failure error F as explained above, w can take any value in the light gray
marked interval.

Solving Mod-LWE using (approximate) equations Dachman-Soled et al. [DDGR20] in-
troduced a tool to estimate the security of an LWE sample in the presence of linear hints
about the secret. We can use this framework to include our exact or approximate linear
equations and estimate the remaining cost of retrieving the secret. In the case of approximate
equations, we consider an approximation error variance equal to the variance of a uniform
distribution with width ¢/2% . Figure 4 gives the security of Kyber512 and Kyber768 after
inclusion of approximate or exact hints, which correspond to compressed and non-compressed
ciphertexts respectively.

3.2 Side-channel attacks

We will now describe how to construct a plaintext checking oracle that can be used for the
attack described before. During the FO transformation, a validation check c¢= ¢’ is used
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Figure 4: Security of Kyber512 and Kyber768 in function of the number of (approximate)
equations retrieved.

to detect malformed ciphertexts. As mentioned in Section 2.3, the final accept/fail result
bit of this check is not sensitive information. This property is used in both [OSPG18] and
[BPO™20], where this bit is unmasked in the implementation.

Yet, while the final result bit of the check is not sensitive, information on which part of
the message fails certainly is sensitive. Consider, as before, input ciphertexts of the form
c=(c1,co+E-X") with E-X* again polynomial with only one nonzero coefficient E. When
E is sufficiently small so that m’=m, decryption succeeds and ¢/ =(cf,c4) =(c1,c2). On the
other hand, when E causes a decryption failure, m’ # m will essentially randomize the re-
encryption through the hashing step in the FO transform (Figure 1). Similar to [GJN20], our
decryption failure oracle constitutes visible side-channel leakage between COMPARE((cq,c2+
E-X%),(c1,c2)) and COMPARE((c,ca+ E- X"),(rand;,rands)). We will show that this leakage
is present in both [OSPG18] and [BPO20] because they unmask partial checks.

In [OSPG18], it is noted that the different ciphertext components ¢; and ¢s have different
sensitivity on the decrypted message m’. The authors argue that m’ is only sensitive for
an invalid ¢;. Consequently, they propose to first check the validity COMPARE(cq,cj ), with
COMPARE as in Algorithm 7, and only conditionally execute COMPARE(c2,c5) in a second step.
However, in the plaintext checking oracle outlined above, c; is a valid ciphertext, since the er-
ror is injected into co + E- X *. Moreover, the output of COMPARE(cy,c} ) is sensitive, since m’ =
mresultsin check(cy,c1 ), whereas in the case m’ #m this routine will be COMPARE(¢y ,rand} ).
Even though the distinguishable input ¢} =c; or ¢} =rand; is initially masked, the final
output of this check is unmasked, and reveals the occurrence of a decryption failure.

The masked comparison of [BPOT20] leaves open a very similar decryption failure oracle
to that of [OSPG18]. In Algorithm 8, the comparison proceeds in sets of I coefficients, where
the pass/fail bit is unmasked for every set. Again, the occurrence of a decryption failure will be
readily visible in the side-channel information, since COMPARE((c1,c2+ E- X ), (c1,c2)) will fail
only in the set that contains coefficient i, whereas COMPARE((cy,co+ E-X*),(rand;,rands))
will likely fail in all of the sets. Note that for our implementation of Kyber768, since the
[BPO™20] requires a prime modulus, COMPARE is not directly instantiated with MaskedSum,
but must first decompress the ciphertext elements into R,.

Practical attack To experimentally verify the decryption failure oracles outlined above,
we integrated the masked comparisons of [OSPG18] and [BPO'20] into the Kyber768
ARM Cortex-M4 implementation available in PQM4 [KRSS]. The masked comparison
of [BPO20] requires fresh randomness within the algorithm. When this randomness is
sampled using rejection sampling, collected traces are misaligned due to the variable timing
of this routine. Therefore, to simplify evaluation, we sample all fresh randomness in advance
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and pass it to the masked comparison routine as an input parameter.

We use an STM32F407VGT6 chip, mounted on a custom PCB to facilitate power mea-
surements. This custom PCB results in a very stable behavior of the STM32F407 chip. It
contains a dedicated shunt resistor to monitor the instantaneous power consumption but
is otherwise stripped of unnecessary components that would introduce additional noise into
the measurements. The PCB is driven by an external power supply at 3.6 V and clocked
by an external clock at 8 MHz, to get maximum stability.

To collect power traces, we use Tektronix DPO 70404C digital oscilloscope and set it
to sample power traces at 65 MSamples/s. A PA 303 SMA pre-amplifier performs analog
preprocessing of the collected traces before they enter the oscilloscope. A central PC is used
to communicate input/output data to the board through a serial USART connection, as
well as to collect and analyze power measurements.

We use Welch’s t-test to detect differences in the power consumption between two
classes of measurements. This test computes the so-called t-statistic for every sample in the
measurements as:

e X1—-X>

where X1 and X denote the means of each class, 7 and o3 their respective variances, and
N1, Na the number of samples.

We construct the ¢-test classes as the input ciphertexts (c1,co+E-X*) and (c1,co+(E—
1)-X%). We specifically target the masked comparison step, where as explained above, we
expect t-test leakage when E triggers a decryption failure (¢’ =(c1,c2)) but £—1 does not
(¢ =(rand;,rands)). This leakage would allow us to construct approximate equations in
the coefficients of the secret key, reducing the R-LWE security.

We generated a pseudorandom Kyber ciphertext from an input seed and conduct the
attack described above, with results illustrated in Figure 5. From this figure, it can be deduced
that E'=>5is the border-failure error. When E =4, both F and £'—1 =3 are too small to trigger
decryption failures, and they do not leak in the output of the partial comparisons. Conversely,
when F=6, both F and F—1=5 trigger a failure, also preventing partial comparison output
leakage. In the middle case where E =5, E—1 decrypts correctly but F triggers a decryption
failure, and there are large leakage spikes that can be observed. As expected, for [OSPG1§]
there is a single peak, which we pinpointed to the unmasking of the partial comparison
COMPARE(cy,c} ). On the other hand, for [BPO™20] there are 16 peaks corresponding to the
unmasking of the [ =16 partial sets. Our attacks require a very limited amount of traces to
detect the border-failure error. When looking at the maximum absolute ¢-statistic value over
the measurements on the right side of Figure 5, the border-case failure is detectable after a
few hundred traces for [OSPG18] and already after the first block of 50 traces for [BPO20].

To further illustrate why E =5 is the border-failure error, we inspected internal variables.
For our pseudorandom Kyber ciphertext it holds that:

E=0 E=4 E=5

c2[0] 5 9 10
0] +e= 5% -co[0]+E] 1040 1873 2081
(v—sTu)[0]+e -55 778 986

Since 986 > ¢/4 =832.25, the ciphertext decrypts to m/[0] =1, such that indeed E =5

is the border-case failure error term. From the side-channel information, an adversary

that does not know (v—sTu)[0] = —55 can now compute it approximately, and finds that:

(v—sTu)[0] ~—105.
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Figure 5: Testing for border-failure errors using a t-test with the input ciphertext classes
(c1,ca+ E-X%) and (c1,co + (B —1)- X?) for the masked comparisons of [OSPG18] and
[BPO*20].

3.3 Collision attack

In this section, we show that it is possible to extract information on the Kyber secret key
using a reaction attack without side-channel information when the method from [BPO™20]
is used for comparison in a masked implementation, thus breaking the CCA security of the
scheme. Firstly we recall the four scenarios an attacker may experience when querying a
decryption oracle. Assume c, is a valid ciphertext, ¢ is the re-encrypted ciphertext and ¢,
is the ciphertext that is sent to the oracle by the attacker.

1. ¢, = cq: A valid ciphertext has been provided such that m = m’ and thus the re-

encryption uses the same random coins r as the original encryption. The result of the
final comparison ¢=¢, is true.

. €q=cq+e, where e is a polynomial with a limited number of small coefficients: A valid

ciphertext is slightly modified by a small error but in a way that the decryption still
results in m=m’. The result of the final comparison c=¢, is false but the difference
between the two ciphertexts is small as e = ¢, —c. In the rest of this subsection we
will consider e a polynomial with only one non-zero coefficient, which means that the
difference between ¢, and c is limited to only one coefficient.

Cq = Cq + €, where e is a polynomial with one or more large coefficients: A valid
ciphertext is modified in such a way, that m#m’ after decryption (e.g., in one bit).
Thus the re-encryption operates on completely different random coins r than the
original encryption. Internal variables of the re-encryption differ from the original
encryption. The result of the final comparison c=¢, is false and the difference of ¢, and
cis very large as ¢ can be considered to be randomly generated due to the different coins.
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4. &, is uniform: A completely unrelated and invalid ciphertext is sent to the decryption
oracle. Same result as when e is large.

The masked comparison of [BPOT20] has a certain probability of false positives, where
invalid ciphertexts are still accepted. These false probabilities are denoted collisions and
the authors analyzed that they occur with probability 1/¢* with = being the number of
comparison sets used. In [BPOT20] the authors recommend a value of z = 16 for Kyber.
The probability of a collision in a single set Pg;ygie—conr Was shown to be 1/q.

However, their analysis included scenarios 1, 3, and 4, but did not take into account
the possibility of scenario 2, where only one coefficient and thus only one set fails. In this
scenario, the false positive probability equals the single set collision probability 1/q. This
relatively high collision probability is what we exploit in our attack.

In practice, our attack queries the decryption failure oracle many times with a slightly
modified ciphertext (ci,co+E-X?) as in Subsection 3.1. As before, E- X' is a polynomial that
is non-zero except for its i*" coefficient E. If no decryption failure occurs we are in scenario
2 and the scheme will return a correct decryption of the original ciphertext with probability
Psingle—cou- If it did cause a faulty decryption, we are in scenario 3 and the ciphertext
(c1,c0+E-X*) will not accept the message®. This means that when the ciphertext (ci,co+FE)
is accepted we know that m=m/, and this acceptance happens with probability 1/g.

However, when m#m’ we do not get any definite proof as the ciphertext will always be
rejected. In this case, we can construct an error term E where:

E=E-2%"1 mod™*) 2t (21)

which results in an error:
e~e—q/2 mod™) g¢. (22)

The effect of the term ¢/2, is to flip the message, and z’ becomes:
2'[i] = (v4e)[i] — sTuli] =wi] +e+[q/2] - (m[i]®1), (23)

This way, (c1,co+E-X?) behaves in the opposite fashion: m = m/ will always lead to a
rejected ciphertext, while m#£m’ will succeed with probability 1/g.

On average, the decryption oracle has to be queried 2¢ times, ¢ times with error £ and
g times with error E, to obtain one correctly decrypted message from the original ciphertext
which indicates whether m = m’ or m # m’. As such we have successfully constructed
a decryption failure oracle that can be used in an attack as outlined in Subsection 3.1.
Analogously to before, we aim to find the border-failure error E so that £—1 does not trigger
a decryption failure but £+1 does.

We verified the attack in practice using the PQClean implementation of Kyber768 on
Intel Core i5 - 8350U CPU with 1.7 GHz. Without the compression of Kyber, recovery of
a border-failure error took around 3 minutes on average. That includes around 262 calls
to the decryption oracle, which is a combination of the binary search cost log,(¢) and the
cost of finding one border-failure 2¢. As can be seen in Figure 4, obtaining 2'' equations
leads to a full recovery of the secret key in this case. In conclusion, for Kyber768 without
compression, it would be possible to retrieve the full secret key in 227-2 calls to decapsulation.
This attack would take roughly 100 hours on our device.

For Kyber512 or Kyber768 with compression, we are expecting to find an approximate
equation with 2¢log, (2% )~237 queries, where 2% is the number of values E can take and
2q¢ again the cost to find a collision. The cost of the remaining security can be calculated
by [DDGR20] and is graphically presented in Figure 4. All in all, the number of queries and
remaining computational effort for Kyber768 is still high. However, for a fast decryption
oracle, an attack onto Kyber512 with 213:7.217 =230-7 queries to obtain 2!7 equations that
lead to a remaining computational complexity of 26°, which seems within practical reach.

5To be more accurate, the message is accepted with probability 1/¢* (e.g. 27186 for Kyber768), which
we can assume will not happen in practice.
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4 Correcting [BPO*20]

The first order masked comparison of [OSPG18] can be fixed easily by combining both ¢;
and ¢ in a single hash for comparison as done in [BDK'20]. The higher-order masked
comparison of [BPO™20] is not straightforward to fix. One option is to fall back to a generic
comparison where all coefficients of the ciphertext are first converted into a Boolean sharing
after which the comparison is performed using an appropriate masked Boolean circuit. This
would require kn A2B conversions for ¢; and n for ¢o, which is a total of [y = (k+1)n A2B
conversions, where n is the number of coefficients of the polynomials in the ring R, and where
k is the number of polynomials in the secret vectors. Additionally one needs an appropriate
Boolean circuit to perform the comparison on the masked Boolean shares.

It is however possible to use the idea of [BPOT20] to reduce the number of A2B conver-
sions needed. The idea is to combine all coefficients in one masked sum, and to perform a
masked comparison on only this sum instead of all coefficients separately. This would lead
to a masked comparison that only needs one A2B conversion, but with a probability of a
false positive (i.e. the comparison returns true while the inputs are not equal) of 1/¢. To
reduce the false positive probability one can then repeat this procedure lp times, leading
to a false positive probability of 1/¢'2. In such scenario, it is important that the final I
comparisons are performed in a secure way so that only the final output of all comparisons
combined is outputted and no intermediate comparison results are leaked.

To provide security and avoid the problems in [BPO™20], we introduce two significant
changes to the original proposal of [BPOT20]: First, all coefficients are combined in every
masked sum B, to avoid the attacks as described in the previous section. Secondly, we
generate the masked sum B in S shares instead of just 1 share in the original proposal, which
is a requirement to obtain (S—1)*" order security.

Algorithm 9 gives an algorithm that compresses the [4 = (k+1)n coefficients that need
to be compared in a side-channel secure way, to [ g coefficients that need to be compared in a
side-channel secure way. We will first prove that the [ remaining coefficients give the same
result after comparison as the initial [ 4 coefficients, except for a false positive probability
of 1/¢'2. We will then prove the security of our algorithm. An experimental validation of
our algorithm can be found in Appendix B.

Algorithm 9: ReduceComparisons

Input :A set A consisting of shared coefficients A;,...,4;, GZ((IS) such that
ZleAgi) =A;, mod g; A set A consisting of coefficients /L,...,/LA €Zqg
Output : An m-th subset B consisting of shared coefficients
B,,..B € ng); A set B consisting of coefficients Bl,...,BlB €2y
1 forigp =1 tolg do

2 | BY)icjcne0

3 -Bi3<_0

4 foriy =1toly do

5 RﬁZq

6 for j =1 to Sdo

7 BY + BY) 1+ AY) . Rmod ¢
8 end

9 Bi, < Bi, +A;,-Rmod ¢

10 end

11 end

12 return B,,...,.B;,,B1,...,Bi,
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Theorem 1. Let n,r be positive integers, let q be a prime. Then after execution of
ReduceComparisons, the comparison of A1,...,A;, with their respective values fll,...,fllA
gives the same result as the comparison of B1,...,B, with their respective values Bl,...,BZB ,
with the exception of a false positive probability of 1/¢'2. More specifically:

e Ifl<ia<la:y) AV = AZA,then1<zB<lB > BY =B,
. IfEIzAZ] 1A1A #A“,thenﬂwzj 1B #Bm with probability 1—1/¢'®

Proof. We first calculate the values of B;,, and B;,,. Secondly, we will reason about the case
where the all coefficients of A;, and A;, match, and finally we will look at the case where
at least one of these pairs does not match.

We will denote with R[*5-%4] the random value R generated in the i round of the outer
loop and the % 1 of the second loop. Then, by simple substitution, one can show that:

B(J ZA zB,zA
iA

ia=1

la ~
= Z AiA .R[iB7iA]

1a=1

which means that:

S
Biy ZB Z AiA—ZAEZ‘) Rlinyial

ia=1 j=1

Equal inputs In the case where the two inputs match (i.e. ¥;, Zf:IAEi) :/LA ), we have:

j=1
and thus: <
Bi,—> BY =0,
j=1
or equally:

which confirms our first statement.

Different inputs This leaves the case where at least one of the input coefficients does not
match (i.e. 3; AZ A(] ) #A; ). Without loss of generality we assume that this is the case

foriga=1, (i.e. ijlAjl #* Al)7 so that we can rewrite the input to the masked comparison as:

s s la s
DR EES 9/t FEEES ol BN WU P
j=1 j=1 i=2 j=1

The first term (fll —ZleAJl) Rl5:1] is a multiplication of a nonzero term with a uniformly

random term. As multiplication with a nonzero field element is a bijection, the distribution
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of this first term is also uniform over the field. Addition of the other terms does not change
the uniformity of the distribution and therefore B; , — Z?:le('; ) is uniformly distributed.

A uniform distribution of B; foleg ) means that B; s= Zf:le(‘f; ) with probability
1/q (i.e. when B, — EleBEQ =0), and that B;, # ZleBl(-Q with probability (¢—1)/q.
Moreover, note that the values of B; 5 —ZleBgB ) are independent for different i, as the
randomness Rl‘#1) varies in each iteration. )

Due to this independence, the probability that for all ip € [1,lp] it holds that B;, =
ZleBz(é )is 1 /q'®. Taking into account that probabilities sum to one, the probability that

at least for one ig € [1,15] it holds that B;, #ZleBEj) is1—1/¢'2=1-1/¢'. O

B

Theorem 2. Algorithm 9 is t-NI at any order t<n.

Proof. The essence of the proof is that in Algorithm 9, different shares of the same input
variable are never combined. Every intermediate and output value depends on maximal
one share of each input variable. The intermediate values are RI5 %4l BZ[LA] and Bf; hlial,
First, the randomness R*2-*4] can be simulated uniformly at random from Zq. Secondly, any

intermediate value Bz[;A] is constructed without involvement of the sensitive input values and
therefore are perfectly simulatable without knowing any input share, by following the exact
(3)[ia]

procedure in Algorithm 9. Finally any intermediate value of Bifg only depends on the

j* shares of A;, and thus can be simulated without knowledge of any At , Wheret#j5. [

After the application of Algorithm 9, the number of coefficients that need to be compared
is reduced from l4 = (k+1)n to I, where lp should be chosen so that the false positive
probability 1/¢'# is small enough to avoid that an adversary can practically find such false
positives. For Kyber768, when a false positive probability of maximum 27128 is required, this
implies a reduction from [ 4 = 1024 coefficients to [ g =11 coefficients that need to be compared.

However, the constraints of [BPO™20] still apply to our proposed correction, mainly the
fact that g needs to be prime. Schemes with power-of-two moduli or schemes that perform
compression of ciphertexts to power-of-two moduli, as is frequently the case in lattice-based
encryption schemes, need an additional masked operation to convert the power-of-two shares
to prime moduli. This might complicate the usage of our method, or might in extreme
cases make it more expensive than the generic masked comparison. The application of
Algorithm 9 is therefore scheme-specific and as it is not the main target of this paper, we
refrain from an extensive treatment here and leave this for future work.

5 Framework for side-channel testing

The masking schemes that were attacked in Section 3 were tested by the original authors for
side-channel information leakage using Test Vector Leakage Assessment (TVLA) [GJJR11].
A natural question is then why this side-channel leakage did not show up in the test results
and how to develop a test that would capture these leakages, which can be used to replace
the traditional test.

A standard scenario for testing is a fixed vs random (FvR) test, in which the fixed
category consists of valid input ciphertexts and in which the random test set comprises of
uniform random inputs u,v < U(q)**! xU(q). Remember that the result of the comparison
is allowed to be leaked, but no other information besides this one bit should be leaked. As the
comparison output is different between both testing sets, there is potential for non-malevolent
output leakage showing up in the t-test. While this output leakage can be ignored, it is hard
to assess if no real leakage is ignored in the same breath. For example, in [BDK™20, Figure
8], this output leakage is shown, and the authors argue that it is non-sensitive.
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Fixed + Noise Random

(c1,¢2) <~ KYBER.CPA .ENC(pk,m,r)

while True: while True:
(choch) 4 (c1,02) (ch.c5) & U(do)** 1 x U (dy)
pos<i [0,(k+1)-n) return (cf,ch

(c1,¢5)[pos] = (c1,¢2) [pos]+1
return (c},c5)

Figure 6: Generation of inputs ciphertexts following the classes used in the FNvR test.

In this section, we develop a new test method that has the same leakage detection capacity
as the standard FvR test, but that eliminates the output leakage. We will formalize our new
method both for testing the masked comparison and for testing the whole decapsulation.
Our framework scales to arbitrary orders similar to the traditional t-test.

5.1 ‘Fixed + noise’ vs random

Our method uses a ‘Fixed + Noise’ vs Random (FNvR) test. The key idea is to introduce
small random noise to the fixed valid ciphertext so that the comparison output is false in both
test scenarios. By keeping the noise small and varying its location at random, the test is still
able to find the same vulnerabilities as the traditional FvR method after combining all traces.

Our FNvVR test can be understood as a specific instance of a Semi-Fized vs Random
(SFvR) t-test. SFVR tests are sometimes used to eliminate false positives related to input- or
output leakage in a FvR test. In such a test, rather than fixing the input to a constant value,
part of the sensitive intermediate variables is fixed. Consequently, the input ciphertext is not
a single fixed representative, but uniformly drawn from the set of ciphertexts that results in
the desired intermediate variable values. In this setting, any apparent leakage results from
the sensitive variable, rather than fixed inputs or outputs.

Our choice to submit noisy input ciphertext fixes the value (c;c’ )=0, thus eliminating
the output leakage resulting from the fixed input being a valid ciphertext. To maintain similar
leakage detection to a standard FvR test, we keep the noise small, which additionally fixes the
internal variable m=m’ with high probability. Specifically, the ‘fixed + noise’ set is generated
as a valid ciphertext to which the smallest possible noise value is added to one of the coeflicients
at random, as shown in Figure 6. A C code listing that implements our FNvR test is provided
in the Appendix A, which also takes into account that ciphertexts are encoded into bitstrings.

We note that the proposed FNvR does not suffer from the common pitfalls of SFvR
test [UvWBS20]. The complexity of SFvR grows with the size of the set of semi-fixed
ciphertext, as all ciphertext in the set must be exhaustively tested. Moreover, the choice
of intermediate variable may introduce some bias, making the test leakage model dependent.
However, FNVR introduces a small noise in one of the coefficients chosen at random, limiting
the complexity increase to the total number of coefficients. Moreover like FvR, FNvR is also
performed with valid (+ small noise) and random ciphertext, thus avoiding introducing bias
towards any leakage model.

FNvVR leakage detection capabilities Our FNvR method is a validation test to detect
vulnerabilities in a masked implementation, which eliminates the output leakage present
in the traditional FvR test. Here, we make an informal argument why the FNvR test has
the same leakage detection capabilities as the FvR test. Consequently, our FNvVR test can
be used as a direct replacement for the more traditional FvR method. Notwithstanding that
many vulnerabilities will be captured by our new test, it is possible that vulnerabilities are
not captured by the FvR test and therefore will also not be captured by our FNvR method.
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When applying the FNvVR test on the decapsulation step, the output leakage is suppressed
by introducing a small noise to one of the coefficients of the input ciphertext leading to a
comparison that always fails. To reason about the leakage detection capability of the FNvR
test compared to the traditional test, one can split the decapsulation into its three phases:
first decryption, then re-encryption, and finally the comparison.

1. Decryption For decryption, our analysis makes use of the fact that this is a coefficient-
wise operation with respect to the polynomial v, or equivalently, the ciphertext part co.
When an error is injected into cz[i], all computations on coefficients j#i are identical
to those in a ‘fixed’ class of measurements. Since we inject errors randomly into (¢1,c2),
the probability that the error is injected into ca[i # 7] is equal to (n—1)/((k+1)n).
Each individual coefficient j therefore tends to its ‘fixed’ value, with a probability
of (n—1)/((k+1)n), and accordingly, this ‘fixed’ value will leak under the same
assumptions as a standard FvR test, albeit possibly with more collected traces.

2. Re-encryption The re-encryption step only depends on the decrypted message. As
such it is identical for ciphertexts from the ‘fixed 4+ noise’ and the ‘fixed’ classes, given
that no decryption failure occurs due to the extra noise element. To minimize this
decryption failure probability, one should choose noise coefficients as small as possible®,
i.e. £1. In practical schemes, this should lead to a very small decryption failure
probability. For example, in the case of Kyber768 this probability under ‘fixed + noise’
inputs is 2787, When a decryption failure would occur, the trace will be identical
to a trace in the random class of measurements. Given the very small probability of
inserting random traces into the ‘fixed+noise’ class, sufficient traces without decryption
failures will be present in the ‘fixed+noise’ class.

3. Comparison In the comparison, the output leakage is suppressed due to the pass/fail
bit resulting in a fail for both classes of measurements. On the other hand, we have
to show that FNvR does capture leakage that would be captured by the FvR test. We
can follow similar reasoning as for the encryption, namely that the ‘fixed + noise’ class
changes only 1 coefficient of the input ciphertext at random, while all other coefficients
remain the same as in the fixed category. This means that both methods will essentially
find the same leakage, except when this leakage is at the changed coefficient of the
input ciphertext. By varying the location of the coefficient that is changed, one can
make sure that leakage from all coefficients is tested.

One can argue that our FNVR test is more realistic than the FvR test, as an adversary
is allowed to distinguish between a valid and random ciphertext, but should not be allowed
to obtain any other information. The ‘fixed + noise’ is the closest category to the fixed
category that gives invalid ciphertexts.

5.2 Validation of the methodology

We validated our FNvR framework on the masked comparisons of [OSPG18, BDK ™20,
BPO™120]. We treat ReduceComparisons (Algorithm 9) separately in the Appendix, as it
is not a full comparison and doesn’t compute the pass/fail bit. At the same time, we give
a cautionary note regarding input leakage.

Figure 7 shows our results. On the left, we conducted a regular FvR t-test, where the
fixed input is a valid ciphertext. All of the masked comparisons show output leakage, due
to the output pass/fail bit differing between the fixed and random class of measurements.

On the right, we conduct our novel FNVR t-test. The output pass/fail bit is no longer
leaked since it is identical between the two classes of measurements. As expected, we

6Without loss of generality, we exclusively inject +1.
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can see that the output leakage indeed vanishes from [BDK™20], but remains present in
[OSPG18, BPO™20]. Similar to our attack on these two implementations, a noise term
added in just one coefficient will cause one partial comparison to fail in the ‘fixed+noise’
class of measurements, but the remaining partial comparisons will succeed. This stands in
contrast with the random class of measurements, where all partial checks will fail with high
probability. In [OSPG18], we can now observe a second leakage peak, since an error added to
¢1 will still cause the comparison of cs to succeed”. The noise term is varied over the different
coefficients, such that all partial comparisons will eventually show leakage in our framework.

6 Conclusion and Future Work

In this work, we attacked the masked implementations of polynomial comparison from
[OSPG18] and [BPO™20] using a side-channel attack. Additionally we demonstrated a
collision attack on [BPO'20] that does not require side-channel information. Both attacks
were verified in practical experiments. When instantiated with either of these masked
polynomial comparison methods, the security of Kyber512 can be reduced drastically using
a sufficient number of side-channel measurements (or decapsulation queries for [BPO™20]).

In addition, we showed that the polynomial comparison variant described in [BDK™20]
can be used to fix the insecure comparison of [OSPG18] and proposed a modification to the
[BPO"20] method that can reduce the number of coefficient comparisons to be performed.
Our FNvR framework for side-channel testing suppresses output leakage and thus makes
it easier to distinguish between real leakage and output leakage. Moreover, our FNvR test
still detects all vulnerabilities a normal FvR t-test would detect.

All in all, our work shows that a careful validation and implementation of all steps of
the FO transform is required when implementing secured lattice-based cryptography. Small
leakages, implementation mistakes, or misunderstandings related to the attack model in
the masked comparison might lead to powerful plaintext checking oracles. As a consequence,
it is important to investigate new countermeasures, prove their security in the correct model,
and develop approaches for theoretical and practical validation. With our FNvR framework,
we provide the first step in this direction.

As a recent attack on a first-order masked Saber implementation [NDGJ21] has shown,
first-order masking is not enough to provide sufficient protection against side-channel attacks.
Therefore, the efficient design and implementation of side-channel protection, including
shuffling techniques and higher-order masking, remains an interesting open topic. This
concerns the masked comparison but also other building blocks used in the FO transform.
Future work in this direction could focus on higher-order masked polynomial comparisons,
their efficient implementation, or on algorithms that can support prime and power of two
moduli. In particular, it would be interesting to implement our correction of [BPO™20] to
investigate the final performance to compare the results with other approaches. Additionally,
it would be interesting to investigate improvements or generalizations of the framework
provided in [DDGR20] to reduce the number of required approximate linear equations. A
good understanding of the cost of retrieving the full secret could help to bound the amount
of side-channel leakage an attacker would be allowed to obtain in a realistic scenario.

Acknowledgments

We thank the authors of [OSPG18] and [BPO120] for providing us with the source code
to verify our attacks. Part of this work was done during the Lorentz Center Workshop

"Noise terms added to the u component of the ciphertext, u+e will cause errors s-e. These will likely
not trigger a decryption failure because s is sampled from a distribution of small elements.



354 Attacking and Defending Masked Polynomial Comparison

30
40 o5 |
30 20
20 15
) 2 10t
% 10 | g 5|
2 of 2 1
10 F 5
,10 -
20
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 25 3
time [ms] time [ms]
(a) FvR [OSPG18] (b) FNVR [OSPG18]
10
30 |
20 | 5T
g 1w} g
k5 5 0
2 ol :
5t
10 b
20 & L . L . 10 &= L . L .
0 0.5 1 1.5 2 0 0.5 1 1.5 2
time [ms] time [ms]
(c) FvR [BDK120] (d) FNvR [BDK"20]
140 140
120 120
100 100
80 80
T 60t 2 60 f
S wt g oawf
T 20t T o2t
of of
20 F -20
0 1 2 3 4 5 0 1 2 3 4 5
time [ms] time [ms]
(e) FvR [BPO™20] (f) FNvR [BPO120)
150 1501
—O— [0SPG18] o o —O—— [0SPG18]
o+ o*
S ] o0 | | Iy
0000 = OOOOO
: 509
L O
50 O@@
00000
mmOOO@@@ SSS
2 8 ¢ 5 6 7 8 9 10 2 8 4 s & 7 & & 10
Number of measurements [x1 03] Number of measurements [x1 03]
(g) FvR max(|¢]) (h) FNvR max(|t])

Figure 7: t-statistic for the different masked comparison algorithms after 10.000 collected
traces, for a FvR test (left) and a FNvVR test (right).



Shivam Bhasin, Jan-Pieter D’ Anvers, Daniel Heinz, Thomas Péppelmann, Michiel Van Beirendonck 355

"Post-Quantum Cryptography for Embedded Systems", Oct. 2020 and we are thankful to
the Lorentz Center, its staff, the organizers and participants of the workshop.

This work was supported in part by CyberSecurity Research Flanders with reference
number VR20192203, the Research Council KU Leuven (C16/15/058), the Horizon 2020
ERC Advanced Grant (695305 Cathedral), SRC grant 2909.001, and the German Federal
Ministry of Education and Research (BMBF) under the project "Aquorypt" (16KIS1017).
Michiel Van Beirendonck is funded by an FWO PhD fellowship strategic basic research.
Presented project results were partly supported by the project that has received funding
from the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 830927. The authors would like to thank the Chair for Communication
Systems and Network Security as well as the research institute CODE at the Bundeswehr
University in Munich, headed by Prof. Dreo, for their comments and improvements.

References

[AASAT20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh
Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, et al.
Status report on the second round of the NIST PQC standardization process.
NIST, Tech. Rep., July, 2020.

[ACLZ20] Dorian Amiet, Andreas Curiger, Lukas Leuenberger, and Paul Zbinden.
Defeating NewHope with a single trace. In Jintai Ding and Jean-Pierre
Tillich, editors, Post-Quantum Cryptography - 11th International Conference,
PQCrypto 2020, pages 189-205. Springer, Heidelberg, 2020.

[BDK*18] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancréde Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYS-
TALS — Kyber: A CCA-secure module-lattice-based KEM. In FuroSéP, pages
353-367. IEEE, 2018.

[BDK*20] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar,
Josep Balasch, and Ingrid Verbauwhede. A side-channel resistant imple-
mentation of SABER. Cryptology ePrint Archive, Report 2020/733, 2020.
https://eprint.iacr.org/2020/733.

[BPO*T20] Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider,
and Tim Giineysu. High-speed masking for polynomial compari-
son in lattice-based kems. IACR TCHES, 2020(3):483-507, 2020.
https://tches.iacr.org/index.php/TCHES/article/view/8598.

[DDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE
with side information: Attacks and concrete security estimation. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume
12171 of LNCS, pages 329-358. Springer, Heidelberg, August 2020.

[DTVV19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid
Verbauwhede. Timing attacks on error correcting codes in post-quantum
schemes. In Proceedings of ACM Workshop on Theory of Implementation
Security Workshop, 2019.

[Flul6] Scott Fluhrer. Cryptanalysis of ring-LWE based key exchange with
key share reuse. Cryptology ePrint Archive, Report 2016/085, 2016.
http://eprint.iacr.org/2016/085.


https://eprint.iacr.org/2020/733
https://tches.iacr.org/index.php/TCHES/article/view/8598
http://eprint.iacr.org/2016/085

356

Attacking and Defending Masked Polynomial Comparison

[FO99)]

[GIJR11]

[GIN20]

[HHK17]

[KRSS]

[NAB+20]

[NDGJ21]

[NIS16]

[OSPG18]

[PPM17]

[RRCB20]

[SAB*20]

Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Michael J. Wiener, editor, CRYPT0’99,
volume 1666 of LNCS, pages 537-554. Springer, Heidelberg, August 1999.

Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A testing
methodology for side-channel resistance validation. NIST Non-Invasive Attack
Testing Workshop - NTAT, 2011.

Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery timing
attack on post-quantum primitives using the Fujisaki-Okamoto transformation
and its application on FrodoKEM. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
359-386. Springer, Heidelberg, August 2020.

Dennis Hofheinz, Kathrin Hévelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017, Part I, volume 10677 of LNCS, pages 341-371. Springer,
Heidelberg, November 2017.

Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stof-
felen. PQM4: Post-quantum crypto library for the ARM Cortex-M4.
https://github.com/mupq/pqmé.

Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen Easterbrook,
Brian LaMacchia, Patrick Longa, Ilya Mironov, Valeria Nikolaenko, Christopher
Peikert, Ananth Raghunathan, and Douglas Stebila. FrodoKEM. Technical
report, National Institute of Standards and Technology, 2020. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. A side-channel
attack on a masked IND-CCA secure saber KEM. TACR Cryptol. ePrint Arch.,
2021:79, 2021. https://eprint.iacr.org/2021/079.

NIST. Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process. https://csrc.nist.
gov/csrc/media/projects/post-quantum-cryptography/documents/
call-for-proposals-final-dec-2016.pdf, 2016.

Tobias Oder, Tobias Schneider, Thomas Péppelmann, and Tim Giineysu.
Practical CCA2-secure masked Ring-LWE implementations. JACR TCHES,
2018(1):142-174, 2018. https://tches.iacr.org/index.php/TCHES/
article/view/836.

Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In Wieland Fischer and Naofumi
Homma, editors, CHES 2017, volume 10529 of LNCS, pages 513-533. Springer,
Heidelberg, September 2017.

Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and
Shivam Bhasin.  Generic side-channel attacks on CCA-secure lattice-
based PKE and KEMs. IACR TCHES, 2020(3):307-335, 2020.
https://tches.iacr.org/index.php/TCHES/article/view/8592.

Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrede
Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien
Stehlé. CRYSTALS-KYBER. Technical report, National Institute of Standards


https://github.com/mupq/pqm4
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2021/079
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://tches.iacr.org/index.php/TCHES/article/view/836
https://tches.iacr.org/index.php/TCHES/article/view/836
https://tches.iacr.org/index.php/TCHES/article/view/8592

Shivam Bhasin, Jan-Pieter D’ Anvers, Daniel Heinz, Thomas Péppelmann, Michiel Van Beirendonck 357

[SPOG19]

[UvWBS20]

and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Giineysu.
Efficiently masking binomial sampling at arbitrary orders for lattice-based
crypto. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume
11443 of LNCS, pages 534-564. Springer, Heidelberg, April 2019.

Balazs Udvarhelyi, Antoine van Wassenhove, Olivier Bronchain, and
Francois-Xavier Standaert. On the security of off-the-shelf microcontrollers:
Hardware is not enough. In International Conference on Smart Card Research
and Advanced Applications, pages 103—-118. Springer, 2020.


https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

358 Attacking and Defending Masked Polynomial Comparison

A FNvR t-test

int main(void)
const int L_A = (KYBER_K+1)+KYBER _N;

uint8_t sk [KYBER_SECRETKEYBYTES] ;

uint8 t pk[KYBER PUBLICKEYBYTES];

uint8_t c[KYBER CIPHERTEXTBYTES|; // valid
uint8 t K[KYBER SSBYTES];

uint8 t cR[KYBER CIPHERTEXTBYTES]; // random
uint8 t c¢FN[KYBER CIPHERTEXTBYTES]; // ‘fixed + noise’
uint8 t c¢FNvR[KYBER CIPHERTEXTBYTES]; // ‘fixed + noise’ vs random

intl6_t clc2[L_A];
uint8 t seed [KYBER SYMBYTES];
uint8 t coin, uintl6 t pos;

// Receive seed from central PC.

// The central PC can recompute and verify all the operations.
usart_recv_ bytes (USART2, seed , KYBER SYMBYTES) ;
init_prng(seed);

// Generate keypair
crypto_kem keypair(pk, sk);

// Generate valid ciphertext
crypto_kem_enc(c, K, pk);

while (1)
{

// Sample cR, pos, coin

randombytes (cR, KYBER CIPHERTEXTBYTES) ;
randombytes(&pos, 2);
randombytes(&coin, 1);

// Decode valid ciphertext
polyvec__decode(clc2, c¢);

// Add noise & encode into cFN
cle2[pos % L _A] 4= 1;
polyvec_encode (cFN, clc2);

// Coin decides the measurement class : cFN <—> cR
memcpy (cFNVR, (coin % 2) ? (¢FN : cR), KYBER CIPHERTEXTBYTES) ;

// Decapsulate cFNvR
crypto_kem dec(K, cFNvR, sk);

// Send K to central PC for verification
usart_send_bytes (USART2, K, KYBER SSBYTES) ;

B Side-channel validation of ReduceComparisons

We validated our proposed reduction method ReduceComparisons (Algorithm 9) using the
TVLA methodology. Note that we only implement the reduction method and not the full
comparison and as such don’t suffer from output leakage. This means that we can apply
the standard FvR methodology.

However, the measurements will show non-malevolent input leakage similar to the output
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leakage in FvR methods. This is because in line 9, there is a computation on the non-sensitive
variable A, which, in our case, is the submitted input ciphertext. In our implementation,
we moved this computation to the end of the algorithm in a separate loop, and use a yellow
trigger to mark it in the measurements. As can be seen in Figure 8, the t-statistics takes high
values during this interval, but otherwise shows no leakage during the processing of the S'=2
shares. These measurement confirm our theoretic analysis of the security of Algorithm 9.
We leave the development of techniques to reduce the input leakage for future work.
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Figure 8: t-statistic for ReduceComparisons after 10.000 collected traces, for a FvR test.



	Introduction
	Preliminaries
	Notation
	The Kyber Key Encapsulation Mechanism
	The Fujisaki-Okamoto Transform and Physical Attacks
	Masked Comparison from [OSPG18]
	Masked Comparison from [BPO+20]

	Attack
	Generic key recovery from decryption failure oracles
	Side-channel attacks
	Collision attack

	Correcting [BPO+20]
	Framework for side-channel testing
	`Fixed + noise' vs random
	Validation of the methodology

	Conclusion and Future Work
	FNvR t-test
	Side-channel validation of ReduceComparisons

