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Abstract. In this paper, a new lightweight authenticated encryption scheme AES-
LBBB is proposed, which was designed to provide backward compatibility with
advanced encryption standard (AES) as well as high security and low memory. The
primary design goal, backward compatibility, is motivated by the fact that AES
accelerators are now very common for devices in the field; we are interested in
designing an efficient and highly secure mode of operation that exploits the best
of those AES accelerators. The backward compatibility receives little attention in
the NIST lightweight cryptography standardization process, in which only 3 out
of 32 round-2 candidates are based on AES. Our mode, LBBB, is inspired by the
design of ALE in the sense that the internal state size is a minimum 2n bits when
using a block cipher of length n bits for the key and data. Unfortunately, there is
no security proof of ALE, and forgery attacks have been found on ALE. In LBBB,
we introduce an additional feed from block cipher’s output to the key state via a
certain permutation λ, which enables us to prove beyond-birthday-bound (BBB)
security. We then specify its AES instance, AES-LBBB, and evaluate its performance
for (i) software implementation on a microcontroller with an AES coprocessor and
(ii) hardware implementation for an application-specific integrated circuit (ASIC) to
show that AES-LBBB performs better than the current state-of-the-art Remus-N2
with AES-128.
Keywords: AES, authenticated encryption, backward compatibility, beyond-birthday-
bound security, lightweight, AES accelerator, AES coprocessor.

1 Introduction
Symmetric-key cryptography plays an important role in secure communications owing to its
efficiency. In particular, block ciphers are useful primitives to build various symmetric-key
schemes. Advanced encryption standard (AES) [Nat01] is arguably the most widely used
block cipher worldwide.

A recent trend in the symmetric-key community is to design lightweight schemes that
are suitable to implement in extremely resource-restricted environments. Although AES is
also efficient for lightweight implementations, the community is seeking designs that are
sharply optimized for such implementations. For example, NIST is currently organizing a
lightweight cryptography standardization process (NIST LWC) [Nat18].

A main challenge in designing lightweight cryptography schemes is to ensure sufficient
security while keeping the implementation efficiency light.

Regarding implementation efficiency, “lightweight” can be interpreted in several different
ways, e.g., small memory size in microcontroller implementations, small circuit size in
hardware implementations, and low energy consumption in hardware implementations.
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Among them, memory size is a common metric for lightweight schemes. Low-memory
means smaller circuit area in hardware implementation because register dominates the
hardware cost. The benefit of smaller memory size becomes even larger when a side-channel
attack is a concern; the common countermeasures such as masking multiply the memory
usage for duplicating the sensitive state into several shares.

Achieving low memory is also crucial in software implementation for resource-restricted
microcontrollers. In fact, there is a line of work studying the low-memory implementation
of cryptography [MM13]. In particular, there are several real-world use cases in which
volatile memory (e.g., random access memory (RAM)) is crucial. First, embedded system
engineers always have a motivation to minimize memory footprint to reduce the per-chip
cost. Second, some platforms have a special secure RAM for storing sensitive data, which is
usually limited in size. For example, Microchip’s SAM L11 microcontroller has a 256-byte
TrustRAM featuring address scrambling and instantaneous wiping [Mic18]. Third, RAM
can be temporarily unavailable even in a resource-rich environment. For example, some
boot loaders should run cryptography before the initialization of dynamic RAM (DRAM)
when only a tiny cache memory is available.

Regarding security, there is a demand for improving the 64-bit security of the conven-
tional AES-Galois/Counter Mode (GCM) and AES-Counter with CBC-MAC Mode (CCM).
NIST LWC explicitly requires better security than AES [Nat01], and many candidates have
128-bit security or close to it, for example, PHOTON-Beetle [BCD+19], Xoodyak [DHP+19],
ISAP [DEM+19], Romulus [IKMP20], and SKINNY-AEAD [BJK+19].

In the NIST LWC, as listed above, many new designs have been discussed because
the goal is to determine a new standard. Among 32 round-2 algorithms in NIST’s
process, there are only 3 AES-based schemes: COMET [GJN19], mixFeed [CN19], and
SAEAES [NMS+19].

On the other hand, AES-based schemes still have a great practical value because the
industry has already invested so much in AES accelerators and coprocessors and will
continue the investment for backward compatibility. AES-New Intructions (NI) on the
Intel processors is by far the most popular AES accelerator available on the millions
of central processing units (CPUs) in the field [Gue10]. Many other CPUs, including
ARM and RISC-V, have the AES instructions [MNP+20]. Besides extending a CPU
with new instructions for AES, having an independent AES coprocessor is another way
for acceleration, which is common among low-end microcontrollers [Mic20, EHR19]. In
particular, some systems use a coprocessor as a root of trust to maintain security even
after a main processor becomes compromised, e.g., secure hardware extensions (SHE) for
Autosar [Aut19].

There is a line of research for taking advantage of those AES accelerators, and there
is another line of work for designing efficient cryptographic algorithms using the AES
round function as a building block [JN16, BMR+14, WP14]. More recently, researchers
have been studying efficient cryptography using AES coprocessors to achieve better
performance in embedded devices. Elbaz-Vincent et al. proposed a mode of operation for
an AES coprocessor [EHR19]; meanwhile Unterstein et al. studied efficient leakage-resilient
cryptography using an AES coprocessor as a building block [USS+20].

In this paper, we propose a new lightweight scheme by spotlighting the fact that
“backward compatibility” with AES is as important as security and implementation
efficiency for providing real-world usability. That is to say, considering that so many
accelerators and coprocessors for AES have become widespread, we aim to design new
lightweight and secure schemes that can utilize the AES execution ability of those devices,
instead of replacing an encryption algorithm with a brand-new one.
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Figure 1: Encryption of ALE. N is a nonce, K is a secret key, Ai is an i-th associated
data blocks, Mi/Ci is an i-th plaintext/ciphertext block, and T is a tag. iR KSF/AES
iterates the AES key-schedule/round function i times. 4R AES LEX leak iterates the AES
round function 4 times and leaks 32 bits of a 128-bit output of each round to encrypt a
plaintext block.

Target Implementation Environment

Our primary target is microcontrollers having a coprocessor for computing AES (called
AES coprocessor) and other lightweight devices that will communicate with them.

AES coprocessors commonly process the entire AES operation rather than its round
function: it accepts a plaintext and a key as input and outputs a ciphertext. It does not
output intermediate computing results, e.g., a value after every round. Hence a new scheme
must be designed by assuming that devices only can call the entire AES computation.

Microcontrollers have a limited memory size, thus the memory for a new design
needs to be as small as possible. Moreover, because the number of devices that will
communicate with the devices with AES coprocessors will increase, efficiency in hardware
implementations is also important for such a new design proposal.

Existing Designs

If the target security level is 64 bits, there are many existing block-cipher modes that can
be instantiated with AES. For example, SAEAES [NMS+19], the SAEB mode instantiated
with AES, is an AES-based design that is optimized for low-memory implementations.
Regarding 128-bit security level, which is our target, the following designs exist.

• There are several beyond-birthday-bound (BBB) secure block-cipher based modes,
and some achieve full-bit security. Those modes can be instantiated with AES.
However, those modes require a large state or a key state, thus are obviously
unsuitable for low-memory implementations.
Iwata et al. designed a block-cipher based mode Remus-N2 [IKMP20], which aims to
achieve full-bit security in the ideal model and is suitable for low-memory implemen-
tations. The designers of Remus-N2 optimized the entire memory size, thus in their
performance evaluation, the mode was instantiated with a lightweight (tweakable)
block cipher SKINNY [BJK+16] without using a tweak. In the current state-of-the-
art, Remus-N2 instantiated with AES is one of the most suitable schemes for our
purpose.

• Another direction is to use dedicated AES-based designs. AES-Based Lightweight
Authenticated Encryption (ALE) [BMR+14], shown in Fig. 1, claims to provide
128-bit security. After being initialized, ALE uses only 128 bits for the key state and
128 bits for the data state, 256 bits in total. To ensure 128-bit security against the
birthday attack, this is a minimal requirement, thus ALE is lightweight in hardware
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implementation. Besides, the key schedule function (KSF) is applied to the output of
the KSF in the previous block. This enables saving of the implementation of KSF−1.
(To use the same key in every block while keeping the key state minimal, after
KSF(K) is computed in a certain block, KSF−1 needs to be computed to reproduce
K for the next block). Moreover, the round transformation is 4 rounds of AES, thus
if AES-NI is available, ALE can be computed fast.
However, as explained above, the AES coprocessors cannot produce intermediate
values after each round, thus ALE cannot be implemented fast with the AES
coprocessors. In addition, the 128-bit security claimed by the designers of ALE is
not supported by security proofs. In fact, several researchers found forgery attacks
[KR19, WWH+13]. Nevertheless, the design of ALE has many attractive features,
and obtaining a provable security for ALE-like designs is an interesting challenge.

In summary, by using exiting schemes, Remus-N2 instantiated with AES would be
the best choice for microcontrollers having the AES coprocessors. Investigating a new
mode with a smaller memory requirement than Remus-N2 is of great interest. The ALE-
like structure with provable security is also an interesting direction. Those features are
summarized in Table 1.

To illustrate state-of-the-art clear, we also list several features of GCM, OCB3, COFB,
and SAEB, which only offer birthday-bound level security in Table 1. GCM and OCB3
enable parallel implementations, thus can be fast but require a relatively large state. COFB
and SAEB are sequential modes, thus do not require a large state. SAEB is the smallest
but it does not achieve rate 1, while COFB does. Note that security of GCM, OCB3,
COFB, and SAEB has been proved in the standard model, which could not achieved by
ALE and Remus-N2.

Our Contributions

In this paper, we propose a new mode-of-operation for authenticated encryption that
is efficiently implemented on the devices having an AES coprocessor and offers almost
128 bits of provable security. We call our mode LBBB and a particular instance for AES
AES-LBBB. AES-128 uses a 128-bit data state and a 128-bit key state, thus we need to use
at least a 256-bit state to implement it. To be optimized for lightweight implementations,
LBBB is designed so that the state size can be minimal.

LBBB. LBBB, shown in Fig. 2, is a generic framework to construct authenticated en-
cryption schemes with the minimum state size, which is 2n bits when using a block cipher
of length n bits for the key and the data states. The 2n-bit internal state of LBBB consists
of an n-bit key and an n-bit data states. The key state is always secret, whereas the data
state is secret during the hash function computation but becomes public when encrypting
plaintext blocks. LBBB is designed by extending the idea of ALE so that it achieves almost
n-bit security. To achieve the security level for online queries (or data complexity), the
size of the update state in every block must be 2n bits to avoid the birthday attack on
the internal state. As ALE, the key state of LBBB is updated by an update-permutation
π. Additionally, the key state is updated by a block cipher output via a permutation
λ, which is the difference from ALE. This additional procedure ensures that a collision
of the internal state requires a query complexity of at least 2n, because for two data
block sequences, after distinct data blocks are processed, the difference is propagated in
the whole internal state of 2n bits. In addition to these two permutations, LBBB uses a
permutation η for the domain separation, which distinguishes whether the last data block
is full or not. In the mode level, exact specifications of π, λ, and η are not specified.

For efficiency, LBBB is highly efficient, similarly to the Remus-N2 mode, in the sense
that both achieve rate-1 (a block cipher is performed for each n-bit plaintext block). On
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Figure 2: Encryption of LBBB. N , K, A and M are a nonce, a secret key, associated
data, and a plaintext. id(|A|, |M |) is a constant to distinguish whether A = ε or not and
whether M = ε or not. (Ai,1, Ai,2) is an i-th pair of associated data blocks, Mi/Ci is a
plaintext/ciphertext block, and T is a tag. π, λ, and η are permutations.

the other hand, LBBB has the minimum state size that is the advantage over Remus-N2.
For security, we prove that LBBB achieves O(n− log2 n)-bit security. Hence, using a

block cipher with n = 128, the resultant scheme achieves 121-bit security. In our proof,
π, λ, and η are assumed to be chosen from a wide class of permutations with properties
like a universal hash function, and such permutations can be realized using lightweight
operations. Example permutations are powering-up-based schemes [Rog04] that use a
multiplication by 2 over GF(2n). Note that in the security proof, the underlying block
cipher is assumed to be ideal, but even if a practical block cipher is implemented, the
construction is secure as long as it resists related-key attacks. Also note that to achieve
almost n-bit security and have the minimum state size simultaneously, the key state must
be updated as well as the data state because of the birthday attack on the internal state.
The structural condition requires a proof in the ideal model.1

AES-LBBB. For a concrete AES-based scheme called AES-LBBB, an instance of λ and π
can be chosen so that it can be further optimized for low-memory software implementations
or low-area hardware implementations depending on the design goal. This paper’s main
goal is for the construction to be efficiently implemented on the devices having the AES
coprocessor and offer almost 128 bits of provable security. We use a software-friendly
multiplication by 28 as λ and π, which can be implemented efficiently, particularly for
byte-oriented ciphers like AES. The main computational cost for each message block is a
single execution of AES, thus it can be implemented fast with the AES coprocessors.

We evaluate the performance of AES-LBBB in the two different platforms: (i) software
implementation on a microcontroller with an AES coprocessor [Mic20] and (ii) hardware
implementation for an application-specific integrated circuit (ASIC). We compare the
results with the current state of the art (Remus-N2 [IKMP20] instantiated with AES-128)
implemented with the same design policy.

1The standard pseudo-random permutation (PRP) assumption requires a structure in which a key
state is fixed to a secret key and is not updated.
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Table 1: Comparison of the Properties of the Schemes. The underlying block ciphers are
AES-128. SM and IC mean that the security is proven in the standard model and in the
ideal model, respectively. BB and BBB mean birthday-bound security and beyond-birthday-
bound security, respectively. Backward compatibility shows whether AES coprocessor is
used or not. Rate shows a reciprocal of the number of the underlying primitive calls per
128-bit plaintext, which is asymptotic. Note that ALE does not require KSF−1 whereas
other schemes require KSF−1.

Scheme Security Security State size Backward Rate Parallel Ref.
proof in bits in bits compatibility

GCM SM (BB) 64 640 Yes 1/2 Yes [Nat07]
OCB3 SM (BB) 64 512 Yes 1 Yes [KR11]
COFB SM (BB) 64 320 Yes 1 No [CIMN17]
SAEB SM (BB) 64 256 Yes 1/2 No [NMSS18]
ALE No (broken) — 384 No 1 No [BMR+14]

Remus-N2 IC (BBB) 128 384 Yes 1 No [IKMP20]
LBBB IC (BBB) 121 256 Yes 1 No Ours

Design Extension: Provably Secure ALE-like Constructions and Suitable Primitives.
If we use a block cipher’s key schedule function KSF as π, the construction becomes
similar to ALE with respect to the data flow. Different from ALE, the feed function λ
slightly increases the implementation cost, but it enables us to prove the security of the
construction. A limitation is that π needs to satisfy a certain property, which cannot be
satisfied by non-linear KSF, including AES’s KSF. Hence AES’s KSF cannot be used as π.

Here, for an academic purpose, we discuss the design of KSF that achieves provably
secure ALE-like modes or efficient implementations such that the implementation of
KSF−1 can be removed. It is known that AES-192 and AES-256 are non-ideal in the
related-key setting because of their KSF [BKN09, BK09], and several researchers have
proposed alternative KSFs for AES [MHM+02, Nik10, KLPS17]. Among them, Khoo
et al. [KLPS17] proposed a KSF that only permutes byte positions, and we show that
LBBB can be instantiated efficiently with their KSF. We also show that the KSF of
KATAN [CDK09] is very suitable for LBBB, which can achieve a provably secure ALE-like
construction.

To avoid having misunderstandings, we would like to stress that our primary goal is
reducing the memory size which is beneficial in resource-constrained devices; the BBB-
secure parallel mode can be better if the memory size is not a matter. Discussions for
design extensions are not limited to lightweight applications as they consider AES-NI.

Paper Outline

Section 2 introduces preliminary knowledge. Section 3 specifies our mode LBBB for a
class of permutations λ and π. Section 4 describes security proofs of our mode. Section
5 specifies the AES-based instance AES-LBBB and explains its implementation results.
Section 6 discusses a design extension. Section 7 concludes this paper.
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2 Preliminaries
2.1 Basic Notation
Let ε be an empty string and {0, 1}∗ be the set of all bit strings. For an integer i ≥
0, let {0, 1}i be the set of all i-bit strings, {0, 1}0 := {ε}, and {0, 1}≤i := {0, 1}1 ∪
{0, 1}2 ∪ · · · ∪ {0, 1}i. Let 0i be the bit string of i-bit zeros. For integers 0 ≤ i ≤ j,
let [i, j] := {i, i + 1, . . . , j}, (j] := [0, j], and [j] := [1, j]. For integers 0 ≤ i ≤ x, let
(x)i := x(x − 1) · · · (x − i + 1). For a non-empty set T , T $←− T means that an element
is chosen uniformly at random from T and assigned to T . The concatenation of two bit
strings X and Y is written as X‖Y or XY when no confusion is possible. For integers
0 ≤ i ≤ n and X ∈ {0, 1}n, let msbi(X) resp. lsbi(X) be the most resp. least significant i
bits of X, and let |X| be the bit length of X, i.e., |X| = n. For an integer n ≥ 0 and a
bit string X, we denote the parsing into fixed-length n-bit strings as (X1, . . . , X`)

n←− X,
where if X 6= ε, then X = X1‖ · · · ‖X`, |Xi| = n for i ∈ [`− 1], and 0 < |X`| ≤ n; if X = ε,
then ` = 1 and X1 = ε. For an integer n > 0, let ozpn : {0, 1}≤n → {0, 1}n be a one-zero
padding function: for X ∈ {0, 1}≤n, ozpn(X) = X if |X| = n; ozpn(X) = X‖10n−1−|X| if
|X| < n.

2.2 Block Cipher and Block-Cipher-based AE
A block cipher (BC) is a set of permutations indexed by a key. Throughout this paper, the
block and key sizes in bits are fixed to n. An encryption of BC is denoted by E : {0, 1}n ×
{0, 1}n → {0, 1}n, and a decryption of BC is denoted by E−1 : {0, 1}n×{0, 1}n → {0, 1}n,
where the first element is a key. Let BC be the set of all encryptions of BC.

A nonce-based authenticated encryption (AE) scheme using an encryption of BC E
and having a key K, denoted by ΠK [E], is a pair of encryption and decryption algorithms
(Π.EncK [E],Π.DecK [E]). K,N ,M, C,A, and T are sets of keys, nonces, plaintexts, cipher-
texts, associated data (AD), and tags of ΠK [E], respectively. The encryption algorithm hav-
ing a keyK ∈ K takes (N,A,M) ∈ N×A×M and returns, deterministically, (C, T ) ∈ C×T .
The decryption algorithm having a key K ∈ K takes (N,A,C, T ′) ∈ N ×A× C × T and
returns, deterministically, either the distinguished invalid symbol reject 6∈ M or M ∈M.
We require |Π.EncK [E](N,A,M)| = |Π.EncK [E](N,A,M ′)| when these outputs are strings
and |M | = |M ′|, and M = Π.DecK [E](N,A,C, T ) if (C, T ) = Π.EncK [E](N,A,M).

We follow the security definition given in Namprempre, Rogaway and Shrimpton [NRS14],
called nae-security, and prove the security of LBBB in the ideal cipher model. nae-
security in the ideal cipher model is the indistinguishability between (ΠK [E], E,E−1) and
($,⊥, E,E−1), where a key is defined as K $←− K, an ideal cipher is defined as E $←− BC, $
is a random-bits oracle that has the same interface as Π.EncK [E] and for an encryption
query (N,A,M) returns a random bit string of length |Π.EncK [E](N,A,M)|; ⊥ is an
oracle that returns reject for any decryption query. Throughout this paper, we call queries
to Π.EncK [E]/$ “encryption queries,” Π.DecK [E]/ ⊥ “decryption queries,” queries to E
“forward offline queries,” and queries to E−1 “inverse offline queries.” The nae-security
advantage function of an adversary A that returns a decision bit b ∈ {0, 1} after interacting
with Π.EncK [E],Π.DecK [E], E,E−1 in the real world or with $,⊥, E,E−1 in the ideal
world is defined as

Advnae
ΠK [E](A) = Pr[AΠ.EncK [E],Π.DecK [E],E,E−1

= 1]− Pr[A$,⊥,E,E−1
= 1] ,

where AΠ.EncK [E],Π.DecK [E],E,E−1 resp. A$,⊥,E,E−1 is an output of A in the real world resp.
the ideal world, and the probabilities are taken over K,E, $, and A. We demand that A
is a nonce-respecting adversary, i.e., the same nonce is not repeated for encryption queries,
never asks a trivial query, and never repeats a query. A trivial decryption query (N,A,C, T )
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is that there is a prior encryption query (N,A,M) such that (C, T ) = Π.EncK [E](N,A,M),
and a trivial forward (resp. inverse) offline query (K̂, X̂) (resp. (K̂, Ŷ )) is that there is a
prior inverse (resp. forward) offline query (K̂, Ŷ ) (resp. (K̂, X̂)) such that X̂ = E−1(K̂, Ŷ )
(resp. Ŷ = E(K̂, X̂)).

2.3 Multi-Collision
The upper bound of the number of multi-collision elements is used in our security proof. For
a positive integer s ≥ 2, let S be a set of size s. For sampling S1, . . . , Sq

$←− S, we denote by
Nq,s the maximum number of multi-collision elements, i.e., Nq,s = maxS∈S |{i : Si = S}|.
Let mcoll(q, s) be the expected value of Nq,s. The upper bound of mcoll(q, s) is given in
Chakraborty et al. [CJN20] and the following lemma.

Lemma 1 (Proposition 1 in [CJN20]). For s ≥ 4, we have

mcoll(q, s) ≤
{ 4 log2 q

log2 log2 q
if 4 ≤ q ≤ s,

5(log2 s)d
q

s log2 s
e if s < q.

3 LBBB: Design and Security Bound
3.1 Design
We design a BC-based AE scheme, called LBBB. LBBB is highly secure, meaning almost
n-bit security; is highly efficient, meaning rate-1 (a BC is processed once for each n-bit
plaintext block); and has the minimum state size. The minimum state size is 2n bits when
using a block cipher of n-bit data block and n-bit key.

As mentioned in Section 1, LBBB is designed by extending the ALE idea so that it
achieves almost n-bit security. To achieve the security level for online queries (or data
complexity), the size of the update state must be 2n bits due to the birthday attack on
the internal state. As ALE, the key state of LBBB is updated by an update-permutation
π. Additionally, the key state is updated by a block cipher output via a permutation λ,
which is the difference from ALE. The additional procedure ensures that a collision of
the internal state requires the 2n online complexity, because for two data block sequences,
after distinct data blocks are processed, the difference is propagated in the whole internal
state of 2n bits. In addition to these two permutations, LBBB uses a permutation η for
domain separation, which distinguishes whether the last data block is full or not.

The specification of LBBB is given in Algorithm 1 and is also depicted in Fig. 2.
LBBB.Enc is the encryption of LBBB, and LBBB.Dec is the decryption. LBBB.Hash
processes a secret key K, a nonce N , and AD A. LBBB.Enc.Main processes a plaintext
M and generates a ciphertext C and a tag T . LBBB.Dec.Main processes a ciphertext
C and checks the integrity. If the input is not forged, it returns the plaintext M . In
LBBB.Hash, a flag id(|A|, |M |) is used to distinguish whether A is empty or not and whether
M/C is empty or not: id(|A|, |M |) = 0n if |A| > 0 ∧ |M | > 0; id(|A|, |M |) = 0n−11 if
|A| = 0 ∧ |M | > 0; id(|A|, |M |) = 0n−210 if |A| > 0 ∧ |M | = 0; id(|A|, |M |) = 0n−211 if
|A| = 0 ∧ |M | = 0. π, λ, and η are n-bit permutations.2 For an n-bit permutation p,
X ∈ {0, 1}n, and an integer i, pi(X) denotes the output of i iterations of p for the input
X. Note that p0(X) := X and p−i(X) are the i iterations of the inverse permutation p−1

2In LBBB, the flag is taken before processing AD blocks and plaintext/ciphertext blocks. After taking
the flags, internal state values become distinct even when nonces are the same but the conditions for
|A| and |M | are distinct, thereby making the security proof simpler. Moreover, the flag has an effect on
preventing length extension type attacks.
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Algorithm 1 LBBB
Encryption LBBB.EncK [E](N,A,M)
1: (KS,S)← LBBB.HashK [E](N,A,M); return LBBB.Enc.MainK [E](KS,S,M)

Decryption LBBB.DecK [E](N,A,C, T ′)
1: (KS,S)← LBBB.HashK [E](N,A,C); return LBBB.Dec.MainK [E](KS,S, C, T ′)

Hash LBBB.HashK [E](N,A,M)
1: S← E(K,N); KS← π(K)⊕ λ(S); S← S⊕ id(|A|, |M |); (A1, . . . , Aa) 2n←− A;
2: if A = ε then goto Step 10
3: for i = 1, . . . , a− 1 do
4: S← E(KS,S); (Ai,1, Ai,2) n←− Ai
5: KS← π(KS)⊕ λ(S)⊕Ai,2; S← S⊕Ai,1;
6: end for
7: S← E(KS,S); (Aa,1, Aa,2) n←− ozp2n(Aa)
8: if |Aa| < 2n then S← η(S); else S← η2(S)
9: KS← π(KS)⊕ λ(S)⊕Aa,2; S← S⊕Aa,1
10: return (KS,S)

Main Procedure of Encryption LBBB.Enc.MainK [E](KS,S,M)
1: (M1, . . . ,Mm) n←−M ; if M = ε then goto Step 7
2: for i = 1, . . . ,m− 1 do
3: S← E(KS,S); Ci ← S⊕Mi; KS← π(KS)⊕ λ(S)⊕ Ci
4: end for
5: S← E(KS,S); if |Mm| < n then S← η(S); else S← η2(S)
6: Cm ← msb|Mm|(S)⊕Mm; KS← π(KS)⊕ λ(S)⊕ ozpn(Cm)
7: S← E(KS,S); T ← π(KS)⊕ λ(S)
8: C ← C1‖ · · · ‖Cm; return (C, T )

Main Procedure of Decryption LBBB.Dec.MainK [E](KS,S, C, T ′)
1: (C1, . . . , Cm) n←− C; if C = ε then goto Step 7
2: for i = 1, . . . ,m− 1 do
3: S← E(KS,S); Mi ← S⊕ Ci; KS← π(KS)⊕ λ(S)⊕ Ci
4: end for
5: S← E(KS,S); if |Cm| < n then S← η(S); else S← η2(S)
6: Mm ← msb|Cm|(S)⊕ Cm; KS← π(KS)⊕ λ(S)⊕ ozpn(Cm)
7: S← E(KS,S); T ← π(KS)⊕ λ(S)
8: if T = T ′ then return M ←M1‖ · · · ‖Mm; else return reject

for the input X. In our proof, we assume that π, λ, and η have the following properties.
Here, `max denotes the maximum number of BC calls in LBBB.Enc or LBBB.Dec.

• π is linear and has the property that for any Y ∈ {0, 1}n and i, j ∈ (`max] such that
i 6= j, the equation πi(X)⊕ πj(X) = Y offers a unique solution for X.

• λ is linear and has the property that for any Y ∈ {0, 1}n, the equation X⊕λ(X) = Y
offers a unique solution for X.

• η is linear and has the property that for any Y ∈ {0, 1}n and i, j ∈ (2] such that
i 6= j, the equation ηi(X)⊕ ηj(X) = Y offers a unique solution for X.

Candidates of these permutations are discussed in Section 5.1.
We next explain the reasons the above properties are introduced.
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• π: In the security proof, we need to evaluate the collision probability of the key state.
Using the property, we can use the randomness of the key K for a collision of key
state elements at distinct blocks, meaning that for i 6= j and some Y , the collision is
denoted by πi(K)⊕ πj(K) = Y .

• λ: The key state is updated as KS← π(KS)⊕ λ(S)⊕ Ci and the ciphertext block
Ci is defined as Ci ← S⊕Mi. The property of λ ensures that S, which is the output
of E, is not canceled out in the key state update, thus the randomness of S can be
used to evaluate the collision probability of key state elements.

• η: This property protects the length extension attack.

3.2 Security Bound
We show that LBBB achieves (n− log2 n)-bit security. The security bound is given in the
following theorem. The proof is given in Section 4.

Theorem 1. Let A be an adversary making at most qp offline queries, qe encryption
queries with at most σe BC calls in total, and qd decryption queries with at most σd BC
calls in total such that 2qp + σ ≤ 2n. Let σ := σe + σd the total number of BC calls by all
queries. Then, we have

Advnae
LBBBK [E](A) ≤ qp + σ + 3qpmcoll(σe, 2n) + σdmcoll(qp + σe, 2n − qp)

2n + 2qpσ + 2σ2

(2n − σ)2 .

By using Lemma 1, the numbers of multi-collision elements is upper bounded by O(n).
Thus, the advantage function is upper bounded by O((n(qp + σd) + σ)/2n), and LBBB
achieves (n− log2 n)-bit security.

4 Proof of Theorem 1
4.1 Overview
We give an overview of the security proof. The goal of this proof is to upper-bound
the probability of distinguishing between (LBBB.EncK [E], LBBB.DecK [E], E,E−1) and
($,⊥, E,E−1). To have the distinguishing probability, we find structural differences
between (LBBB.EncK [E], LBBB.DecK [E]) and ($,⊥), as (LBBB.EncK [E], LBBB.DecK [E])
define outputs using E whereas ($,⊥) are monolithic and don’t use E, and upper-bound
the probabilities that the differences occur.

The first difference comes from collisions in inputs to E. The collisions fall into the
following two types.

• The first type is of collisions in inputs to E defined by online queries. The inputs are
defined by LBBB.EncK [E] or LBBB.DecK [E]. As LBBB.EncK [E] and LBBB.DecK [E]
have structures of iterating E, an input collision propagates the output. On the
other hand, $ and ⊥ don’t have such structures. Thus, the input collision makes a
difference between the real and ideal worlds.

• The second type is of collisions between inputs of E defined by online and offline
queries. As ($,⊥) are monolithic, a collision between inputs defined by online queries
and defined by offline queries makes a difference between the real and ideal worlds.

Thus, the probability that the difference occurs is introduced in the distinguishing proba-
bility. Regarding inputs to E whose plaintext elements are revealed via the corresponding
ciphertext blocks, we need to upper-bound the collision probability using only the random-
nesses of the key elements of n bits. However, a naive birthday analysis on the key elements
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degrades the security level to n/2 bits. To overcome the issue, we use the multi-collision
technique on the ciphertext blocks. Regarding other inputs, the plaintext and key elements
are not revealed, thus we can use the randomnesses of 2n bits. Then, we will show that the
probability that the difference occurs is at most O(nqp/2n + nσd/2n + σ2/22n + qpσ/22n).

The second difference comes from a key recovery in the real world, as using a key one
can calculate all outputs of LBBB. Using the randomness of the key of n bits, we have the
upper bound of the probability for the difference: O((qp + σ)/2n).

The third difference comes from the difference between the randomnesses of outputs
of LBBB.EncK [E] and of $, where outputs of LBBB.EncK [E] are defined using E whereas
outputs of $ are chosen uniformly at random. As an ideal cipher E, fixing the key element,
becomes an n-bit random permutation, in LBBB.EncK [E] if the same key element appears
twice, the ciphertext elements are not truly random values. Thus, the probability that the
difference occurs is introduced in the distinguishing probability. We will show that the
probability is at most O(σ2/22n).

The last difference comes from the difference between outputs of LBBB.DecK [E] and
of ⊥, as LBBB.DecK [E] returns a plaintext if a forgery succeeds. Thus, the probability
that the difference occurs is introduced in the distinguishing probability. We will show
that the probability that the difference occurs (a forgery succeeds) is at most O(qd/22n).

In the following, we give the detail of the security proof. Our proof uses the coefficient
H technique [Pat08], where the above differences are defined as bad events.

4.2 Definition

Let σe,1 resp. σd,1 be the total number of BC calls in LBBB.Hash by encryption resp.
decryption queries, σe,2 := σe − σe,1 and σd,2 := σd − σd,1.

Online query numbers 1 to qe are assigned to encryption queries, and those qe + 1 to
qe + qd are assigned to decryption queries. Hence, for α ∈ [qe], α-th encryption query is
said to be the α-th online query, and for β ∈ [qd], β-th decryption query is said to be the
(qe + β)-th online query.

For α ∈ [qe + qd], values/variables defined at the α-th online query are denoted by
using the superscript of (α), and the lengths a and m at the α-th online query are denoted
by aα and mα, respectively. Let `α := aα +mα be the length of data blocks at the α-th
online query. The initial BC call whose input is (K,N (α)) is regarded as the 0-th BC call,
and an input-output triple of an i-th BC call is denoted by (K(α)

i , X
(α)
i , Y

(α)
i ).

For α ∈ [qp], the input-output triple at the α-th offline query is denoted by (K̂(α), X̂(α),

Ŷ (α)), where Ŷ (α) = E(K̂(α), X̂(α)) if the offline query is a forward one, and X̂(α) =
E−1(K̂(α), Ŷ (α)) if the offline query is an inverse one.

For α ∈ [qe + qd], data blocks are denoted by D
(α)
0 := N (α), D(α)

i := A
(α)
i for i =

1, . . . , aα − 1, D(α)
aα := ozp2n(A(α)

aα ), D(α)
aα+i := C

(α)
aα+i for i = 1, . . . ,mα − 1, D(α)

`α
:=

ozpn(C`α). For i ∈ [aα], let D(α)
i,1 := msbn(D(α)

i ) and D
(α)
i,2 := lsbn(D(α)

i ). For i ∈
[aα + 1, `α], let Di,1 := 0n and Di,2 := D

(α)
i .

For α ∈ [qe + qd], i ∈ (`α], let Y ∗(α)
i := λ(Y (α)

i ) if i 6= aα and i 6= `α; Y ∗(α)
i :=

λ(ηb|A
(α)
aα
|/(2n)c+1(Y (α)

i )) if i = aα; Y ∗(α)
i := λ(ηb|C

(α)
mα
|/nc+1(Y (α)

i )) if i = `α. For α ∈
[qe + qd], i ∈ (`α], let Y(α)

i := {Y (α)
0 , Y

(α)
1 , . . . , Y

(α)
i }.

We consider an array of data blocks with distinguishing identifiers δ(α)
i for an α-th
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Algorithm 2 Dummy Internal Values for Initial Blocks

1: K
$←− {0, 1}n // dummy key

2: for κ ∈ {0, 1}n do E[κ]← ∅
3: for (κ,X) ∈ {0, 1}n × {0, 1}n do EEnc[κ,X]← ε
4: for α ∈ [qe + qd] do
5: if ∃β ∈ [α− 1] s.t. N (α) = N (β) then Y

(α)
0 ← Y

(β)
0

6: if ∀β ∈ [α− 1] : N (α) 6= N (β) then
{
Y

(α)
0

$←− {0, 1}n\E[K]; E[K] ∪←− {Y (α)
0 }

}
7: K

(α)
1 ← π(K)⊕ λ(Y (α)

0 ); X(α)
1 ← Y

(α)
0 ⊕ id(|A(α)|, |M (α)|)

8: end for

Algorithm 3 Dummy Internal Values for Encryption Queries
1: for α ∈ [qe] do
2: //—– dummy internal values for LBBB.Hash —–
3: for i ∈ [aα] do
4: Y

(α)
i

$←− {0, 1}n; E[K(α)
i ] ∪←− {Y (α)

i }
5: tmp← Y

(α)
i ; if i = aα then tmp← ηb|A

(α)
aα
|/(2n)c+1(Y (α)

i )
6: K

(α)
i+1 ← π(K(α)

i )⊕ λ(tmp)⊕A(α)
i,2 ; X

(α)
i+1 ← tmp⊕A(α)

i,1
7: end for
8: //—– dummy internal values for LBBB.Enc.Main —–
9: for i ∈ [aα + 1, `α] do
10: tmp

$←− {0, 1}n−|C
(α)
i−aα

|; X(α)
i+1 ← (C(α)

i−aα ⊕M
(α)
i−aα)‖tmp;

11: Y
(α)
i ← X

(α)
i+1; if i = `α then Y

(α)
i ← η−(b|M(α)

mα
|/nc+1)(X(α)

i+1)
12: K

(α)
i+1 ← π(K(α)

i )⊕ λ(X(α)
i+1)⊕ ozpn(C(α)

i−aα)
13: E[K(α)

i ] ∪←− {Y (α)
i }; EEnc[K(α)

i , X
(α)
i ]← Y

(α)
i

14: end for
15: Y

(α)
`α+1 ← λ−1(T (α) ⊕ π(K(α)

`α+1))
16: E[K(α)

`α+1] ∪←− {Y (α)
`α+1}; EEnc[K(α)

`α+1, X
(α)
`α+1]← Y

(α)
`α+1

17: end for

online query: ((D(α)
0 , δ

(α)
0 ), (D(α)

1 , δ
(α)
1 ), . . . , (D(α)

`α
, δ

(α)
`α

)) where

δ
(α)
i =


id(|A(α)|, |M (α)|) if i = 0
0 if (0 < i < aα) ∨ (aα < i < `α)
1 if (i = aα ∧ |A(α)

i | < 2n) ∨ (i = `α ∧ |M (α)| < n)
2 if (i = aα ∧ |A(α)| = 2n) ∨ (i = `α ∧ |M (α)| = n),

where δ(α)
i = 0 if D(α)

i is not the last block; δ(α)
i = 1 if D(α)

i is the last block and
a one-zero string is padded; δ(α)

i = 2 if D(α)
i is the last block and a one-zero string

is not padded. For i ∈ [`β ], the array up to the i-th block is denoted by pf(α, i) =
((D(α)

0 , δ
(α)
0 ), (D(α)

1 , δ
(α)
1 ), . . . , (D(α)

i , δ
(α)
i )).

4.3 Proof Strategy and Upper Bound
4.3.1 Dummy Internal Values in Ideal World

In the ideal world, after making all queries, Algorithms 2, 3, and 4 are performed. First,
Algorithm 2 defines a dummy key K, dummy outputs Y (α)

0 for the 0-th BC call, and
dummy inputs (K(α)

1 , X
(α)
1 ) for the 1-st BC call. Then, Algorithm 3 defines dummy
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Algorithm 4 Dummy Internal Values for Decryption Queries
1: for α ∈ [qe + 1, qe + qd] do
2: //—– dummy internal values for LBBB.Hash —–
3: for i ∈ [aα] do
4: if ∀β ∈ [α− 1] : pf(α, i− 1) 6= pf(β, i− 1) then Y

(α)
i

$←− {0, 1}n\E[K(α)
i ]

5: if ∃β ∈ [α− 1] s.t. pf(α, i− 1) = pf(β, i− 1) then Y
(α)
i ← Y

(β)
i

6: E[K(α)
i ] ∪←− {Y (α)

i }; tmp← Y
(α)
i ; if i = aα then tmp← ηb|A

(α)
aα
|/(2n)c+1(Y (α)

i )
7: K

(α)
i+1 ← π(K(α)

i )⊕ λ(tmp)⊕A(α)
i,2 ; X

(α)
i+1 ← tmp⊕A(α)

i,1
8: end for
9: //—– dummy internal values for LBBB.Dec.Main —–
10: for i ∈ [aα + 1, `α + 1] do
11: if ∃β ∈ [α− 1] s.t. pf(α, i− 1) = pf(β, i− 1) then Y

(α)
i ← Y

(β)
i

12: if ∀β ∈ [α− 1] : pf(α, i− 1) 6= pf(β, i− 1) then
13: Y

(α)
i ← E(K(α)

i , X
(α)
i )

14: if EEnc[K(α)
i , X

(α)
i ] 6= ε then Y

(α)
i ← EEnc[K(α)

i , X
(α)
i ]

15: end if
16: X

(α)
i+1 ← Y

(α)
i ; if i = `α then X

(α)
i+1 ← ηb|C

(α)
mα
|/nc+1(Y (α)

i )
17: K

(α)
i+1 ← π(K(α)

i )⊕ λ(X(α)
i+1)⊕ ozpn(C(α)

aα+i)
18: end for
19: T (α) ← π(K(α)

`α+1)⊕ λ(Y (α)
`α+1)

20: end for

input-output triples of LBBB.Enc. Dummy outputs for LBBB.Hash are chosen uniformly at
random from {0, 1}n, and other dummy outputs are defined using ciphertext blocks or tags.
Finally, Algorithm 4 defines dummy input-output triples of LBBB.Dec. Dummy outputs
for LBBB.Hash are chosen uniformly at random from {0, 1}n\E[K(α)

i ], where E[K(α)
i ] keeps

previous dummy outputs with the key element K(α)
i , except for outputs of E. Dummy

outputs for LBBB.Dec.Main are defined using E or the table EEnc, where EEnc keeps dummy
input-output triples for LBBB.Enc.Main defined in Algorithm 3.

4.3.2 Adversary’s View

In this proof, after making all queries, an adversary is permitted to obtain all (dummy)
internal values. Note that the revealed internal values do not reduce adversary’s advantage.
The adversary’s view is summarized in a transcript τ ,3 which is equal to{

(N (α), A(α),M (α), C(α), T (α)) : α ∈ [qe]
}
∪{

(N (qe+α), A(qe+α), C(qe+α), T ′(qe+α), rv(qe+α)) : α ∈ [qd]
}
∪{

(K(α)
i , X

(α)
i , Y

(α)
i ) : α ∈ [qe + qd], i ∈ (`α + 1]

}
∪{

(K̂(α), X̂(α), Ŷ
(α)
i ) : α ∈ [qp]

}
,

where rv(qe+α) is a response of the α-th decryption query: reject or a (decrypted)
plaintext. Note that query-response tuples {(N (α), A(α),M (α), C(α), T (α)) : α ∈ [qe]}
and {(N (qe+α), A(qe+α), C(qe+α), T ′(qe+α)) : α ∈ [qd]} can be recovered from the (dummy)
input-output tuples {(K(α)

i , X
(α)
i , Y

(α)
i ) : α ∈ [qe + qd], i ∈ (`α + 1]}.

3Defining the dummy internal values in the ideal world can be seen as a simulator that mimics the
internal values in the real world.
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4.3.3 Coefficient H Technique

This proof uses the coefficient H technique [Pat08]. Let TR be a transcript in the real
world obtained by sampling K and E. Let TI be a transcript in the ideal world obtained
by sampling $ and dummy values. We call a transcript τ valid if Pr[TI = τ ] > 0. Let T
be all valid transcripts. Then,

Advnae
LBBBK [E](A) = SD(TR,TI) = 1

2
∑
τ∈T
|Pr[TR = τ ]− Pr[TI = τ ]| ,

and the statistical distance SD(TR,TI) can be upper-bounded using the following lemma.
Here, T is partitioned into two transcripts: good transcripts Tgood and bad transcripts
Tbad.

Lemma 2 ([Pat08]). Let 0 ≤ µ ≤ 1 be such that for all τ ∈ Tgood, Pr[TR=τ ]
Pr[TI=τ ] ≥ 1−µ. Then,

SD(TR,TI) ≤ Pr[TI ∈ Tbad] + µ.

In the following proof, good and bad transcripts are defined. Then Pr[TI ∈ Tbad] is
upper-bounded, and Pr[TR=τ ]

Pr[TI=τ ] is lower-bounded. Finally, an upper bound of Advnae
LBBBK [E](A)

is obtained, putting the bounds into the above lemma.

4.3.4 Definitions of Good and Bad Transcripts

A set of bad transcripts Tbad satisfies one of the following bad events, and a set of good
transcripts Tgood is defined as Tgood = T \Tbad.

In the ideal world, dummy internal values for online queries (except for LBBB.Dec.Main)
are defined independently of E. On the other hand, in the real world, internal values and
responses of offline queries are defined using E. Thus, bad events are defined so that the
difference appears.

bad1, bad2, bad3: In the ideal world, even if a collision occurs between dummy internal
values and offline query-response triples, the output for the online query is defined inde-
pendently of the output for the offline query. The events handle the collisions, and it can
be ensured that if these bad events do not occur, an adversary cannot distinguish between
the real and ideal worlds using the difference between online and offline queries.

bad1 : ∃α ∈ [qp] s.t. K̂(α) = K.

bad2 : ∃α ∈ [qp], β ∈ [qe], i ∈ [`β + 1] s.t. K̂(α) = K
(β)
i ∧

(
X̂(α) = X

(β)
i ∨ Ŷ (α) = Y

(β)
i

)
.

bad3 : ∃α ∈ [qp], β ∈ [qe + 1, qe + qd], i ∈ [aβ ]
s.t. K̂(α) = K

(β)
i ∧

(
X̂(α) = X

(β)
i ∨ Ŷ (α) = Y

(β)
i

)
.

bad4, bad5, bad6: In the ideal world, for online queries, dummy outputs with distinct
prefix data blocks are independently defined, even if a dummy input collision occurs.
On the other hand, in the real world, if an input collision occurs for online queries, the
outputs are the same, since all outputs are defined by E. Hence, the bad events handle
the collisions for online queries, and it can be ensured that if the bad events do not occur,
an adversary cannot distinguish between the real and ideal worlds using the difference for
internal values defined by online queries.

bad4 : ∃α, β ∈ [qe], i ∈ [`α + 1], j ∈ [`β + 1]
s.t. (α, i) 6= (β, j) ∧K(α)

i = K
(β)
j ∧ (X(α)

i = X
(β)
j ∨ Y (α)

i = Y
(β)
j ).

bad5 : ∃α ∈ [qe + qd], β ∈ [qe + 1, qe + qd],
(i, j) ∈ ([`α + 1]× [`β + 1])\([aα + 2, `α + 1]× [aβ + 2, `β + 1])
s.t. pf(α, i− 1) 6= pf(β, j − 1) ∧K(α)

i = K
(β)
j ∧ (X(α)

i = X
(β)
j ∨ Y (α)

i = Y
(β)
j ).
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bad6 : ∃α ∈ [qe + qd], i ∈ [`α + 1] s.t. K(α)
i = K.

bad7: The last event handles a forgery. In the ideal world, all responses of decryption
queries are reject, whereas in the real world, a plaintext is sometimes returned. It can be
ensured that if a bad event does not occur, an adversary cannot distinguish between the
real and ideal worlds using a forgery.

bad7 : ∃α ∈ [qe + 1, qe + qd] s.t. T (α) = T ′(α).

As mentioned above, these bad events handle the differences between the real and
ideal worlds. Thus, it can be ensured that an adversary cannot distinguish between the
real and ideal worlds as long as no bad event occurs, and for any τ ∈ Tgood, Pr[TR=τ ]

Pr[TI=τ ] ≥ 1.
Details of the analysis are given in Section 4.5. Analyses of the bad events (an evaluation
of Pr[TI ∈ Tbad]) are given in Section 4.4.

4.4 Evaluating Pr[TI ∈ Tbad]
Without loss of generality, assume that an adversary aborts if one of the bad events occurs.
Thus, for i ∈ [7], badi occurs as long as other bad events have not occurred. Then, we have

Pr[TI ∈ Tbad] ≤
7∑
i=1

Pr[badi] .

These upper bounds are given in the following sections. Using the upper bounds, we have

Pr[TI ∈ Tbad] ≤ qp
2n + 2qpσe,1

2n(2n − qe)
+ 3qpmcoll(σe, 2n)

2n + 2qpσd,1
2n(2n − σ)

+ σ2
e

2n(2n − qe)
+ 2σσd

(2n − σ)2 + σ

2n + σdmcoll(qp + σe, 2n − qp)
2n

≤ qp + σ + 3qpmcoll(σe, 2n) + σdmcoll(qp + σe, 2n − qp)
2n + 2qpσ + 2σ2

(2n − σ)2 .

4.4.1 Upper Bound of Pr[bad1]

Recall the definition of bad1 below.

bad1 : ∃α ∈ [qp] s.t. K̂(α) = K.

As K $←− {0, 1}n, for each α ∈ [qp], we have Pr[K̂(α) = K] ≤ 1/2n, and thus

Pr[bad1] ≤ qp
2n .

4.4.2 Upper Bound of Pr[bad2]

Recall the definition of bad2 below.

bad2 : ∃α ∈ [qp], β ∈ [qe], i ∈ [`β + 1] s.t. K̂(α) = K
(β)
i ∧

(
X̂(α) = X

(β)
i ∨ Ŷ (α) = Y

(β)
i

)
.

We upper-bound Pr[bad2] using the following sub-events.

• bad2,1: ∃α ∈ [qp], β ∈ [qe], i ∈ [aβ + 2, `β + 1] s.t. K̂(α) = K
(β)
i ∧ X̂(α) = X

(β)
i , where

X
(β)
i is revealed via the ciphertext block C(β)

i−aβ−1 (= X
(β)
i ⊕M (β)

i−aβ−1).

• bad2,2: ∃α ∈ [qp], β ∈ [qe], i ∈ [aβ + 1, `β ] s.t. K̂(α) = K
(β)
i ∧ Ŷ (α) = Y

(β)
i , where

Y
(β)
i is revealed via the ciphertext block C(β)

i−aβ (= Y
(β)
i ⊕M (β)

i−aβ ).
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• bad2,3: ∃α ∈ [qp], β ∈ [qe] s.t. K̂(α) = K
(β)
`β+1 ∧ Ŷ (α) = Y

(β)
`β+1, where π(K(β)

`β+1) ⊕
λ(Y (β)

`β+1) is revealed via the tag T (β).

• bad2,4: ∃α ∈ [qp], β ∈ [qe], i ∈ [aβ + 1] s.t. K̂(α) = K
(β)
i ∧ X̂(α) = X

(β)
i , where X(β)

i

is not revealed before finishing all queries.

• bad2,5: ∃α ∈ [qp], β ∈ [qe], i ∈ [aβ ] s.t. K̂(α) = K
(β)
i ∧ Ŷ (α) = Y

(β)
i , where Y (β)

i is
not revealed before finishing all queries.

For the collision K̂(α) = K
(β)
i , as K $←− {0, 1}n, for each α, β, i, we have Pr[K̂(α) = K

(β)
i ] ≤

1/2n.
bad2,4: As X(β)

i = Y
(β)
i−1 ⊕A

(β)
i−1,1 and Y (β)

i−1 is chosen uniformly at random from at least
2n − q elements, we have Pr[(K̂(α), X̂(α)) = (K(β)

i , X
(β)
i )] ≤ 1/(2n(2n − q)) for each α, β, i,

and thus Pr[bad2,4] ≤ qpσe,1/(2n(2n − q))
bad2,5: Similarly to bad2,4, as Y (β)

i is chosen uniformly at random from at least 2n − q
elements, we have Pr[bad2,5] ≤ qpσe,1/(2n(2n − q)).

bad2,1: Unlike the former analyses, we cannot use the randomness of Y (β)
i−1 that is

revealed via the corresponding ciphertext block. To overcome this issue, we use the
number of multi-collision elements with X̂(α) = X

(β)
i . For each α ∈ [qp], the number

of input blocks X(β)
i such that X̂(α) = X

(β)
i is at most mcoll(σe,2, 2n), thus we have

Pr[bad2,1] ≤ qpmcoll(σe,2, 2n)/2n.
bad2,2: Similarly to bad2,1, using the number of the multi-collision elements with

Ŷ (α) = Y
(β)
i . for each α ∈ [qp], the number of output blocks Y (β)

i such that Ŷ (α) = Y
(β)
i

is at most mcoll(σe,2, 2n), thus we have Pr[bad2,2] ≤ qpmcoll(σe,2, 2n)/2n.
bad2,3: Similarly to bad2,1, using the number of multi-collision elements for the XOR

values T (β) ⊕ λ(Y (β)
`β+1), we have Pr[bad2,3] ≤ qpmcoll(qe, 2n)/2n.

Finally, summing the upper bounds, we have

Pr[bad2] ≤ 2qpσe,1
2n(2n − q) + 3qpmcoll(σe,2, 2n)

2n .

4.4.3 Upper Bound of bad3

Recall the definition of bad3 below.

bad3 : ∃α ∈ [qp], β ∈ [qe + 1, qe + qd], i ∈ [aβ ] s.t. K̂(α) = K
(β)
i ∧(

X̂(α) = X
(β)
i ∨ Ŷ (α) = Y

(β)
i

)
.

For the collisions X̂(α) = X
(β)
i and Ŷ (α) = Y

(β)
i , X(β)

i and Y
(β)
i are not revealed

before finishing all queries. Thus, the analysis is the same as the analyses of bad2,4 and
bad2,5. For each α, β, i, we have Pr[K̂(α) = K

(β)
i ∧ X̂(α) = X

(β)
i ] ≤ 1/(2n(2n − σ), and

Pr[K̂(α) = K
(β)
i ∧ Ŷ (α) = Y

(β)
i ] ≤ 1/(2n(2n−σ). Summing the upper bound 2/(2n(2n−σ))

for each α, β, i, we have
Pr[bad3] ≤ 2qpσd,1

2n(2n − σ)) .

4.4.4 Upper Bound of bad4

Recall the definition of bad4 below.

bad4 : ∃α, β ∈ [qe], i ∈ [`α + 1], j ∈ [`β + 1] s.t. (α, i) 6= (β, j) ∧K(α)
i = K

(β)
j ∧

(X(α)
i = X

(β)
j ∨ Y (α)

i = Y
(β)
j ).
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For α 6= β, K(α)
1 6= K

(β)
1 is satisfied due to N (α) 6= N (β). We thus assume that 1 < i

or 1 < j is satisfied.
Regarding the collision X

(α)
i = X

(β)
j (⇔ D

(α)
i−1,1 ⊕ Y

(α)
i−1 = D

(β)
j−1,1 ⊕ Y

(β)
j−1), for each

α, β, i, j, as Y (α)
i−1 or Y (β)

j−1 is chosen uniformly at random from {0, 1}n, we have Pr[X(α)
i =

X
(α)
j ] ≤ 1/2n.
Regarding the collision Y

(α)
i = Y

(β)
j , for each α, β, i, j, as Y (α)

i or Y (β)
j is chosen

uniformly at random from {0, 1}n, we have Pr[Y (α)
i = Y

(α)
j ] ≤ 1/2n.

The collision K(α)
i = K

(β)
j equals

Y
∗(α)
i−1 ⊕ Y

∗(β)
j−1 ⊕ π(K(α)

i−1)⊕ π(K(β)
j−1) = D

(α)
i−1,2 ⊕D

(β)
j−1,2,

where K(α)
i−1 resp. K(β)

j−1 is defined using Y (α)
0 resp. Y (β)

0 . By i 6= 1∨ j 6= 1, Y (α)
0 or Y (β)

0 is
defined independently of Y (α)

i−1 and Y (β)
j−1, and is chosen uniformly at random from at least

2n − qe elements in {0, 1}n. Using the randomness of Y (α)
0 or Y (β)

0 , for each α, β, i, j, we
have Pr[K(α)

i = K
(β)
j ] ≤ 1/(2n − qe).

Summing the upper bound 2/2n(2n − qe) for each α, β, i, j, we have

Pr[bad4] ≤
(
σe
2

)
2

2n(2n − qe)
≤ σ2

e

2n(2n − qe)
.

4.4.5 Upper Bound of bad5

Recall the definition of bad5 below.

bad5 :∃α ∈ [qe + qd], β ∈ [qe + 1, qe + qd],
(i, j) ∈ ([`α + 1]× [`β + 1])\([aα + 2, `α + 1]× [aβ + 2, `β + 1])

s.t. pf(α, i− 1) 6= pf(β, j − 1) ∧K(α)
i = K

(β)
j ∧ (X(α)

i = X
(β)
j ∨ Y (α)

i = Y
(β)
j ).

First, we consider the collisions K(α)
i = K

(β)
j ∧X(α)

i = X
(β)
j , which equal

Y
∗(α)
i−1 ⊕ Y

∗(β)
j−1 ⊕ π(K(α)

i−1)⊕ π(K(β)
j−1) = D

(α)
i−1,2 ⊕D

(β)
j−1,2 (1)

Y
(α)
i−1 ⊕ Y

(β)
j−1 = D

(α)
i−1,1 ⊕D

(β)
j−1,1. (2)

If pf(α, i − 2) = pf(β, j − 2), then K
(α)
i−1 = K

(β)
j−1 ∧ Y

(α)
i−1 = Y

(β)
j−1 is satisfied, and by

pf(α, i− 1) 6= pf(β, j − 1), K(α)
i 6= K

(β)
j ∨X(α)

i 6= X
(β)
j is satisfied. Thus, we assume that

pf(α, i− 2) 6= pf(β, j − 2).
We upper-bound the collision probability using the following sub-events.

• bad5,1: ∃α ∈ [qe + qd], β ∈ [qe + 1, qe + qd], i ∈ [aα + 1], j ∈ [aβ + 1] s.t. K(α)
i =

K
(β)
j ∧X(α)

i = X
(β)
j

• bad5,2: ∃α ∈ [qe + qd], β ∈ [qe + 1, qe + qd], i ∈ [aα + 1], j ∈ [aβ + 2, `β + 1] s.t.
K

(α)
i = K

(β)
j ∧X(α)

i = X
(β)
j

• bad5,3: ∃α ∈ [qe + qd], β ∈ [qe + 1, qe + qd], i ∈ [aα + 2, `α + 1], j ∈ [aβ + 1] s.t.
K

(α)
i = K

(β)
j ∧X(α)

i = X
(β)
j

Note that regarding the collision X(α)
i = X

(β)
j (Eq. (2)), Y (α)

i−1 or Y (β)
j−1 is a dummy internal

value in LBBB.Hash and thus is chosen uniformly at random from at least 2n − σ elements.
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Using the randomness of Y (α)
i−1 or Y (β)

j−1, for each α, β, i, j, we have Pr[X(α)
i = X

(β)
j ] ≤

1/(2n − σ).
Pr[bad5,1] is evaluated. Fix α, β, i, j. We consider the collision K(α)

i = K
(β)
j (Eq. (1)).

By pf(α, i− 2) 6= pf(β, j − 2), there exists an output block Y ∈ Y(α)
i−2 ∪Y

(β)
j−2 such that Y is

chosen independently of other output blocks in Y(α)
i−2 ∪ Y

(β)
j−2. As Y is chosen uniformly at

random from at least 2n−σ elements, we have Pr[K(α)
i = K

(β)
j ] ≤ 1/(2n−σ). Summing the

upper bound 1/(2n−σ)2 for each α, β, i, j, we have Pr[bad5,1] ≤ (σe,1 +σd,1)σd,1/(2n−σ)2.
Pr[bad5,2] is evaluated. Consider two cases.

• i = j: For each α, β, i (= j), if N (α) = N (β), we have Pr[K(α)
i = K

(β)
j ] ≤ 1/(2n − σ)

due to Y (β)
aβ , which is chosen uniformly at random from at least 2n − σ elements

and used to define K(β)
j−1 in Eq. (1); if N (α) 6= N (β), we have Pr[K(α)

i = K
(β)
j ] ≤

1/(2n − q) due to Y (α)
0 , which is chosen uniformly at random from at least 2n − q

elements and used to define K(α)
i−1 in Eq. (1). Thus, for each α, β, i (= j), we have

Pr[K(α)
i = K

(β)
j ∧X(α)

i = X
(β)
j ] ≤ 1/(2n − σ)2.

• i 6= j: For each α, β, i 6= j, we have Pr[X(α)
i = X

(β)
j ] ≤ 1/2n due to K and the

property of π. Thus, for each each α, β, i 6= j, we have Pr[K(α)
i = K

(β)
j ∧X(α)

i =
X

(β)
j ] ≤ 1/2n(2n − σ).

Summing the upper bounds for each α, β, i, j, we have Pr[bad5,2] ≤ (σe,1 + σd,1)σd,2/(2n−
σ)2.

Pr[bad5,3] is evaluated. The analysis is similar to that of Pr[bad5,2]. We have
Pr[bad5,3] ≤ (σe,2 + σd,2)σd,1/(2n − σ)2.

Summing these upper bounds, we have

Pr[bad5 ∧K(α)
i = K

(β)
j ∧X(α)

i = X
(β)
j ] ≤ σσd

(2n − σ)2 .

Regarding the collisions K(α)
i = K

(β)
j ∧ Y (α)

i = Y
(β)
j , the analysis is similar to that of

the collisions K(α)
i = K

(β)
j ∧X(α)

i = X
(β)
j (replacing X(α)

i = X
(β)
j with Y (α)

i = Y
(β)
j ). We

have
Pr[bad5 ∧K(α)

i = K
(β)
j ∧ Y (α)

i = Y
(β)
j ] ≤ σσd

(2n − σ)2 .

Summing these upper bounds, we have

Pr[bad5] ≤ 2σσd
(2n − σ)2 .

4.4.6 Upper Bound of bad6

Recall the definition of bad6 below.

bad6 : ∃α ∈ [qe + qd], i ∈ [`α + 1] s.t. K(α)
i = K.

As K is chosen uniformly at random from {0, 1}n, we have

Pr[bad6] ≤ σ

2n .
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Figure 3: Multi-Collision Sequences.

4.4.7 Upper Bound of bad7

Recall the definition of bad7 below.

bad7 : ∃α ∈ [qe + 1, qe + qd] s.t. T (α) = T ′(α).

First, fix α and upper-bound Pr[T (α) = T ′(α)], which is the probability of forging a tag
at the α-th online query. Let L := {(K,X, Y ) : EEnc[K,X] = Y 6= ε}∪{(X̂(α), K̂(α), Ŷ (α)) :
α ∈ [qp]} be input-output triples that might be used as dummy internal values of
LBBB.Dec.Main. In this analysis, we take into account whether dummy internal val-
ues of LBBB.Dec.Main are defined in L or not. We thus consider the following sub-events.

• bad7,1[α]: T (α) = T ′(α) ∧ (K(α)
aα+mα+1, X

(α)
`α+1, Y

(α)
`α+1) 6∈ L.

• bad7,2[α]: T (α) = T ′(α) ∧ ∃i∗ ∈ [aα + 1, `α] s.t. (K(α)
i∗ , X

(α)
i∗ , Y

(α)
i∗ ) 6∈ L.

• bad7,3[α]: T (α) = T ′(α) ∧ ∀i ∈ [aα + 1, `α + 1] : (K(α)
i , X

(α)
i , Y

(α)
i ) ∈ L.

bad7,1[α]: As T (α) is defined using a dummy key K $←− {0, 1}n, we have Pr[bad7,1[α]] ≤
1/2n.

bad7,2[α]: We assume that i∗ is the maximum index such that (K(α)
i∗ , X

(α)
i∗ , Y

(α)
i∗ ) 6∈ L.

Then, bad7,2[α] occurs if there exists (K(α)
i∗+1, X

(α)
i∗+1, Y

(α)
i∗+1) ∈ L such that π(K(α)

i∗ ) ⊕
λ(Y (α)

i∗ ) ⊕ C
(α)
i∗ = K

(α)
i∗+1 and Y

(α)
i∗ = X

(α)
i∗+1. As Y (α)

i∗ is chosen uniformly at random
from at least 2n − qp − σd elements and K(α)

i∗ is defined using a dummy key K, we have
Pr[bad7,2[α]] ≤ qp/(2n(2n − qp − σd)).

bad7,3[α]: In this case, all dummy internal values of LBBB.Dec.Main are not new, i.e.,
these internal values are in L. To upper-bound Pr[bad7,3], we need to take into account
the fact that an adversary can obtain n-bit internal values via ciphertext blocks defined by
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encryption queries. If there exist r multi-collision sequences of input-output triples in L
that start at a value V ∈ {0, 1}n, end with a value T ∈ {0, 1}n, and have the same data
blocks D[1], . . . , D[`] ∈ {0, 1}n, where V is the revealed internal value via the ciphertext
block, Pr[bad7,3[α]] is upper-bounded by r/2n. See also Fig. 3. Multi-collision sequences
are defined as follows.

Definition 1. For two input-output triples (X ′,K ′, Y ′), (X∗,K∗, Y ∗) ∈ L, the relation
between these triples is denoted by

• (X ′,K ′, Y ′) D−→
0

(X∗,K∗, Y ∗) if Y ′ = X∗,

• (X ′,K ′, Y ′) D−→
1

(X∗,K∗, Y ∗) if η(Y ′) = X∗, and

• (X ′,K ′, Y ′) D−→
2

(X∗,K∗, Y ∗) if η2(Y ′) = X∗,

where D = π(K ′)⊕K∗ ⊕ λ(X∗). Then, for data blocks (D[2], . . . , D[`]), an integer r ≥ 2,
i ∈ {1, 2}, V ∈ {0, 1}n and T ∈ {0, 1}n, r-multi-collision sequences of L

(Ku,1, Xu,1, Yu,1), . . . , (Ku,`, Xu,`, Yu,`) : u ∈ [r]

have the following relations: for each u ∈ [r],

(Ku,1, Xu,1, Yu,1) D[2]−−−→
0
· · · D[`−1]−−−−→

0
(Ku,`−1, Xu,`−1, Yu,`−1) D[`]−−→

i
(Ku,`, Xu,`, Yu,`),

V = Xu,1 and T = π(Yu,`)⊕ λ(Ku,`). The set of the multi-collision sequences is denoted
by G(V, T, (D[2], . . . , D[`]), i).

The upper bound of the number of multi-collision sequences is given in the following
lemma.

Lemma 3. Let ` be a positive integer. Then we have

Exp
(

max
Y,T,D[2],...,D[`],i

∣∣G(Y, T, (D[2], . . . , D[`]), i)
∣∣)

≤ max
{

mcoll(qp, 2n − qp),
qp ·mcoll(qp + σe, 2n − qp)

2n − qp

}
+ max

{
mcoll(qp + qe, 2n − qp),

qp ·mcoll(qp + σe, 2n − qp)
2n − qp

}
+ (`− 2) · (qp + σd) ·mcoll(qp + σe, 2n − qp)

2n − qp
.

Using the upper bound, denoted by r∗, and the randomness of a dummy key, we have
Pr[bad7,3[α]] ≤ r∗/2n.
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Finally, summing the upper bounds for each α, we have

Pr[bad7] ≤
qd∑
α=1

max {Pr[bad7,1[α]],Pr[bad7,2[α]],Pr[bad7,3[α]]}

≤ max
{ qd

2n ,
qdqp

2n(2n − qp − σd)
,

1
2n ·

qd∑
α=1

(
max

{
mcoll(qp, 2n − qp),

qp ·mcoll(qp + σe, 2n − qp)
2n − qp

}
+ max

{
mcoll(qp + qe, 2n − qp),

qp ·mcoll(qp + σe, 2n − qp)
2n − qp

}
+ (mα − 2) · (qp + σe) ·mcoll(qp + σe, 2n − qp)

2n − qp

)}
Assuming 2qp + σe + σd ≤ 2n, we have

Pr[bad7] ≤ σd ·mcoll(qp + σe, 2n − qp)
2n .

4.5 Analysis for Good Transcripts
Fix τ ∈ Tgood. For W ∈ {I,R} and a set V , TW ` V denotes an event that TW is
compatible with the values in V . Let

τ0 :=
{

(K,N (α), Y
(α)
0 ) : α ∈ [qe + qd]

}
,

τe,1 :=
{

(K(α)
i , X

(α)
i , Y

(α)
i ) : α ∈ [qe], i ∈ [aα]

}
,

τe,2 :=
{

(K(α)
i , X

(α)
i , Y

(α)
i ) : α ∈ [qe], i ∈ [aα + 1, `α + 1]

}
,

τd,1 :=
{

(K(α)
i , X

(α)
i , Y

(α)
i ) : α ∈ [qe + 1, qe + qd], i ∈ [aα]

}
,

τd,2 :=
{

(K(α)
i , X

(α)
i , Y

(α)
i ) : α ∈ [qe + 1, qe + qd], i ∈ [aα + 1, `α + 1]

}
, and

τp :=
{

(K̂(α), X̂(α), Ŷ (α)) : α ∈ [qp]
}
.

Let τe := τe,1 ∪ τe,2. Then, we have

Pr[TW = τ ] = Pr[TW ` τ0] · Pr[TW ` τe|TW ` τ0] · Pr[TW ` τd,1|TW ` τ0 ∪ τe]
× Pr[TW ` τp ∪ τd,2|TW ` τ0 ∪ τe ∪ τd,1] .

4.5.1 Evaluating Pr[TW ` τ0] for W ∈ {I,R}

Let N0 be the number of distinct nonces for all online queries. As K $←− {0, 1}n and for
each α ∈ [qe + qd] Y (α)

0 is chosen uniformly at random from {0, 1}n\{Y (1)
0 , . . . , Y

(α−1)
0 } if

∀β ∈ [α− 1] : N (α) 6= N (β), we have

Pr[TI ` τ0] = Pr[TR ` τ0] = 1
2n · (2n)N0

and Pr[TR ` τ0]
Pr[TI ` τ0] = 1 ,

where (2n)N0 is 2n(2n − 1) · · · (2n −N0 + 1) as defined in Subsection 2.1.
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4.5.2 Evaluating Pr[TW ` τe|TW ` τ0] for W ∈ {I,R}

As all input-output triples in τe are distinct by ¬bad4, we have |τe| = σe − qe. Let
Ne[K ′] := |{(K∗, X∗, Y ∗) ∈ τe : K∗ = K ′}| be the number of input-output triples in τe
whose key elements equal K ′.

Pr[TI ` τe|TI ` τ0] is evaluated. For each α ∈ [qe], i ∈ [`α+1], Y (α)
i is chosen uniformly

at random from {0, 1}n, and thus we have Pr[TI ` τe|TI ` τ0] = (1/2n)σe−qe .
Pr[TR ` τe|TR ` τ0] is evaluated. Note that all key elements in τe are not K. As∑
K′∈{0,1}n Ne[K ′] = σe − qe, we have

Pr[TR ` τe|TR ` τ0] =
∏

K′∈{0,1}n

1
(2n)Ne[K′]

≥
∏

K′∈{0,1}n

1
(2n)Ne[K′]

= 1
2n(σe−qe)

.

Thus, we have
Pr[TR ` τe|TR ` τ0]
Pr[TI ` τe|TI ` τ0] ≥ 1 .

4.5.3 Evaluating Pr[TW ` τd,1|TW ` τ0 ∪ τe] for W ∈ {I,R}

Let Nd,1[K ′] := |{(K∗, X∗, Y ∗) ∈ τd,1 : K∗ = K ′ ∧ (K∗, X∗, Y ∗) 6∈ τe}| be the number of
input-output triples in τd,1 whose key elements equal K ′ and that are not in τe.

In both real and ideal worlds, for each α ∈ [qd], i ∈ [aα − 1], Y (α)
i is distinct from other

outputs in τe ∪ τd,1 whose key elements equal K(α)
i . Thus, for each W ∈ {I,R}, we have

Pr[TW ` τd,1|TW ` τ0 ∪ τe] =
∏

K′∈{0,1}n

1
(2n −Ne[K ′])Nd,1[K′]

and
Pr[TR ` τd,1|TR ` τ0 ∪ τe]
Pr[TI ` τd,1|TI ` τ0 ∪ τe]

= 1 .

4.5.4 Evaluating Pr[TW ` τp ∪ τd,2|TW ` τ0 ∪ τe ∪ τd,1] for W ∈ {I,R}

Let Np,d,2[K ′] := |{(K∗, X∗, Y ∗) ∈ τp ∪ τd,2 : K∗ = K ′ ∧ (K∗, X∗, Y ∗) 6∈ τe}| be the
number of input-output triples in τp ∪ τd,2 whose key elements equal K ′ and that are not
in τe.

In the ideal world, we have

Pr[TI ` τp ∪ τd,2|TI ` τ0 ∪ τe ∪ τd,1] =
∏

K′∈{0,1}n

1
(2n)Np,d,2[K′]

In the real world, we have

Pr[TR ` τp ∪ τd,2|TR ` τ0 ∪ τe ∪ τd,1] =
∏

K′∈{0,1}n

1
(2n −Ne[K ′]−Nd,1[K ′])Np,d,2[K′]

≥
∏

K′∈{0,1}n

1
(2n)Np,d,2[K′]

.

Thus, we have
Pr[TR ` τp ∪ τd,2|TR ` τ0 ∪ τe ∪ τd,1]
Pr[TI ` τp ∪ τd,2|TI ` τ0 ∪ τe ∪ τd,1] ≥ 1 .
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Figure 4: Conditions of Multi-Collision Sequences.

4.5.5 Lower Bound of Pr[TR=τ ]
Pr[TI =τ ]

By the above results, we have
Pr[TR = τ ]
Pr[TI = τ ] ≥ 1 .

4.6 Proof of Lemma 3
Each sequence

{
{(Ku,1, Xu,1, Yu,1), . . . , (Ku,`, Xu,`, Yu,`)

}
∈ G(V, T, (D[1], . . . , D[`]), i) in

L satisfies at least one of the following conditions.

• Cond 1: (Ku,1, Xu,1, Yu,1) is defined by an inverse offline query.

• Cond 2-i where i ∈ [1, `− 1]: (Ku,i, Xu,i, Yu,i) is defined by a forward offline query
or at an encryption query, and (Ku,i+1, Xu,i+1, Yu,i+1) is defined by an inverse offline
query.

• Cond 3: (Ku,`, Xu,`, Yu,`) is defined by a forward offline query or at an encryption
query.

See also Fig. 4. We upper-bound the number of multi-collision sequences for each condition.
Cond 1. The first blocks (Ku,1, Xu,1, Yu,1) are defined by inverse offline queries and

the Xu,1 values are the same. As each Xu,1 is chosen uniformly at random from at least
2n − qp elements in {0, 1}n, the number of multi-collision sequences with Cond 1 is at
most mcoll(qp, 2n − qp).

Cond 3. The last blocks (Ku,`, Xu,`, Yu,`) are defined by forward offline queries or at
an encryption query, and the XOR values π(Ku,`)⊕ λ(Yu,`) are the same. As each Yu,`
is chosen uniformly at random from at least 2n − qp elements in {0, 1}n, the number of
multi-collision sequences with Cond 3 is at most mcoll(qp + qe, 2n − qp).

Cond 2-i. The number of multi-collision sequences with this condition is upper-
bounded by v: the number of pairs of query-response triple (Kj , Xj , Yj), (K ′j , X ′j , Y ′j ) ∈
L : j ∈ [v] such that ∃D ∈ {0, 1}n, s ∈ (2] s.t. ∀j ∈ [v] : (Kj , Xj , Yj)

D−→
s

(K ′j , X ′j , Y ′j ),
(Kj , Xj , Yj) is defined by a forward offline query or at an encryption query, and (K ′j , X ′j , Y ′j )
is defined by an inverse offline query. Fix D, s, j and consider the following cases.

• (Kj , Xj , Yj) is defined after (K ′j , X ′j , Y ′j ) is defined. For each (Kj , Xj , Yj), the number
of inverse offline queries such that the XOR values K ′j ⊕ λ(X ′j) are the same is at
most mcoll(qp, 2n − qp). Thus, the probability that the output Yj equals one of the
values X ′j is at most mcoll(qp, 2n − qp)/(2n − qp).
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• (Kj , Xj , Yj) is defined before (K ′j , X ′j , Y ′j ) is defined. Similarly to the former case,
for each (K ′j , X ′j , Y ′j ), the number of multi-collisions for XOR values defined by
forward offline queries or at encryption queries is at most mcoll(qp + σe, 2n − qp).
Thus, the probability that the output X ′j equals one of the Yj values is at most
mcoll(qp + σe, 2n − qp)/(2n − qp).

Thus, the number of multi-collision sequences with Cond 2-i is at most (qp+σe)·mcoll(qp+
σe, 2n − qp)/(2n − qp).

Finally, using the upper bounds of the number of offline sequences for each case, we
obtain the upper bound in Lemma 3.

5 AES-LBBB: Design and Performance Evaluation
We describe the instantiation of LBBB with AES-128, namely AES-LBBB, followed by its
performance evaluation under two different platforms: (i) software implementation on a
microcontroller with an AES accelerator [Mic20] and (ii) hardware implementation for
ASIC using the NanGate 45-nm standard cell library [Nan].

5.1 Specification of AES-LBBB
To achieve the BBB security using AES-128, we design the concrete instantiation of
AES-LBBB. This section discusses the considerations in choosing the π, λ, and η functions
for AES-LBBB.

5.1.1 The π and λ functions

π should satisfy the following properties:

• π is linear and has the property that for any Z ∈ {0, 1}n and i, j ∈ (`max] such that
i 6= j, the equation πi(S)⊕ πj(S) = Z offers a unique solution for S.

Notably, the period of π should be at least `max: the number of maximum blockcipher calls
in LBBB. λ should satisfy the same properties except the period:

• λ is linear and has the property that for any Z ∈ {0, 1}n, the equation S⊕λ(S) = Z
offers a unique solution for S.

Many symmetric key algorithms, including PMAC1 and its variants, use the functions
with the same properties as π. Multiplication over GF(2n), e.g., π(S) = S × 2, has been
used in those conventional works because of the long period (2n− 1) and efficient hardware
implementation. Another advantage of choosing the linear function is that we can unify π
and λ by choosing π = λ because

π(Ki)⊕ λ(Yi) = π(Ki ⊕ Yi). (3)

With the above considerations, we choose π = λ = ×28 for AES-LBBB. We choose
×28 instead of ×2 because the bytewise operation is more software friendly. Changing
the multiplier shortens the maximum number of message blocks to 2120 − 1 but has no
practical impact. More specifically, we use the finite field determined by the AES-GCM’s
irreducible polynomial x128 + x7 + x2 + x+ 1 [Nat07] for further backward compatibility.

Other promising choices are bytewise LFSRs, which are given in for example [Sar09].
The LFSR in [Sar09] uses a tower field representation with the following irreducible
polynomials: the irreducible polynomial of the sub-field GF(28) is α8 + α7 + α3 + α2 + 1
and the irreducible polynomial of the field GF(2128) over the sub-field is x16 + x7 + x+ α.
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5.1.2 The η function

η should satisfy the same properties as π except for the period:

• η is linear and has the property that for any Z ∈ {0, 1}n and i, j ∈ (2] such that
i 6= j, the equation ηi(S)⊕ ηj(S) = Z offers a unique solution for S.

Unlike λ, the benefit of choosing the field multiplication is small for η, and it is more
meaningful to choose a more efficient function exploiting the shorter period. For AES-LBBB,
we choose the following function for η:

η(S) = (S2 ⊕ S3)‖S3‖S4‖ · · · ‖S16‖S1, where n = 128 and (S1, S2, . . . , S16) 8←− S,

which is efficient both in software and hardware implementations.
For other choices, bytewise LFSRs, for example [Sar09], are promising choices as well

as π and λ.

5.2 Target for comparison
To make a consistent performance comparison, we instantiate the state-of-the-art authen-
ticated encryption with associated data (AEAD) with AES-128 and implement it with
the same design policy as AES-LBBB: we set Remus-N2 [IKMP20] as the competitor,
which is the blockcipher-based variant with the BBB security from the Romulus/Remus
family. More specifically, we implement Remus-N2 instantiated with AES-128, namely
Remus-N2-AES4.

Table 2 compares the memory sizes of AES-LBBB and Remus-N2-AES in bits. AES-
LBBB’s main advantage is its smaller memory footprint: we can implement AES-LBBB
with 256 bits of memory, which is smaller than that of Remus-N2-AES by 128 bits. With
those memory capacities, we need to overwrite and reuse the memory space for the secret
key during the operation and to feed the same secret key for the next operation. To
preserve the secret key for the next operations, we need another 128-bit memory, and
AES-LBBB and Remus-N2-AES use 384 and 512 bits in total, respectively. Table 2 also
shows the memory size needed with TI, which we will discuss later in Section 5.6.

Table 2: Memory/register sizes in bits for AES-LBBB and Remus-N2-AES with and
without threshold implementation (TI)

AES AES Total w/
Profile Target state key Others Total key storage
Normal AES-LBBB 128 128 0 256 384
Normal Remus-N2-AES 128 128 128 384 512

3-share TI AES-LBBB 384 384 0 768 896
3-share TI Remus-N2-AES 384 384 256 1,024 1,152

5.3 Software Implementation
5.3.1 Target Platform

We implement the target algorithms on Microchip’s SAM L11 microcontroller [Mic20],
which is an ARM Cortex-M23 microcontroller with a hardware AES accelerator, on an

4We replace the Remus-N2-AES’s ×2 operations to ×28 in the same way as AES-LBBB (see Section 5.1)
for efficient implementation.
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evaluation board (SAM L11 Xplained Pro Evaluation Kit [Mic19]). The basic building
block is the user-accessible AES function wrapping the hardware AES accelerator:

crya_aes_encrypt(key, 4, src, dst), (4)

which the microcontroller provides in its mask read only memory (ROM). This line of
code implements a single AES-128 call5: it encrypts a 16-byte message in src with the
secret key in key and writes the 16-byte ciphertext to dst. We can set the same address
for src and dst to overwrite the message with ciphertext in place.

5.3.2 Interface

The implementations are compliant with the SUPERCOP’s interface for AEAD [lab20]
and provide the crypto_aead_encrypt and crypto_aead_decrypt functions. The depth
of the function calls is important for ROM and RAM sizes because nested functions reduce
the code size at the cost of increasing stack usage. For a rigorous optimization, we limit the
depth from the top-level functions (crypto_aead_encrypt and crypto_aead_decrypt)
to one level.

We allocate a space in global memory (cf. in the stack) for storing the sensitive inter-
mediate values assuming that there is a special secure region in memory (e.g., TrustRAM
in SAM L11 [Mic18]). Meanwhile, we design the sub-function interfaces so the sensitive
intermediate data will not stay in the stack: sensitive data is treated only in the last-level
functions that do not use the stack for local variables.

5.4 Software Performance Evaluation
Procedure. We describe the codes in C without an assembly-level optimization and
compile them using gcc version 6.3.1 on Atmel Studio 7.06. We use the size command for
evaluating static memory allocation. Meanwhile, we evaluate the stack usage by inspecting
the generated object code in between the SUPERCOP’s interface and the AES function
(crya_aes_encrypt).

We measure the execution time by running the implementations on the target chip (the
SAM L11 microcontroller) because the simulator with a cycle counter does not support the
hardware AES accelerator. We assert a general-purpose input/output (GPIO) pin during
the execution and measure the pulse width using an oscilloscope. Then, we calculate the
number of cycles by multiplying the time duration with a clock frequency. The target
microcontroller runs at 16 MHz, the maximum frequency of the chip’s internal oscillator7.
We evaluate the execution time for a particular test vector composed of a 16-byte associated
data and a 256-byte message; both AES-LBBB and Remus-N2-AES call AES 19 times for
processing the test vector.

Results. Table 3 shows the software performances of our AES-LBBB and Remus-N2-AES
implementations. AES-LBBB and Remus-N2-AES use 32 and 48 RAM bytes for storing the
sensitive intermediate values as predicted in Table 2. Meanwhile, both implementations
use 88 bytes in the stack for storing non-sensitive data, e.g., preserved general-purpose
registers, function arguments, and loop counters. Reducing the sensitive data’s memory
size by 16 bytes can be considerable because a special memory region for sensitive data
is sometimes very limited in size. For example, the SAM L11 microcontroller provides
TrustRAM featuring address scrambling and instantaneous wiping [Mic18], which is limited
to 256 bytes only. The proposed design achieves a smaller RAM size than AES-GCM,

5The second argument of crya_aes_encrypt represents the key size in 32-bit word: 4 for AES-128.
6We use -Os for size optimization, and -mthumb for generating the Thumb instructions.
7The oscilloscope captures the traces at 1 GSa/s, which is sufficiently larger than the microcontroller’s

16 MHz clock.
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as summarized in Table 1, even considering the SAM L11 microcontroller’s AES-GCM
acceleration; the microcontroller provides an accelerator for GF(2128) multiplication, which
does not contribute to reducing the RAM size.

Table 3: Software performance evaluation of AES-LBBB and Remus-N2-AES. Speed is
measured with a 16-byte associated data and a 256-byte message.

Target RAM [byte] Stack [byte] ROM [byte] Speed [cycle]
AES-LBBB 32 88 1,422 32,816

Remus-N2-AES 48 88 1,946 39,664

Table 3 shows the speed in the number of cycles to finish the entire operation for
processing the test vector, including initialization, MAC processing, and encryption. It
involves 19 AES calls: 1 for initialization, 1 for processing AD, 16 for processing message,
and 1 for generating tag. AES-LBBB achieved roughly 32,816 cycles, which is 83% of
Remus-N2-AES. Since the number of AES calls is the same between AES-LBBB and
Remus-N2-AES, the difference comes from the non-AES operations such as ×28, XOR,
and the ρ function. A single AES call takes 915 cycles8, i.e., 57.2 cycle/byte, and the AES
occupies 17,385 (= 915× 19) cycles in total. In other words, non-AES operations occupy
15,431 cycles or 47.0% of the total execution time in the AES-LBBB implementation. Less
frequent calls to non-AES operations are also advantageous to make the code smaller for
the limited function depth, and AES-LBBB’s ROM size (1,422 bytes) is smaller than that
of Remus-N2-AES by 27%.

Comparison with software implementation of lightweight primitives We set out to
discuss the benefit of using an AES coprocessor compared to optimized software imple-
mentation of the state-of-the-art lightweight block ciphers. First, we discuss the memory
size, which is the AES-LBBB’s primary goal; using a coprocessor provides substantial
advantages in memory size over a software implementation of newer lightweight primitives.
The ROM needed for using a coprocessor is just a simple interface, which is smaller than a
complete block cipher implementation. The coprocessor approach also achieves a smaller
RAM because there is no need for intermediate variables and nested function calls.

Second, we discuss the speed. That is not the AES-LBBB’s primary goal, and the other
mode/primitive can be better, especially when rich memory is available. AES coprocessors’
performance depends on a particular chip, but chip vendors typically design them for
average use cases, and rigorously optimized software implementation can outperform
them. Although the speed comes at the cost of memory, the fixslicing Skinny-128-128
implementation achieves 58 cycle/byte [AP21], which is almost the same as the SAM L11’s
AES coprocessor with 57 cycle/byte based on the real measurement.

We finally discuss briefly software performance in high-end processors. AES-LBBB
enjoys the AES instructions such as AES-NI [Gue10, MNP+20]. Meanwhile, ROM and
RAM are cheaper in those processors, and trading memory size with speed using a parallel
mode (e.g., OCB) could be better for those targets.

5.5 Hardware Implementation
Although the legacy devices with AES coprocessors enjoy the AES-LBBB’s backward
compatibility, the newer devices have the opportunity to use upgraded coprocessors to
communicate with those legacy devices more efficiently. We set out to discuss the design
of such upgraded AES coprocessors.

8Based on real measurement of 57.2 µs for finishing crya_aes_encrypt(key, 4, src, dst)
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Figure 6: The state and key arrays used in the AES-LBBB implementation. We extended
the basic arrays for column-oriented serialization (shown in black) with (i) the inverse key
schedule (shown in blue, see Section 5.5.2) and (ii) the linear-update functions for the
mode of operation (shown in red, η and ×28).

5.5.1 Interface

We design coprocessors that provide a set of commands for processing a block at a time,
which is common in the previous works [NS20]. We decompose the target algorithm
into the operational units, as shown in Figure 5. We can realize the AES-LBBB’s AD
processing, encryption, and decryption by combining those commands. We assume an
external main controller that feeds message blocks and dispatches the commands in an
appropriate sequence.

5.5.2 AES Implementation

Our design follows the byte-serial architecture [MPL+11] commonly used for the conven-
tional compact AES implementations. Figure 6 shows the state and key arrays, flip-flops
arranged in the 4× 4 array, that efficiently realize the AES’s operations in place. We use a
particular variant that makes the column-oriented serialization [Sug20], which respects the
AES’ native byte order.
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The on-the-fly key schedule is common among compact hardware implementations. As
a downside, however, the on-the-fly key schedule overwrites the key register in place, and
thus we lose the original AES key after calling an AES encryption. This is a problem for
AES-LBBB and Remus-N2-AES that use the AES key for processing the next blocks. A
straightforward workaround is to add an extra 128-bit register storing the AES secret key,
but it increases the number of registers and devastates the low-memory advantage of our
scheme.

Another way is to implement the inverse key schedule that reverts the final-round key
to the initial one. Although implementing such an inverse key schedule is simple and
efficient for the linear key schedule [NS20, NSS20], which is not the case for the AES’s
non-linear key schedule. We efficiently address the problem by integrating the inverse key
schedule into the key array as shown in Figure 6. First, we describe the AES key schedule
as

c0 ← f(c3)⊕ c0; c1 ← c0 ⊕ c1; c2 ← c1 ⊕ c2; c3 ← c2 ⊕ c3 (5)

wherein c0, c1, c2, and c3 are 32-bit registers storing each column of an AES key state, and
f(·) is the non-linear function composed of RotWord, SubWord, and rcon addition. The
idea is to revert Equation 5 with the following procedure:

c3 ← c2 ⊕ c3; c2 ← c1 ⊕ c2; c1 ← c0 ⊕ c1; c0 ← f(c3)⊕ c0. (6)

Since the function f is common, we can realize Equation 6 just by adding several XOR
gates as shown in Figure 6. The datapath for Equation 6 efficiently fits the key array’s
horizontal connection, which was unused in the original column-oriented serialization. The
key array finishes Equation 6 in 8 cycles (4 cycles for SubWord and another 4 cycles for the
XOR between the columns), and the entire inverse key schedule takes 80 cycles. The entire
AES operation takes 324 cycles9, and the inverse key schedule occupies its 25% fraction.

The arrays also integrates the circuits for performing the ×28 and η operations as
highlighted with red in Figure 6. With this integration we can perform ×28 and η in one
cycle, otherwise we need 16 cycles and additional 8-bit register.

5.5.3 Circuit Architecture

Figure 7 shows the datapath architecture of our AES-LBBB implementation. The dashed
line indicates the region for AES, composed of the state and key arrays indicated by (CST)
and (CK). We use Canright’s design [Can05] for efficiently implementing S-box (CS).

We use several XOR and AND gates, in addition to the ×28 and η operations integrated
into (CST) and (CK), to extend the AES implementation to AES-LBBB. The AND gates
regulate the data flow by using the control signals from a state machine and realize the
operations for each command shown in Figure 5 in a byte-serial manner. It also supports
padding on the incoming message, which is indicated by 0x80 in Figure 7.

Figure 8 shows the datapath diagram of our Remus-N2-AES implementation that uses
the same components, namely (CST), (CK), and (CS)10. To store the Remus-N2-AES’s
larger state, we use a 128-bit shift register with embedded ×28 operation indicated by
(CExt).

5.6 Hardware Performance Evaluation
Procedure. We describe the designs at the register-transfer level except the scan flip-flop
essential for the state and key arrays [MPL+11, NMSS18]: we manually instantiate the

9A single AES round takes 23 cycles, and the entire AES without the inverse key schedule takes 244
cycles.

10We removed the unnecessary η circuit from in the state array in the Remus-N2-AES implementation.



Yusuke Naito, Yu Sasaki and Takeshi Sugawara 327

(CST) State
array

(CK) Key
array

8

8

8

8

8
(CS)

S-box

8
Key input

0x80

Rcon

8

8
Data input

Output8

AES

Figure 7: Datapath diagram of the AES-LBBB hardware implementation

8
8

8

8

Rcon

Shift reg.
w/ x28

ρ/ρ-1

Output

constant

8

8 8

8

8

8
(CST) State

array

(CK) Key
array

(CS)
S-box

(CExt)

Key input

Data input

AES

Figure 8: Datapath diagram of the Remus-N2-AES hardware implementation

scan flip-flop standard cells in the code. We synthesize the designs with the NanGate 45-nm
standard cell library [Nan] using Synopsys Design Compiler. To obtain the component-wise
circuit area, we preserve the module hierarchy at the boundary of the components, i.e.,
(CST), (CK), (CExt), and (CS).

Results. Table 4 shows the post-synthesis circuit area in gate equivalent (GE). Each row
corresponds to the implementation of AES-LBBB and Remus-N2-AES. For comparison,
the table also shows the performance of the baseline AES implementation composed of
the same (CST), (CK), and (CS). The columns represent the total and component-wise
performances.

Our AES-LBBB implementation achieved 3,635 GE, which is smaller than that of
Remus-N2-AES by 1,200 GE. This advantage mostly comes from the smaller state size:
the 128-bit shift register (CExt) occupies 1,023 GE for Remus-N2. This confirms along with
the conventional works that the register dominates the circuit area. The cost for the mode
of operation is 271 GE only compared with 3,364 GE for the baseline AES implementation;
we can upgrade an AES coprocessor for supporting AES-LBBB at a very small cost.

Secret Key Storage. As discussed in Section 5.2, our AES-LBBB and Remus-N2-AES
implementations overwrite the AEAD’s secret key during the operation, in the same way as
some previous implementations [GWDE15, IKMP20]. Meanwhile, the other implementa-
tions preserve the key so that we can process another message/ciphertext without feeding
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Table 4: Post-synthesis circuit area of AES-LBBB, Remus-N2-AES, and the baseline AES
implementation shown in gate equivalent (GE).

(CST) (CK) (CExt) (CS)
Total State array Key array Shift register S-box

AES-LBBB 3,635 1,373 1,278 — 281
Remus-N2-AES 4,835 1,343 1,309 1,023 272
Baseline AES 3,364 1,343 1,215 — 277

the same key again [NSS20, NS20]. To compare our results with those implementations,
we need to add the cost for an additional 128-bit register. With the approximation of
7 GE/bit, a 128-bit register uses 896 GE, and our AES-LBBB uses 4,531 GE.

Threshold implementation. There is a line of research for optimizing the mode of
operation for side-channel attack countermeasures [NS20, NSS20] for resource-constrained
devices, which have probed the advantage of the low-memory schemes.

The popular countermeasures based on the multi-party computation multiplies the
state size by the number of shares, which virtually multiplies the hardware cost. Table 2
also compares the memory sizes of AES-LBBB and Remus-N2-AES with 3-share threshold
implementation. In this setting, the AES-LBBB’s advantage becomes even larger because
Remus-N2-AES’s extra state should be doubled: AES-LBBB is smaller by 256 bits or
1,792 GE (for 7 GE/bit).

6 Design Extension
Recall the design philosophy of ALE such that the sequential execution of KSF is efficient
in hardware implementations and the use of the AES round function enables AES-NI
to be used, thus is also efficient in software implementations. More explanations for the
sequential execution of KSF are as follows. To use the same key in every block-cipher call
while keeping the size of the key state minimal, after computing KSF(K) in some block,
we need to compute KSF−1 to the value of KSF(K) to reproduce K for the next block,
which requires an additional cost for KSF−1. In Sect. 5, we optimized our AES-LBBB
implementation by integrating KSF−1 into the key array (see Figure 6), but the cost is
still non-negligible.

In ALE, the key input to the next block is exactly the output of the key schedule
function in the current block, thus no additional circuit is required to bypass multiple
rounds. We believe that this idea of ALE deserves further investigation, and we call the
scheme that does not require the implementation of KSF−1 in this way an “ALE-like
mode.” Note that the attractive feature of ALE was obtained by giving up security proofs.

This section discusses suitable primitives for LBBB so that the cost of KSF−1 can be
reduced. Note that the goal of this section is to make academic progress for achieving an
ALE-like mode with provable security, and independent of the goal in the previous sections
to provide backward compatibility for AES co-processors. Because we no longer focus on
AES, we do not assume the hardware support of cryptographic operations like AES-NI.
Hence we aim to propose a scheme that is optimized for hardware implementations.

ALE-like Mode for a Block Cipher with Suitable KSF. Suppose that there is a dedicated
block cipher in which KSF satisfies the property required for π. Then, LBBB becomes an
ALE-like mode by using KSF as π. The construction achieves the same efficiency as ALE
for the key processing part. The construction needs to implement λ, which is an overhead
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from ALE, but it enables the construction to achieve almost full-bit security in a provable
way.

A lightweight block cipher KATAN [CDK09] is an example of existing designs in which
the KSF satisfies the property required for π. KATAN takes an 80-bit key as input. KATAN’s
KSF consists of a linear feedback shift register (LFSR). Let Ki be the i-th bit of the
user-provided 80-bit key K and let ki be the i-th bit of the expanded key. K is first set to
the 80-bit key state and generates the expanded key bits as follows.

ki =
{
Ki for i = 0, . . . , 79
ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13 Otherwise

Specifically, 1-clock of KSF is equivalent to the multiplication by 2 with an irreducible
polynomial of x80 + x61 + x50 + x13 + 1. Note that the designers of KATAN chose this
irreducible polynomial to have the minimal Hamming weight of 5 (there are no primitive
polynomials of degree 80 with only 3 monomials). Hence the design is very suitable for
LBBB not only for the property for π but also its design policy.

Block Cipher with Light Key Schedule. Suppose that there is a block cipher in which
KSF and its inverse are very light or essentially negligible, but the property of π cannot
be satisfied. A KSF that only applies a permutation of the key bits is an example. Such a
block cipher can be used in LBBB efficiently. We use a multiplication by 28 for π. After
computing each block, we need to compute KSF−1 to reproduce K without using an extra
state. The assumption here is that the cost of the inverse KSF is very light or negligible.
Thus, the only cost is the multiplication by 28, which is a reasonable trade for obtaining
provable security.

Note that there exists several designs that can be used in LBBB for achieving almost
128-bit security. GIFT-128 [BPP+17] is an example, in which the block size is 128 bits,
the key size is 128 bits, and its KSF is only the bit permutation of the key bits.

AES Variant for AES-NI. Suppose that we still aim to exploit AES-NI to efficiently
compute the round function. Unfortunately AES’s KSF does not satisfy the property
for π. However, only by replacing AES’s KSF, AES-NI can still be used for computing
the round function. There are several studies that investigate a new KSF for AES
[MHM+02, Nik10, KLPS17]. Among them, Khoo et al. [KLPS17] proposed a KSF that only
permutes byte positions. This is exactly the case with “block cipher with light key schedule”
explained in the previous paragraph. Hence AES with KSF of Khoo et al. [KLPS17] is
efficient for this construction both for hardware and software implementations.

7 Conclusion
In this paper, we proposed a new mode, LBBB, and its AES instance, AES-LBBB, which
provides backward compatibility with AES coprocessors as well as high security and low
memory. The core idea of LBBB is to introduce a feed computation from block cipher’s
output to the key state via a permutation λ. This enabled us to prove BBB security of
LBBB, particularly 121-bit security for AES-LBBB. λ is a software friendly multiplication
by 28 and the main computational cost for each message block is a single execution of AES,
thus AES-LBBB can be implemented fast with the AES coprocessors. The state size is a
minimum 2n bits, thus AES-LBBB is also low memory in ASIC implementation. We actually
implemented AES-LBBB to evaluate its performance for (i) software implementation on
a microcontroller with an AES coprocessor and (ii) hardware implementation for ASIC.
The results showed that AES-LBBB outperforms the current state-of-the-art Remus-N2
instantiated with AES-128 implemented with the same policy. We also discussed several
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choices of primitives suitable for LBBB, particularly to point out that a block cipher with
an LFSR-based KSF is very suitable for LBBB.

We conclude this paper by mentioning several future directions. The first possible
direction is to extend the security proof for a more general class of the key updating
function π. Ideally, π should be any function including non-linear update so that π can
be any KSF of any cipher, which would remove the necessity of implementing KSF−1 in
LBBB. The second direction is to extend the framework so that a key of a larger size than
the block size can be covered. This would enable us to support AES-192 and AES-256 in
the framework. The last direction we want to mention is the challenge in the standard
model. As long as the state size is 2n bits, which is minimal to ensure n-bit security, the
ideal-cipher model is required. From a different viewpoint, how small we can go with a
standard model is an interesting research direction.
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