
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 3, pp. 275–297. DOI:10.46586/tches.v2021.i3.275-297

Analysis and Comparison
of Table-based Arithmetic to Boolean Masking
Michiel Van Beirendonck, Jan-Pieter D’Anvers and Ingrid Verbauwhede

imec-COSIC KU Leuven
Kasteelpark Arenberg 10 - bus 2452, 3001 Leuven, Belgium

{firstname.lastname}@esat.kuleuven.be

Abstract. Masking is a popular technique to protect cryptographic implementations
against side-channel attacks and comes in several variants including Boolean and
arithmetic masking. Some masked implementations require conversion between these
two variants, which is increasingly the case for masking of post-quantum encryption and
signature schemes. One way to perform Arithmetic to Boolean (A2B) mask conversion
is a table-based approach first introduced by Coron and Tchulkine, and later corrected
and adapted by Debraize in CHES 2012. In this work, we show both analytically and
experimentally that the table-based A2B conversion algorithm proposed by Debraize
does not achieve the claimed resistance against differential power analysis due to a
non-uniform masking of an intermediate variable. This non-uniformity is hard to find
analytically but leads to clear leakage in experimental validation. To address the
non-uniform masking issue, we propose two new A2B conversions: one that maintains
efficiency at the cost of additional memory and one that trades efficiency for a reduced
memory footprint. We give analytical and experimental evidence for their security, and
will make their implementations, which are shown to be free from side-channel leakage
in 100.000 power traces collected on the ARMCortex-M4, available online. We conclude
that when designing side-channel protection mechanisms, it is of paramount importance
to perform both a theoretical analysis and an experimental validation of the method.

Keywords: Masking · A2B conversion · ARM Cortex-M4 · Post-Quantum Cryptog-
raphy

1 Introduction
While the underlying algorithms might be black-box secure, cryptographic applications de-
ployed in real-world applications can be subject to side-channel attacks, in which an adversary
uses information based on physical artefacts of the computation to break the cryptosystem.
These artefacts could include the timing of the execution [Koc96], the power usage [KJJ99],
or electromagnetic radiation [QS01] inadvertently sent out due to the electronic calculations.

Attacks based on Differential Power Analysis (DPA) [KJJ99] are particularly powerful,
since they require only minimal assumptions about the underlying device and are able to
function even with low signal-to-noise ratios. Especially for embedded cryptographic devices
deployed in real-world applications, security against side-channel attacks is of vital importance
as these devices can typically be directly observed and manipulated by malicious entities.

A popular countermeasure against DPA is masking [CJRR99], in which sensitive values
are split into several parts, typically called shares, so that the device running the algorithm
never directly computes on sensitive values. Masking methods are designed so that even
when an adversary can completely retrieve the information about all but one share, he can
not infer any information about the masked secret value.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-10-15 Accepted: 2020-12-15 Published: 2021-07-09

https://doi.org/10.46586/tches.v2021.i3.275-297
mailto:michiel.vanbeirendonck@esat.kuleuven.be,janpieter.danvers@esat.kuleuven.be,ingrid.verbauwhede@esat.kuleuven.be
http://creativecommons.org/licenses/by/4.0/

276 Analysis and Comparison of Table-based Arithmetic to Boolean Masking

Two popular masking methods are Boolean and arithmetic masking. In Boolean masking,
shares are obtained by xor-ing the sensitive value with uniformly random bitstrings, while
arithmetic masking is achieved by adding uniformly random integers. As can be expected,
Boolean masking is typically more efficient for Boolean operations while arithmetic masking
excels at arithmetic operations. In some designs, it leads therefore to more optimal results
when arithmetic and Boolean masking are combined. Such designs require conversion
algorithms that allow to convert from Arithmetic to Boolean (A2B) and from Boolean to
Arithmetic (B2A) masking.

Previously, use of these conversions was limited to a select number of ciphers and hash
functions, typically based on Add-Rotate-XOR operations. Nowadays they are increasingly
being used to secure post-quantum public-key algorithms, including the masked implemen-
tations of several candidates of the NIST Post-Quantum Standardization process such as
NewHope [OSPG18], Dilithium [MGTF19], and Saber [VBDK+20]. In the future, other
lattice-based candidates can be expected to also use these conversion primitives to secure
their implementations.

First-order secure B2A and A2B conversion algorithms were initially proposed by
Goubin [Gou01]. Goubin’s B2A method remains popular due to its efficiency, while
the time complexity of the A2B method was later improved by Coron et al. [CGTV15].
Higher-order secure conversion algorithms have been described and subsequently improved
in [CGV14, Cor17, BCZ18, HT19].

Another method to perform first-order A2B conversions was proposed by Coron and
Tchulkine [CT03]. Their innovation was to divide masked variables into smaller chunks
and convert each chunk individually using a pre-computed table. Neiße and Pulkus [NP04]
modified this method, resulting in a conversion that was secure against DPA at the cost
of weakening the security against Simple Power Analysis (SPA) attacks. In 2012, De-
braize [Deb12] corrected a bug in the original Coron and Tchulkine [CT03] conversion and
introduced a new method, aimed at improving the time complexity of the conversion on
8-bit and 16-bit microprocessors.

In this paper, we show that this last method is flawed. The specific format of the table
in [Deb12], which aims at reducing the number of arithmetic operations in the main conver-
sion loop, introduces an intermediate value that is correlated with its unmasked equivalent.
We give both a theoretical analysis of this flaw and an experimental validation using the
well-known Test Vector Leakage Assessment (TVLA) [GJJR11] approach, showing clear
side-channel leakage of the conversion. This flaw undermines the side-channel security of the
conversion algorithm and of implementations that make use of it such as [OSPG18]. Subse-
quently, we propose and experimentally validate two solutions. The first solution keeps the
efficient conversion of Debraize, but increases the memory consumption proportionally to the
number of converted chunks. The second solution reintroduces an omitted arithmetic opera-
tion, resulting in a conversion that is similar to [CT03], but with more efficient pre-computed
tables. The flaw in [Deb12] is difficult to recognize from the algorithm, but quickly shows up
in leakage tests, highlighting the importance of practical validation in side-channel research.

2 Preliminaries
Let ⊕ denote a bitwise exclusive or operation and let ‖ denote bitstring concatenation. Let
x←U({0,1}n) denote uniformly sampling a n-bit number x. In this paper, we will regularly
divide bitstrings into chunks of k bits, where k is determined by the context. For a bitstring
y, we will denote with yi the ith such chunk so that:

y=yn−1‖yn−2‖···‖y0.

Michiel Van Beirendonck, Jan-Pieter D’Anvers and Ingrid Verbauwhede 277

Table 1: Overview of the different table-based A2B conversions.
Precomputation Conversion Correct Secure

CT [CT03] Algorithm 1, 2∗ -† 7 3

CT (fixed) [Deb12] Algorithm 1, 2 -† 3 3

CT (imp.) [Deb12] Algorithm 3 Algorithm 4 3 3

Debraize [Deb12] Algorithm 5 Algorithm 6 3 7

Debraize (fixed) [§5.1] Algorithm 7 Algorithm 8 3 3

Dual-lookup [§5.2] Algorithm 9, 10 Algorithm 11 3 3
∗ with k-bit γ
† explained in Subsection 3.1

Masking splits a sensitive variable x in a cryptographic algorithm into multiple shares.
A first-order masking scheme typically uses two shares x1 and x2, such that x=x1�x2, and
performs all operations on each of the shares separately. Since these shares are randomized at
each execution of the algorithm, the actual leakage from only one share is no longer correlated
to the sensitive variable x. More specifically, an adversary that sees the information of all
but one share will not be able to obtain any information about the secret.

The random shares (x1,x2) are created by uniformly sampling a mask R←U({0,1}n),
with n the bitlength of the sensitive value. Subsequently, x2 =R, and x1 is computed to
satisfy the relationship x= x1�x2. The operator � denotes the type of masking. This
paper considers conversions between two types of masking: Boolean masking, i.e. x=B⊕R
where (B,R) is the mask for a sensitive value x, and arithmetic masking with a power-
of-two modulus, i.e. x = A+R mod 2n where (A,R) is the mask for the sensitive value
x. Modular reduction with a power-of-two modulus consists of a simple bit truncation.
All arithmetic operations throughout this paper use such a truncation, and therefore we
sometimes omit it for clarity. We use cout(y+z) to denote the carry from a modular addition,
i.e. cout(y+z)=b(y+z)/2nc, where n is the bitlength of the inputs y and z.

3 Table-based A2B conversion
In this section we first introduce the table-based A2B conversion due to Coron and Tchulkine,
which will be referred to as CT. We then discuss a correctness problem of this conversion as
noticed by Debraize [Deb12] and will give both a fixed version of the conversion, denoted CT
(fixed), and an improved version by Debraize, denoted CT (imp.). Finally, we present the
A2B conversion method as introduced by Debraize [Deb12]. An overview of these different
conversions can be found in Table 1.

3.1 Coron and Tchulkine
An arithmetic masking x=A+R can be converted to a Boolean masking x=B⊕R by
computing B=(A+R)⊕R. For security reasons, one must be careful not to unmask x in
the intermediate computation (A+R). Table-based conversions prevent the intermediate
unmasking by using a pre-computed table, G[A]=(A+r)⊕r, which stores the conversion
for a fixed mask r. However, as generating and storing a full table for every possible input
value A would be inefficient, this table typically only provides conversion for short input
chunks, e.g. G[Al]=(Al+r)⊕r for a k-bit input Al and mask r.

To convert a masked input (A,R), the conversion algorithm iteratively takes the k least
significant bits of (A,R), denoted (Al,Rl) and performs the following steps: first (Al,Rl)
is remasked to (Al,r), then (Al,r) is converted into a Boolean masking (Bl,r) using the
conversion table, and finally (Bl,r) is remasked to the original masking (Bl,Rl). When
proceeding to the next k bits to be converted, care should be taken for the possibility of a
carry that needs to be propagated to the next chunk in the arithmetic masking.

278 Analysis and Comparison of Table-based Arithmetic to Boolean Masking

Algorithm 1:
Pre-computation of G [CT03]

1 r←U({0,1}k)
2 for A=0 to 2k−1 do
3 G[A]=(A+r)⊕r
4 end
5 return G,r

Algorithm 2:
Pre-computation of C [CT03, Deb12]

1 γ←U({0,1}(n−1)·k)
2 for A=0 to 2k−1 do
3 C[A]=cout(A+r)+γ mod 2(n−1)·k

4 end
5 return C, γ

Algorithm 3: Table T generation [Deb12]
1 r←U({0,1}k)
2 γ←U({0,1}(n−1)·k)
3 for A=0 to 2k−1 do
4 T [A]=(A+(γ‖r) mod 2n·k)⊕r
5 end
6 return T,r,γ

In order to do so, the method of Coron and Tchulkine employs two tables, G and C.
Table G is the aforementioned table that converts an arithmetic mask Al to a Boolean mask
Bl= (Al+r)⊕r, whereas table C tracks the carry cout(Al+r) that must be added to the
remaining unconverted chunks Ah. This carry is masked with an arithmetic mask γ, as its
value is correlated to the unmasked x, i.e. C[Al] = cout(Al+r)+γ. It is then possible to
securely add the carry to Ah in two subsequent steps, Ah←Ah+C[Al] and Ah←Ah−γ.
The pre-computation of G and C is illustrated in Algorithms 1 and 2, respectively. Note
that table C includes a correction from [Deb12], which is explained later in this section.

The original A2B conversion of Coron and Tchulkine was improved and corrected by
Debraize [Deb12], who noted that both the information provided by tables G and C in the
Coron-Tchulkine method can be summarized in one unique table T , which is pre-computed
as illustrated in Algorithm 3. In this table, the carry cout(A+r) is automatically propagated
to the (k+ 1)th least-significant bit, where it is masked by the addition of γ. Further-
more, Debraize proposed to move the masking with γ and r outside of the main algorithm
loop, by pre-masking with γ and (r ‖ ... ‖ r). Using these two approaches, the improved
Coron-Tchulkine conversion proceeds as given in Algorithm 4.

At the same time, it was Debraize who noted that a correct conversion requires that
γ in table C is of size (n − 1) · k bits, rather than k bits as in its initial specification.
Previously, the computation was incorrect when γ = 2k − 1 and cout(Al + r) = 1, such
that C[Al] = γ + 1 mod 2k = 0. Then, when the first chunk gets converted, Ah ←
Ah + C[Al] − γ mod 2(n−1)·k is not correctly equal to Ah + 1. The main problem are
the differing moduli, originally 2k in the table C and 2(n−1)·k in the addition. For a correct
calculation, γ must be at least of size (n−1)·k bits. We will distinguish between the original
Coron-Tchulkine method from [CT03], the fixed Coron-Tchulkine method with table C
computed as in Algorithm 2, and the improved Coron-Tchulkine method as in Algorithm 4.

3.2 Debraize
Apart from correcting a bug and improving the previous method, Debraize introduced a
new method that further improves the performance of the conversion on 8-bit or 16-bit
microprocessors. This new method groups two conversion tables G into a table T , where
one half of T converts the input when no carry is present, and the other half does the

Michiel Van Beirendonck, Jan-Pieter D’Anvers and Ingrid Verbauwhede 279

Algorithm 4: A2B conversion of a (n·k)-bit variable [CT03, Deb12]
input :(A,R) such that x=A+R mod 2n·k,

T , r, γ
output :B such that x=B⊕R
/* Let A=(Ah‖Al), R=(Rh‖Rl) with Al, Rl the k least significant

bits. Ah, Al, Rh, Rl are updated at the same time as A, R. */
1 Γ←

∑n−1
i=1 2i·k ·γ mod 2n·k

2 A←A−(r‖...‖r) mod 2n·k

3 A←A−Γ mod 2n·k

4 for i=0 to n−1 do
5 A←A+Rl mod 2(n−i)·k

6 A←Ah‖0+T [Al] mod 2(n−i)·k

7 Bi←Al⊕Rl

8 A←Ah

9 R←Rh

10 end
11 return (Bn−1‖...‖B0)⊕(r‖...‖r)

Algorithm 5: Table T generation [Deb12]
1 r←U({0,1}k)
2 ρ←U({0,1})
3 for A=0 to 2k−1 do
4 T [ρ][A]=(A+r)⊕(ρ‖r)
5 T [(ρ⊕1)][A]=(A+r+1)⊕(ρ‖r)
6 end
7 return T,r,ρ

conversion when a carry from a previous conversion is present. On top of returning the
masked value Bl=(Al+r)⊕r, this table also returns a one-bit carry that is Boolean masked,
β= cout(Al+r)⊕ρ. The table T is generated following Algorithm 5 and makes the table
C obsolete in the A2B conversion. The main benefit of Debraize’s new method is that
the arithmetic operation A←Ah ‖0 +T [Al] mod 2(n−i)·k is no longer necessary. In this
operation, the intermediate data is of the same size as the total conversion, which is typically
expensive when 32-bit conversions are executed on 8-bit or 16-bit embedded processors.

A2B conversion using Debraize’s method then proceeds similarly to the improved method
of Coron and Tchulkine. Given a masked input (A,R), the algorithm iteratively takes the k
least significant bits (Al,Rl), removes the maskRl fromAl such that it is only masked with r,
and uses the table to transform Al into the Boolean masked chunk Bl and a masked carry β.
Depending on the previous carry, the appropriate half of T is used for the A2B transformation
lookup. The chunkBl is then remasked with the original maskRl before continuing on to the
next chunk. Algorithm 6 gives an overview of this procedure. Note that in the new method
only a single table lookup is necessary per iteration, similarly to the improved CT method.

4 Security weakness in Debraize’s A2B conversion
In this section, we show that Debraize’s A2B conversion is still vulnerable to differential
power attacks due to a bias in the masking of one of the intermediate variables. We do so
first experimentally, showing side-channel leakage in actual measurements, and subsequently
we give the theoretical analysis of the vulnerability.

280 Analysis and Comparison of Table-based Arithmetic to Boolean Masking

Algorithm 6: Conversion of a n·k-bit variable [Deb12]
input :(A,R) such that x=A+R mod 2n·k,

T , r, ρ
output :B such that x=B⊕R
/* Let A=(Ah‖Al), R=(Rh‖Rl) with Al, Rl the k least significant

bits. Ah, Al, Rh, Rl are updated at the same time as A, R. */
1 A←A−(r‖...‖r) mod 2n·k

2 β←ρ
3 for i=0 to n−1 do
4 A←A+Rl mod 2(n−i)·k

5 β‖Bi←T [β][Al]
6 Bi←Bi⊕Rl

7 A←Ah

8 R←Rh

9 end
10 return B=(Bn−1‖...‖B0)⊕(r‖...‖r)

4.1 Experimental validation
Setup We implemented Debraize’s A2B conversion on an STM32F303 microcontroller
manufactured by ST Microelectronics. The microcontroller features the popular 32-bit
ARM-Cortex M4 RISC core operating at a frequency of up to 72 MHz, as well as 256 kB
of flash memory and 40 kB of SRAM.

To facilitate side-channel measurements, the STM32F303 is mounted on a custom PCB
target board that guarantees stable behaviour of the chip. This PCB is stripped of all
of the unnecessary components that would otherwise introduce additional noise into the
measurements. It contains a dedicated shunt resistor to monitor side-channel information
through the chip’s instantaneous power consumption, and, to ensure maximal stability, is
driven by an external power supply at 3.2 V.

We use a Tektronix DPO 70404C digital oscilloscope to collect instantaneous power mea-
surements with a sample rate of 625MS/s during A2B conversion. In between the oscilloscope
and the PCB we add a PA 303 SMA pre-amplifier to perform analog pre-processing of the col-
lected traces. A central PC is used to communicate data to the board through a serial USART
connection, as well as to collect and analyze power measurements. We use the on-chip clock
at 48 MHz, and disable the data cache and interrupts to enforce constant-time execution.

Method To show whether or not the implementation exhibits side-channel leakage, we
perform the well-known Test Vector Leakage Assessment (TVLA) [GJJR11]. This method
works by creating two sets of measurements, which are partitioned according to the sensitive
unmasked data that is processed. We use a fixed vs. random partitioning of the data. The
fixed class corresponds to conversions where A+R=xfix and xfix is set to 0, whereas the
random class corresponds to measurements where A+R=xrand. Under the independent
leakage assumption that the instantaneous power consumption depends only on A and R,
but not on the sensitive unmasked x=A+R, these two classes should have no observable
differences in their mean power consumption. Differences are detected by computingWelch’s
t-statistic for every sample in the measurements as:

t= Xfix−Xrand√
σ2

fix

Nfix
+ σ2

rand

Nrand

,

where X denotes the means of a set, σ2 the variance, and N the number of samples. The
null-hypothesis of equal means is rejected with a confidence greater than 99.999% when the

Michiel Van Beirendonck, Jan-Pieter D’Anvers and Ingrid Verbauwhede 281

t-statistic exceeds the value ±4.5 for a large number of measurements. In other words, t
values outside this range indicate that Xfix and Xrand are distinguishable, and thus that
A+R is leaked in the first statistical moment of the power traces.

Independent leakage in practice It is well known that the independent leakage assumption
is easily violated by microarchitectural effects on an embedded microcontroller. Transitions
of the memory bus, overwrites in the register file or in hidden registers in the ALU are all
examples that can cause leakage that depends on the combined value of both shares. For
example, consider the load operation on line 5 of Algorithm 6, for which the compiler might
place the result in a dedicated register. In the first loop iteration, this register will be assigned

β‖B0 =(cout(x0−r)⊕ρ)‖(x0⊕r).
In the next loop iteration, this register will be overwritten by

β‖B1 =(cout((x1‖x0)−(r‖r))⊕ρ)‖(x1⊕r).

Any power consumption that depends on the transition of this register value, i.e. the Ham-
ming distance, will cancel out themasks ρ and r, such that the power consumption depends on

(cout((x1‖x0)−(r‖r))⊕cout(x0−r))‖(x1⊕x0),

which is directly correlated to the unmasked chunks (x1‖x0) of x. Implementations can be
carefully constructed to avoid this issue, e.g. by clearing registers before sensitive transitions
or assigning different registers to different shares, the above microarchitectural leakage can be
prevented. We take this same approach in our implementation of Debraize’s A2B conversion,
where we directly integrate these countermeasures into a hand-crafted assembly routine.

Measurements We first verify our setup by collecting 10.000 measurements with the
PRNG disabled. In this case, the sets correspond to A=xfix=0 and A=xrand for fixed and
random, respectively. Furthermore, all randomness used in generating the table, i.e. r and ρ,
is likewise forced to 0. In all our experiments, we use 32-bit A2B conversion with n=8 chunks
and k=4 bits. Figure 1 shows the mean power consumption of the two sets of measurements
collected through this experiment. The power traces show a pattern that repeats 8 times,
corresponding to the n iterations of the inner loop. As these are measurements with the
PRNG OFF, differences in the mean power consumption of the fixed and random sets are
in some places visible with the naked eye. Figure 2a collects the t-statistic as a function of
time, which indeed shows values that cross ±4.5 by a very large margin.

In a second experiment, we collect 100.000measurementswith thePRNGenabled. Results
of this second experiment are collected in Figure 2b. Even though the PRNG is enabled, Fig-
ure 2b still shows t-values that cross±4.5. We additionally add a yellow trigger signal to mark
computations onAl, which we identify as the leaking variable in all but the first loop iteration.
Finally, Figure 2c shows the evolution of the maximum t-statistic value over the 100.000 mea-
surements. This value is monotonically increasing, giving another strong indication of leakage.

4.2 Theoretical analysis
In each iteration of the loop of the A2B conversion (Algorithm 6) a table lookup is performed
based on Al, which represents k masked bits of x. We will show that the masking applied
on a part of x to obtain Al is not uniformly distributed and thus leaks information about x.

To this end, we calculate the value of all intermediate variables used in the algorithm. First,
note that the values of R and x can be written in terms of their bitchunks as R=

∑n−1
j=0 2jkRj

and x =
∑n−1
j=0 2jkxj , and therefore A =

∑n−1
j=0 2jk(xj −Rj). In our analysis, we write

intermediate values with tilde ·̃, and variables without are fixed input values. Writing out
the intermediate values on each line of Algorithm 6 in the first iteration, we get:

282 Analysis and Comparison of Table-based Arithmetic to Boolean Masking

time [µs]
0 1 2 3 4 5

q
u
a
n
ti
z
e
d
 v

o
lt
a
g
e

60

80

100

120

140

160 fix
rand

Figure 1: Mean power consumption of Debraize’s A2B conversion with a pool of 10.000
measurements and PRNG OFF

time [µs]
0 1 2 3 4 5

t-
s
ta

ti
s
ti
c

-150

-100

-50

0

50

100

150

200

250

(a) t-statistic as
a function of time for a pool of 10.000 measurements and PRNG OFF

time [µs]
0 1 2 3 4 5

t-
s
ta

ti
s
ti
c

-15

-10

-5

0

5

10

15

20

(b) t-statistic as
a function of time for a pool of 100.000 measurements and PRNG ON

Number of measurements [x10
3
]

10 20 30 40 50 60 70 80 90 100

m
a

x
(|

t|
)

4

6

8

10

12

14

16

18

20

(c) Absolute
maximum t-statistic of (b) as a function of number of measurements.

Figure 2: TVLA of Debraize’s A2B conversion

Michiel Van Beirendonck, Jan-Pieter D’Anvers and Ingrid Verbauwhede 283

1. Ã=
∑n−1
j=0 2jk(xj−Rj−r)

2. β̃=ρ

4. Ã=
(∑n−1

j=1 2jk(xj−Rj−r)
)

+(x0−r)

5. β̃=ρ⊕(−b(x0−r)/2kc)
B̃0 =x0⊕r

6. B̃0 =x0⊕r⊕R0

7. Ã=
(∑n−1

j=1 2(j−1)k(xj−Rj−r)
)

+b(x0−r)/2kc

8. R̃=
∑n−1
j=1 2(j−i−1)kRj

Note that Ã on line 7 contains a carry c=−b(x0−r)/2kc that is dependent on the lower
bits of x. The information to correctly add this carry is present in β, which is ρ⊕c. However,
the carry c is not added to Ã which will cause leakage in the next iteration.

Generalizing this calculation over all iterations, the description for all intermediate values
of Algorithm 6 can then be found in Figure 3.

1. Ã=
∑n−1

j=0 2jk(xj−Rj−r) mod 2n·k

2. β̃=ρ mod 2
3. for i=0 to n−1 do:

4. Ã=
(∑n−1

j=i+12(j−i)k(xj−Rj−r)
)

+(xi−r)+b
∑i−1

j=0(xj−r)/2(i−j)kc mod 2(n−i)·k

5. β̃=ρ⊕(−b
∑i

j=0(xj−r)/2(i−j)kc) mod 2

B̃i =xi⊕r mod 2k

6. B̃i =xi⊕r⊕Ri mod 2k

7. Ã=
(∑n−1

j=i+12(j−i−1)k(xj−Rj−r)
)

+b
∑i

j=0(xj−r)/2(i+1−j)kc mod 2(n−i−1)·k

8. R̃=
∑n−1

j=i+12(j−i−1)kRj mod 2(n−i−1)·k

Figure 3: Intermediate values of all variables used in Algorithm 6.

In particular, we will look at the value of Al=A mod 2k at line 4 of Figure 3. In the first
loop iteration i=0 we get:

Al=x0−r mod 2k,

which is a correct masking of x0 with uniformly random variable r and thus does not lead
to leakage as can also be seen from the experimental validation in Figure 2b.

In the second loop iteration i=1, the value of Al is determined as follows:

Al=(x1−r)+b(x0−r)/2kc mod 2k

=x1−(r+c) mod 2k

where c=(−b(x0−r)/2kc), which is the carry that is saved in β⊕ρ. The carry c added to the
mask r is equal to 1 if x0<r and otherwise equal to 0. A higher value of r increases the prob-
ability of the carry being 1, which implies that the distribution of the actual mask (r+c) will
not be uniform. Consequently, the mask (r+c)=0 will be more probable than other mask val-
ues as on one hand r=0 implies that no carry occurs (c=0) and thus (r+c)=0, but r=2k−1
implies that a carry occurs with high probability which also results in (r+c)=0. The full
distribution of the mask values can be found in Figure 4. These values were calculated by de-
termining the mask value ofAl on line 5 of Algorithm 6 for all possible combinations of x, r,R.

284 Analysis and Comparison of Table-based Arithmetic to Boolean Masking

0 1 2 3
Mask value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

0.
25

0

0.
25

0

0.
25

0

0.
25

0

0.
43

8

0.
18

8

0.
18

8

0.
18

8

0.
48

4

0.
17

2

0.
17

2

0.
17

2

Distribution of the mask values
iteration 0
iteration 1
iteration 2

Figure 4: Distribution of mask value (r+c) per iteration for k=2.

In the general case, Al in loop i can be written as:

Al=(xi−r)+b
i−1∑
j=0

(xj−r)/2(i−j)kc

=xi−(r+c) mod 2k

where c=(−b
∑i−1
j=0(xj−r)/2(i−j)kc).

With higher i, the distribution will become more skewed as a higher r value results in
a higher probability of carries, which in turn also increase the chance of higher-up carries.
As can be seen in Figure 4, the probability of (r+c)=0 will roughly double, while all other
probabilities decrease uniformly. The effect of this non-uniform masking can be seen in
Figure 2b, where clear leakage is present starting from the second iteration.

The security reasoning of Algorithm 6 as given in [Deb12] assumes that all intermediate
values are masked with a uniformly random mask, without explicitly checking this for all
intermediate variables. In this section we explicitly showed why this assumption is not valid
in this case, which explains the leakage found in Figure 2b.

4.3 Attack possibilities
In this section we will give a short reasoning of how this leakage might be exploited in an
attack scenario. Our goal is not to present a full attack, but rather to give an intuitive idea
of why the leakage does open a path to a practical attacks. From Figure 4 we can see that
for the later iterations, the mask has a higher probability of being 0, than being other values.
This means that the k least significant bits of the variable calculated in line 4 of the algorithm
is the sensitive value itself with higher than average probability.

In particular, for lattice-based encryption schemes, the decryption step can usually
be seen as an operation Decode(v− s · u), where (u,v) is the ciphertext and s is the se-
cret key. In a masked setting, Decode often involves A2B conversion of the coefficients of
v−s·u, as is the case in [OSPG18] and [VBDK+20]. Then, similarly to attacks described
in [DTVV19, RRCB20, GJN20], an attacker can easily craft input ciphertexts such that the
A2B routine directly computes on the secret key s. From our analysis we know that the

Michiel Van Beirendonck, Jan-Pieter D’Anvers and Ingrid Verbauwhede 285

mask applied to the sensitive variable is 0 with a higher probability. Therefore, the power
consumption of this routine will be correlated with s, and s can be coefficient-wise extracted
using DPA or CPA-style attacks.

The masked lattice based encryption scheme of [OSPG18] uses Debraize’s insecure A2B
method as a subroutine in their decoding step and is therefore vulnerable to such an attack.
However, their choice for k=8 makes the probability of the mask 0 tend to 0.78% for later
iterations, compared to the probability of 0.39% for the other mask values. The attack is
more difficult in this setting, and might require a large amount of traces before the correlation
with s is visible in the power consumption. This could explain why the leakage did not
show up in TVLA experiments, where only a limited amount of power traces were collected.
However, given enough traces one can expect leakage of the sensitive value which would
make it possible to mount an attack similar to [DTVV19, RRCB20, GJN20]. A simple fix
to resolve this insecurity in the implementation of [OSPG18] is to replace the Debraize A2B
conversion for an alternative conversion algorithm as discussed in Section 6.

5 Two secure A2B conversions
Debraize’s A2B conversion is not secure against DPA because themask (r+c) is not uniformly
distributed as a result of carry propagation. In this section, we propose two solutions and
evaluate them experimentally. The first solution is a direct but somewhat expensive fix
of Debraize’s method. The idea is to avoid the dependence between the consecutive mask
values that creates the non-uniform distribution, by using a different and independent mask
ri in each iteration. The second solution can be understood as a hybrid between Debraize’s
and Coron-Tchulkine’s methods, and offers an interesting time/memory trade-off. The main
idea here is to explicitly compensate for the carry by calculating it, and adding it to the
masked value before starting the next iteration.

5.1 Debraize (fixed)
Astraightforwardway to remove the non-uniformity from (r+c), is to use a differentmask ri in
every iteration of the loop. In this case, themask ri and the carry c, which equals−b

∑i−1
j=0(xj−

rj)/2(i−j)kc, are independent and thus the actual mask ri+c is uniformly distributed.
This change requires that instead of creating a single table T , n tables Ti,0≤i<n are

created for each of the n masks ri,0≤i<n, as illustrated in Algorithm 7. The conversion itself
remains very similar to Algorithm 6, with only two necessary changes. The table lookup
T [β][Al] is replaced by Ti[β][Al], and the initial pre-masking of A must use (rn−1‖ ...‖r0)
instead of (r‖...‖r). We illustrate Debraize (fixed) in Algorithm 8, with the required changes
as compared to Algorithm 6 highlighted in blue.

Algorithm 7: Table Ti,0≤i<n generation
1 ρ←U({0,1})
2 for i=0 to n−1 do
3 ri←U({0,1}k)
4 for A=0 to 2k−1 do
5 Ti[ρ][A]=(A+ri)⊕(ρ‖ri)
6 Ti[(ρ⊕1)][A]=(A+ri+1)⊕(ρ‖ri)
7 end
8 end
9 return Ti,0≤i<n,ri,0≤i<n,ρ

This solution keeps the advantages of Debraize’s conversion over that of Coron-Tchulkine.

286 Analysis and Comparison of Table-based Arithmetic to Boolean Masking

Algorithm 8: Conversion of a n·k-bit variable (Debraize (fixed))
input :(A,R) such that x=A+R mod 2n·k,

T , r, ρ
output :B such that x=B⊕R
/* Let A=(Ah‖Al), R=(Rh‖Rl) with Al, Rl the k least significant

bits. Ah, Al, Rh, Rl are updated at the same time as A, R. */
1 A←A−(rn−1‖...‖r0) mod 2n·k

2 β←ρ
3 for i=0 to n−1 do
4 A←A+Rl mod 2(n−i)·k

5 β‖Bi←Ti[β][Al]
6 Bi←Bi⊕Rl

7 A←Ah

8 R←Rh

9 end
10 return B=(Bn−1‖...‖B0)⊕(ri‖...‖r0)

The carry is kept in Boolean masked form, and the algorithm avoids the full-width arithmetic
operation A←Ah‖0+T [Al] mod 2(n−i)·k. While the new method requires n different tables
to be present for each conversion, each one is accessed in only a single loop iteration, rather
than n times as in the original method. Therefore, in a setting where a table is refreshed
after a fixed amount of accesses, the pre-computation cost can be completely amortized
over multiple A2B conversions1, and the performance remains equal to Debraize’s original
conversion. In the other scenario where the table(s) are reused indefinitely, the one-time
difference in cost between a single or n table generations would in many cases be eclipsed by
the cost of the actual conversions, and thus the efficiency of both methods would not differ
significantly. The main disadvantage of this solution is the increased storage cost due to
the n tables Ti, which is increased to n·2k+1 ·(k+1) bits.

5.1.1 Security proof

Theorem 1. Debraize (fixed) is secure under first order DPA attacks.

Proof. To prove security under first order DPA attacks, we explicitly show that all inter-
mediate values are independent of the secret x. First note that the table T is generated
without knowledge of x and is thus independent of the secret. Looking at the conversion
itself, Figure 5 gives all intermediate values during the execution of the conversion algorithm.
From this we can see that: R̃ does not depend on x and is therefore independent; β̃ is always
masked with uniform binary mask ρ and is thus independent of x; and B̃i is masked with
the uniformly random mask ri and later with Ri making it independent of the secret.

There remains to show that Ã is always independent of x. In line 1 Ã is still masked
with the original mask R, and as only an independent random value is subtracted, Ã is
independent of x. We can rewrite line 4 as:

Ã=xi+
n−1∑
j=i+1

2(j−i)k(xj−Rj)+b
i−1∑
j=0

(xj−rj)/2(i−j)kc+
n−1∑
j=i

2(j−i)krj (mod 2(n−i)·k)

where
∑n−1
j=i 2(j−i)krj is a uniformly random variable modulo 2(n−i)·k. Moreover, this vari-

able is independent of the rest of the expression as the rj are drawn independently. Therefore,∑n−1
j=i 2(j−i)krj acts as a uniformly random mask making Ã independent of x.
1A recent masked implementation of the lattice-based Saber algorithm requires 1280 A2B conversions

[VBDK+20].

Michiel Van Beirendonck, Jan-Pieter D’Anvers and Ingrid Verbauwhede 287

1. Ã=
∑n−1

j=0 2jk(xj−Rj−rj) mod 2n·k

2. β̃=ρ mod 2
3. for i=0 to n−1 do:

4. Ã=
(∑n−1

j=i+12(j−i)k(xj−Rj−rj)
)

+(xi−rj)+b
∑i−1

j=0(xj−rj)/2(i−j)kc mod 2(n−i)·k

5. β̃=ρ⊕(−b
∑i

j=0(xj−rj)/2(i−j)kc) mod 2

B̃i =xi⊕ri mod 2k

6. B̃i =xi⊕ri⊕Ri mod 2k

7. Ã=
(∑n−1

j=i+12(j−i−1)k(xj−Rj−rj)
)

+b
∑i

j=0(xj−rj)/2(i+1−j)kc mod 2(n−i−1)·k

8. R̃=
∑n−1

j=i+12(j−i−1)kRj mod 2(n−i−1)·k

Figure 5: Intermediate values of all variables used in Algorithm 8. Variables with tilde
·̃ are intermediate values, variables without are fixed input values.

Similarly, we can rewrite line 7 as:

Ã=
n−1∑
j=i+1

2(j−i−1)k(xj−Rj)+b
i∑

j=0
(xj−rj)/2(i+1−j)kc−

n−1∑
j=i+1

2(j−i−1)krj (mod 2(n−i−1)·k)

where
∑n−1
j=i+12(j−i−1)krj acts as a uniformly random mask modulo 2(n−i−1)·k which is inde-

pendent of the rest of the expression. As such Ã is also in this expression independent of x.

The security claim of Debraize [Deb12] was similarly based on the independence between
the intermediate values and x. However, they did not explicitly write out all intermediate
values and as such missed the bias in the mask on line 4 of Figure 3. By explicitly giving all
intermediate values we want to show the validity of our security claim. Our security claim
will be practically validated using side-channel measurements in the next section.

5.2 Secure dual-lookup A2B
The second solution builds on the fact that the Coron-Tchulkine conversion does not feature
the vulnerability present in the Debraize conversion. Indeed, Algorithm 4 avoids this issue,
since the incoming carry c is explicitly added to Al before Al is unmasked with Rl. This way,
the uniform mask r appears instead of the biased mask (r+c).

In adapting the method of Coron-Tchulkine, Debraize briefly introduced another table
C ′ for illustrative purposes. This idea can be extended to construct a full A2B conversion
method that features a different trade-off.

In Algorithm 3, table T combines tables G and C from Algorithms 1 and 2. Table T is
exactly the same size as G and C combined, such that it is simply more efficient to treat
this as a single table. However, it is also possible to decompose table T into table C ′ and a
new table G′, such that the combined size of these tables is smaller than T . In order to do so,
we pre-compute G′[Al], such that it includes the Boolean masked carry β=cout(Al+r)⊕ρ
as one of its explicit outputs. Using β as an auxiliary value, it is possible to greatly reduce
the size of table C ′ compared to C. This is due to the fact that table C ′ only needs to
store two elements for the two possible values of β, rather than 2k elements as in C. The
pre-computation of G′ and C ′ is illustrated in Algorithms 9 and 10, respectively. We show
this new dual-lookup conversion, using tables G′ and C ′, in Algorithm 11, with the changes
as compared to Algorithm 4 highlighted in blue.

288 Analysis and Comparison of Table-based Arithmetic to Boolean Masking

Algorithm 9:
Pre-computation of G′

1 r←U({0,1}k)
2 ρ←U({0,1})
3 for A=0 to 2k−1 do
4 G′[A]=(A+r)⊕(ρ‖r)
5 end
6 return G′,r,ρ

Algorithm 10:
Pre-computation of C ′ [Deb12]

1 γ←U({0,1}(n−1)·k)

2 C′[ρ]=γ

3 C′[ρ⊕1]=γ+1 mod 2(n−1)·k

4 return C′,γ

Algorithm 11: A2B conversion of a (n·k)-bit variable (our dual-lookup A2B)
input :(A,R) such that x=A+R mod 2n·k,

G′, C′, r, ρ, γ
output :B such that x=B⊕R
/* Let A=(Ah‖Al), R=(Rh‖Rl) with Al, Rl the k least significant

bits. Ah, Al, Rh, Rl are updated at the same time as A, R. */
1 Γ←

∑n−1
i=1 2i·k ·γ mod 2n·k

2 A←A−(r‖...‖r) mod 2n·k

3 A←A−Γ mod 2n·k

4 β←ρ
5 for i=0 to n−1 do
6 A←A+Rl mod 2(n−i)·k

7 β‖Bi←G′[Al]
8 Bi←Bi⊕Rl

9 A←Ah+C′[β] mod 2(n−i−1)·k

10 R←Rh

11 end
12 return (Bn−1‖...‖B0)⊕(r‖...‖r)

This second solution has similar computational efficiency to the fixed Coron-Tchulkine
method, with two table lookups and similar computational cost, but it has the advantage
of a reduced memory footprint. Compared to the improved Coron-Tchulkine method in
Algorithm 4 with a single lookup, there is now a clear trade-off: our method requires more
lookups and computations but reduces the required amount of memory. Finally, note that
the new method requires the single extra random bit ρ in the pre-computation of G′. A
detailed comparison of these conversions will be given in Section 6.

5.2.1 Security proof

Theorem 2. Our dual-lookup A2B is secure under first order DPA attacks.

Proof. To prove security under first order DPA attacks, we explicitly show that all intermedi-
ate values are independent of the secret x. First note that the precomputed tables G′ and C ′
are generated without knowledge of x and are thus independent of it. To show security of Al-
gorithm 11, Figure 6 gives a list of all intermediate values. Going over all variables we see that:
Γ and R̃ are generated without x and are thus independent of x; β̃ is always masked with a
uniformly random value ρ and is therefore independent of x; and B̃i is always masked with the
uniformly random variable r, and later also masked with the uniformly random variable Ri

Now we only have to show the independence between Ã and x. In line 2 and 3, Ã is
still masked with the original mask R and as only independent variables are subtracted, Ã

Michiel Van Beirendonck, Jan-Pieter D’Anvers and Ingrid Verbauwhede 289

1. Γ=
∑n−1

i=1 2ikγ mod 2n·k

2. Ã=
∑n−1

j=0 2jk(xj−Rj−r) mod 2n·k

3. Ã=
(∑n−1

j=0 2jk(xj−Rj−r−γ)
)

+γ mod 2n·k

4. β̃=ρ mod 2
5. for i=0 to n−1 do:

6. Ã=
(∑n−1

j=i+12(j−i)k(xj−Rj−r−γ)
)

+(xi−r) mod 2(n−i)·k

7. β̃=ρ⊕(−b
∑i

j=0(xj−r)/2(i−j)kc) mod 2

B̃i =xi⊕r mod 2k

8. B̃i =xi⊕r⊕Ri mod 2k

9. Ã=
(∑n−1

j=i+12(j−i−1)k(xj−Rj−r−γ)
)

+γ mod 2(n−i−1)·k

10. R̃=
∑n−1

j=i+12(j−i−1)kRj mod 2(n−i−1)·k

Figure 6: Intermediate values of all variables used in Algorithm 11. Variables with tilde
·̃ are intermediate values, variables without are fixed input values.

remains independent of x. Similarly, in line 9, Ã, which is 2(n−i−1)·k bits long, is masked
with the 2(n−i−1)·k most significant bits of R and thus Ã is also here independent of x.

Line 6 can be rewritten as:

Ã=xi+
n−1∑
j=i+1

2(j−i)k(xj−γ)+r+
n−1∑
j=i+1

2(j−i)k(Rj−r) (mod 2(n−i)·k)

=xi+
n−1∑
j=i+1

2(j−i)k(xj−γ)+r+
n−i−1∑
j=1

2jk(Rj+i−r) (mod 2(n−i)·k)

where r+
∑n−i−1
j=1 2jk(Rj+i−r) mod 2(n−i)·k is a uniformly randommask that is independent

of the rest of the expression, which makes Ã independent of x.

5.3 Experimental validation
We experimentally validate our two solutions, using the same setup and methods as described
in Subsection 4.1. Notably, we again create carefully crafted assembly code, including
countermeasures that prevent microarchitectural leakage on the Cortex-M4. The results
of collecting 100.000 measurements with the PRNG enabled are shown in Figures 7 and 8 for
Debraize (fixed) and our dual-lookup A2B, respectively. For both solutions, the t-statistic re-
mains within the±4.5 boundary after 100.000 measurements, and there is no obvious increase
of the t-values over the measurements. Thus, these measures confirm our security claim and
proof, showing that the implementation indeed provides first-order side-channel security.

We make our source code publicly available at https://github.com/KULeuven-COSIC/
A2B-table to allow easily reproducing our results. Furthermore, since we show side-channel
security on the Cortex-M4, future implementations that require secure A2B conversions
on this platform can readily use the code of one of our methods. In particular, this helps
the effort towards masked post-quantum implementations, since NIST has put increasing

https://github.com/KULeuven-COSIC/A2B-table
https://github.com/KULeuven-COSIC/A2B-table

290 Analysis and Comparison of Table-based Arithmetic to Boolean Masking

time [µs]
0 1 2 3 4 5

t-
s
ta

ti
s
ti
c

-8

-6

-4

-2

0

2

4

6

8

(a) t-statistic as a function of time

Number of measurements [x10
3
]

10 20 30 40 50 60 70 80 90 100

m
a

x
(|

t|
)

2.5

3

3.5

4

4.5

5

(b) Absolute
maximum t-statistic of (a) as a function of number of measurements

Figure 7: TVLA of Debraize (fixed) for a pool of 100.000 measurements

emphasis on side-channel resistance for the finalists of the PQC competition [AASA+20],
where the Cortex-M4 is the prime embedded benchmarking platform [KRSS].

6 Discussion
In Sections 5.1.1 and 5.2.1, we showed that our two new methods are probing-secure.
Another popular security notion for masked software implementations is that of Strong Non-
Interference (SNI) [BBD+16], required for composability of masked routines. Table-based
conversions precompute a randomized table and reuse this table for multiple online conversion
steps. Because of this implicit randomness reuse, the conversion itself does not strictly
adhere to the properties of SNI. Rather, SNI must be examined and proven in higher-level
applications, such as the parallel A2B conversion of several polynomial coefficients with a
single precomputed table. We note that SNI proofs can be adapted to such routines that
share common randomness [CGPZ16]. However, the result is very application-specific, and
we therefore leave it as future work.

In Table 2, we compare the different table-based A2B methods in terms of memory,
randomness cost and the number of table lookups in the conversion. We do include the
original method of Coron-Tchulkine and the method of Debraize for reference purposes, but
stress that they should not be used due to correctness and security problems respectively.
The table size is given in bits, without taking restrictions of byte-addressable memory into
account. For the Debraize (fixed) conversion, the initial randomness cost is n·k+1 bits.
However, this procedure produces n tables and when the tables are used for a fixed number
of lookups, the tables last n times longer than in other methods. In this case, the equivalent
randomness cost is k+ 1/n. We refrain from giving a theoretical number of arithmetic
instructions since this maps poorly to actual instructions, e.g. the Cortex-M4 instruction
set allows ALU operations on shifted operands in a single instruction.

The table size can be further reduced using an ‘LSB trick’ from [NP04]. In this work,

Michiel Van Beirendonck, Jan-Pieter D’Anvers and Ingrid Verbauwhede 291

time [µs]
0 1 2 3 4 5 6 7

t-
s
ta

ti
s
ti
c

-8

-6

-4

-2

0

2

4

6

8

(a) t-statistic as a function of time

Number of measurements [x10
3
]

10 20 30 40 50 60 70 80 90 100

m
a

x
(|

t|
)

2.5

3

3.5

4

4.5

5

(b) Absolute
maximum t-statistic of (a) as a function of number of measurements

Figure 8: TVLA of our dual-lookup A2B for a pool of 100.000 measurements

Table 2: Characteristics of the different table-based A2B conversions.
Mem. ops Rand. [bits] Table size [bits] Secure Correct

CT [CT03] 2n 2·k 2k ·k+2k ·k 3 7

CT (fixed) [Deb12] 2n n·k 2k ·k+2k ·(n−1)·k 3 3

CT (imp.) [Deb12] n n·k 2k ·n·k 3 3

Debraize [Deb12] n k+1 2k+1 ·(k+1) 7 3

Debraize (fixed) n n·k+1 | k+1/n § n·2k+1 ·(k+1) 3 3

Dual-lookup 2n n·k+1 2k ·(k+1)+2·(n−1)·k 3 3
§ average equivalent cost over n conversions

the fact that a Boolean masking and arithmetic masking share the same least-significant
bit is exploited, and this bit is removed from all relevant tables. The resulting conversion
is then slower, due to the added operations of doing the bit manipulation.

In lattice-based cryptographic implementations the table size can also often be reduced.
There, a typical application of these conversion schemes is to determine the most significant
bit of an arithmetically masked number. In this case, the lower significant bits do not have to
be calculated, and the tables can be reduced in size by only storing the information needed
to propagate the carry as explained by Van Beirendonck et al. [VBDK+20]. This reduces
the table size of each table Ti in Debraize (fixed) from 2k+1 · (k+ 1) to 2k+1 and in the
dual-lookup for Table G from 2k ·(k+1) to 2k.

The table-based methods described in this section specifically work with power-of-two
moduli. Some lattice-based schemes work with prime moduli and similarly need to deter-
mine the most significant bit of arithmetically masked numbers. Oder et al. [OSPG18]
provide an algorithm to securely compute this most significant bit, by using the power-of-two
table-based A2B conversion of Debraize [Deb12] as a subroutine. As we showed, this choice
would introduce a security vulnerability. However, it is trivial to replace the Debraize A2B
conversion by any of our secure table-based conversion algorithms, by replacing the A2B
used in Algorithm 1 of [OSPG18].

292 Analysis and Comparison of Table-based Arithmetic to Boolean Masking

Table 3: Performance numbers for 16-bit A2B conversion.
Precomputation [cycles] Conversion [cycles] Table size [bytes]

w k=4 k=8 k=4 k=8 k=4 k=8
Debraize [Deb12] 8 1242 6207 1095 149 32 1024
CT (imp.) [Deb12] 8 988 3643 940 162 32 512
Debraize (fixed) 8 3296 | 824§ 7 1178 7 128 2048†
Dual-lookup 8 1062 3658 1282 246 20 516‡
Debraize 32 377 3986 121 88 32 1024
CT (imp.) 32 197 2138 134 96 32 512
Debraize (fixed) 32 1213 | 303§ 8432 | 4216§ 124 89 128 2048†
Dual-lookup 32 331 2266 148 111 20 516‡
§ average equivalent cost over n conversions
† 1024 bytes with the LSB trick
‡ 260 bytes with the LSB trick

6.1 Performance evaluation
Setup For our performance evaluation, we benchmarked the different A2B conversions on
two platforms with different processor word-widths w=8 and w=32. For w=8, we target
an 8-bit Atmel ATmega328P on an Arduino Uno, and compile with -Os. For w= 32, we
again target an ARM Cortex-M4, this time on the STM32F407-DISCOVERY development
board, and we compile with -O3. The STMF407 is highly similar to the STM303 on our
measurement PCB, with the added benefit of an on-chip TRNG from which we sample all
masking randomness. In both cases, we include the cost of randomness sampling into the
pre-computation cost. For the STM407, the TRNG supplies 32-bit random numbers every
40 cycles of the TRNG clock, which is set to 48 MHz, twice the clock frequency of the 24 MHz
system clock. For the ATmega328P, a PRNG is supplied by the random() function that is
part of avr-libc. In a small experiment, we find that sampling a 32-bit random number takes
812 CPU clock cycles. Together with all randomness sampling, the computation of Γ and
(r‖...‖r) is moved to the pre-computation, such that they only need to be computed once.

Comparing 16-bit conversions In lattice-based cryptography, moduli are often slightly
smaller than 16-bit. Therefore, in Table 3, we benchmark 16-bit conversion, using both
(n= 4, k= 4) and (n= 2, k= 8). Note that we include the insecure Debraize method for
reference purposes only, and it should not be used in secure designs. Again, for the De-
braize (fixed) conversion, we report both the initial pre-computation cost and the amortized
pre-computation cost resulting from an n times longer lifetime of the tables compared to
other methods. This time, we report practical table size for byte-addressable memory. For
example, when k=8, the word-size of the Debraize (fixed) table is k+1=9 bits, for which
we use two bytes of memory to prevent packing and unpacking operations. Here it could
be beneficial to implement the LSB trick, such that the word-size is reduced to a single byte.

From Table 3, we see that Debraize (fixed) provides the fastest conversion times on the
Cortex-M4, slightly outperforming CT (imp.). However, the table size is much larger for De-
braize (fixed), due to the added cost of generating and storing n tables Ti. The added memory
cost of Debraize (fixed) is further highlighted by the red check mark forw=8 and k=8, where
the 2 KB combined size of the tables Ti completely saturates the 2 KB Atmega328P SRAM.

Debraize’s method was designed to appeal to lower word-width processors, by avoiding
the full 32-bit arithmetic addition in the main loop in favour of bit-wise operations. This
property is preserved in Debraize (fixed). Nevertheless, in our experiments we find that both
Debraize and Debraize (fixed) are outperformed by CT (imp.) when w=8 and k=4. When
looking at memory requirements, the dual-lookup method has the smallest memory cost,
especially if it would be implemented with the LSB trick.

In Table 4 we repeat the benchmarks for our new methods, this time with microarchitec-

Michiel Van Beirendonck, Jan-Pieter D’Anvers and Ingrid Verbauwhede 293

Table 4: Performance numbers for 16-bit A2B conversion with countermeasures for
microarchitectural leakage.

Conversion [cycles]
w k=4 k=8

Debraize (fixed) 32 233 165
Dual-lookup 32 261 184

tural countermeasures such as clearing registers or flushing the ALU, which were described
in Section 4.1. We stress that these are the performance numbers corresponding to the
secure implementations that showed no t-test leakage in Subsection 5.3. However, we report
them separately, since they are platform-specific numbers and are difficult to compare to
other methods which do not have countermeasures against microarchitectural attacks.

Results from Table 3 can also be compared to the prime-modulus algorithm of [BBE+18,
SecArithBoolModp]. This algorithm was further optimized in [SPOG19], and requires
4362 ‘basic operations’ for conversion using the 14-bit prime modulus q = 12289. Even
though it is difficult to map 436 operations to exact cycle counts since this is usually
an understatement, the general trend that power-of-two conversion is much cheaper is
immediately clear. SecArithBoolModp will likely use more than 436 CPU cycles, whereas
our methods can use as few as 89 cycles for the online conversion. We note however that
SecArithBoolModp is not table-based, and as a result does not require a pre-computation cost.

As mentioned before, our efficient 16-bit A2B conversion methods can also be used as
a subroutine to implement prime modulus conversion using the approach of [OSPG18]. We
leave an extensive treatment and benchmarking of this combined algorithm as future work.

Comparing 64-bit conversions Table 5 repeats the same experiment, this time for 64-bit
conversion using (n = 16, k = 4) and (n = 8, k = 8). We benchmark 64-bit conversion
only on the Cortex-M4 and omit the insecure Debraize method. For 64-bit conversion, the
dual-lookupmethod is appealing in memory-constrained scenarios. The tables in this method
scale mostly with k and only very limitedly with n. As such the memory-cost is comparable
to the 16-bit conversion, which stands in contrast to CT (imp.) and Debraize (fixed), where
this scales linearly. For 64-bit conversion, the dual-lookup method reduces the memory cost
by a factor 4× to 16×, while incurring a conversion cycle overhead of less than ~35%.

We also compare to the non-table based A2B conversion of [WH17], who exclusively
reported CPU cycles for 64-bit conversion in [WH17, Table 4]. This work presents two
algorithms based on the Kogge-Stone adder, which were improved from [CGTV15]. The first,
[WH17, Algorithm 3], is the general algorithm, whereas the second, [WH17, Algorithm 4], is a
speciality algorithm only applicable when the conversion bit-width (64) is twice the processor
word-width (32). From Table 5, it is noticeable that [WH17] is not table-based, and as such
has no pre-computation cost or tables that need to be stored in memory. We find that both
of their algorithms are outperformed by table-based methods in terms of online conversion
cost when k=8. For Debraize (fixed), this remains true when k=4. We note that care should
be taken when directly comparing these numbers, since they compare actual CPU cycles on
the STM407 for our benchmarks with simulated ARM cycles for the benchmarks of [WH17].

Compared to methods based on the Kogge-Stone adder, table-based algorithms have
two further benefits. Firstly, Kogge-Stone based algorithms have logarithmic complexity
in the conversion width, whereas table-based algorithms have linear complexity. Therefore,
when scaling down the conversion width from 64-bit to widths more applicable to PQC,
e.g. 16-bit, table-based algorithms will scale better. Secondly, table-based algorithms
only sample randomness in the offline precomputation phase. For platforms without a

2The reported operation count (695) for SecArithBoolModp in [SPOG19] is a typo, and in reality consti-
tutes the operation count of SecBoolArithModp. We obtained the correct number 436 for SecArithBoolModp
after communication with the authors.

294 Analysis and Comparison of Table-based Arithmetic to Boolean Masking

Table 5: Performance numbers for 64-bit A2B conversion.
Precomputation Conversion Table size

[cycles] [cycles] [bytes]
w k=4 k=8 k=4 k=8 k=4 k=8

CT (imp.) [Deb12] 32 338 2210 407 244 128 2048
Debraize (fixed) 32 4139 | 259§ 33093 | 4137§ 333 211 512 8192
Dual-lookup 32 480 2120 446 270 32 528
[WH17, Algorithm 3] 32 - - 526† - -
[WH17, Algorithm 4] 32 - - 384† - -
§ average equivalent cost over n conversions
† 2048 bytes with the LSB trick
‡ 272 bytes with the LSB trick
† Simulated results using ARM Developer Suite v1.2, taken from [WH17, Table 4].
Randomness sampling is not included in the simulated cycles.

TRNG, randomness sampling can quickly dominate the actual conversion cost. For this
reason, [WH17], explicitly mentioned that they did not include this cost in their performance
numbers. As a downside, table-based algorithms do not extend to higher-order security.

7 Conclusion
Masking cryptographic implementations that convert from arithmetic to Boolean masking
is a complex process that makes it prone to errors. It is therefore of paramount importance
to provide complete security proofs and experimentally validate new algorithms proposed
in this setting, by implementing them and testing for side-channel leakage. In this paper, we
showed a security vulnerability in the state-of-the-art table-based A2B conversion introduced
by Debraize in CHES 2012, which has been used as a subroutine in practical applications.
After analyzing the problem, we proposed two alternative A2B methods that prevent it:
a single-table method that maintains efficiency at the cost of additional memory, and a
dual-table method that reduces this memory at the cost of computational efficiency. Both
methods were verified for correctness and security both theoretically and using experimental
side-channel validation. The source code of these conversions will be made available online
so that they can be used to support masked implementation efforts, with a particular focus
on the field of post-quantum cryptography.

Acknowledgements
We want to thank Siemen Dhooghe for his valuable insights in provable secure masking.
This work was supported in part by CyberSecurity Research Flanders with reference num-
ber VR20192203, the Research Council KU Leuven (C16/15/058), the Horizon 2020 ERC
Advanced Grant (695305 Cathedral), and SRC grant 2909.001. Michiel Van Beirendonck
is funded by an FWO PhD fellowship strategic basic research.

References
[AASA+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh

Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta,
Ray Perlner, Angela Robinson, and Daniel Smith-Tone. Status report on the
second round of the nist post-quantum cryptography standardization process.
NIST, Tech. Rep., July, 2020.

Michiel Van Beirendonck, Jan-Pieter D’Anvers and Ingrid Verbauwhede 295

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong
non-interference and type-directed higher-order masking. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, page 116–129, New York, NY, USA, 2016. Association for Computing
Machinery.

[BBE+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP lattice-based
signature scheme at any order. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 354–384.
Springer, Heidelberg, April / May 2018.

[BCZ18] Luk Bettale, Jean-Sébastien Coron, and Rina Zeitoun. Improved high-order
conversion from Boolean to arithmetic masking. IACR TCHES, 2018(2):22–45,
2018. https://tches.iacr.org/index.php/TCHES/article/view/873.

[CGPZ16] Jean-Sébastien Coron, Aurélien Greuet, Emmanuel Prouff, and Rina Zeitoun.
Faster evaluation of SBoxes via common shares. In Benedikt Gierlichs and
Axel Y. Poschmann, editors, CHES 2016, volume 9813 of LNCS, pages
498–514. Springer, Heidelberg, August 2016.

[CGTV15] Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and Praveen Ku-
mar Vadnala. Conversion from arithmetic to Boolean masking with logarithmic
complexity. In Gregor Leander, editor, FSE 2015, volume 9054 of LNCS, pages
130–149. Springer, Heidelberg, March 2015.

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala.
Secure conversion between Boolean and arithmetic masking of any order. In
Lejla Batina and Matthew Robshaw, editors, CHES 2014, volume 8731 of
LNCS, pages 188–205. Springer, Heidelberg, September 2014.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 398–412. Springer,
Heidelberg, August 1999.

[Cor17] Jean-Sébastien Coron. High-order conversion from Boolean to arithmetic
masking. In Wieland Fischer and Naofumi Homma, editors, CHES 2017,
volume 10529 of LNCS, pages 93–114. Springer, Heidelberg, September 2017.

[CT03] Jean-Sébastien Coron and Alexei Tchulkine. A new algorithm for switching
from arithmetic to Boolean masking. In Colin D. Walter, Çetin Kaya Koç,
and Christof Paar, editors, CHES 2003, volume 2779 of LNCS, pages 89–97.
Springer, Heidelberg, September 2003.

[Deb12] Blandine Debraize. Efficient and provably secure methods for switching
from arithmetic to Boolean masking. In Emmanuel Prouff and Patrick
Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages 107–121.
Springer, Heidelberg, September 2012.

[DTVV19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and In-
grid Verbauwhede. Timing attacks on error correcting codes in post-
quantum schemes. Cryptology ePrint Archive, Report 2019/292, 2019.
https://eprint.iacr.org/2019/292.

https://tches.iacr.org/index.php/TCHES/article/view/873
https://eprint.iacr.org/2019/292

296 Analysis and Comparison of Table-based Arithmetic to Boolean Masking

[GJJR11] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A testing
methodology for side-channel resistance validation. NIST Non-Invasive Attack
Testing Workshop - NIAT, 2011.

[GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery timing
attack on post-quantum primitives using the Fujisaki-Okamoto transformation
and its application on FrodoKEM. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
359–386. Springer, Heidelberg, August 2020.

[Gou01] Louis Goubin. A sound method for switching between Boolean and arithmetic
masking. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors,
CHES 2001, volume 2162 of LNCS, pages 3–15. Springer, Heidelberg, May 2001.

[HT19] Michael Hutter and Michael Tunstall. Constant-time higher-order Boolean-
to-arithmetic masking. Journal of Cryptographic Engineering, 9(2):173–184,
June 2019.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
388–397. Springer, Heidelberg, August 1999.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, CRYPTO’96, volume 1109
of LNCS, pages 104–113. Springer, Heidelberg, August 1996.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stof-
felen. PQM4: Post-quantum crypto library for the ARM Cortex-M4.
https://github.com/mupq/pqm4.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking Dilithium - efficient implementation and side-channel evaluation. In
Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung,
editors, ACNS 19, volume 11464 of LNCS, pages 344–362. Springer, Heidelberg,
June 2019.

[NP04] Olaf Neiße and Jürgen Pulkus. Switching blindings with a view towards IDEA.
In Marc Joye and Jean-Jacques Quisquater, editors, CHES 2004, volume 3156
of LNCS, pages 230–239. Springer, Heidelberg, August 2004.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2-secure masked Ring-LWE implementations. IACR TCHES,
2018(1):142–174, 2018. https://tches.iacr.org/index.php/TCHES/
article/view/836.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema):
Measures and counter-measures for smart cards. In Isabelle Attali and Thomas
Jensen, editors, Smart Card Programming and Security, pages 200–210, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and
Shivam Bhasin. Generic side-channel attacks on CCA-secure lattice-
based PKE and KEMs. IACR TCHES, 2020(3):307–335, 2020.
https://tches.iacr.org/index.php/TCHES/article/view/8592.

https://github.com/mupq/pqm4
https://tches.iacr.org/index.php/TCHES/article/view/836
https://tches.iacr.org/index.php/TCHES/article/view/836
https://tches.iacr.org/index.php/TCHES/article/view/8592

Michiel Van Beirendonck, Jan-Pieter D’Anvers and Ingrid Verbauwhede 297

[SPOG19] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu.
Efficiently masking binomial sampling at arbitrary orders for lattice-based
crypto. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume
11443 of LNCS, pages 534–564. Springer, Heidelberg, April 2019.

[VBDK+20] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar,
Josep Balasch, and Ingrid Verbauwhede. A side-channel resistant imple-
mentation of saber. Cryptology ePrint Archive, Report 2020/733, 2020.
https://eprint.iacr.org/2020/733.

[WH17] Yoo-Seung Won and Dong-Guk Han. Efficient conversion method from
arithmetic to Boolean masking in constrained devices. In Sylvain Guilley,
editor, COSADE 2017, volume 10348 of LNCS, pages 120–137. Springer,
Heidelberg, April 2017.

https://eprint.iacr.org/2020/733

	Introduction
	Preliminaries
	Table-based A2B conversion
	Coron and Tchulkine
	Debraize

	Security weakness in Debraize's A2B conversion
	Experimental validation
	Theoretical analysis
	Attack possibilities

	Two secure A2B conversions
	Debraize (fixed)
	Secure dual-lookup A2B
	Experimental validation

	Discussion
	Performance evaluation

	Conclusion

