
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 3, pp. 149–175. DOI:10.46586/tches.v2021.i3.149-175

Timing Black-Box Attacks:
Crafting Adversarial Examples through Timing

Leaks against DNNs on Embedded Devices
Tsunato Nakai1,2, Daisuke Suzuki1 and Takeshi Fujino2

1 Mitsubishi Electric Corporation, Kamakura, Kanagawa, Japan,
{Nakai.Tsunato,Suzuki.Daisuke}@{dy,bx}.MitsubishiElectric.co.jp

2 Ritsumeikan University, Kusatsu, Shiga, Japan,
fujino@se.ritsumei.ac.jp

Abstract. Deep neural networks (DNNs) have been applied to various industries.
In particular, DNNs on embedded devices have attracted considerable interest be-
cause they allow real-time and distributed processing on site. However, adversarial
examples (AEs), which add small perturbations to the input data of DNNs to cause
misclassification, are serious threats to DNNs. In this paper, a novel black-box attack
is proposed to craft AEs based only on processing time, i.e., the side-channel leaks
from DNNs on embedded devices. Unlike several existing black-box attacks that
utilize output probability, the proposed attack exploits the relationship between the
number of activated nodes and processing time without using training data, model
architecture, parameters, substitute models, or output probability. The perturbations
for AEs are determined by the differential processing time based on the input data of
the DNNs in the proposed attack. The experimental results show that the AEs of the
proposed attack effectively cause an increase in the number of activated nodes and the
misclassification of one of the incorrect labels against the DNNs on a microcontroller
unit. Moreover, these results indicate that the attack can evade gradient-masking
and confidence reduction countermeasures, which conceal the output probability, to
prevent the crafting of AEs against several black-box attacks. Finally, the coun-
termeasures against the attack are implemented and evaluated to clarify that the
implementation of an activation function with data-dependent timing leaks is the
cause of the proposed attack.
Keywords: Adversarial examples · Black-box attack · Timing side-channel · Em-
bedded devices

1 Introduction
Artificial intelligence using deep neural networks (DNNs) has achieved phenomenal success
in image recognition, speech recognition, and natural language processing. Accordingly,
the number of applications, systems, and devices with DNNs increased in various industries.
For example, several automated driving systems use DNNs for object recognition, and
face authentication systems with DNNs have been applied to biometric authentication for
unlocking laptops or smartphones. Security systems with malware behavior detection or
network anomaly detection systems also incorporate DNNs.

The development of DNNs is impacted by big data, hardware acceleration, and devel-
opment platforms. Moreover, considerable amounts of training data have been collected
from internet services or sensor data deployed in the real world. The advances in hardware
technologies, such as cloud computing servers, central processing units, and graphics

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-10-15 Accepted: 2020-12-15 Published: 2021-07-09

https://doi.org/10.46586/tches.v2021.i3.149-175
mailto:{Nakai.Tsunato, Suzuki.Daisuke}@{dy, bx}.MitsubishiElectric.co.jp
mailto:fujino@se.ritsumei.ac.jp
http://creativecommons.org/licenses/by/4.0/

150 Crafting Adversarial Examples through Timing Leaks against DNNs on Embedded Devices

processing units, enable the high-speed computation of large data for DNNs. Specifically,
embedded devices have increasingly attracted attention because they allow real-time and
distributed processing on site. To incorporate DNNs into microcontrollers (MCUs), several
frameworks, such as uTensor [uTe17] and TensorFlowLite [Ten17], may be employed.

The widespread application of DNNs, however, has been exploited by attackers; in view
of this, several attacks against DNNs have been investigated [NIS19]. Adversarial examples
(AEs) [SZS+14], also known as adversarial example / evasion attacks, which are among
the attacks against DNNs, add small perturbations to the input data of DNNs to prompt
misclassification, causing a severe real-world impact. For instance, a DNN model for
image recognition erroneously identified ”stop” as ”speed limit” by only attaching a small
sticker to a road sign as an AE [EEF+18]. For speech recognition, it is actually possible
to craft malicious speech data as AEs against a DNN speech recognition model on smart
speakers [YS19]. These are also regarded as AEs against malware detection [GPM+17].
The other attacks against DNNs have also been reported such as poisoning attacks which
train poisonous models that cause misclassification by introducing malicious data into
the training data [JOB+18], model inversion attacks which steal training data from the
DNN models [FJR15], and model extraction attacks which steal internal information from
DNNs [TZJ+16].

Existing attacks for AEs are categorized as white-box [GSS15] and black-box attacks
[CW16], as using the perfect knowledge of a trained model and limited knowledge of
input-output data, respectively. Several black-box attacks employ output probability to
craft AEs. Accordingly, one of the countermeasures include gradient-masking [PMSW16]
and confidence reduction [CAD+18], which conceals the output probability, i.e., the output
is merely a predicted label without any probability.

The security of DNNs on embedded devices has been discussed recently [IGGK19,
SW19]. Several of the attacks against DNNs of embedded devices (e.g., against crypto-
graphic devices [Koc96, KJJ99]) have been severe because the attackers easily reverse-
engineered them or measured the side-channel leaks, such as processing time and power
consumption. Side-channel attacks have been reported since 2018; however, practically all
existing works on DNN attacks focus on model extraction [HZS18, BBJP19].

In this paper, a novel attack for crafting AEs using the differential processing time
according to the input data of the DNNs on embedded devices is proposed. The proposed
attack is a black-box attack against embedded devices, focusing on the relationship between
the number of activated nodes and the processing time of DNNs on embedded devices.
This creates AEs that can reduce the output probability of a correct label. Compared with
existing black-box attacks, the proposed attack only utilizes the processing time without
the necessity of output probability; consequently, the attack renders the gradient-masking
and confidence reduction countermeasures ineffective.

The proposed attack targets DNNs on embedded devices such as real-time object
detection, anomaly detection, and natural language processing system. It is assumed that
the design information of the DNNs is protected because of intellectual property. That
is also the countermeasure against white-box attacks. Moreover, the output of DNNs is
a predicted label by the countermeasure against black-box attacks. In this scenario, the
proposed attack measures processing time, crafts AEs using data-dependent timing leaks
without any probability, and feeds AEs as malicious data to embedded devices via input
files. In this study, the focus is on how to craft digital AEs with small perturbations.
Considering more practical threat, it is also necessary to assume physical AEs which are
robust AEs against various environmental noise in the physical world. The physical AEs
are the adjusted AEs to use signals from cameras and other sensors in the physical world.
In this paper, the physical AEs are out of scope, however, a significant fraction of digital
image AEs can cause misclassification through cameras in the physical world [KGB16].
The proposed attack has the potential ability to be applied to craft the physical AEs by

Tsunato Nakai, Daisuke Suzuki and Takeshi Fujino 151

combining signal processing methods considering environmental noise [YS19]. Moreover, a
lot of existing works uses digital AEs to evaluate attacks.

The proposed attack is evaluated with basic DNN models on two MCUs. The exper-
imental results demonstrate that the proposed attack can craft effective AEs to cause
the misclassification of one of the incorrect labels by increasing the number of activated
nodes using data-dependent timing leaks. Furthermore, the cause of the proposed attack
is analyzed by using constant time countermeasure for preventing data-dependent timing
leaks.

The contributions of this work can be summarized as follows.

• A novel black-box attack to craft AEs is proposed using differential processing
time according to the input data of DNNs on embedded devices. This is the first
adversarial example attack using side-channel leaks.

• Two relationships are identified: between the processing time and the number of
activated nodes and between the number of activated nodes and AEs.

• It is demonstrated that the proposed attack depends on the processing time of
activation functions, and different attack methods for two types of activation functions
are presented.

• The cause of the proposed attack is clarified by implementing a countermeasure using
activation functions with constant time to prevent data-dependent timing leaks.

This paper is organized as follows. In Section 2, the background attacks against DNNs
and AEs are explained. In particular, the related works on side-channel attacks against
DNNs and black-box attacks of AEs are presented in Section 3. Then, in Section 4, a
timing black-box attack is proposed. The evaluation and experimental results are shown
in Section 5, and the cause of the proposed attack is analyzed in Section 6. Finally, the
conclusions are summarized in Section 7.

2 Background
In this section, the relevant background knowledge of crafting AEs against DNNs is
presented. Our proposed attack is a novel black-box attack without exploiting output
probability. The taxonomy of attacks against DNNs is shown in Appendix A.

Adversarial example attacks are mainly classified into two types according to the
attacker’s knowledge: white-box and black-box attacks. White-box attacks craft AEs
using trained model information, such as the architectures and parameters of DNNs. The
attackers can extract trained model information and use this to effectively craft AEs.
Black-box attacks craft AEs using the input-output data of DNNs. These are more severe
than white-box attacks because they can still execute adversarial example attacks despite
the absence of internal trained model information. Nevertheless, it is more difficult for
black-box attacks to craft effective AEs because of the limited knowledge of the targeted
DNN models.

The first black-box attack was proposed by Papernot et al. in 2016 [PMG16]. The
attack can craft AEs based on AE transferability. This transferability is a property that
several AEs generate to mislead a specific model, f , to in turn mislead other models trained
with similar data although their architectures differ. The attackers craft substitute models
using the input-output data of the targeted DNN models. Thereafter, they attack the
target via white-box attacks using the crafted substitute models. The AE transferability
depends on the type of DNN. The trained models with a deeply hidden layer possess the
robustness of AE transferability [ASCS18]. Moreover, several attacks only use the output
labels of DNNs without the output probability to craft the substitute model [PMSW16].

152 Crafting Adversarial Examples through Timing Leaks against DNNs on Embedded Devices

However, the attacks require a large input-output dataset; consequently, attacks that
employ transferability are more time-consuming than other attacks.

In contrast, several black-box attacks without the necessity of training a substitute
model have been proposed since 2016 [NK17, GGY+19]. Narodytska et al. crafted AEs
by constructing a numerical approximation of the network gradient using the output
probability of each label on DNNs [NK17]. Guo et al. formulated AEs according to the
assumption of a moderate continuous output probability [GGY+19]. The attack, i.e., a
simple black-box adversarial attack (SBA), is one of the most powerful black-box attacks.
The foregoing attacks utilize both output probability and labels; therefore, gradient-masking
[PMSW16] and confidence reduction [CAD+18], which conceal the output probability, are
among the effective countermeasures.

In this paper, a timing black-box attack is proposed as a novel black-box attack against
embedded devices. The proposed attack features AE crafting by employing data-dependent
timing leaks as side-channel information in a black-box attack scenario. The proposed
attack is only focused on the input data-dependent processing time without utilizing the
output probability; hence, gradient-masking and confidence reduction countermeasures
are ineffective. Furthermore, the proposed attack can craft AEs within a short duration
because it does not require the generation of a substitute model. Note that the proposed
attack is non-targeted and causes misclassification to one of the incorrect labels.

3 Related Works
This section introduces the related works pertaining to side-channel attacks against DNNs
and black-box attacks for AEs.

3.1 Side-Channel Attacks against DNNs
Since 2018, side-channel attacks against DNNs have been reported, and virtually all existing
works only focus on model extraction attacks.

Hua et al. showed the leak in the architecture of a convolution neural network (CNN)
by focusing on the memory access pattern (memory address/time) in the CNN accelerator
[HZS18]. They also revealed the model parameters of the CNN by concentrating on
the memory access pattern in the zero pruning accelerator. There are the other papers
that focus on the memory access pattern [YFT18, HDK+18, AM18]; these are called
cache-based side-channel attacks.

Batina et al. demonstrated the reverse engineering of DNNs on an MCU based on the
side channel information, such as timing and electromagnetic emanations (EM) [BBJP19].
Yoshida et al. extracted the architecture and parameters of a DNN model using the EM
on the field-programmable gate array accelerator [YKSF19]. Duddu et al. profiled the
processing time of several DNN models to reveal the type of DNN architectures [DSRB18].
Dubey et al. proposed countermeasures against differential power analysis attacks to
protect the DNN model parameters [DCA19].

This study focuses on the differential processing time of DNNs on embedded devices as
side-channel information. This means that in the proposed attack, data-dependent timing
side-channel leaks are employed to craft AEs.

3.2 Black-Box Attacks for AEs
The fast gradient sign method (FGSM) [GSS15] is among the most powerful and fastest
white-box attacks. The FGSM adds perturbations to each input data component in the
vector of increasing DNN loss. Given DNNs with parameter θ and loss J(θ;x; y), the

Tsunato Nakai, Daisuke Suzuki and Takeshi Fujino 153

FGSM yields the following AE xadv:

xadv = x+ ε ∗ sign(∇xJ(θ;x; y)), (1)

where x is the input data, y is the output data, and ε is a reasonably small perturbation
value. The attackers should know the internal trained model information, such as θ. In
the case of DNNs on embedded devices, one of the countermeasures is encrypting the
internal trained model to conceal it [IBCK18]. For embedded devices, reverse engineering
countermeasures are effective against white-box attacks.

The SBA, which extends the FGSM, focuses on the changes in output probability
instead of the function loss [GGY+19]. This attack is one of the most powerful and fastest
black-box attacks; it introduces small perturbations in the vector of decreasing output
probability of a correct label (non-targeted attacks) or increasing output probability of an
incorrect label (targeted attacks). Therefore, it is possible for either x + ε or x - ε (where x
is a part of the input data, and ε is a perturbation) to change the output probability of each
input data component. The attackers only use the output probability according to each
input data part. In the case of DNNs on embedded devices, one of the countermeasures
is the confidence reduction countermeasure, which limits the output probability of each
label; basically, the output is only a label.

In this paper, a black-box attack without an output probability (caused by the confidence
reduction countermeasure) is proposed. This means that the proposed attack focuses on
embedded devices and non-targeted attacks.

4 Timing Black-Box Attacks
This section shows the concept of the proposed attack. The threat model, proposed timing
black-box attacks, and attack algorithm are also elaborated.

4.1 Threat Model
The proposed attack scenario and the attacker capability are explained as follows. The
main goal of attackers is to craft AEs by measuring the processing time of DNNs in a
black-box scenario without an output probability because of the confidence reduction
countermeasure.

4.1.1 Attack Scenario

The attack scenario mainly focuses on embedded devices. The DNNs on these devices
have attracted interest because they allow distributed and real-time processing on site. In
view of this, however, attackers can easily measure the processing time if they gain access
to these devices. In addition, an ENISA report mapping the assets and threats of artificial
intelligence notes physical attacks to hardware [ENI20]. The threat model of the physical
attacks fits our attack.

In this study, the focus is set on simple MCUs as embedded devices for proof of concept.
Several frameworks, such as uTensor [uTe17] and TensorFlowLite [Ten17], incorporate
DNNs into simple MCUs for low power and low cost. The security of DNNs on simple
MCUs such as Arduino [Ard05] has been discussed recently [SW19, BBJP19]. These
devices have single-core and deterministic timing behavior, however, the deployed DNN
sizes are small due to limited resources. Embedded devices with neural network accelerator
for large DNNs and high speed, such as Jetson nano GPU [Jet19] and Coral Edge TPU
[Cor19], are discussed in Appendix B.

In this scenario, the attacker measures the processing time, crafts AEs by using data-
dependent timing leaks, and feeds AEs to embedded devices via input files. Two security

154 Crafting Adversarial Examples through Timing Leaks against DNNs on Embedded Devices

3

Input data Output data

Unknown
(b)

Embedded devices

(c)

(a)

Only a label

Figure 1: Attack scenario of timing black-box attacks against DNNs on embedded devices
with naive countermeasures

functions are assumed as naive countermeasures for DNNs on embedded devices. The
first function is model encryption; it is a countermeasure against reverse engineering and
white-box attacks. The other function is confidence reduction, which is a countermeasure
against several black-box attacks, such as the SBA. The attack crafts AEs by using
data-dependent timing leaks without using model information and output probability.
The advantage of the attack scenario is that our attack can craft AEs using processing
time with fewer queries than existing black-box attack scenarios if the model is protected
(encrypted) and the output is only label. The attackers can get the processing time by
modifying the execution code to measure the time from input to output of DNN operation.
In case of embedded devices, it is possible to measure the time by acquiring the power
consumption or electromagnetic radiation.

Our attack can also be applied to a scenario such as a profiling attack. The attackers
craft AEs on a target device, and then input the AEs to other devices for misclassification.
These devices have the same protected model. For example, one of the realistic attack
scenarios is an attack to Optical Character Recognition (OCR) with DNN. A pre-computed
noise is applied to an input image as an AE. The input image file looks fine, but it can fool
the character recognition. Some papers have proposed AE attacks to OCR [SS18, CX20].

4.1.2 Attacker’s Capability

Figure 1 shows the attack scenario against embedded devices from the viewpoint of
attackers. First, the attackers do not know the targeted internal trained model information,
such as the (a) architectures and parameters. They also do not have information on the
output probability because of the confidence reduction countermeasures. The output is
only a predicted label. Second, they can (b) feed their input data into the targeted device.
Third, they are capable of (c) measuring the processing time from the input to the output
of the targeted device. Therefore, the attack achieves success to craft AEs simply by
measuring the processing time through feeding the input data. The attackers can measure
the processing time from input to output of DNN operation.

4.2 Proposed Attacks

This subsection presents the proposed attack concept, focusing on the number of activated
nodes and data-dependent timing leaks of activation functions. The basic idea of the
attack is that increasing the number of activated nodes causes misclassification because
increasing propagated values affects the output of DNNs.

Tsunato Nakai, Daisuke Suzuki and Takeshi Fujino 155

x

w
1

layer 1

F(x)

f1() f2() fn()

layer 2 layer n

x
1

w
2

x
2

w
n

x
n

δ()

δ()

δ()

δ()

δ()

δ()

δ()

δ()

δ()
b
1

b
2

b
n

Figure 2: Simple DNN model

4.2.1 AEs and Activated Nodes

Goodfellow et al. explained the existence of AEs in linear models [GSS15]. Given the
original input data, x, and a perturbation, η, the AE, x̃, is as follows.

x̃ = x+ η. (2)

Consider the dot product between a weight vector, w, and x̃:

wT x̃ = wTx+ wT η. (3)

According to Eq. (3), the perturbations cause the activation, wT x̃, to increase by wT η
in the linear model. If η = ε sign(w), then the activation will increase by εmd, where
ε is a small perturbation, w has d dimensions, and the average magnitude of a weight
vector element is m. Therefore, though perturbations only cause small changes to the
input data, they greatly affect the output data by devising the perturbation vectors in
higher dimensions such as DNNs.

Crafting the AEs is considered here by focusing on the number of activated nodes in
DNNs. Figure 2 shows a simple DNN example to explain the concept. The DNN model,
F (), consists of n successive layers of perceptrons from the input data, x to the output
data:

F (x) = fn(...f2(f1(x1))), (4)
xi+1 = fi(xi), (5)

xi,j = δ(
∑
k

(wi,j,k xi−1,k) + bi,j), (6)

where the calculation of fi of the ith layer includes the input data, xi+1, whose vector
component, xi,j , from the kth to the jth perceptron is calculated by the activation function,
δ, weight vectors, wi,j,k, and bias vectors, bi,j . According to Eqs. (5) and (6), the DNN
model nests the activation functions, δ. In the DNNs, the activation function of each
node defines the output of the nodes given the input data. The node output can either be
activated and non-activated. Accordingly, the DNN output data are affected depending
on whether the nodes are activated or non-activated. Crafting the AEs is considered by
selecting the perturbation vectors for increasing the number of activated nodes, i.e., nodes
that are ready to propagate values. This is because the AEs aim to severely affect the
output data via the small perturbation, thus explaining the linear model (Eq. (3)).

156 Crafting Adversarial Examples through Timing Leaks against DNNs on Embedded Devices

Figure 3: Simulation of relationship between the change in the number of all layers’
activated nodes and the mean output probability of the correct label in the MLP model
with ReLU.

Figure 4: Simulation of relationship between the change in the number of all layers’
activated nodes and the mean output probability of the correct label in the MLP model
with Sigmoid.

4.2.2 Simulation of Activated Nodes

The connection between the number of activated nodes and the output probability of
correct labels is simulated. The simulation uses a basic multilayer perceptron (MLP) model
on a Linux OS computer (Ubuntu 18.04) with an Intel Core i-5 CPU. Table 1 summarizes
the architecture of the MLP model, which is trained with 60,000 elements of training data
from the Modified National Institute of Standards and Technology (MNIST) database of
handwritten digits [MNI98]. The simulation uses two activation functions, rectified linear
unit (ReLU) and Sigmoid functions.

The simulation focuses on activation nodes in the first layer (128 nodes), which is
sensitive to the input data, to manipulate the number of activated nodes. The randomly
selected activation nodes in the first layer [0-128] are rewritten with an activated value
(average of all activated node’s values) or a non-activated value (0), respectively. When
the activation nodes are rewritten, the simulation observes the increase or decrease in the
number of activated nodes in all layers and the output probability of the correct label.

Figure 3 and Figure 4 show the relationship between the change in the number of all
layers’ activated nodes and the mean output probability of the correct label in the MLP
model with ReLU and Sigmoid functions, respectively. Furthermore, Figure 5 and Figure 6
show the number of successful attacks (misclassification) on 1,000 samples per the change
of all layers’ activated nodes. The output probability is the mean value on 1,000 samples
per the change of all layers’ activated nodes.

Tsunato Nakai, Daisuke Suzuki and Takeshi Fujino 157

Table 1: MLP model architecture for MNIST dataset

Layer Name Layer Type Model
Input layer Input 784
1st layer Fully Connected 128
2nd layer Fully Connected 64
3rd layer Fully Connected 32
Output layer Softmax 10

Figure 5: Simulation of relationship between the change in the number of all layers’
activated nodes and the number of successful attacks (misclassification) in the MLP model
with ReLU.

Figure 6: Simulation of relationship between the change in the number of all layers’
activated nodes and the number of successful attacks (misclassification) in the MLP model
with Sigmoid.

The simulation results show that the output probability decreases as the increase or
decrease in the number of activated nodes in both ReLU and Sigmoid functions. The
decrease in the output probability causes misclassification and increases the number of
successful attacks. This phenomenon is especially noticeable when the number of activated
nodes increases. Increasing the number of activated nodes results in more successful attacks
in simulations and therefore this is a strategy an attacker would use to develop an AE.
Appendix C shows similar simulation results for CNN because CNN mainly consists of
convolution layers including activation functions.

158 Crafting Adversarial Examples through Timing Leaks against DNNs on Embedded Devices

4.2.3 Activation Nodes and Data-dependent Timing Leaks

It is hypothesized that the change in the number of activated nodes may be observed from
the processing time of activation functions. Batina et al. reported that several types of
activation functions have different processing times depending on the input data [BBJP19].

For example, ReLU function, which is one of the most commonly used activation
functions, is as follows:

δ(z) =
{
z if z > 0 (the processing time : tα),
0 if z ≤ 0 (the processing time : tβ), (7)

where z represents the input data; tα andtβ are the processing times of the activated
and non-activated cases, respectively. It outputs all zeros for negative input data (non-
activated) and directly yields the output data for positive input data (activated). The
data-dependent timing leaks of a ReLU function mean that the processing time is longer
if the input data are positive because of the algorithm and its implementation. In other
words, the processing time tends to be longer if the node is activated by the ReLU function,
that is, tα > tβ ; hence, the ReLU function is involved.

In the case of ARM Cortex-M4 on the evaluation board, a conditional branch is
completed in a single cycle if the branch is available; otherwise, it is completed in three
cycles. The source code of the original activation function written in C++ is as follows.

i f (in [i] > 0) { //δ(z) : z > 0 in the equation (7)
out [i] = in [i] ;

} else { //δ(z) : z ≤ 0 in the equation (7)
out [i] = 0 ;

}

Therefore, depending on the input data, the activation function indicates two cycles as
differential processing times.

In the case of a sigmoid function, which is one of the activation functions, the processing
time tends to be shorter if the node is activated [BBJP19]. Therefore, the data-dependent
timing leaks also indicate whether the nodes in the DNNs have been activated or not by
sigmoid functions, that is, tα < tβ .

4.2.4 Crafting AEs using Data-dependent Timing Leaks

The idea of the proposed attack is to craft AEs by selecting the perturbation vectors to
increase the number of activated nodes using the data-dependent timing leaks of activation
functions. According to the DNN model in Eq. (5), the number of all nodes, Pfi

in fi(xi)
is

Pfi
= αfi

+ βfi
, (8)

where αfi and βfi are the number of activated and non-activated nodes in fi(xi), respec-
tively. Moreover, the processing times, Tfi of fi(xi) and T (x) of F (x), are

Tfi = αfitα + βfitβ , (9)
T (x) = Tf1 + Tf2 + ...+ Tfn , (10)

where tα and tβ are the processing times of the activated and non-activated nodes on
the activation function, δ, respectively. Note that the nodes are not processed in parallel.
According to the Eqs. (8)-(10), the number of activated nodes, αfi

, is significantly correlated
to the processing time, T (x). Hence, the proposed attack measures the processing time
and crafts AEs by deciding the perturbation vectors for increasing the number of activated
nodes using the processing time.

Tsunato Nakai, Daisuke Suzuki and Takeshi Fujino 159

Activated Non-activated

99%

1%

0%

20%

75%

5%

Time : Shorter Time : Longer

Correct label

(a) Fewer activated nodes (b) More activated nodes

Figure 7: The attack concept against DNNs with ReLU functions is that these functions
have longer processing times when the nodes are activated by the data-dependent timing
leaks depending on the input data. Increasing the number of activated nodes affects the
DNN output data because of the increasing number of propagated values.

Figure 7 shows an example of the attack concept in the case of a DNN with ReLU
functions. The proposed attack adds a small perturbation to the input data for increasing
the number of activated nodes. If the number of activated nodes increases, then the
output probability of the correct label is more affected than the output probability of
fewer activated nodes shown in Figure 7 (a). Moreover, a ReLU function uses a longer
processing time if the output node is activated. The DNN with more activated nodes is
more time-consuming in the case shown in Figure 7 (b). Therefore, according to Eqs. (9)
and (10) and tα > tβ in the ReLU function, the proposed attack focuses on T (x)A < T (x)B ,
as shown in Figure 7.

4.3 Algorithm of Proposed Attacks

Figure 8 shows the strategy of the proposed attack for AEs. First, (a) add a small
perturbation, ε, to a part of the input data, x, of embedded devices with DNNs. Next,
(b) measure the processing time when the input data are fed to the embedded devices,
and decide the perturbation vectors (x+ ε or x− ε) for each part of the input data (x)
according to the changes in the measured processing time. Finally, (c) craft AEs to add
the selected perturbations to the original input data.

Even if the confidence reduction countermeasures hide the output probability, the
proposed attack can craft AEs in a black-box attack scenario because these perturbations
are determined without the output probability. The proposed attack depends on the type
of activation function. To ensure accuracy of DNNs, the common activation operations
are limited to ReLU and sigmoid functions; therefore, the attackers can estimate the type
of activation function used. Basically, if an activation function has data-dependent timing
leaks (depending on whether or not the activation nodes are enabled), the attacks can
test both the abovementioned perturbation vectors, which may require a long or short
processing time.

Algorithm 1 shows the proposed attack based on the assumption that the activation
functions, such as ReLU functions, require more time if the output node is activated. The
presented attack targets embedded devices with DNN F (x), which contains the input data,
x (with size n and label y). The parameter for crafting an AE is the perturbation bound,
ε, which is set in advance.

160 Crafting Adversarial Examples through Timing Leaks against DNNs on Embedded Devices

Embedded

devices

(a) Add a small perturbation, ɛ, to a part of input data, x

(b) Measure the processing time of each x ± ɛ

Perturbations

(c) Craft AEs by selecting x ± ɛ with timing leaks on each part of x

AEsInput data

Input data Output data

Figure 8: Strategy of timing black-box attacks for AEs

Algorithm 1 Algorithm of timing black-box attacks in ReLU function case
Require: Input x, Input size n, Index i, DNN F (y:Label|x)
Output: AE xadv
Parameters: Perturbation bound ε

1: time() //Get the current time
2: for i = 0 to n do
3: x′ = x
4: x′i = x′i + ε //Add the perturbation (+ ε)
5: t1 = time()
6: F (y|x′) //Prediction
7: t2 = time()
8: elapsed_time1 = t2 - t1 //Measure the processing time
9: x′ = x

10: x′i = x′i - ε //Add the perturbation (− ε)
11: t1 = time()
12: F (y|x′) //Prediction
13: t2 = time()
14: elapsed_time2 = t2 - t1 //Measure the processing time
15: if elapsed_time1 > elapsed_time2 then
16: ptbi = 1 //Decide the perturbation vector (+)
17: else
18: ptbi = -1 //Decide the perturbation vector (−)
19: end if
20: end for
21: xadv = x + ε ptb //Craft the AE
22: return xadv

In Algorithm 1, the perturbations, ε, is first added to the input data, x′, copied from
the original input data, x; a pixel of the input data, x′i, is xi + ε or xi − ε. Moreover, the
process time of each perturbation vector (+ε and −ε) is measured, i.e., elapsed_time1
and elapsed_time2. Thereafter, these measured processing times, elapsed_time1 and
elapsed_time2, are compared. The activated nodes consume more time; hence, let ptbi be
the perturbation vector (+ε or −ε) of the longer processing time for the pixel. The above
process is executed for each pixel of the input data, xi, with the image size, n. Finally, an
AE xadv is crafted by adding the perturbation vectors, ε ptb, to the input data, x.

Tsunato Nakai, Daisuke Suzuki and Takeshi Fujino 161

Input-output data

Serial communication

MCUs

3

Trained DNN

models

(Python)

Mbed code

(C++)

Transfer

uTensor

framework

Timing black-box

attack program

(Python)

Measure processing time

Inp

Seria

3

er (NUCLEO-F767ZI)

(FRDM-K64)

dog

Figure 9: Experimental environment

Table 2: CNN model architecture for CIFAR-10 dataset

Layer Name Layer Type Model
Input layer Input 32x32x3
1C layer Convolution 2x2x3x16
2C layer Convolution 3x3x16x32
1P layer Pooling 1x2x2x1
3C layer Convolution 3x3x32x32
4C layer Convolution 3x3x32x32
2P layer Pooling 1x2x2x1
5C layer Convolution 1x1x32x64
6C layer Convolution 1x1x64x128
1F layer Fully Connected 128
2F layer Fully Connected 64
Output layer Softmax 10

5 Experiments and Evaluation
This section presents the experimental results and evaluation of the proposed attack on
two MCUs as embedded devices. First, the relationship between the number of activated
nodes and AEs crafted by data-dependent timing leaks from a simple DNN on an MCU is
investigated. The attack crafts the AEs to increase the number of activated nodes using
the time leaks. Second, the proposed attack is evaluated for comparison with random
noise under the same condition without the use of output probability. The result shows
that the proposed attack can craft effective AEs with small perturbations. Moreover, two
common activation functions, which are ReLU and sigmoid, are compared because the
proposed attack is based on the time leaks of activation functions. Finally, the presented
attack is evaluated on other MCUs for CNN.

5.1 Setup
The experimental setup is based on the threat model presented in Section 3.1; Figure 9
shows the experimental environment. The attack is evaluated on two MCUs as embedded
devices.

A basic MLP and a CNN model are considered. These models are commonly used in
modern applications and include the basic layers of DNNs. Accordingly, the evaluation
using the two models is considered a worst-case scenario because the models are regarded
as a minimum configuration of other modern DNNs. Table 1 summarizes the architecture
of the MLP model, which is trained with 60,000 elements of training data from the MNIST
database. The accuracy of the MLP model is 97.47%. Table 2 lists the architecture of the
CNN model, which is trained with 50,000 elements of training data from the CIFAR-10

162 Crafting Adversarial Examples through Timing Leaks against DNNs on Embedded Devices

Figure 10: Relationship between perturbation bound and number of activated nodes
crafted by AEs of proposed attack using data-dependent timing leaks (solid line) and
random noise (dashed line) in one AE. Proposed attack can increase number of activated
nodes with small perturbations decided by data-dependent timing leaks compared with
random noise. The attack causes misclassification at 0.15 perturbation.

dataset (Canadian Institute for Advanced Research) [CIF09]. The accuracy of the CNN
model is 81.96%.

The DNN development platform is TensorFlow 2.0 in Python 3.7. In this work, the
uTensor framework, which is one of the first open-source frameworks to place DNNs on
MCUs [uTe17], is used. The evaluation boards are FRDM-K64F [FRD14], which has an
ARM Cortex-M4 MCU, and NUCLEO-F767ZI [NUC16], which has an ARM Cortex-M7
MCU. The MLP model is deployed in FRDM-K64F, and the CNN model is deployed in
NUCLEO-F767ZI based on memory size.

In this experiment, the proposed attack program inputs test data into the evaluation
board over serial communication and receives an output label from the board. The process-
ing time between the input and output of the MCU is measured using time.perf_counter()
function in the program. Note that the output is only a label and has no probability.

5.2 Activated Nodes and Data-dependent Timing Leaks
The change in activated nodes by the AEs, which are crafted by the proposed attack using
data-dependent timing leaks, is also investigated. According to Section 4.2, the attack
focuses on the relationship between activated nodes, AEs, and data-dependent timing
leaks. In this experiment, the attack crafts AEs against the MLP model on the MCU
(FRDM-K64F); the activation functions are ReLU functions. Therefore, the proposed
attack focusing on the processing time tends to be longer if the node is activated, that
is, tα > tβ , in the ReLU functions. The MLP model is a white-box model to explain the
relationship between the perturbation bound and the number of activated nodes. If the
output of each activation function is not zero (activated), then the number of activated
nodes in the MLP model is counted. The perturbation bound is added to the input data
at increments of 0.05 until it causes misclassification.

Figure 10 shows the relationship between the perturbation bound governed by the data-
dependent timing leaks and the number of activated nodes in one AE; the comparison with

Tsunato Nakai, Daisuke Suzuki and Takeshi Fujino 163

Original

images

Labels

Images with

noise

Labels

Random

noise

AE

Labels

Perturbations

Misclassification

(a) Timing black-box attack

(b) Random noise

Figure 11: AEs crafted by proposed attack and random noise against MLP model on
MCU. Original images are shown in first row, and attack results are presented in second
(perturbations) and third (AEs) rows. Random noise results are shown in fourth (random
noise) and fifth (images with noise) rows. Perturbation bound, ε, and misclassification
labels are shown in the results.

random noise is also presented. Our attack causes misclassification with 0.15 perturbation.
The number of activated nodes on each layer is counted; thereafter, their total number is
calculated by finding the sum of all activated nodes from all layers. According to Figure 10,
it is evident that the attack increases the number of activated nodes (solid line) using the
data-dependent timing leaks; this number is greater than that activated by random noise
(dashed line). Although the random noise also slightly increases the number of activated
nodes, it cannot effectively increase this number with a small perturbation. Therefore, it
is confirmed that the perturbations decided by the data-dependent timing leaks increase
the number of activated nodes with small perturbations more effectively.

5.3 Evaluation of AEs
The proposed attack against the MLP model on the MCU is evaluated by comparing it
with random noise; the activation operations are ReLU functions. The proposed attack is
a black-box attack without using output probability. Accordingly, the proposed attack is
compared with random noise under the same condition.

Figure 11 shows the experimental results of the attack and the random noise against
the MLP model on the MCU. The perturbation bound, ε, is increased in 0.05 steps until it
causes misclassification. The random noise is within [-1,1] in 0.05 steps. The figure shows
that our AE samples in all types of MNIST labels, i.e., 0-9, are crafted by the proposed
attack using small perturbations in the third row. The average perturbation bound of our
AEs from the second row is 0.135. In contrast, the random noise, ε, is larger than the

164 Crafting Adversarial Examples through Timing Leaks against DNNs on Embedded Devices

(a) Random noise (b) Timing black-box attack

Figure 12: Histogram of successful attacks on 1,000 samples of MNIST dataset. Pro-
posed attack is compared with random noise. Each perturbation bound is plotted when
misclassification is caused by proposed attack and random noise.

perturbations (ε) of our attack for misclassification in the fifth row. The average random
noise is 0.27 from the fourth row. Therefore, the proposed attack can craft more effective
AEs with small perturbations (ε), which are approximately half as large as the random
noise.

Figure 12 shows the experimental results in 1,000 samples of the MNIST dataset as
well as the histogram of successful attacks on the perturbation bound until it causes
misclassification on each sample. The histogram indicates that practically all the attacks
with small perturbations from 0.05 to 0.25 cause misclassification. By contrast, that of the
random noise is from 0.25 to 0.45 for misclassification. The average perturbation bound
of the attack is 0.16; the peak signal-to-noise ratio (PSNR), which is commonly used to
measure the quality of image compression, is 25.18 dB. Typical values for the PSNR in
high-quality images are around 30 dB, where higher are better. By contrast, that of the
random noise is 0.35; the PSNR is 11.73 dB. It is clear that the proposed attack tends to
craft AEs with small perturbations compared with the random noise in 1,000 samples of
the MNIST dataset.

The number of queries for the attack depends on input pixel, perturbation vectors (+
and -), and increments of perturbation bound. For example, it takes 4,704 queries for AEs
of 0.15 perturbation at increments of 0.05 in MNIST. However, attacks not using output
probability need at least 23,000-300,000 queries in MNIST [CLC+19].

5.4 Activation Functions and Data-dependent Timing Leaks
Two types of common activation functions, which are ReLU and sigmoid, are implemented
and evaluated against the MLP model on the MCU. According to Section 4.2, the proposed
attack is based on the data-dependent timing leaks of activation functions. If the node is
activated, the data-dependent timing leaks of a ReLU function require a long processing
time, whereas those of the sigmoid function tend to be shorter. These data-dependent
timing leak models are based on the report of Batina et al. that activation functions have
different processing times depending on the input data [BBJP19].

Figure 13 shows the comparison of results between the ReLU and sigmoid functions on
the proposed attack. As shown in Figure 13 (a), the attack can craft AEs with a smaller
perturbation bound by selecting the perturbation vectors for the longer processing time.

Tsunato Nakai, Daisuke Suzuki and Takeshi Fujino 165

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
e
rt

u
rb

a
ti
o
n

b
o
u
n
d

Shorter LongerShorter Longer

Time to decide perturbation vectors Time to decide perturbation vectors

P
e
rt

u
rb

a
ti
o
n

b
o
u
n
d

(a) ReLU function (b) Sigmoid function

Figure 13: Comparison of results between ReLU and sigmoid functions in proposed attack
against MLP model. Perturbation bound are shown in the results. Attack depends on type
of activation function: ReLU has longer processing time than sigmoid function. Proposed
attack can craft AEs according todata-dependent timing leaks of activation functions.

Original image Random noise Image with noise Perturbations AE

(b) Timing black-box attack(a) Random noise

dog ε=0.30 ε=0.15 horsecat

Figure 14: AEs of proposed attack and random noise against CNN model on MCU.
Perturbation bound, ε, and misclassification labels are shown in the results.

In contrast, the sigmoid function has data-dependent timing leaks in which the processing
time tends to be shorter if the node is activated. As shown in Figure 13 (b), the presented
attack can craft AEs with a smaller perturbation bound by selecting the perturbation
vectors for the shorter processing time. Therefore, it is clear that the proposed attack
can craft AEs by selecting the perturbation vectors for increasing the number of activated
nodes using the processing time of the activation function. It is confirmed that the other
samples yield the same results.

5.5 Evaluation against CNN
The attack against the CNN model implemented on the MCU (NUCLEO-F767ZI) is also
evaluated; the activation functions are ReLU functions.

The experimental results of the attack are shown in Figure 14. The perturbation bound,
ε, is increased in 0.05 steps until it causes misclassification. As shown in the figure, the
AE causes the misclassification of the CIFAR-10 label (from ”dog” to ”horse”) with small
perturbations, which are half as large as the random noise. Therefore, the proposed attack
can also craft effective AEs with small perturbations against the CNN model. Furthermore,
the attack is successful on different MCUs for the MLP model.

166 Crafting Adversarial Examples through Timing Leaks against DNNs on Embedded Devices

(a) Random noise (b) Timing black-box attack

Figure 15: Histogram of successful attacks on 1,000 samples of CIFAR-10 dataset. Pro-
posed attack is compared with random noise. Each perturbation bound is plotted when
misclassification is caused by proposed attack and random noise.

Figure 15 shows the experimental results in 1,000 samples of the CIFAR-10 dataset
as well as the histogram of successful attacks on the perturbation bound until it causes
misclassification on each sample. The histogram indicates that practically all the attacks
with small perturbations from 0.05 to 0.25 cause misclassification. By contrast, that of the
random noise is from 0.25 to 0.55 for misclassification. The average perturbation bound of
the attack is 0.26; the PSNR is 18.17 dB. By contrast, that of the random noise is 0.44; the
PSNR is 9.70 dB. It is clear that the proposed attack also tends to craft AEs with small
perturbations compared with the random noise in 1,000 samples of the CIFAR-10 dataset.

6 Detailed Analysis
The cause of the proposed attack is analyzed by using constant-time against data-dependent
timing leaks on the MCU for the MLP model; the activation functions are ReLU functions.

6.1 Methods
An activation function with constant time is implemented against the timing black-box
attacks. The constant time is assumed to prevent data-dependent timing leaks depending
on the input data of the activation function because they require the same processing
time regardless of the input data. The constant time serves to verify whether or not
data-dependent timing leaks are prevented; it also works as a simple countermeasure.

The countermeasure implements two cycles of additional no-operation instructions to
the original activation function if the branch is not available. Therefore, the improved
activation function requires the same processing time regardless of the input data. The
countermeasure is deployed using an inline assembly code on the MCU. The source code
of the improved activation function with the constant time written in assembly language
is as follows:

Tsunato Nakai, Daisuke Suzuki and Takeshi Fujino 167

mov r0 , \%[in]
mov r1 , \%[zero]
cmp r1 , r0
b l t e l s e
nop //dummy operation
nop //dummy operation
mov \%[out] , r1

e l s e :
mov \%[out] , r0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9

P
er

tu
rb

at
io

n
 b

o
u
n
d

MNIST labels

Timing Black-Box Attacks

Random Noise

Coutermeasures

Figure 16: Comparison of timing black-box attacks and countermeasures

6.2 Evaluation of Constant Time Countermeasures
The experimental results of the proposed attack against the countermeasures are shown
in Figure 16. The perturbation bound is compared between the countermeasures and
non-countermeasures on each MNIST label (0-9). These results are shown in Figure 11
for comparison. The perturbation bound, ε, is increased in 0.05 steps until it causes
misclassification.

The figure further shows that the perturbation bound is increased by the counter-
measures. With the timing black-box attack, the perturbation bound is larger than the
countermeasures. Moreover, the average perturbation bound is 0.38, which is approximately
2.8 times as large as the non-countermeasures. Furthermore, the perturbation bound is
relatively larger than the random noise. These results depend on other processing times
that are unrelated to the crafting of AEs. It is assumed to influence by other processing
such as preprocessing or multiplication. Therefore, the cause of the proposed attack is the
implementation of an activation function with data-dependent timing leaks depending on
the input data.

The countermeasures in the other 1,000 samples of the MNIST dataset are also
evaluated. Figure 17 shows the histogram of successful attacks on the perturbation bound
until misclassification is caused on each sample. According to the histogram, practically
all the attacks cause misclassification caused by perturbations (from 0.25 to 0.55); the
random noise is also from 0.2 to 0.55. It is evident that countermeasures tend to prevent
the occurrence of data-dependent timing leaks in the 1,000 samples of the MNIST dataset.

168 Crafting Adversarial Examples through Timing Leaks against DNNs on Embedded Devices

(a) Random noise (b) Timing black-box attack

Figure 17: Histogram of successful attacks against countermeasure on 1,000 samples of
MNIST dataset. Proposed attack is compared with random noise. Each perturbation
bound is plotted when misclassification is caused by proposed attack and random noise.

The code size overhead of countermeasures for the constant time is + 56 bytes. The
execution time overhead is calculated by the number of non-activated nodes and the
processing time of constant time. For example, of the 224 nodes shown in Figure 10, the
MLP model initially has approximately 100 nodes that are activated. In this case, the
execution time overhead is up to +124×2 cycles: approximately 2 us in ARM Cortex-M4
(120 MHz), which accounts for 0.001% of the total processing time.

7 Conclusion

In this paper, a novel black-box attack for crafting AEs using differential processing time
according to the input data of DNNs is proposed. It is a new approach for crafting AEs
using side-channel information, such as processing time. The proposed attack is more
severe than conventional attacks because it only uses the processing time and renders
the gradient-masking and confidence reduction countermeasures ineffective. The attack is
evaluated against the MLP with ReLU and sigmoid functions and the CNN models on
two MCUs as embedded devices. The experiments show that the data-dependent timing
leaks are related to the number of activation nodes in the DNN. The proposed attack
increases the number of activation nodes using data-dependent timing leaks. Furthermore,
it can craft effective AEs with small perturbations in comparison to random noise under
the same condition. The perturbation bound of the AE is approximately half as large as
the random noise. It is clarified that the implementation of an activation function with
data-dependent timing leaks is the cause of the attack, by implementing and evaluating
constant time countermeasures.

Acknowledgments

This work was supported by JST-Mirai Program Grant Number JPMJMI19B6, Japan.

Tsunato Nakai, Daisuke Suzuki and Takeshi Fujino 169

References
[AM18] Manaar Alam and Debdeep Mukhopadhyay. How secure are deep learning al-

gorithms from side-channel based reverse engineering? CoRR, abs/1811.05259,
2018.

[Ard05] Arduino, 2005. https://www.arduino.cc.

[ASCS18] Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, and Mani B. Srivas-
tava. Genattack: Practical black-box attacks with gradient-free optimization.
CoRR, abs/1805.11090, 2018.

[BBJP19] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. CSI NN:
Reverse engineering of neural network architectures through electromagnetic
side channel. In 28th USENIX Security Symposium (USENIX Security 19),
pages 515–532, Santa Clara, CA, 2019.

[CAD+18] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay,
and Debdeep Mukhopadhyay. Adversarial attacks and defences: A survey.
CoRR, abs/1810.00069, 2018.

[CIF09] The cifar-10 dataset, 2009. https://www.cs.toronto.edu/ kriz/cifar.html.

[CLC+19] Minhao Cheng, Thong Le, Pin-Yu Chen, Huan Zhang, JinFeng Yi, and Cho-Jui
Hsieh. Query-efficient hard-label black-box attack: An optimization-based
approach. In International Conference on Learning Representations, 2019.

[Cor19] Google coral dev board, 2019. https://coral.ai/products/dev-board.

[CW16] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of
neural networks. CoRR, abs/1608.04644, 2016.

[CX20] Lu Chen and Wei Xu. Attacking optical character recognition (ocr) systems
with adversarial watermarks, 2020.

[DCA19] Anuj Dubey, Rosario Cammarota, and Aydin Aysu. MaskedNet: The First
Hardware Inference Engine Aiming Power Side-Channel Protection. arXiv
e-prints, page arXiv:1910.13063, Oct 2019.

[DSRB18] Vasisht Duddu, Debasis Samanta, D. Vijay Rao, and Valentina E. Balas.
Stealing neural networks via timing side channels. CoRR, abs/1812.11720,
2018.

[EEF+18] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song. Robust physical-world attacks on deep learning
visual classification. In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1625–1634, June 2018.

[ENI20] Artificial intelligence cybersecurity challenges, 2020.
https://www.enisa.europa.eu/publications/artificial-intelligence-
cybersecurity-challenges.

[FJR15] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks
that exploit confidence information and basic countermeasures. In Proceedings
of the 22Nd ACM SIGSAC Conference on Computer and Communications
Security, CCS ’15, pages 1322–1333, New York, NY, USA, 2015. ACM.

[FRD14] Frdm-k64f, 2014. http://www.nxp.com/frdm-k64f.

170 Crafting Adversarial Examples through Timing Leaks against DNNs on Embedded Devices

[GGY+19] Chuan Guo, Jacob R. Gardner, Yurong You, Andrew Gordon Wilson,
and Kilian Q. Weinberger. Simple black-box adversarial attacks. CoRR,
abs/1905.07121, 2019.

[GPM+17] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and
Patrick McDaniel. Adversarial examples for malware detection. In Simon
N. Foley, Dieter Gollmann, and Einar Snekkenes, editors, Computer Security
– ESORICS 2017 - 22nd European Symposium on Research in Computer
Security, Proceedings, Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
pages 62–79, Germany, jan 2017. Springer Verlag.

[GSS15] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. In International Conference on Learning
Representations, 2015.

[HDK+18] Sanghyun Hong, Michael Davinroy, Yigitcan Kaya, Stuart Nevans Locke, Ian
Rackow, Kevin Kulda, Dana Dachman-Soled, and Tudor Dumitras. Security
analysis of deep neural networks operating in the presence of cache side-channel
attacks. CoRR, abs/1810.03487, 2018.

[HZS18] Weizhe Hua, Zhiru Zhang, and G. Edward Suh. Reverse engineering convolu-
tional neural networks through side-channel information leaks. In Proceedings
of the 55th Annual Design Automation Conference, DAC ’18, pages 4:1–4:6,
New York, NY, USA, 2018. ACM.

[IBCK18] M. Isakov, L. Bu, H. Cheng, and M. A. Kinsy. Preventing neural network
model exfiltration in machine learning hardware accelerators. In 2018 Asian
Hardware Oriented Security and Trust Symposium (AsianHOST), pages 62–67,
2018.

[IGGK19] M. Isakov, V. Gadepally, K. M. Gettings, and M. A. Kinsy. Survey of
attacks and defenses on edge-deployed neural networks. In 2019 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1–8, 2019.

[Jet19] Nvidia jetson nano, 2019. https://www.nvidia.com/ja-jp/autonomous-
machines/embedded-systems/jetson-nano.

[JOB+18] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li. Manipu-
lating machine learning: Poisoning attacks and countermeasures for regression
learning. In 2018 IEEE Symposium on Security and Privacy (SP), pages 19–35,
May 2018.

[JYP+17] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami,
R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt,
D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew,
A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu,
K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox,
and D. H. Yoon. In-datacenter performance analysis of a tensor processing
unit. In 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), pages 1–12, 2017.

Tsunato Nakai, Daisuke Suzuki and Takeshi Fujino 171

[KGB16] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples
in the physical world. CoRR, abs/1607.02533, 2016.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages
388–397, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, Advances in Cryptology
— CRYPTO ’96, pages 104–113, Berlin, Heidelberg, 1996. Springer Berlin
Heidelberg.

[MNI98] The mnist database of handwritten digits, 1998. http://yann.lecun.c om/exd-
b/mnist.

[NIS19] A taxonomy and terminology of adversarial machine learning, 2019.
https://doi.org/10.6028/NIST.IR.8269-draft.

[NK17] N. Narodytska and S. Kasiviswanathan. Simple black-box adversarial attacks
on deep neural networks. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pages 1310–1318, July 2017.

[NUC16] Nucleo-f767zi, 2016. https://www.st.com/en/evaluation-tools/nucleo-
f767zi.html.

[PMG16] Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. Transferability
in machine learning: from phenomena to black-box attacks using adversarial
samples. CoRR, abs/1605.07277, 2016.

[PMSW16] Nicolas Papernot, Patrick D. McDaniel, Arunesh Sinha, and Michael P. Well-
man. Towards the science of security and privacy in machine learning. CoRR,
abs/1611.03814, 2016.

[SS18] Congzheng Song and Vitaly Shmatikov. Fooling OCR systems with adversarial
text images. CoRR, abs/1802.05385, 2018.

[SW19] Daniel Situnayake and Pete Warden. TinyML. O’Reilly Media, Inc., . edition,
December 2019. CHAPTER20 Privacy, Security, and Deployment.

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna Estrach,
Dumitru Erhan, Ian Goodfellow, and Robert Fergus. Intriguing properties of
neural networks. 1 2014. 2nd International Conference on Learning Represen-
tations, ICLR 2014 ; Conference date: 14-04-2014 Through 16-04-2014.

[Ten17] Tensorflow for mobile & iot, 2017. https://www.tensorflow.org/lite.

[TZJ+16] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. Stealing machine learning models via prediction apis. In 25th USENIX
Security Symposium (USENIX Security 16), pages 601–618, Austin, TX, 2016.

[uTe17] Ai inference library based on mbed and tensorflow, 2017.
https://github.com/uTensor/uTensor.

[YFT18] Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas. Cache telepa-
thy: Leveraging shared resource attacks to learn DNN architectures. CoRR,
abs/1808.04761, 2018.

172 Crafting Adversarial Examples through Timing Leaks against DNNs on Embedded Devices

[YKSF19] K. Yoshida, T. Kubota, M. Shiozaki, and T. Fujino. Model-extraction attack
against fpga-dnn accelerator utilizing correlation electromagnetic analysis. In
2019 IEEE 27th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 318–318, April 2019.

[YS19] Hiromu Yakura and Jun Sakuma. Robust audio adversarial example for a
physical attack. In Proceedings of the 28th International Joint Conference on
Artificial Intelligence, IJCAI’19, pages 5334–5341. AAAI Press, 2019.

Tsunato Nakai, Daisuke Suzuki and Takeshi Fujino 173

Training data

(a) Adversarial example attacks (AEs)

(b) Poisoning attacks

Integrity

Confidentiality

(c) Model inversion attacks

Input data

Integrity

DNNs Output data

(d) Model extraction attacks

Confidentiality

Figure 18: Taxonomy of attacks against DNNs

Appendix

A Taxonomy of Attacks against DNNs

Figure 18 shows the taxonomy of attacks against DNNs in the training and prediction
phases. The attacks against DNNs are mainly classified into four types: (a) adversarial
example attacks known as AEs [SZS+14], (b) poisoning attacks [JOB+18], (c) model
inversion attacks [FJR15], and (d) model extraction attacks [TZJ+16]. The AEs cause
misclassification by adding small perturbations to the input data of DNNs. The poisoning
attacks train poisonous models that cause misclassification by introducing malicious
data into the training data. These attacks violate the integrity of DNNs by causing
misclassification. The model inversion attacks steal training data from the DNN models
and input-output data; hence, these attacks violate the confidentiality of training data.
The model extraction attacks steal internal information from DNNs. The attacks violate
the intellectual property of DNN models and promote other attacks because of DNN
internal information leaks.

In this study, the focus is set on adversarial example attacks known as AEs. A lot of
adversarial example attacks have been proposed recently.

B Attacks against Embedded devices with Neural network
accelerator

The attack against embedded devices with neural network accelerators is experimented
with and discussed. The experiments are on Jetson nano GPU [Jet19] and Coral Edge
TPU [Cor19]. Each experiment is on the MLP model which is shown in Table 1.

Figure 19 shows the histogram of successful attacks on Jetson nano GPU in 1,000
samples of the MNIST dataset. The histogram indicates that practically all the attacks
with almost the same perturbation bound of the random noise cause misclassification. The
attack is no successful on Jetson nano GPU because it is assumed that data-dependent
timing leaks cannot be observed due to parallelization of activation functions by GPU.

174 Crafting Adversarial Examples through Timing Leaks against DNNs on Embedded Devices

(a) Random noise (b) Timing black-box attack

Figure 19: Histogram of successful attacks against Jetson nano GPU on 1,000 samples
of MNIST dataset. Proposed attack is compared with random noise. Each perturbation
bound is plotted when misclassification is caused by proposed attack and random noise.

(a) Random noise (b) Timing black-box attack

Figure 20: Histogram of successful attacks against Coral Edge TPU on 1,000 samples
of MNIST dataset. Proposed attack is compared with random noise. Each perturbation
bound is plotted when misclassification is caused by proposed attack and random noise.

Figure 20 shows the histogram of successful attacks on Coral Edge TPU in 1,000
samples of the MNIST dataset. According to the histogram, practically all the attacks
with almost the same perturbation bound of the random noise cause misclassification. The
attack is also no successful on Coral Edge TPU because it is assumed that activation
functions are implemented in hardware and executed in parallel for the number of nodes
in the systolic array. However, in systolic arrays, an implementation that omits operations
on deactivated nodes has been proposed for speedup (not applicable to Coral Edge TPU)
[JYP+17]. This implementation has improved the processing time by 1.4 times. It is
assumed that data-dependent timing leaks can be observed in this implementation because
the processing time depends on the number of activated nodes.

Tsunato Nakai, Daisuke Suzuki and Takeshi Fujino 175

Figure 21: Simulation of relationship between the change in the number of all layers’
activated nodes and the mean output probability of the correct label in the CNN model.

Figure 22: Simulation of relationship between the change in the number of all layers’
activated nodes and the number of successful attacks (misclassification) in the CNN model.

C Simulation of Activated Nodes for CNN
The connection between the number of activated nodes and the output probability of
correct labels is also simulated using a CNN model on a Linux OS computer (Ubuntu
18.04) with an Intel Core i-5 CPU. The CNN model is the same as in Table 2.

Figure 21 shows the relationship between the change in the number of all layers’
activated nodes and the mean output probability of the correct label in the CNN model.
Furthermore, Figure 22 shows the number of successful attacks (misclassification) on 1,000
samples per the change of all layers’ activated nodes. The output probability is the mean
value on 1,000 samples per the change of all layers’ activated nodes. Because CNN mainly
consists of convolution layers including activation functions, changes in the number of
activated nodes affect the accuracy as well as the results of the MLP model in Section
4.2.2. Especially the phenomenon (the mechanism of our attack) is noticeable in CNN. It
is assumed that the max-pooling layer selects the injected nodes instead of the original
node.

	Introduction
	Background
	Related Works
	Side-Channel Attacks against DNNs
	Black-Box Attacks for AEs

	Timing Black-Box Attacks
	Threat Model
	Proposed Attacks
	Algorithm of Proposed Attacks

	Experiments and Evaluation
	Setup
	Activated Nodes and Data-dependent Timing Leaks
	Evaluation of AEs
	Activation Functions and Data-dependent Timing Leaks
	Evaluation against CNN

	Detailed Analysis
	Methods
	Evaluation of Constant Time Countermeasures

	Conclusion
	Taxonomy of Attacks against DNNs
	Attacks against Embedded devices with Neural network accelerator
	Simulation of Activated Nodes for CNN

