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Abstract. This paper presents a constant-time implementation of Classic McEliece
for ARM Cortex-M4. Specifically, our target platform is stm32f4-Discovery, a
development board on which the amount of SRAM is not even large enough to hold
the public key of the smallest parameter sets of Classic McEliece. Fortunately, the
flash memory is large enough, so we use it to store the public key. For the level-1
parameter sets mceliece348864 and mceliece348864f, our implementation takes
582 199 cycles for encapsulation and 2 706 681 cycles for decapsulation. Compared
to the level-1 parameter set of FrodoKEM, our encapsulation time is more than 80
times faster, and our decapsulation time is more than 17 times faster. For the level-3
parameter sets mceliece460896 and mceliece460896f, our implementation takes
1 081 335 cycles for encapsulation and 6 535 186 cycles for decapsulation. In addition,
our implementation is also able to carry out key generation for the level-1 parameter
sets and decapsulation for level-5 parameter sets on the board.
Keywords: Classic McEliece · Cortex-M4 · Constant-time implementations · NIST
PQC standardization

1 Introduction
Since Shor [Sho97] showed that quantum computers are able to break RSA and ECC
in polynomial time, the cryptography community has been searching for cryptographic
primitives resistant to attacks from large-scale quantum computers. In response to this
pursuit, in 2017, the National Institute of Standards and Technology (NIST) of the U.S.
announced a call for proposals to standardize primitives of post-quantum cryptography
(PQC) [NIS17]. The standardization process consists of several rounds, and only some
of the candidates in each round are chosen to enter the next round. In July 2020, NIST
announced that, among the key agreement or public key encryption schemes in the 2nd
round, 4 schemes are chosen to enter the 3rd round as “finalists”, and 5 schemes are chosen
to enter the 3rd round as “alternate candidates” [NIS20].

Classic McEliece is one of these 4 finalists. Classic McEliece [ABC+20] is a key establish-
ment mechanism (KEM) designed to achieved IND-CCA2 security. Its construction is based
on the McEliece cryptosystem [McE78], the first code-based cryptosystem. The McEliece
cryptosystem is well-known for its amazingly stable security record since its introduction
in 1978, which makes Classic McEliece a highly confidence-inspiring cryptosystem. In
early 2020, the Germany Federal Office for Information Security (BSI) also recommended
Classic McEliece and FrodoKEM [ABD+20], a 3rd-round alternate candidate, for long-term
confidentiality protection [fIS20].

The confidence in Classic McEliece (and the McEliece cryptosystem), however, comes
with a price: the public keys are pretty large. Indeed, Classic McEliece has 2 level-1
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parameter sets with public key size around 256 KB, 2 level-3 parameter sets with public
key size around 512 KB, 4 level-5 parameter sets with public key size around 1 MB, and
2 level-5 parameter sets with public key size around 1.3 MB. For this reason, Classic
McEliece is often considered unsuitable for embedded devices.

In 2019, Kannwischer et al. designed a benchmarking and testing framework named
pqm4 for the ARM Cortex-M4 and published their benchmark results for the NIST PQC
candidates [KRSS19]. However, performance numbers of Classic McEliece were not shown
in [KRSS19]. In fact, the authors listed Classic McEliece as one of the schemes “arguably
unsuited for a microcontroller environment of this size” and commented that

“Their public key sizes range from 255 KB to 1326 KB. These are too large to
fit into the memory of our platform.”

Indeed, stm32f4-Discovery, the development board used by the pqm4, has only 192 KB
of SRAM. It is conceivable that many readers of the comment might draw the conclusion:
“It is impossible for Classic McEliece to run on such a small device, let alone running
efficiently on it.”

1.1 Our Contribution
This paper presents a constant-time implementation of Classic McEliece tailored for
stm32f4-Discovery. The implementation follows the 3rd-round specification. There is no
data cache on stm32f4-Discovery, but our implementation does not take advantage of this:
our implementation does not use secret-dependent memory indices, so it is constant-time
even on M4 devices with data caches.

As shown in Table 1, for the level-1 parameter sets mceliece348864* (which means
mceliece348864 and mceliece348864f), our implementation takes 582 199 cycles for
encapsulation and 2 706 681 cycles for decapsulation. The encapsulation time is more
than 80 times faster, and our decapsulation time is more than 17 times faster than the
corresponding numbers of FrodoKEM (see Table 10), which is often considered as the most
conservative lattice-based scheme submitted to the NIST Post-quantum Cryptography
Standardization Process (while Classic McEliece is considered the most convervative code-
based scheme). For the level-3 parameter sets mceliece460896*, our implementation
takes 1 081 335 cycles for encapsulation and 6 535 186 cycles for decapsulation. We note
that the cycle counts in Table 1, along with all other cycle counts for our implementation
are measured at the maximum frequency 168 MHz of the device unless specified otherwise.

In addition to encapsulation and decapsulation for all level-1 and level-3 parameter
sets, our implementation is also able to carry out key generation for mceliece348864

Table 1: Cycle counts for encapsulation and decapsulation in our implementation. We use
* to mean both the “non-f” parameter set (simply removing *) and the corresponding “f”
parameter set (replacing * by f). Note that a non-f parameter set and the corresponding
f parameter set share the same encapsulation and decapsulation algorithms. The cycle
counts for encapsulation and key generation are average numbers of 100 measurements.
All the cycle counts are measured at the maximum frequency 168 MHz. Table 12 shows
cycle counts measured at 24 MHz.

parameter set level decapsulation encapsulation key generation
mceliece348864f 1 2 706 681 582 199 1 430 811 294
mceliece348864 1 2 146 932 033
mceliece460896* 3 6 535 186 1 081 335
mceliece6688128* 5 7 412 111
mceliece8192128* 5 7 481 747
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and mceliece348864f on the device, which takes 2 146 932 033 cycles (12.8 seconds) and
1 430 811 294 cycles (8.5 seconds), respectively. Our implementation is also able to carry out
decapsulation for the level-5 parameter sets mceliece6688128* and mceliece8192128* on
the development board. We have not implemented decapsulation for mceliece6960119*,
but we do not see any reason why it cannot run on the device.

The reason why we are able to perform encapsulation and key generation (for some
parameter sets) is because we are able to store the public key in the 1MB of flash memory
on the device, and the amount of SRAM required to perform the operations turns out to
be much smaller than the size of the public key.

Our current implementation is not able to carry out encapsulation for the level-
5 parameter sets and key generation for the level-3 and level-5 parameter sets. As
one might have expected, this is due to the size limit of SRAM and flash memory on
stm32f4-Discovery. However, the reader should be aware that this does not mean that
the operations cannot be carried out on all M4 platforms. For example, we believe that all
the three operations of all the 10 parameter sets can be carried out on some of the “Giant
Gecko” microcontrollers [Lab20] manufactured by Silicon Labs, where 512KB of SRAM
and 2MB of flash memory are available. The optimization techniques presented in this
paper are expected to be useful for implementing Classic McEliece on such larger devices.

1.2 Keeping Public Keys in Flash Memory versus Streaming
Our implementation of key generation stores the public key in flash memory, and our
implementation of encapsulation loads the public key from flash memory. The reader
might wonder whether this is better than streaming the public key out/in. Some previous
previous papers, such as [EGHP09,Hey10], keep the public key in flash memory, while
other previous papers, such as [Str12,RKK21], use streaming.

We think both approaches are useful in practice. An M4 client might prefer keeping a
public key locally after key generation if the key is used as a short-term but non-emphemeral
key. An M4 client might also prefer keeping a public key locally after receiving it from
a server because 1) it often talks the server or 2) the public key needs to be checked
for authenticity later. If there is no need to use the generated/recieved public key later,
streaming might be preferred. Of course, it is not always possible to keep the public key
in flash memory when it holds lots of data, in which case one would need to use streaming
or switch to a larger device.

Whether it is good to keep the public keys in flash memory, as discusse above, depends
on the application. The reader should also beware that all optimizations in our paper can
be applied when streaming is used.

1.3 Previous Works
In 2013, Bernstein, Chou, and Schwabe proposed McBits [BCS13], a constant-time, bitsliced
implementation of a cryptosystem based on the Niederreiter variant [Nie86] of the McEliece
cryptosystem [McE78]. They proposed to use non-conventional algorithms such as the
Gao–Mateer additive FFT [GM10], the “transposed” Gao–Mateer additive FFT, and
sorting networks for decoding. These algorithms, when combined with bitslicing, allow
McBits to achieve a record-breaking throughput (but not latency). The parallelism for
bitslicing, however, is external: it comes from the assumption that many instances are
processed at the same time, which is not a reasonable assumption in all applications.

In 2017, Chou proposed another bitsliced implementation of a cryptosystem based
on Niederreiter [Cho17]. Chou’s implementation makes use of internal parallelism which
lies in the additive FFT, the transposed additive FFT, the Berlekamp-Massey algorithm,
and a type of permutation networks called Beněs networks [Ben65] (which replaces the
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sorting networks). In this way, the assumption used in McBits is no longer required, and a
record-breaking latency can be achieved.

In addition to the reference implementation, the third-round submission of Classic
McEliece includes three implementations vec, sse, and avx. Secret key generation,
encapsulation and decapsulation in the three implementations are all implemented using
the strategy of [Cho17]. Our code of secret key generation, encapsulation and decapsulation
was adapted from the portable C implementation vec. The vec implementation works on
64-bit words, so we first converted it into an implementation that works on 32-bit words,
and then added our M4-specific optimizations to the 32-bit implementation. Many of
our optimizations aim for reducing the number of memory accesses, as loads and stores
cannot be hidden by (carried out in parallel with) arithmetic instructions on M4. Our
encapsulation time and decapsulation time ended up being much faster than vec.

Regarding public key generation, our implementation follows Roth et al. [RKK21] using
a specific algorithm for LUP decomposition. Roth et al. used a development board with
256 KB of SRAM and 2 MB of flash memory, and their implementation supported only
key generation and encapsulation. Our key generation time and encapsulation time are
much faster than the implementation of [RKK21]. Details regarding the implementation is
introduced in Section 3.

1.4 Source Code
The source code of our implementation is available at https://github.com/pqcryptotw/
mceliece-arm-m4. The source code is in the public domain.

1.5 Organization
Section 2 introduces the parameter sets of Classic McEliece and the ARM Cortex-M4.
Section 3 shows how we optimize key generation. Section 4 shows how we optimize
encapsulation. Section 5 shows how we optimize decapsulation. Section 6 shows some
numbers regarding stack usage and comparisons with the implementation of [RKK21] and
implementations of other NIST candidates.

2 Preliminaries
This section introduces the parameter sets of Classic McEliece and the ARM Cortex-M4.

2.1 Classic McEliece: Parameter Sets
Classic McEliece is based on the Niederreiter variant of the McEliece cryptosystem. Each
secret key of Classic McEliece defines a length-n binary Goppa code

Γ2(g, α1, . . . , αn) =
{
c ∈ Fn2 |

∑
i

ci/(x− αi) ≡ 0 mod g
}
,

where g ∈ F2m [x] is a degree-t monic irreducible polynomial, and α1, . . . , αn is a list of
distinct elements in F2m with g(αi) 6= 0 for all i. The dimension of Γ2(g, α1, . . . , αn) is
given by k = n−mt, and the code is designed to be able to correct t errors. The systematic
parity-check matrix of the code forms the public key. In encapsulation, an error vector is
generated and the syndrome of the error vector is computed as the ciphertext. The session
key is the hash value of the error vector. With the secret key, decapsulation recovers
the error vector using a decoder and derives the session key. The following table shows
parameters m,n, t and the sizes of public keys, secret keys, and ciphertexts in bytes for all
the 10 parameter sets.

https://github.com/pqcryptotw/mceliece-arm-m4
https://github.com/pqcryptotw/mceliece-arm-m4
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m n t level public key secret key ciphertext
mceliece348864* 12 3488 64 1 261 120 6492 128
mceliece460896* 13 4608 96 3 524 160 13 608 188

mceliece6688128* 13 6688 128 5 1 044 992 13 932 240
mceliece6960119* 13 6960 119 5 1 047 319 13 948 226
mceliece8192128* 13 8192 128 5 1 357 824 14 120 240

An f parameter set (say mceliece348864f) and the corresponding non-f parameter
set (say mceliece348864) differ only in the key generation algorithm: f parameter sets
generate a new secret key when the code does not have a systematic parity-check matrix,
while non-f parameter sets only generate a new secret key when a systematic parity-check
matrix cannot be obtained even after permuting a small set of columns.

For the purpose of this paper, we decided to omit the irrelevant details of the three
operations in this paper. Instead, we only introduce the relevant details of each operation
at the beginning of Section 3, 4, and 5. Readers who are interested in the details of the
three operations should refer to the 3rd-round specification.

2.2 The ARM Cortex-M4
The ARM Cortex-M4 is a 32-bit RISC processor that implements the ARMv7E-M architecture.
It provides 13 32-bit general-purpose (GP) registers and a floating-point (FP) unit with
32 32-bit FP registers. One can push the “link register”, which stores the return address
of a function, into the stack so that 14 general-purpose registers are available. Compared
to the ARMv7-M architecture of Cortex-M3, one nice feature of ARMv7E-M is its support of
DSP instructions.

A microcontroller on an embedded system is typically equipped with SRAM and
flash memory. Programmers use the SRAM as the stack space and store the program
and constant data in the flash. The sizes of SRAM and flash memory depends on
microcontrollers used. For example, ST Microelectronics equips its stm32f4 [STM21]
series with a flash of size 64KB to 1536KB and an SRAM of size 32KB to 320KB.

We optimize our implementations on the widely used stm32f4-Discovery development
board. Its STM32F407VGT6 microcontroller features a 32-bit ARM Cortex-M4 core with
FPU, 1-MB Flash memory, and 192-KB SRAM. It operates on the maximum frequency of
168 MHz. The 192 KB of SRAM consists of two disconnected address spaces, which are
128-KB and 64-KB respectively.

Instructions on Cortex-M4. The Cortex-M4 supports basic instructions that can be used
to manipulate the GP registers. These instructions include 32-bit addition, subtraction,
multiplication, and logical instructions. Instructions typically support free shift on one of
two input registers. For example, the instruction

eor Rd, Rn, Rm, lsl #3

shifts the value in the register Rm to the left by 3 bits, performs an XOR for values in the
register Rn and the shifted Rm, and stores the result in the register Rd. One powerful DSP
instruction is umlal which computes the 64-bit product (of integer multiplication) of two
GP registers and adds the higher 32 bits to a GP register and the lower 32 bits to another.

For data movement, the instruction vmov allows us to move data between a GP register
and an FP register. Each of the instructions above has a latency of 1 cycle. There are also
instructions for loading 32-bit words from memory such as ldr and instructions for storing
32-bit words into memory such as str. For the purpose of this paper, one can simply
assume that loading n 32-bit words will take n+ 1 cycles and storing n 32-bit words will
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take n cycles. For a detailed specification of instructions supported by the Cortex-M4,
see [ARM20].

Accessing Flash Memory. In a typical embedded programming process on a development
board, a developer loads his code and constants into the microcontroller’s flash memory
with a flashing process. It is then followed by a running process that runs the code and
writes data to SRAM or other IO devices. The flash memory can also be used as a storage
device which has its own address in the processor’s memory map for read and write while
running the user’s code.

Data in the flash memory can be read by using memory load instructions directly. On
the other hand, writing data to flash memory is more complicated. From the perspective
of hardware, the writing process usually starts with an erase operation which erases a full
sector of flash. The erase operation sets all bits of the sector to 1. Then, before the next
erase, a user can write to the sector with a restriction that can change bits from 1’s to 0’s
only. The flash memory also has a finite number of program-erase cycles (P/E cycles):
typically 100 000 P/E cycles. Due to these restrictions, the flash memory is usually used
as a long-term storage for long-existing and constant data.

The detailed electrical properties of flash operation is highly dependent on the vendor.
The flash memory in stm32f4-Discovery contains 16, 64, and 128KB sectors and has
a typical double-word programming time of 16 microseconds and an erase time of 230
milliseconds for the 16 KB sectors. These writing time can change depend on the operating
temperature and the voltage applied. We refer to [STM20] for more details about the flash
memory on stm32f4-Discovery.

From the perspective of software, the operation of writing involves a lot of settings
on the flash registers (see [STM21] for details). In this work, we rely on the hardware
abstraction layer (HAL) library provided in pqm4 framework to simplify the register
operations to high-level function calls. It also generalizes the code for various boards by
abstracting the flash registers’ detailed control on particular devices.

Benchmarking with pqm4. We benchmark our implementation with the framework of
pqm4 [KRSS19]. By default, pqm4 benchmarks implementations at 24 MHz for zero wait
states when accessing code or data in the flash memory. Unlike many other implementations
of NIST PQC candidates, our implementation reads/stores the public key from/to the
flash memory. In order to capture the latency to read and store the public key, we changed
the setting of pqm4 so that it benchmarks our implementation at the maximum frequency
of 168 MHz. The code is benchmarked with the compiler arm-none-eabi-gcc-10.2.1
and pqm4 version 6435b29.

3 Key Generation
Each Classic McEliece secret key defines a binary Goppa code. To generate the public
key for a non-f parameter set, the key generation algorithm first generates a parity-check
matrix

Ĥ = (M | T̂ ) ∈ F(n−k)×n
2

of the code, where M ∈ F(n−k)×(n−k)
2 and T̂ ∈ F(n−k)×k

2 . Then, the algorithm tries to
reduce Ĥ to systematic form

(In−k | T ) = M−1Ĥ

using Gaussian elimination. If Ĥ is successfully reduced to (In−k | T ), which means
M is invertible, the public key is simply the row-major representation of T ∈ F(n−k)×k

2 .
Otherwise, public key generation fails and a new secret key is generated. As mentioned
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Algorithm 1 The LUP decomposition used in [RKK21].
Input: Â ∈ F(n−k)×w

2 , w ≥ n−k. The first n−k columns form a matrix A ∈ F(n−k)×(n−k)
2 .

Output: L,U, P ∈ F(n−k)×(n−k)
2 with PA = LU or ⊥.

1: B ← Â
2: for ` = 0 to n− k − 1 do
3: r` ← `
4: end for
5: for ` = 0 to n− k − 1 do
6: for i = `+ 1, . . . , n− k − 1 do
7: if Bi,` = 1 then
8: swap row i with row `
9: swap ri with r`

10: end if
11: end for
12: if B`,` 6= 1 then
13: return ⊥
14: end if
15: for i = `+ 1, . . . , n− k − 1 do
16: for j = `+ 1, . . . , w − 1 do
17: Bi,j = Bi,j −Bi,` ·B`,j
18: end for
19: end for
20: end for
21: L← the lower triangular part of the first n− k columns of B
22: U ← the upper triangular part of the first n− k columns of B
23: P ← the permutation matrix represented by r0, . . . , rn−k−1
24: return L, U , P

in the supporting documentation of Classic McEliece, approximately 29% of Ĥ can be
reduced to (In−k | T ). This means that on average 3.4 attempts are required to generate
a key pair for each non-f parameter set.

To generate the public key for each f parameter set, the algorithm again starts with
generating a parity-check matrix Ĥ and performs a Gaussian elimination on Ĥ. However,
the public key generation is considered successful even when the result is not in systematic
form: the result of Gaussian elimination only needs to satisfy the following conditions.

• The first n− k − µ pivots are in the first n− k − µ columns.

• The last µ pivots are in the next ν columns.

The specification of Classic McEliece defines µ = 32 and ν = 64 for all f parameter sets.
If the two conditions are satisfied, a specific column permutation defined by the column
indices of the last µ pivots is performed to obtain the systematic form (In−k | T ), and
the public key is again the row-major representation of T . The column permutation
only permutes the ν columns where the last µ pivots are allowed to be. If any of the
two conditions is not satisfied, a new secret key is generated. As opposed to the non-f
parameter sets, public key generation for f parameter sets fails with a very low probability
(< 2−30 according to the supporting documentation), so 1 attempt is almost always enough
to generate a key pair.

This section presents our implementation for key generation of the level-1 parameter
sets mceliece348864 and mceliece348864f.

https://orcid.org/0000-0002-2420-496X
https://orcid.org/0000-0003-3043-6190


132 Classic McEliece on the ARM Cortex-M4

3.1 Using LUP Decomposition for Public Key Generation
In late 2020, Roth, Karatsiolis, and Krämer [RKK21] proposed to apply the LUP decom-
position on M for public key generation of the non-f parameter sets. If M is invertible,
the LUP decomposition computes a lower-triangular matrix L ∈ F(n−k)×(n−k)

2 , an upper-
triangular matrix U ∈ F(n−k)×(n−k)

2 , and a permutation matrix P ∈ F(n−k)×(n−k)
2 with

PM = LU . The algorithm for LUP decomposition is based on the “kij-variant” of the
outer-product formulation of Gaussian elimination [VLG83, Section 3.2.9] and is shown in
Algorithm 1. One nice feature about the LUP decomposition is that it is almost in-place:
L and U are computed and stored in the space of M , and P is stored as an array of n− k
indices r0, . . . , rn−k−1, such that entry ri of row i is 1 for all i. The memory requirement
for the LUP decomposition is thus close to (n− k)2 bits.

In order to compute the public key, Roth, Karatsiolis, and Krämer proposed to compute
L−1 from L in an in-place fashion, compute U−1 from U in an in-place fashion, compute
L−1U−1 in an in-place fashion, and multiply L−1U−1 with P by “permuting the columns
of L−1U−1” to obtain M−1. Finally, M−1 is multiplied with T̂ to obtain the public
key. We note that it is not explained in [RKK21] how the column permutation is carried
out exactly. Carrying out the column permutation in a naive way can lead to usage of
secret-dependent memory indices.

In fact, Roth, Karatsiolis, and Krämer are not the first ones to use LUP decomposition
for key generation. In early 2020 (during the second round), we wrote an implemen-
tation for the key generation process, which already makes use of (a variant of) LUP
decomposition to accelerate public key generation. The implementation was included in the
supercop-20200531 under crypto_kem/mceliece*/avx and crypto_kem/mceliece*/sse.
As opposed to [RKK21], Our SUPERCOP implementation covers all the 10 parameter
sets. The avx and sse implementations in the 3rd-round submission of Classic McEliece
are adapted from our SUPERCOP implementation and use the same algorithm for LUP
decomposition and the same steps afterwards to obtain T .

To generate the public key for a non-f parameter set, our SUPERCOP implementation
performs an LUP decomposition on M , such that as long as M is invertible, we obtain a
lower-triangular matrix L−1 ∈ F(n−k)×(n−k)

2 , an upper-triangular matrix U ∈ F(n−k)×(n−k)
2 ,

and a permutation matrix P ∈ F(n−k)×(n−k)
2 with PM = LU . The pseudocode for the

LUP decomposition is shown in Algorithm 3. One can understand Algorithm 3 as an
algorithm that is essentially the same as Algorithm 1 but with some extra operations
to convert L into L−1. It is easy to see that our LUP decomposition again takes about
(n− k)2 bits.

After the LUP decomposition, T̂ is first multiplied (from the left) by P . The multi-
plication is carried out by a sorting network to avoid usage of secret-dependent memory
indices, which is explained in detail in Section 3.4. Then, the result is multiplied from the
left by by L−1 and U−1 sequentially. The multiplication by L−1 and U−1 are carried out
as two sequences of fundamental row operations. Note that the row operations in the two
sequences are explicitly shown in the entries of L−1 and U , which means there is no need
to compute U−1 from U . For example, suppose

B =

 1 0 0
b0 1 0
b1 b2 1

 ,

then multiplication by B from the left can be carried out by applying the row operations1 0 0
0 1 0
0 b2 1

 ,

 1 0 0
0 1 0
b1 0 1

 ,

 1 0 0
b0 1 0
0 0 1

 ,
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sequentially. Likewise, multiplication by B−1 from the left can be carried out by applying
the row operations in the reverse order.

To generate the public key for an f parameter set, our SUPERCOP implementation
applies Algorithm 3 on the leftmost (n− k)× (n− k + ν − µ) submatrix M ′ of Ĥ. The
first n− k−µ iterations of the loop starting from line 5 of Algorithm 3 is applied to obtain
the first n− k − µ pivots in the first n− k − µ columns. Then, a Gaussian elimination is
applied on the intersection of the next ν columns and the last µ rows. If the row echelon
form of the µ× ν matrix does not have µ pivots, which means it is not full rank, public
key generation fails. Otherwise, the specific column permutation introduced by the column
indices of the µ pivots is performed on B (which can use the space of M ′). Let the matrix
formed by first n− k columns of the column-permuted Ĥ be M , and the matrix formed
by the last k columns of the column-permuted Ĥ be T̂ . Finally, the last µ iterations of
Algorithm 3 are carried out to obtain L, U and P , and T = (U−1L−1P )T̂ = M−1T̂ is
computed in the same way as for the non-f parameter sets. The same implementation
strategy can be used with Algorithm 1. The memory demand of applying such an “LUP
decomposition” on M ′ is close to (n− k)(n− k + ν − µ) bits.

3.2 Reducing the Memory Demand for Computing T

Even though the two versions of the LUP decomposition both have a memory demand close
to (n− k)2 bits for the non-f parameter sets or (n− k)(n− k + ν − µ) for the f parameter
sets, we still have to multiply M−1 or P,L−1, U−1 with T̂ . T̂ takes (n− k)× k bits, e.g.,
261120 bytes for mceliece348864*, which is larger than the amount of SRAM on our target
platform. In order to reduce the memory demand, our SUPERCOP implementation divides
T̂ into a few roughly equal-size column blocks. Each block is generated on-demand and
multiplied with P,L−1, U−1 to generate a part of the public key. [RKK21] uses essentially
the same approach, except that T̂ is divided into blocks of 8 columns only.

3.3 Our Implementations for Public Key Generation
The discussion above shows several implementation choices.

1. There is a choice between the two versions of the LUP decomposition.

2. [RKK21] computes M−1 and then multiply it with T̂ . However, our SUPERCOP
implementation to apply P , L−1, and U−1 to T̂ sequentially.

3. When we need to multiply a matrix from the left by L−1 or U−1, assuming that
only L or U is available, we may follow [RKK21] to compute L−1 from L or U−1

from U first and then apply the inverse matrix. However, we may also apply the
matrix directly as in our SUEROPCOP implementation.

4. We can choose how T̂ is decomposed into column blocks.

Algorithm 1 clearly takes fewer operations than Algorithm 3. On the other hand,
regarding the steps taken after the LUP decomposition, our SUPERCOP implementation
appears to be faster according to our experiments. We ended up with 2 implementations
for (public) key generation.

a) The implementation starts with Algorithm 1. Then, each column block of T̂ is
multiplied with P using a sorting network, and L−1 and U−1 are applied to the
result sequentially to obtain a column block of T , without explicitly computing L−1

and U−1 from L and U . T̂ is decomposed into 4 column blocks of 640 columns and
1 column block of 160 columns.
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b) This implementation is the same as the previous implementation, except that T̂ is
decomposed into 85 column blocks of 32 columns only to save memory.

Clearly, the amount of SRAM on our target platform is not big enough to hold the
public key. In order to deal with this problem, we store the public key in the flash: each
time a column block is multiplied by P , U−1, and L−1, the partial public key is written
into the flash. We note that the implementation of [RKK21] instead streams out the
partial public key.

3.4 Optimizing Matrix Multiplications
Below we describe some optimization techniques that we use for the 2 implementations
introduced in the previous section.

Applying P with a Sorting Network. Let P be a permutation matrix and consider the
task of computing PA for some matrix A. We store P as an array of indices r0, . . . , rn−k−1,
such that ri is the index of the nonzero entry in row i. In other words, row i of PA is
Ari

, where Ai means row i of A. Constructing PA by copying Ar0 , . . . , Arn−k−1 is easy,
but this allows attackers to obtain information of P via cache-timing attacks. In order to
avoid cache-timing attacks, we make use of sorting networks.

In order to apply P to A, we first use a sorting network to sort the list

(0, r0), (1, r1), (2, r2), . . . , (n− k − 1, rn−k−1),

based on the values of the second entries. Let the sorted list be

(r′0, 0), (r′1, 1), (r′2, 2), . . . , (r′n−k−1, n− k − 1).

Then, for each matrix A that needs to be multiplied with P , we sort

(r′0, A0), (r′1, A1), (r′2, A2), . . . , (r′n−k−1, An−k−1)

based on the values of the first entries to obtain

(0, Ar0), (1, Ar1), (2, Ar2), . . . , (n− k − 1, Arn−k−1).

Combining the second entries gives PA. For completeness, we note that the sorting network
we use is Batcher’s odd-even mergesort. Batcher’s odd-even mergesort has a complexity
O(n(logn)2), where n is the number of elements being sorted.

Applying L−1 and U−1 with blocking. For the two implementations presented in the
previous subsection, we need to apply the row operations represented by L−1 and U−1 to
each of the column blocks. In our implementations, we decompose L, U , and each column
block T ′ of T̂ into 32× 32 submatrices. Then, assuming that we would like to compute
L · T ′, a function is used to multiply a submatrix in L by a submatrix in T ′ and add the
product to another submatrix in T ′. As explained in Section 3.1 by the examples of 3× 3
matrices, with the right order of submatrix multiplications, the resulting operation will be
L−1. The multiply-and-add function is illustrated in in Figure 1. The function allows us
to keep 8 32-bit words in registers and keep using them whenever possible.

3.5 Experiment Results
The performance numbers for implementation a and b are shown in Table 2 and Table 3.
As shown in Table 3, the key generation time is about 14 seconds for mceliece3488864
when implementation b is used. Although this is not fast, since Classic McEliece is a
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static inline
void matrix_madd_32x4(uint32_t *c, const uint32_t *a, const uint32_t *b)
{

uint32_t c0 = c[0], c1 = c[1], c2 = c[2], c3 = c[3];
uint32_t a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
for(int i=0;i<32;i++) {

uint32_t bi=b[i];
c0 ^= bi*((a0>>i)&1);
c1 ^= bi*((a1>>i)&1);
c2 ^= bi*((a2>>i)&1);
c3 ^= bi*((a3>>i)&1);

}
c[0] = c0; c[1] = c1; c[2] = c2; c[3] = c3;

}
void matrix_madd_32x32(uint32_t *c, const uint32_t *a, const uint32_t *b)
{

for(int i=0;i<32;i+=4)
matrix_madd_32x4(c+i,a+i,b);

}

Figure 1: The function for multiply-and-add of 32× 32 submatrices.

scheme with IND-CCA2 security, the user can safely reuse a key pair if no stronger security
notion is required. In applications where Classic McEliece is used to achieve forward
secrecy, the user can also update the key pair periodically (say, every 10 minutes) such that
the key generation time would not be a problem. In addition, the 3rd-round supporting
documentation suggests that the user can use a truncated format of secret keys, such that
the control bits are not included. This saves key generation time and reduces secret key
size, with the cost of slower decapsulation.

One interesting thing we found is that the time to write data into the flash seems to
be dependent of the data itself. We are not sure if this is caused by the libraries we use
for accessing the flash, or it is actually caused by the hardware. In any case, as we only
write the public key T into the flash, the variance in running time caused by accessing the
flash does not affect the claim that our implementation is constant-time.

4 Encapsulation
Given an error vector e ∈ Fn2 of weight t which serves as the plaintext and a parity-
check matrix H ∈ F(n−k)×n

2 which serves as the public key, the Niederreiter cryptosystem
encrypts e as He. The main component of encapsulation in Classic McEliece is essentially
Niederreiter encryption. The encapsulation process starts with generating a uniform
random error vector e and then computes He. Recall that Classic McEliece uses H in
systematic form, i.e., H of the form (In−k | T ), where T ∈ F(n−k)×k

2 . Our implementation
computes He as e(0) + Te(1), where e(0) consists of the first n − k entries of e and e(1)

Table 2: Cycle counts for generating the control bits, the LUP decomposition, computing
T from L,U, P , and storing each column block of T into flash memory.

impl. control bits LUP decomp. L,U, P → T storing T
a 491 466 632 184 338 303 353 625 403 367 320 870
b 606 477 798 367 428 224
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Table 3: Average (of 100 runs) cycle counts and the corresponding time in seconds for key
generation of mceliece348864*.

impl. mceliece348864 mceliece348864f
a 2 146 932 033 (12.8 s) 1 430 811 294 (8.5 s)
b 2 382 094 433 (14.2 s) 1 683 771 176 (10.0 s)

consists of the last k entries of e. Below we explain how the error vector e is generated
and how Te(1) is computed in our implementation.

4.1 Generation of the Error Vector
To generate the error vector, the vec implementation first generates a list of t random
indices that indicate the positions of 1’s in e. The indices are then checked for repetition.
To check whether there is repetition in the t indices, the vec implementation uses a sorting
network to sort the indices and then compares every two consecutive indices. The sorting
network guarantees that nothing about the list of indices is leaked through timing during
sorting. If there is repetition, a new list of t indices will be generated. Otherwise, the
error vector is generated using the indices in constant time. Note that the 3rd-round
specification defines how the t indices are generated and regenerated exactly.

Our implementation follows the implementation strategy of the vec implementation,
except that we use a different sorting algorithm. We observed that there is no need to hide
everything related to the list of indices from the attacker, as information of e only lies in
the corresponding set of t indices. Their order in the list is independent of e. Therefore,
one can use a sorting algorithm that leaks the order through timing, as long as nothing
else about the indices is leaked through timing. In fact, one can use any comparison-based
sorting algorithm. In our implementation, we use quicksort instead of a sorting network to
sort the indices. This simple change gives a noticeable speedup in error-vector generation,
as shown in Table 4.

We note that non-comparison-based sorting algorithms, however, can leak information
about the error vector through timing. An example of this is bucket sort, which uses
memory indices that depends on the values being sorted.

4.2 Computation of T e(1)

In Classic McEliece, the public key is defined as the row-major representation of T . A
simple way to obtain Te(1) is to compute the inner product between the first row of T
and e(1), compute the inner product between the second row of T and e(1), and so on.
To compute each inner product, one may prepare a 32-bit variable which is set to zero,
then AND the first 32-bit words of the row and e(1), XOR the result into the variable,
AND the second 32-bit words of the row and e(1), XOR the result into the variable, and
so on. Finally, compute the parity of the 32-bit variable using a sequence of shifts and
XORs. Then the inner product is equal to the parity. Figure 2 shows a C function that
implements this strategy. Essentially the same strategy is used in the vec implementation,
except that vec uses 64-bit words.

Table 4: Average cycle counts to generate the error vector.

parameter set quicksort sorting network
mceliece348864* 74 688 111 577
mceliece460896* 172 711 259 354
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#include "stdint.h"
void T_mul_e1(uint32_t *c, const uint32_t T[][ T_NCOLS/32 ], const uint32_t *e1) {

for (int i = 0; i < T_NROWS; i++) {
uint32_t b = 0;
for (int j = 0; j < T_NCOLS/32; j++)

b ^= T[i][j] & e1[j];
b ^= b >> 16; b ^= b >> 8; b ^= b >> 4; b ^= b >> 2; b ^= b >> 1;
b &= 1;
c[ i/32 ] ^= (b << (i%32));

}
}

Figure 2: A simple C function for computing Te(1).

The code in Figure 2 loads all 32-bit words in e(1) for each i. In other words, e(1) is
loaded n−k times in the matrix-vector multiplication. A simple way to reduce the number
of load instructions is to store the whole e(1) in registers. However, this is not possible as e(1)

would take (3488− 12 · 64)/32 = 85 registers to store even for mceliece348864*. Instead,
each time we load a 32-bit word in e(1), we always perform AND’s with 4 corresponding
32-bit words from 4 different rows. Thus, the number of loads for e(1) can be reduced by a
factor of 4. Also, we load 3 consecutive 32-bit words from e(1) at once whenever possible
and perform the corresponding ANDs and XORs with the corresponding 32-bit words from 4
rows. Hence, the number of memory accesses for the destination array can also be reduced
by a factor of 3. In conclusion, each iteration of the inner loop in our implementation
handles computation for a 4× 96 submatrix of T , which is different from handling only a
1× 32 submatrix of T in each iteration as in Figure 2.

In order to process 4 rows at the same time, we need to maintain 4 32-bit variables
b0, b1, b2, b3, one for each row. Instead of reducing bi’s one-by-one, we use the following
inline function to reduce b0, b1, b2, b3 in parallel to obtain 4 inner products.

static inline uint32_t parallel_reduce(uint32_t b0, uint32_t b1,
uint32_t b2, uint32_t b3)

{
b0 ^= b0 >> 2; b1 ^= b1 >> 2; b2 ^= b2 >> 2; b3 ^= b3 >> 2;
b0 ^= b0 >> 1; b1 ^= b1 >> 1; b2 ^= b2 >> 1; b3 ^= b3 >> 1;
b0 &= 0x11111111; b1 &= 0x11111111; b2 &= 0x11111111; b3 &= 0x11111111;
b0 ^= b1<<1; b0 ^= b2<<2; b0 ^= b3<<3;
b0 ^= b0>>4; b0 ^= b0>>8; b0 ^= b0>>16;
return b0 & 0xF;

}

The function consists of 19 instructions, while reducing bi’s one-by-one takes 4 · 6 = 24
instructions (see Figure 2). We note that our function for T · e(1), which includes the code
for parallel_reduce, is written in assembly. The numbers of cycles for the two versions
of matrix-vector multiplication are shown in Table 5.

Table 5: Cycle counts for computing T · e(1).

parameter set our code Figure 2
mceliece348864* 389 009 687 922
mceliece460896* 777 687 1 367 341
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5 Decapsulation
Given the secret key and a ciphertext of the form c = He, the decryption of the Niederreiter
cryptosystem recovers e using a decoding algorithm. The main component of decapsulation
in Classic McEliece is Niederreiter decryption. In this section, we show how we optimize
the Berlekamp decoder, which is used in [BCS13], [Cho17], and all four implementations
of the Classic McEliece team.

5.1 Representations of Field Elements
Field arithmetics in F2m (recall that m ∈ {12, 13}), and in particular field multiplications,
are critical building blocks in the decoding algorithm. In the specification, F212 is con-
structed as F2[x]/(x12 + x3 + 1) and F213 is constructed as F2[x]/(x13 + x4 + x3 + x+ 1).
Our implementation, uses two representations for field elements:

• The bitsliced representation, which is used in the additive FFTs and the transposed
additive FFTs.

• The “radix-16” representation, which is only used in the Berlekamp-Massey algorithm.

Below we show how field multiplications and inversions are optimized when the two
representations are used.

5.1.1 The Bitsliced Representation

The bitsliced field multiplication used in the vec implementation is explained in [Cho17].
The algorithm takes 2m 64-bit words a0, . . . , am−1, b0, . . . , bm−1 as inputs and outputs m
64-bit words c0, . . . , cm−1. The first phase of the algorithm, which we call the polynomial
multiplication phase, consists of 64 polynomial multiplications with schoolbook multiplica-
tion. This is achieved by using m2 AND instructions and (m− 1)2 XOR instructions. The
second phase of the algorithm, which we call the reduction phase, reduces the 64 products
modulo the irreducible polynomial. On the M4, we can easily build a 32-bit version of
the same function, such that 32 field multiplications are carried out at the same time.
However, a naive implementation in C will lead to many register spills.

a0 b11

1

wwa11
2

''

4 77

b0

3

gg

Figure 3: The order of computing (a0 + · · ·+ a11x
11) · (b0 + · · ·+ b11x

11)

In order to reduce the number of memory accesses, we follow [HW11] and divide the
polynomial multiplication phase into small pieces so that each piece only requires a small
set of ai’s and bi’s. Figure 3 shows how we divide the polynomial multiplication phase for
F212 . As shown in the figure, the whole polynomial multiplication phase is divided into
several rhombuses, where each rhombus involves only 4 consecutive ai’s and 4 consecutive
bi’s. For the first rhombus, we load a0, a1, a2, a3 and b8, b9, b10, b11’s from memory. Then,
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Table 6: Average cycle counts for one field multiplications when using the bitsliced
representation. The actual functions carry out 32 multiplications in parallel.

our code naive C
F212 22.7 38.8
F213 27.1 45.4

each time we move on to the next rhombus, we only need to load either 4 consecutive ai’s
or 4 consecutive bi’s from memory.

When each rhombus is processed, 7 ci’s have to be updated. One approach is to load
the ci’s from memory, update them, and then store them back to memory. However, a
slightly cheaper approach is to store ci’s in the FP registers. Indeed, moving data between
a GP register and an FP register with vmov takes 1 cycle, while loading a word from
SRAM would take more than 1 cycle on average (see Section 2). Note that there is always
an overlap between the set of ci’s used in the current rhombus and the set of ci’s used
in the next rhombus: the intersection is always a set of 3 ci’s. We always keep the 3 ci’s
in registers without storing them to FP registers when we move on to the next rhombus.
Thus, we can save some vmov instructions.

Bitsliced multiplication for F213 is implemented using essentially the same strategy.
Table 6 shows the cycle counts for performing 32 field multiplications in a bitsliced fashion.

5.1.2 The Radix-16 Representation

The bitsliced field multiplication is efficient regarding the number of cycles per multipli-
cation. However, 32 multiplications have to be carried out simultaneously to make full
use of it. Individual field multiplications in F2m are easy to implement on platforms with
instructions for carryless multiplications, such as pclmulqdq. On the M4, there is no
native instruction for carryless multiplications, but we found that carryless multiplications
can still be carried out using instructions for integer multiplication.

To carry out carryless multiplications using integer multiplications, consider each
polynomial a = a0 + a1x + a2x

2 + · · · + a7x
7 ∈ F2[x] as a 32-bit integer a0 + a124 +

a228 + · · · + a7228. Then, the product c of a =
∑7
i=0 aix

i and b =
∑7
i=0 bix

i can be
computed by multiplying the corresponding 32-bit integers. Indeed, the result of the
integer multiplication is

(a0 · 20 + a1 · 24 + a2 · 28 + · · ·+ a7 · 228) · (b0 · 20 + b1 · 24 + b2 · 28 + · · ·+ b7 · 228)
=a0 · b0 · 20 + (a1 · b0 + a0 · b1) · 24 + (a2 · b0 + a1 · b1 + a0 · b2) · 28 + · · ·+ (a7 · b7) · 256,

where the bit of index 4i is exactly ci. We thus use the umlal instruction to perform a
small carryless multiplication. Our implementation of field multiplication use umlal a few
times to perform the polynomial multiplications and reductions modulo the irreducible
polynomial.

Figure 4 shows a multiplication function for F212 . The function takes 4 umlal for the
polynomial multiplication phase and 2 umlal for the reduction phase. Our multiplication
function for F213 also takes 4 umlal for the polynomial multiplication phase and 2 umlal
for the reduction phase, but 1 mla is used in the reduction phase to perform a smaller
carryless multiplication. We note that the actual code we use is written in assembly.

To compute the multiplicative inverse of an element in F2m , we raise the element to
the power of 2m − 2. It costs 11 squares and 5 multiplication for F212 and 12 squares and
4 multiplications for F213 . The cycle counts for one field multiplication and one inversion
are listed in Table 7.
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uint32_t gfu32_2_12_mul( uint32_t a, uint32_t a, uint32_t b, uint32_t b) {
const uint32_t mask = 0x11111111;
uint32_t a0 = a&mask; uint32_t a1 = (a>>1)&mask;
uint32_t b0 = b&mask; uint32_t b1 = (b>>1)&mask;
union{ uint64_t v64; uint32_t v32[2]; } t0, t1;
uint32_t t2;
// multiplication
t0.v64 = ((uint64_t)a0) * ((uint64_t)b0);
t2 = a1 * b1;
t1.v32[0] = t0.v32[1];
t1.v32[1] = t2;
t1.v64 += ((uint64_t)a1) * ((uint64_t)b0);
t1.v64 &= 0x1111111111111111ULL;
t1.v64 += ((uint64_t)a0) * ((uint64_t)b1);
t0.v32[1] = t1.v32[0];
t2 = t1.v32[1];
// reduction
const uint32_t rd_x12 = 0x1001; // x^12 = x^3 + 1
const uint32_t rd_x16 = rd_x12<<16; // x^16 = x^7 + x^4
t0.v64 += ((uint64_t)(t2&0x11111111)) * ((uint64_t)(rd_x16));
t0.v64 &= 0x1111111111111111ULL;
t0.v64 += ( ((uint64_t)rd_x12) * ((uint64_t)(t0.v32[1]>>16)) );
// output
t0.v32[0] &= mask;
t0.v32[1] &= (mask>>16); // 12 terms only
return t0.v32[0]|(t0.v32[1]<<1);

}

Figure 4: Multiplication of F212 for data in radix-16 format

5.2 Optimizing the Berlekamp-Massey algorithm

The vec implementation follows [Cho17] to use a version of the Berlekamp-Massey algorithm
(BM) by Xu [Xu91]. Xu’s algorithm was adapted from the version by Massey [Mas69],
of which the pseudocode is shown in Algorithm 2. The main difference between the two
versions is that, while Massey’s version requires to compute a field inversion in each of the
2t iterations, in Xu’s version the inversion is replaced by multiplications: in Xu’s version
σ(x) is updated to δσ(x)− dβ(x).

Note that Massey’s version is expected to be faster. To see why this is the case, observe
that the maximal degrees of polynomials σ(x) and β(x) grow by 1 in each iteration. This
means that in a constant-time implementation the numbers of coefficients that we maintain
for σ(x) and β(x) also have to grow by 1 in each of the 2t iterations, even though the
polynomials might actually have fewer coefficients. Recall that a field inversion takes 390
and 375 cycles for F212 and F213 , which is fewer than the cycle count for 18 multiplications,
no matter whether the bitsliced or the radix-16 data representation is used (see Table 6
and 7). As the average lengths for σ(x) and β(x) are more than 18, we concluded that
Massey’s version should outperform Xu’s version.

Table 7: Cycle counts for one multiplication and one inversion with the radix-16 repre-
sentation. For the cycle counts for multiplication, we perform 128 multiplications in our
assembly function and divide the resulting cycle counts by 128 to avoid the function call
overhead.

multiplication inversion
F212 28.6 394
F213 28.7 375
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Algorithm 2 Massey’s version of the Berlekamp-Massey algorithm
Input : a sequence of 2t elements (S0, . . . , S2t−1) in F2m .
Output: a minimal polynomial σ(x) generating the input sequence.

1: σ(x)← 1 ∈ F2m [x]
2: β(x)← x ∈ F2m [x]
3: δ = 1 ∈ F2m

4: `← 0 ∈ Z
5: for k ← 0 to 2t− 1 do
6: d←

∑t
i=0 σi · Sk−i . σ(x) = σ0 + σ1x+ σ2x

2 + · · ·
7: if d = 0 or k < 2` then
8: (σ(x), β(x), `, δ)← (σ(x)− d

δβ(x), β(x), `, δ)
9: else

10: (σ(x), β(x), `, δ)← (σ(x)− d
δβ(x), σ(x), k − `+ 1, d)

11: end if
12: β(x)← xβ(x)
13: end for
14: return σ(x)

In addition to the choice between Massey’s version and Xu’s version, we also have the
choice between using the bitsliced representation or the radix-16 representation for α(x)
and β(x). Using the bitsliced representation gives a better cycle count per multiplication.
However, we found that using the radix-16 representation also has some advantages. Below
we show the main difference in implementing BM using the two representations.

1. As discussed above, there is a need to increase the numbers of coefficient for σ(x)
and β(x) during BM. When using the radix-16 representation for σ(x) and β(x), we
can simply add one new coefficient in each iteration. On the other hand, with the
bitsliced representation, the best we can do is to add 32 new coefficients every 32
iterations. In other words, the radix-16 representation offers a better granularity
regarding the numbers of coefficients, and this allows the radix-16 representation to
avoid many dummy operations compared to the bitsliced representation.

2. The computation of d =
∑t
i=0 σi · Sk−i in line 6 allows “lazy reduction”: one

can compute the results of the polynomial multiplication phase for each σi · Sk−i,
compute the sum of the results, and perform only one reduction phase to obtain
d. To implement lazy reduction, when using the radix-16 representation, we can
store the sum of all σi · Sk−i that we have computed so far in GP registers and
use the remaining GP registers to compute the next σi · Sk−i. When using the
bitsliced representation, we can first compute 32 σi ·Sk−i and store the results of the
polynomial multiplication phase in 23 or 25 FP registers. Then, for each 32 σi · Sk−i
that have not been computed, we add the results of the polynomial multiplication
phase to the FP registers. After all σi · Sk−i are processed, we perform a reduction
phase and add the 32 values to obtain the d.

3. In line 12, β(x) is updated to x · β(x). When using the radix-16 representation,
we can use a pointer to access each coefficient βi, and the update is carried out by
simply decreasing the value of the pointer by 1. On the other hand, when using the
bitsliced representation, we need to perform a sequence of shifts and ORs on 32-bit
words.

The discussion above shows that there are 4 ways to implement BM due to the choice
between Massey’s version and Xu’s version, and the choice between the bitsliced and the
radix-16 representations. To see which one gives the most efficient implementation, we
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Table 8: Cycle counts of BM with different implementation choices. Note that the
parameter sets mceliece348864* use (m, t) = (12, 64); mceliece460896* use (m, t) =
(13, 96); mceliece6688128* and mceliece8192128* use (m, t) = (13, 128).

m t representation Massey’s Xu’s

12 64 radix-16 472 131 573 805
bitsliced 488 401 602 448

13 96 radix-16 1 007 531 1 269 539
bitsliced 1 107 372 1 447 643

13 128 radix-16 1 733 234 2 213 944
bitsliced 1 850 683 2 439 248

actually implement BM in four different ways. All optimization techniques above are
benchmarked in our experiments. The results are summarized in Table 8. As shown in the
table, using Massey’s version with the radix-16 representation gives the best performance,
so our final implementation takes this approach.

One interesting thing we found is that the bitsliced representation gives a better
performance when the frequency is reduced to 24 MHz, the default frequency used in pqm4.
We show the cycle counts for the four implementations when the frequency is set to 24
MHz in Table 13.

5.3 Optimizing the Beneš Network
[Cho17] uses a Beneš network to permute bit arrays of length n. The permutations are
defined by α1, . . . , αn. The structure of the Beneš network is depicted in [Cho17, Figure 3].
We note that the implementations of the Classic McEliece team use an equivalent view, such
that the first and last stages consist of conditional swaps between consecutive elements. The
naive approach to carry out the network is to deal with the layers sequentially. Following
the strategy of [Cho17, Section 3], we can deal with each stage with the following building
block.

• Load 2 32-bit words.

• Perform the corresponding 32 conditional swaps.

• Store the 2 32-bit elements.

The building block is used 2m−1/32 times for each stage. This means we need to load
and store all the 32-bit words in every layer. In order to reduce the number of memory
accesses, we carry out conditional swaps in two layers at the same time, such that the
building block in our implementation consists of the following operations.

• Load 4 32-bit words.

• Perform the corresponding 2 · 2 · 32 = 128 conditional swaps.

• Store the 4 32-bit elements.

In this way, the number of memory accesses is reduced by a factor of 2.

5.4 Cycle Counts For Components in Decryption
Table 9 shows the cycle counts for the whole Niederreiter decryption and the components
of decryption. We use the terms in [Cho17] in the table: “key eq” stands for the Berlekamp-
Massey algorithm, “root” stands for the additive FFT for root finding, “synd” stands for
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Table 9: Cycle counts for components in decryption.

decryption key eq synd root perm reference

mceliece348864*
2 577 821 472 131 462 996 336 986 74 649 this work
5 342 768 1 253 774 833 795 630 009 258 864 vec

mceliece8192128*
7 208 813 1 733 234 1 137 707 992 214 153 703 this work
16 004 984 5 724 436 2 150 640 1 856 258 390 946 vec

the transposed additive FFT for syndrome computation, and “perm” stands for the Beneš
network to perform the permutation (or the inverse of it) introduced by the support. The
cycle count for decryption, as explained in [Cho17], is expected to be close to

“perm”× 2 + “synd”× 2 + “key eq” + “root”× 2.

Note that one “synd” is used for re-encryption, which is an important step to achieve
CCA security. The numbers of “synd”, “root”, and “perm” for mceliece460896* and
mceliece6688128* are expected to be close to the numbers for mceliece8192128*, so we
decided not to show the numbers in the table.

6 Comparisons and Memory Usage
This section shows memory usage of our implementation and comparisons with the Classic
McEliece implementation of [RKK21] and implementations of other schemes.

6.1 Comparison with the Implementation by Roth et al.
Roth, Karatsiolis, and Krämer [RKK21] reported that it takes 1 938 512 183 cycles to
generate the “extended secret key” for mceliece348864. The extended secret key does
not include the control bits of the Beneš network, but it includes M−1. It is also reported
in [RKK21] that 667 392 425 cycles are required to obtain T from M−1, so in total
2 605 904 608 is required to obtain T .

For comparison, if the time for computing the control bits is excluded from the key
generation time, implementation a would take 2 146 932 033− 491 446 632 = 1 655 485 401
cycles and implementation b would take 2 382 094 433− 491 446 632 = 1 890 647 801 cycles.
These numbers are both much smaller than 2 605 904 608, even though they actually include
the time to write T into flash memory.

The implementation of [RKK21] is able to carry out encapsulation for mcelice348864
in 3 106 183 cycles and encapsulation for mcelice460896 in 5 868 529 cycles, but it seems
that the numbers do not include the time to generate the error vector. The numbers in
Table 1 show that our implementation is much faster.

6.2 Comparison with Other NIST Post-quantum Candidates
Table 10 shows the performance numbers of the third-round candidates FrodoKEM [ABD+20],
KYBER [SAB+20], Saber [DKRV20], NTRU [CDH+20], and SIKE [JAC+20]. The num-
bers are measured at 24 MHz, which means the numbers for 168 MHz are expected
to be larger. Compared to the level-1 parameter set of FrodoKEM, our encapsulation
time for mceliece348864* is more than 79 times faster and our decapsulation time for
mceliece348864* is more than 17 times faster. Compared to other lattice-based schemes,
our encapsulation time and decapsulation time are not as fast but are still reasonably
efficient.

The reader might wonder why we did not include performance numbers of other 3rd-
round code-based schemes. We did not include the numbers because we are not aware of

https://orcid.org/0000-0002-2420-496X
https://orcid.org/0000-0003-3043-6190
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Table 10: Performance numbers of the 3rd-round KEMs from pqm4 commit-6841a6b.

scheme (implementation) level key generation encapsulation decapsulation
frodokem640aes (m4) 1 48 348 105 47 130 922 46 594 383

kyber512 (m4) 1 463 343 566 744 525 141
kyber768 (m4) 3 763 979 923 856 862 176

lightsaber (m4f) 1 361 687 513 581 498 590
saber (m4f) 3 654 407 862 856 835 122

ntruhps2048509 (m4f) 1 79 658 656 564 411 537 473
ntruhps2048677 (m4f) 3 143 734 184 821 524 815 516

sikep434 (m4) 1 48 264 129 78 911 465 84 276 911
sikep610 (m4) 3 119 480 622 219 632 058 221 029 700

any implementation of the schemes that are both constant-time and tailored for Cortex-M4.
The BIKE [ABB+20] team, for example, does have an implementation named portable
which can run on Cortex-M4, but it is neither constant-time nor tailored for Cortex-M4.

6.3 Memory Usage
We use the system tool size for the size of required ROM in our implementation, and it
reports 618,796/2488/68 for the .text/.data/.bss sections of the objective file. With
the 1 MB flash, stm32f4-discovery is capable of storing the program code on the device.
Table 11 reports the stack usage of key generation, encapsulation, and decapsulation. Since
the stm32f4-discovery provides two stack spaces (128KB and 64KB), we report the
stack usage of the two spaces separately. Note that the numbers do not include the stack
memory used by the inputs and outputs of the operations. For example, the numbers for
key generation do not include the memory occupied by the secret key.

The stack usage is measured with a modified version of the stack tool in pqm4. We need
to modify the tool so that it knows that the public key is in flash memory. In addition, the
tool only measures the amount of stack memory within larger piece (128 KB) of SRAM,
and there is a limit on the amount it is able to measure. We modified the tool so that it
does not have the limit. For the stack memory within the smaller piece (64 KB) of SRAM,
we count manually.

We note that [RKK21] 75 264 bytes to generate M−1. This might look smaller than
our numbers, but our numbers include memory consumption for other variables that need
to be maintained during in the whole key generation.

Table 11: Stack usage for the three operations.

key gen. (impl. a) key gen. (impl. b) encap. decap.
mceliece348864f 115 588 + 61 440 114 584 1412 18 492
mceliece348864 115 588 + 61 440 114 624
mceliece460896* 1996 34 956
mceliece6688128* 35 708
mceliece8192128* 36 200
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B The LUP Decomposition Algorithm Used in our SU-
PERCOP Implementation

Algorithm 3 The LUP decomposition used in author A’s implementation.
Input: Â ∈ F(n−k)×w

2 , w ≥ n−k. The first n−k columns form a matrix A ∈ F(n−k)×(n−k)
2 .

Output: L−1, U, P ∈ F(n−k)×(n−k)
2 with PA = LU or ⊥.

1: B ← Â
2: for ` = 0 to n− k − 1 do
3: r` ← `
4: end for
5: for ` = 0 to n− k − 1 do
6: for i = `+ 1, . . . , n− k − 1 do
7: if Bi,` = 1 and B`,` = 0 then
8: swap row i of B with row ` of B
9: swap ri with r`

10: end if
11: end for
12: if B`,` 6= 1 then
13: return ⊥
14: end if
15: for i = `+ 1, . . . , n− k − 1 do
16: for j = 0, . . . , w − 1 do
17: if j 6= ` then
18: Bi,j = Bi,j −Bi,` ·B`,j
19: end if
20: end for
21: end for
22: end for
23: L−1 ← the lower triangular part of the first n− k columns of B
24: U ← the upper triangular part of the first n− k columns of B
25: P ← the permutation matrix represented by r0, . . . , rn−k−1
26: return L−1, U , P
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