
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 3, pp. 28–59. DOI:10.46586/tches.v2021.i3.28-59

Online Template Attacks: Revisited
Alejandro Cabrera Aldaya and Billy Bob Brumley

Tampere University, Tampere, Finland
alejandro.cabreraaldaya@tuni.fi,billy.brumley@tuni.fi

Abstract. An online template attack (OTA) is a powerful technique previously used
to attack elliptic curve scalar multiplication algorithms. This attack has only been
analyzed in the realm of power consumption and EM side channels, where the signals
leak related to the value being processed. However, microarchitecture signals have no
such feature, invalidating some assumptions from previous OTA works.
In this paper, we revisit previous OTA descriptions, proposing a generic framework
and evaluation metrics for any side-channel signal. Our analysis reveals OTA features
not previously considered, increasing its application scenarios and requiring a fresh
countermeasure analysis to prevent it.
In this regard, we demonstrate that OTAs can work in the backward direction, allowing
to mount an augmented projective coordinates attack with respect to the proposal by
Naccache, Smart and Stern (Eurocrypt 2004). This demonstrates that randomizing
the initial targeted algorithm state does not prevent the attack as believed in previous
works.
We analyze three libraries libgcrypt, mbedTLS, and wolfSSL using two microarchi-
tecture side channels. For the libgcrypt case, we target its EdDSA implementation
using Curve25519 twist curve. We obtain similar results for mbedTLS and wolfSSL
with curve secp256r1. For each library, we execute extensive attack instances that
are able to recover the complete scalar in all cases using a single trace.
This work demonstrates that microarchitecture online template attacks are also very
powerful in this scenario, recovering secret information without knowing a leakage
model. This highlights the importance of developing secure-by-default implementa-
tions, instead of fix-on-demand ones.
Keywords: applied cryptography · public key cryptography · elliptic curve cryptog-
raphy · side-channel analysis · online template attacks · microarchitecture attacks
· libgcrypt · mbedTLS · wolfSSL

1 Introduction
Side-channel attacks are a common threat to computing platforms nowadays. Since the
pioneering works by Kocher [Koc96], several kinds of leaky channels have been discovered.
For instance, execution time, power consumption, and in the microarchitecture realm
cache-timings, sequence of page accesses [Koc96, KJJ99, Per05, YF14, XCP15].

Several techniques have been proposed to exploit said channels. Among them are
template attacks, that assume the adversary can profile the targeted implementation
side-channel signals [MOP07]. Chari, Rao, and Rohatgi [CRR02] introduced template
attacks in the context of power consumption side channels, consisting of three phases: (i)
templates building, (ii) target trace capturing, and (iii) template matching. The template
building phase is performed on an attacker-controlled implementation very similar to
the targeted one. During this phase, the attacker profiles leakage by building leakage
templates.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-10-15 Accepted: 2020-12-15 Published: 2021-07-09

https://doi.org/10.46586/tches.v2021.i3.28-59
mailto:alejandro.cabreraaldaya@tuni.fi,billy.brumley@tuni.fi
http://creativecommons.org/licenses/by/4.0/


Alejandro Cabrera Aldaya and Billy Bob Brumley 29

Note that this attack description by Chari, Rao, and Rohatgi [CRR02] considered
templates built before capturing the target trace. Later, Medwed and Oswald [MO08]
challenged this order, with template attacks targeting ECDSA scalar multiplication. The
authors analyzed several scenarios related to this order, proposing an on-the-fly template
building [MO08, Sect. 5.3]. That is, creating templates after capturing the target trace.

Related to this template attack phases order, Batina et al. [Bat+14] proposed what is
known in the literature as Online Template Attacks (OTA), also building the templates
after capturing the target trace, similar to [MO08]. The main difference between [MO08]
and [Bat+14] is how templates are constructed. Medwed and Oswald [MO08] used “vertical”
power consumption leakage while Batina et al. [Bat+14] used “horizontal” leakage (see
[Cla+10] for definitions). However, despite this difference both approaches agree on the
moment when templates are built, and template attacks that follow this approach are
labeled as OTAs.

Creating template traces in advance is feasible when the number of possible templates
to create is small. For instance, a binary exponentiation algorithm where templates are
used to distinguish a single branch result only requires two templates [CRR02]. However,
when the number of leaking features to detect is large, e.g. coordinates of an elliptic curve
point, the number of different templates could be infeasible to generate in advance. This
scenario is where OTAs enter into play by capturing templates on-demand/online based
on a secret guess [Bat+14].

The original OTA technique was proposed and applied in several works using power
consumption/EM side channels. Dugardin et al. [Dug+16] demonstrated a practical OTA
on PolarSSL scalar multiplication using EM signals. Regarding power signals, Sandmann
[San18] targeted FourQ scalar multiplication and Roelofs [Roe19] instead ECDSA.

Luo [Luo18] used the OTA approach, but generated template traces using a leakage
model instead of being captured on a similar device. This approach requires a leakage
model rather than a template device, but nevertheless adds attack flexibility wrt the
original description [Bat+14].

Bos et al. [Bos+18] analyzed the feasibility of OTAs on the Frodo post-quantum
proposal. The authors employed a power consumption trace emulator for modeling both
attack and template traces instead of real devices [MOW17]. It would be interesting to
study attack feasibility using such an emulator to gather template traces while the target
trace belongs to a real device, a gap that this paper fills.

One common property in these works is they use starting algorithm state (e.g. initial
elliptic curve point coordinates) as attack input. This trend is likely motivated by the fact
that the OTA technique was originally presented in this setting, where the starting value
of an accumulator is known to the attacker [Bat+14]. However, in this paper we challenge
this assumption and show it is not an attack requirement, considerably expanding its
applications.

Regarding microarchitecture side-channel attacks, several template attacks have been
proposed in the literature [BH09, ABG10, GSM15, WHS12, Che+19, Du+15, Bha+20].
Brumley and Hakala [BH09] developed data cache-timing templates to attack ECDSA scalar
multiplication using Prime+Probe, while Acıiçmez, Brumley, and Grabher [ABG10]
extended the concept to the L1 instruction cache. Similarly Gruss, Spreitzer, and Mangard
[GSM15] showed the feasibility to construct templates from Last Level Cache timings using
Flush+Reload to attack AES T-Box implementations. Bhattacharya et al. [Bha+20]
constructed templates from performance counters related to the branch prediction unit
(BPU) to attack elliptic curve scalar multiplication.

However, regardless of exploited microarchitecture components and applications, all
these works follow the original template attack approach by Chari, Rao, and Rohatgi
[CRR02], where templates are built before capturing the target trace. Based on extensive
literature review, it seems microarchitecture-based OTA related works are a research gap.



30 Online Template Attacks: Revisited

Therefore, it remains unknown how OTAs apply in the microarchitecture realm, especially
considering that the original OTA description was motivated by power consumption side-
channel signals that leak differently from microarchitecture ones due to their different
natures. The original OTA technique implicitly assumes information on the side-channel
signals that might not be present in microarchitecture based ones.

In this paper, we start to fill this gap, not only demonstrating the effectiveness of OTAs
on commonly used libraries, but revisiting the original OTA description, demonstrating
it is more flexible than previously believed. This leads to new application scenarios
regardless of the exploited side channel. Section 2 presents background on elliptic curve
scalar multiplication algorithms and microarchitecture side channels. Section 3 revisits
the original OTA description, proposing a generic framework for its analysis. Section 3.4
analyzes OTA countermeasures considering its previous description and the proposed one.
Later, Section 4 instantiates the proposed OTA framework in the microarchitecture realm,
evaluating this attack in three software libraries. Section 5 presents full end-to-end OTA
experiments on these libraries, capable of recovering the secret in all instances using a
single trace. We present conclusions in Section 6.

Our main contributions are as follows: (i) we revisit the original OTA concept, revealing
properties, application scenarios, and evaluation metrics not considered before; (ii) we
discover that a countermeasure previously proposed to prevent OTAs could be insufficient;
(iii) we propose an augmented projective coordinates attack that reduces the number of
required traces from thousands to one, wrt the original attack of Naccache, Smart, and
Stern [NSS04]; (iv) we present the first microarchitecture OTA analysis; (v) we develop a
tool to detect OTA-based leakages in software libraries using different attack vectors; (vi)
we demonstrate practical microarchitecture OTAs on three widely used software libraries.
The first three contributions revisit the original OTA description and are side-channel
independent, whereas the others apply the new methodology to microarchitecture side
channels.

2 Background

2.1 Elliptic curve scalar multiplication
Scalar multiplication is one of the main operations in ECC. It computes P = kG for
a scalar k and an elliptic curve point G, equivalent to aggregate k times G with itself.
Regarding non-quantum elliptic curve cryptosystems, this operation plays a crucial role
because inverting it (i.e. recovering k knowing P and G) requires solving the Elliptic Curve
Discrete Logarithm Problem (ECDLP), considered hard for well-chosen elliptic curves
[HMV04].

On the other hand, scalar multiplication is the most time-consuming operation in these
cryptosystems. Among the several approaches to implement it, performance was initially
the main goal. But after the groundbreaking work on side-channel analysis by Kocher
[Koc96] in 1996, resistance against these attacks is considered a must.

Several approaches exist for computing a scalar multiplication, for instance: double-
and-add, Montgomery ladder, window-based methods, etc. [JY02, HPB05, Joy07, HMV04].
Regardless of their differences, all of them share the property that at every iteration
a state is updated based on secret data. A state can be a single elliptic curve point
accumulator (e.g. double-and-add) or a set of them (e.g. Montgomery ladder). This
property of scalar multiplication algorithms and the state concept play a crucial role in
the OTA analysis presented in Section 3. In this section, we define an abstract scalar
multiplication description (Algorithm 1) to represent all of them as it fits better for a
generic OTA description. Later during the real-world OTAs in Section 5, we instantiate this
algorithm using concrete implementations. Algorithm 1 consists of four generic operations.



Alejandro Cabrera Aldaya and Billy Bob Brumley 31

Algorithm 1: Generic scalar multiplication
Input: Integer k and curve generator G
Output: P = kG

1 K = Encode(k)
2 S′0 = Init(G)
3 for Ki in K = {K1, K2, . . , Kn} do
4 Si = Select(S′i−1, Ki)
5 S′i = Process(Si)

6 P = Finalize(S′n)
7 return P

Encode: This operation encodes the scalar k in a list K = {K1, K2, . . , Kn}, where at
every algorithm iteration at least one element of K will be processed. For instance, in the
double-and-add algorithm, K is the binary representation of k. The encoding defines how
many possibilities exist for each Ki. The only requirement for this step is that it can be
inverted, i.e. it is possible to recover k from K.

Init: This operation initializes the first state S′0 using the point G, as well as performs
coordinate conversion and precomputation.

Select: This operation defines the state Si to be processed in the current iteration.
This selection depends on Ki and the previous iteration computed state S′i−1. Sometimes
this operation is implemented using conditional branches like in the classic double-and-add
algorithm, making it vulnerable to trivial side-channel attacks. We assume that the
implementation of this operation does not leak Ki. This is a common assumption for scalar
multiplication algorithms protected against these trivial attacks (e.g. balanced Ki-related
branches). Regarding our research, we are more interested in subtle leakages lurking in
the ECC hierarchy lower layers, e.g. the finite field implementation.

Process: This is the most important operation regarding this research. This step
processes the current iteration state Si, generating current iteration resulting state S′i. This
operation is composed by elliptic curve point doubling and addition executions, according
to the curve/coordinates formulae. OTAs aims at identifying which Si was processed at
each iteration, allowing to recover the corresponding Ki. The adversary has freedom to
select the Process operation. For instance, it can be composed by all point operations in
the curve formulae, or only a subset of them. Additionally, the position of Select wrt to
Process could vary between implementations, however adapting the attack to these cases
is immediate.

Finalize: This operation processes the last computed state S′n just before returning
the output point P . For instance, projective to affine coordinates conversion is usually
executed here [HMV04, NSS04].

In addition to the scalar multiplication algorithm, there exist several point coordi-
nate representations that define the formulae employed for computing point doubling
and addition on a given elliptic curve [HMV04]. Regardless of the selected coordinate
system, these operations usually require several modular computations (i.e. additions,
multiplications, divisions, etc.) performed on multiprecision integers (bignum). Therefore
an ECC implementation consists of several layers, and eliminating side-channel leakages in
all of them is a challenging task.

2.2 Microarchitecture side-channels
Several microarchitecture-based side channels have been discovered, where execution time,
cache-timing, and port contention are a few examples [Koc96, Per05, YF14, Ge+18,
Ald+19]. Despite technique details, almost all of them aim at exploiting address-based



32 Online Template Attacks: Revisited

information leakage [AK09, Ge+18, Sze19, Wei+18]. That is, a leak produced by secret-
dependent memory accesses. When said dependency produces different execution paths, it
is labeled as control-flow leakage, whereas a data leak exists if a data-memory access is
secret-dependent [Wei+18].

Another kind of leakage that can exist in a computing platform is value-based leakage.
For instance, some CMOS devices leak the Hamming weight of the processed values
through their power consumption [KJJ99, PMO07]. However, microarchitecture side
channels that exploit value-based leakages are not common at all [Cop+09, Ge+18, Sze19].
This difference between power and microarchitecture-based side channels challenges the
application of OTAs in the microarchitecture realm because the original OTA description
inherently assumes that value-based leakage exists in the exploited channel [Bat+14].

The constant-time feature is often used to label a software implementation as side-
channel secure. However, regarding address-based leakages, a more accurate term is
constant-address implementation [Ge+18]. Nevertheless, we use the term constant-time
consistent with the common trend in the literature, but referring to the latter.

OTAs highlight the need to develop constant-time implementations. Side-channel
secured scalar multiplication algorithms remove secret dependent branches at its highest
level. However, is it the only layer that needs to be constant-time? It is common that the
lowest bignum arithmetic indeed contains branches, especially when the implementation
was inherited from code developed when side-channel leakages were not a concern. For
instance, OpenSSL, libgcrypt, mbedTLS, wolfSSL are open-source libraries with this
property1.

Address-based memory leakages often exist at different granularities, and several mi-
croarchitecture side channels have been discovered to exploit them. The zoo of available
attacks is diverse with different properties like threat model, granularity, targeted informa-
tion, noise level, etc. The next section presents a generic OTA framework that aims to be
applicable to any side channel (e.g. power consumption and microarchitecture signals),
and later in Section 4 we use it to analyze three libraries employing two microarchitecture
ones.

3 Reexamining the OTA Technique
This section revisits the OTA description, proposing a new framework for its analysis and
evaluation, demonstrating some features not considered before. For this analysis, we use
the generic scalar multiplication (Algorithm 1) described in Section 2.

Abstractly, the OTA procedure consists of the following steps. We discuss differences
regarding the original proposal in the following sections.

1. Capture one side-channel trace I while the targeted implementation processes some
secret k.

2. Split the target trace in iterations I = {I1, I2, . . , In}, where each Ii corresponds to
the processing of state Si according to Ki. Therefore, it is expected Ii corresponds
to the Process operation in Algorithm 1.

3. Extend: Enumerate every possible Ki and—according to the Select operation—
compute every possible Si using the previous known state. For each computed Si,
capture a side-channel trace corresponding to the execution of Process (Si). This
produces a template trace Ti,j for every possible Ki represented by j.

4. Prune: Filter out those Ti,j that do not match Ii.
1OpenSSL and wolfSSL are transitioning their bignum arithmetic to provide constant-time security at

all layers.



Alejandro Cabrera Aldaya and Billy Bob Brumley 33

5. For all Ti,j surviving the pruning phase, repeat for the next iteration (starting from
step 3), backtracking if multiple matches are found.

6. Terminate: Finish the attack after recovering sufficient Ki.

This algorithm follows an extend-and-prune approach, where step 3 extends the number
of candidates and step 4 prunes unlikely ones. The OTA idea is to identify which state Si

was processed at an iteration and derive Ki from it.

Extend. This step can be performed using different approaches related to how much
control the adversary has over the template implementation. For instance, which inputs
does it accept? Can the adversary modify it?

In this regard, the ideal scenario takes place when the attacker has access to a template
implementation where she can obtain traces of the Process operation for any state Si.
However, in practice sometimes it is not available due to API limitations. For instance,
in embedded systems it is not common that a device exports an API for the Process
operation alone, but a high level one for the scalar multiplication, or even worse, a protocol
one (e.g. ECDSA signature generation/verification). In addition, even if the Process API
is available, the state representation may differ from the targeted one. For more details on
techniques in each scenario, consult [MO08, Bat+14, Pap19, Roe19].

These limited scenarios are more likely on embedded systems, in contrast to the
microarchitecture realm. For instance, a common threat model is the adversary and victim
share the same computing platform, attacking a shared cryptography library (e.g. cache
attacks). In this scenario, the attacker can use the shared library binary, or if it is open
source she can construct a fork with a more flexible API. In our practical experiments
in Section 5 we explore this path, showing this OTA flexibility in the microarchitecture
realm.

Prune. This phase controls the search tree growth based on a match score. The signal
nature determines the method employed to assess if a template trace matches the targeted
one. Pearson’s correlation coefficient has been used in power consumption OTAs [Bat+14,
Dug+16, Roe19], whereas Ozgen, Papachristodoulou, and Batina [OPB16] explored other
classification algorithms. Regardless of the employed approach, this step should minimize
the probability of pruning the good candidate, while maximizing the probability of pruning
incorrect ones.

In this paper, we only consider algorithms that does not prune the correct solution
(i.e. Pr[false negative] = 0). Dealing with “false negatives” requires a highly application-
dependent error correction procedure. For instance, if multiple copies of the target trace
can be captured, this redundancy can help thwart errors, but not all cryptosystems allow
this. We leave the analysis of OTAs combined with error-correction approaches for future
work.

Terminate. Algorithm termination depends on the attacked cryptosystem and certainty
about the recovered data. Some cryptosystems like ECDSA break when knowing (with
certainty) a small number of bits of the scalars used to generate a set of signatures [HS01,
NS03]. Therefore, if enough Ki are reliably recovered such that the number of bits of k
that they reveal are sufficient to apply said cryptanalysis, there is no need to recover the
full scalar [Dug+16].

On the other hand, some cryptosystems like the Edwards curve DSA variant (EdDSA)
are designed to prevent such cryptanalysis [Ber+12]. For this scenario, OTAs should
recover sufficient bits such that solving the ECDLP is feasible, where naturally recovering
the full scalar is also an option.



34 Online Template Attacks: Revisited

Partial scalar recovery using OTAs ideally requires a side channel that allows recovering
each Ki with absolute certainty. Otherwise, it increases the number of iterations to process,
expecting that the pruning removes the incorrect ones [Dug+16]. If a full scalar recovery
is desired, the attacker can implement it using depth-first search, considering that the
correct solution will survive every pruning step and it is more likely that incorrect ones do
not. However, if the pruning phase produces many false positives, the attacker should test
each solution produced by the algorithm until finding the correct one.

3.1 Attack input and direction
The OTA concept was presented as a chosen-input attack [Bat+14]. However, it is worth
highlighting that this requirement is about the template implementation, not the targeted
one. This distinction is important because it is considered in the OTA literature that the
attacker needs to know the input point to determine the initial state S′0 and subsequent
ones [MO08, Bat+14, Dug+16, MOW17, Luo18, Roe19].

We revisit this claim, discovering that it is not a strict attack requirement. Instead,
we propose the following: The OTA technique applies if the adversary knows that a state
processed by the target implementation belongs to a known set of states with feasible
enumeration. Note additionally that it is a sufficient condition, not a necessary one
(Section 3.2 expands).

The initial state S′0 case is covered by previous works. Moreover, the OTA description
given above also applies if the adversary knows any Si and starts the attack there. Such a
state could be obtained by a complementary side-channel attack. We have not found an
implementation or previous works with such leakage that allows recovering an intermediate
state. However, the last state case (S′n in Algorithm 1) requires more attention.

Knowing the last state might seem harmless regarding previous work on OTAs because
it recovers the Ki reproducing the targeted algorithm execution (i.e. forward direction).
Hence, no state is processed after computing the last state (cf. Algorithm 1). However, we
challenge this claim by answering: Could an OTA be executed in the backward direction?

Following the OTA description given above, if the adversary knows the last state
Sn, she can compute Sn−1 by inverting the Process operation. Depending on the curve
formulae, this inversion often involves computing modular roots, possibly obtaining more
than one candidate for Sn−1 [NSS04]. Then the adversary can capture template traces for
every computed Sn−1 and prune those not matching the observed iteration trace In. This
will allow determining the processed state and eventually the corresponding Ki. Repeating
this process for previous iterations could allow recovering all Ki.

This demonstrates OTAs can be applied in the backward sense, reversing the target
trace iterations order, i.e. I = {In, In−1, . . , I1} and using the last computed state S′n as
the attack starting state. This variant could be harder to solve, because each guess for Ki

might generate more than one candidate due to the modular roots, thus increasing the
number of candidates per iteration and the pruning phase must filter out more candidates.
Section 5 demonstrates this attack in two different scenarios that recover the scalar using
a single trace, showing feasibility in practice.

Very related to this idea is the projective coordinates attack proposed by Naccache,
Smart, and Stern [NSS04]. The authors demonstrated the projective representation of the
scalar multiplication output point could reveal information about the scalar. The approach
is purely algebraic and relies on—when inverting Process based on a guess about Ki—no
modular roots existing, concluding that said Ki is incorrect. However, due to modular
root properties, the search tree explodes very quickly, hence the number of bits that can
be recovered is small [NSS04, APGB20].

This attack requires knowing the projective coordinates of the output point (e.g. last
state). For instance, this can be obtained using a complementary attack: Maimut et
al. [Mai+13] used a fault injection attack while Aldaya, Pereida García, and Brumley



Alejandro Cabrera Aldaya and Billy Bob Brumley 35

[APGB20] used a microarchitecture side channel. Executing an OTA in the backward
direction (whereas previous works only considered the forward case) could allow recovering
all bits of the scalar using a single trace. Therefore, it can be considered as an augmented
projective coordinates attack.

3.2 Revisited OTA requirements
In this section, we revisit the original OTA requirements, allowing to determine if a scenario
could be targeted by an OTA. Evidently, this does not imply the attack will succeed, but
allows developers to know if their implementation should take OTAs into account. We
define the following OTA requirements:

Distinguisher: A leak of the Process implementation can be used as a state distin-
guisher.

Reproducible: The adversary has access to a template implementation that will
process the same data as the target implementation for the same input.

The Distinguisher requirement has been assumed in previous works due to power
consumption side channel properties. Power consumption signals leak about the values
being processed, therefore this requirement only depends on the signal-to-noise ratio.
However, in the microarchitecture realm, value-based leakages are not common, therefore
the attacker should rely on address-based leakage (e.g. non constant-time code). Section 3.3
discusses this requirement and proposes some metrics to evaluate how well a leak of a
Process implementation can be used as a state distinguisher.

Regarding the Reproducible requirement, depending on which input the template
implementation accepts, the attack could be either state- or scalar-based.

State-based. Previous works on OTAs assume that an attacker knows the first state.
Section 3.1 extends this to any state in both forward and backward directions. This
scenario can be generalized even further to the case no state is known, but the attacker
knows a set of states where one of them is the correct one. Intuitively, if said set can be
feasibly enumerated, the adversary can perform the attack for every state in it.

Scalar-based. If the template implementation allows executing the same scalar multipli-
cation algorithm as the target one, the adversary can guess the first processed Ki. For
instance, when using a binary algorithm where each Ki represents the bit i of k, the
attacker can use the template implementation to capture the traces for [0]G and [1]G and
then compare with the target one. If only one matches the target trace, the attacker learns
a bit of k. The next iteration builds templates using previously learned information on k.
In this scenario, the attacker does not require a known state, but expects that one of the
states processed in template traces corresponds to the target one, i.e. the adversary can
reproduce the target implementation execution.

The scalar-based approach only works in the forward direction because the processed
states depend on previous ones. During our experiments, we use both approaches to recover
the scalar. As mentioned before, the fulfillment of these requirements does not guarantee
attack success. The next section proposes some metrics to evaluate an implementation
regarding OTAs.

3.3 Evaluation metrics
The original OTA paper claims it could recover a full scalar employing one template trace
per key bit [Bat+14]. However, this claim only holds when targeting a binary scalar



36 Online Template Attacks: Revisited

multiplication algorithm (Ki is a binary value) and if the distributions for the matching
scores for correct and incorrect templates are well-separated. Therefore, the performance
of an OTA depends on the exploited side channel, its characteristics such as signal-to-
noise ratio, error resilience, etc. Previous works on OTAs only consider power-based side
channels, making assumptions about the signal that may not hold for other side channels
like microarchitecture-based ones.

Following the generic scalar multiplication in Algorithm 1, we represent an implemen-
tation of the Process operation using (1), where Li is a side-channel trace resulting from
its execution with Si as input.

Process(Si) Li (1)

Note Li is equivalent to template traces notation Ti,j . However, for the sake of notation
simplicity, we rename it as Li as it fits better the following analysis where its Ki relation
is meaningless. The objective of each OTA iteration is to detect which template trace
matches with the target one. Intuitively, the better Li represents a state Si the better the
attack will perform.

The ideal attacker scenario happens when there is one and only one Li for every Si

and vice versa (i.e. bijective sets). This implies leakage determinism, that is, every time
Si is processed the same Li will be observed. On the other hand, if the set formed by
all possible Li only has one element, it is not possible to distinguish any Si using Li.
Therefore, an implementation with this feature can be considered OTA-safe.

Regarding power consumption side channels, ideal and safe scenarios are not common
due to the channel characteristics. Power consumption signals contain random noise,
and the ideal scenario can only be achieved if this noise is removed completely, which
is usually not possible in practice [MOP07, Luo18]. At the same time, a safe scenario
(as defined before) is challenging to achieve because power signals inherently contain
value-related leaks (Section 2), and preventing those requires specific hardware design
[MOP07]. Therefore, generally speaking, two different states will inherently generate
different signals. Hence, a power side-channel OTA adversary usually handles scenarios
that lay between these boundary cases. On the other hand, both ideal and safe scenarios
can occur in the microarchitecture realm, taking advantage of the latter’s benefits and
suffering the curse of the former (see countermeasure analysis in Section 3.4).

We propose some metrics and a procedure allowing a security auditor or an attacker
to evaluate if an implementation could be vulnerable to OTAs. Figure 1 shows a flow
diagram to guide the evaluation process. The first step is to estimate if the targeted
implementation is deterministic, taking into account the considered side channels in
the threat model. Determinism can be estimated by capturing a set of traces with
identical inputs and comparing them. Ideally this should be done over the entire scalar
multiplication algorithm, to detect which algorithm operations have deterministic behavior.
For instance, non-determinism during the Init operation is good evidence there is a state
randomization countermeasure in place [Cor99], while a deterministic Init and Process
could be dangerous.

Non-deterministic case. The determinism test defines which main branch of the evalua-
tion flow in Figure 1 should be followed. If no determinism is observed, the right branch
should be taken. Non-determinism implies the Reproducible requirement is not perfectly
fulfilled. Therefore, the template matching algorithm performance should be considered.

For this task, we propose to estimate the probability that said algorithm produces
false negatives 1©. As discussed previously, if it is not zero, the attacker must deal with
errors in the recovery process. On the other hand, if Pr[FN ] = 0 the evaluator knows
the solution will remain in the tree. Therefore, in this case the Process leakage could be
reproduced somehow.



Alejandro Cabrera Aldaya and Billy Bob Brumley 37

Deterministic?

pmf(L) = ? @ N

card?

bias?

hard easy

safe ideal

Pr[FN ] = ?

handle
errors

Pr[FP] = ?

hard easy

yes

(1, N)

high low

1 N

no

∅ 0

high low

1

2

A

B

C

Figure 1: OTA evaluation flow (attacker perspective).

The last metric for the non-deterministic case allows to estimate the fulfillment of
the Distinguisher requirement. For this purpose, the false positive probability Pr[FP ]
can be estimated 2©, i.e. probability that the matching algorithm incorrectly classifies a
template trace as a match. This probability defines the number of branches in the solution
tree, therefore it approaches the ideal attacker scenario as the value decreases, and vice
versa. How many false positives the attack can handle depends on the computing resources
available to the adversary.

The right branch of Figure 1 is likely to occur in power consumption side channels.
Previous OTA works developed attacks with Pr[FN ] = 0 and low Pr[FP ] [Bat+14,
Dug+16]. In general, this branch fits better for noisy side channels. The left branch
of this evaluation flow covers the case where determinism is observed in the targeted
implementation using a particular side channel. Therefore, the Reproducible requirement
is perfectly fulfilled in this scenario.

Deterministic case. In this scenario, it is possible to evaluate how well a side-channel
trace of Process can be used as a state Distinguisher. For this task, we propose to estimate
the probability mass function (pmf) of the leakages produced by the Process operation
(Li in (1)). We denote this set as L A©.

The number of possible states is huge, and obtaining an Li for each of them is infeasible.
Therefore, we estimate the pmf(L) using several (N) randomly generated Si, allowing an
estimate of the cardinality of L (i.e. number of different outcomes), and how biased its
distribution is.

Figure 1 B© shows the conclusions drawn with this estimation. If the cardinality is one,
it means all processed states produced the same leakage. Therefore, a state cannot be
distinguished using the employed side channel, and the implementation can be considered
OTA-safe. On the contrary, if the number of observed leakages is equal to the number of
states used for the estimation (N), it implies an ideal attacker scenario. This means it is
very likely an adversary can use the exploited side channel as a perfect state distinguisher.

On the other hand, if the cardinality is between these corner cases, the distribution
bias will determine the computing effort in finding the solution C©. If pmf(L) is highly
biased towards one outcome (Li), the number of false positives will increase, and the
search tree grows accordingly. On the other hand, if no such high bias exists, then solving
the problem is easy. What is considered a high bias depends on attacker computation
resources. During our extensive experiments (detailed later) we recover full 256-bit scalars



38 Online Template Attacks: Revisited

with bias as high as 62% using a desktop workstation.
What could be considered a state Distinguisher? Suppose a state consists of an elliptic

curve point, then very deep in the bignum implementation of the targeted implementation
there is a conditional operation that produces two execution branches based on the evenness
of the point coordinate x. Therefore, wlog, assuming a random state, said control-flow leak
allows splitting the state space in two equiprobable halves, i.e. such leakage can be used
to distinguish if the processed state contains an even x or not. This case will produce an
equiprobable pmf(L) with two outcomes, yet even this tiny state distinguisher is sufficient
to succeed using the OTA technique (see Section 5.3 for experiment results).

Note that during an OTA, the adversary is not required to known a model of the
exploited leakage, i.e. how a deep bignum control-flow leak relates to the processed secret.
Instead, the attacker blindly searches for distinguishable features in the side-channel signals
that fulfill OTA requirements. This blind approach allows to evaluate state-dependent
leakages at any layer of the ECC implementation, no matter how deep they are in the
hierarchy.

3.4 Mitigation analysis
To prevent OTAs, it should be sufficient to eliminate one of its requirements in the
implementation. For instance, if a call to Process produces a random signal, it is not
possible to reproduce the leakage produced by a given state. Projective coordinates
randomization of the starting state can be used for this purpose, as proposed in the
original OTA paper [Cor99, Bat+14]. However, according to the analysis presented in
Section 3.1, it should also be applied after the scalar multiplication to prevent a backward
OTA (Section 5.2 demonstrates this countermeasure is useless if only executed at the
beginning). Furthermore, ideally it should be applied to every input state of Process,
thus avoiding a potential OTA based on intermediate states.

Another line of defense is based on thwarting the Distinguisher requirement. That
is, prevent a side-channel leak from being used to distinguish the processed state. Note
that this mitigation was not considered in previous works because it is not easy to
achieve in the presence of value-based side channels like power consumption. However,
in the microarchitecture realm, constant-address code should be sufficient to meet this
requirement. Naturally, this countermeasure will only be effective if it is applied to the
entire implementation stack.

4 Microarchitecture OTAs
In this section, we instantiate the OTA framework from Section 3 in the microarchitecture
realm. In this context, a leak can be divided in three groups based on its nature: (i) executed
control-flow, (ii) data accessed, and (iii) value processed. Regarding microarchitecture side
channels, the most common leakages are produced by secret-dependent memory accesses
(first two cases), while value-based leakages are less common (see Section 2).

Control-flow based leakages are observed when program execution flow depends on
secret data, e.g. due to a conditional instruction result. While different side channels
could be used to exploit such leakages, in this research we focus our experiments on two
approaches, proved very useful to target Intel SGX enclaves. This scenario is very interesting
because SGX technology does not offers protections against side-channel attacks, delegating
such defenses to developers [CD16]. Therefore, analyzing secured scalar multiplication
implementations in open-source libraries regarding OTAs is interesting, to assess their
resilience to this attack.

Intel SGX aims at providing confidentiality and integrity of software running in Intel
microprocessors even if the OS is under attacker control. Following this threat model, the



Alejandro Cabrera Aldaya and Billy Bob Brumley 39

controlled-channel attack proposed by Xu, Cui, and Peinado [XCP15] provides access to
the sequence of memory pages executed by the victim enclave, a leakage source with 4 KB
granularity that can be used to track the enclave execution [Wan+17, Shi+16, VB+17,
WSB18]. This attack relies on the fact that SGX leaves control of its memory pages to the
untrusted OS. Therefore, an adversarial OS can mark a memory page with SCA relevance
as non-executable and monitor it. A triggered page fault indicates the execution of the
monitored page [XCP15]. Repeating the process for a set of memory pages allows the
adversary to track the sequence of executed memory pages, forming an error-free trace
that potentially leaks secret data processed by the enclave. For the sake of simplicity, we
refer to this page tracking attack as PageTracer.

Recently, Moghimi et al. [Mog+20] proposed the CopyCat attack that allows an ad-
versary to glean the number of executed instructions in a tracked memory page. While
it also works at page granularity, it increases the information provided by PageTracer.
Both attacks can be carried out using the SGX-Step framework proposed by Van Bulck,
Piessens, and Strackx [VBPS17].

In this section, we evaluate mbedTLS, libgcrypt, and wolfSSL scalar multiplication
implementations using the OTA framework proposed in Section 3 regarding PageTracer
and CopyCat attacks. This evaluation, in addition to highlighting their vulnerability
to OTAs, extensively compares both attacks and complements the CopyCat research
[Mog+20].

Threat model. During the experimental validation of our proposed OTA framework, we
employed PageTracer and CopyCat attacks. They share the same SGX threat model: The
adversary has OS privileges and can take advantage of its resources to mount controlled
side-channel attacks. This is a typical threat model for targeting SGX enclaves using
side channels [XCP15, VBPS17, WSB18, AB20]. In our experiments, we assume an SGX
victim application that executes an ECC scalar multiplication with a secret (e.g. EdDSA,
ECDSA, and ECDH).

Library selection was not arbitrary. We selected three open-source libraries with
multiprecision integer arithmetic not designed to execute with input-oblivious execution
flows. This selection is interesting, because while these libraries put significant effort in
providing side-channel secure scalar multiplication, usually only the upper layer receives
these security improvements, leaving the bignum implementation unattended. The rationale
behind this trend is related to the fix-on-demand development process. At the same time,
analyzing how a conditional branch deep in the bignum implementation relates to a secret
only processed at the highest layer is usually non-trivial, as it requires searching for a
leakage model—not part of the library development process. However, OTAs can exploit
a deep bignum implementation leak without knowing its leakage model. This highlights
the need for secure-by-default implementations and the analysis of the selected libraries
regarding OTAs.

We later analyze these libraries, employing the OTA analysis framework proposed
in Section 3. This demonstrates how an implementation can be evaluated regarding
OTA security in practice. We next introduce tooling that will assist this evaluation
process regarding microarchitecture side channels. Then in Section 5, we employ the
results gathered during said OTA evaluation to develop end-to-end attacks on ECC scalar
multiplication implementations in these libraries.

4.1 Microarchitecture OTA evaluation tool

For evaluating OTAs on software libraries using microarchitecture side channels, we
developed a tool that follows step-by-step the evaluation process shown in Figure 1.



40 Online Template Attacks: Revisited

We employed TracerGrind2, a binary dynamic instrumentation tool developed as part
of the Side-Channel Marvels project by Bos et al. [Bos+16]. This tool patches Valgrind,
allowing to record execution traces of a software binary. One of its many features is the
ability to track a specific address range, that allows e.g. focusing the analysis on a specific
shared-library.

The traces recorded with TracerGrind contain the sequence of accessed addresses (both
data and code). Therefore, it can be used to model a side-channel trace down to instruction
granularity. For instance, CopyCat can be emulated using TracerGrind by clearing the
12 least significant bits of every executed memory address, then run-length-encoding the
resulting trace. This produces a trace that contains the sequence of executed memory
pages and the number of instructions executed within them. Similarly, a PageTracer
trace can be obtained by removing the instruction count information from a CopyCat
one. Figure 2 represents this TracerGrind-based leakage emulation, highlighting the
relationship between executed instructions and the emulated side-channel traces.

Instructions 
nop 
nop 
nop 
nop 
... 

nop 
nop 
nop 
... 

nop

TracerGrind + page clustering:

PageTracer trace:

CopyCat trace:
34 1

Figure 2: Leakage emulation using TracerGrind. Colors represent memory pages.

Section 5 empirically validates the accuracy of TracerGrind regarding PageTracer,
where it is used to capture the template traces during real-world attack instances. Regarding
this evaluation, TracerGrind allows to emulate a side channel for the Process operation
on each analyzed library, allowing estimation of the metrics proposed in Section 3.3. We
released a proof-of-concept code that includes this tool and uses it to emulate a single-trace
OTA against wolfSSL [AB21].

Naturally, other microarchitecture side-channel signals, like Flush+Reload ones
at cache-line granularity, can be modeled using this approach, hence this tool is not
side-channel nor SGX-specific. It is sufficient to encode TracerGrind output according to
the desired leakage. At the same time, noisy side channels might need a template matching
algorithm that supports uncertainty. For instance, the edit distance can been used in these
scenarios as a template matching metric [Liu+15, Sch+17].

Limitations. Our tooling aims at detecting OTA-exploitable leaks considering a given
(or modeled) microarchitecture side channel. Both PageTracer and CopyCat work at
the memory page boundary (i.e. 4kB), therefore the detected leakages depend on the
targeted binary layout. This means that (in theory) PageTracer and CopyCat-vulnerable
code might evade detection during evaluation. For instance with PageTracer, consider a
condition operation with resulting branches executing in the same page. In this case, it
is not possible to distinguish the executed branches using PageTracer. In the opposite
case where the target binary has a different layout such that said branches are in different
pages, the tooling indeed detects the leak using PageTracer. Evidently, the probability
to detect all OTA-exploitable leakages increases with the granularity, i.e. it is more likely
that leaks remain undetected using PageTracer than CopyCat.

2https://github.com/SideChannelMarvels/Tracer/tree/master/TracerGrind

https://github.com/SideChannelMarvels/Tracer/tree/master/TracerGrind


Alejandro Cabrera Aldaya and Billy Bob Brumley 41

We designed this tool with an attacker perspective in mind. Regarding security
assessment, it can be used as a necessary condition to declare an implementation OTA-safe,
but not as a sufficient criteria. For this reason, during disclosure to the development teams
of the analyzed libraries, we encouraged generic countermeasures instead of eliminating
individual leaks, also taking into account we only tested them using two side-channel
signals (see Appendix A for details).

4.2 libgcrypt template implementation
Each library follows its own scalar multiplication approach, therefore the definitions of
state and Process vary. Scalar multiplication in libgcrypt v1.8.5 follows the double-and-
add-always approach shown in Algorithm 2. It consists of a main loop that iterates over
every bit of k. At every iteration, a pair of doubling and addition operations are executed
regardless of bit i of k. However, even if both operations are executed, R is only updated
with the result of the addition operation if ki = 1. This is ensured by the conditional
assignment at line 5 that, when implemented securely, provides SCA resistance to trivial
attacks.

Algorithm 2: double-and-add always scalar multiplication
Input: Integer k and elliptic curve point G
Output: P = kG

1 R = O
2 for i = blog2 kc downto 0 do
3 R = 2R
4 T = R + G
5 R = cond_assign(T, R, ki)

6 return R

Regarding our abstract scalar multiplication description, the state in Algorithm 2
consists of a single elliptic curve point, R. Similarly, the Process operation consists of
a point doubling and an addition. libgcrypt exports function wrappers for these point
operations on Weierstrass and Edwards curves: gcry_mpi_ec_dup and gcry_mpi_ec_add
respectively. This allows the attacker to build a template implementation to execute both
operations for every input R, recording its trace with TracerGrind. With libgcrypt, we
focus our research on EdDSA that uses a twisted Edwards curve birationally equivalent
to Curve25519 [Ber+12]. The selection of EdDSA is interesting because EdDSA is rarely
vulnerable to partial nonce attacks. Compromising EdDSA requires massive leakage from
a single trace, and OTAs fit nicely with this requirement.

Following the evaluation flow in Figure 1, we evaluated the Reproducible requirement
to estimate if this implementation is deterministic. For this task, we generated a random
curve point and captured 10 independent traces using our template implementation harness.
We then repeated the experiment for 1000 random points, observing determinism in both
PageTracer and CopyCat traces in all cases. Therefore, it is likely that the side-channel
trace corresponding to the processing of R can be reproduced with this implementation.
Note that this test demonstrates a fundamental difference between power consumption
signals and the employed microarchitecture ones.

According to Figure 1, the next step in a deterministic scenario is to estimate pmf(L).
For this task, we generated 1000 random points, recording their corresponding traces
using TracerGrind. This experiment resulted in 1000 unique CopyCat traces, implying an
ideal attacker scenario, and 889 unique PageTracer traces, which is close to ideal. Both
attack results allow concluding it is very likely a leakage trace of the doubling and addition



42 Online Template Attacks: Revisited

implementations for Edwards curves in libgcrypt can be used as a state distinguisher for
any of these attacks.

Analyzing one of these traces, libgcrypt executed code in 28 different memory pages
for a single call to the doubling and addition wrappers for Edwards curves. We repeated
the capture using TracerGrind but limiting the recording to the libgcrypt address space,
hence external calls are not recorded (e.g. libc ones). The number of executed pages
reduces to 17. An adversary can freely choose their configuration, because during an
attack they select which memory pages to track. However, in our research we are not
only interested in determining if libgcrypt is vulnerable to OTAs, but analyzing how the
leakage behaves considering every memory page combination. Therefore, as the number of
combinations is equal to 2` − 1 for ` pages, we decided to use the limited trace recording
to reduce analysis time.

We estimated the pmf(L) for every memory page combination, 131071 in total. This
allows collecting some statistics about OTA performance, considering Figure 1 metrics.
More importantly, it allows pinpointing leakage origins. Table 1 summarizes how many
page combinations were classified according to the metrics presented in Section 3.3.

Table 1: libgcrypt OTA classification for 217 − 1 page combinations.

Combination class
Attack Ideal Easy Hard Safe

PageTracer 0 87% 3% 10%
CopyCat 50% 48% 0.8% 0.8%

Expanding on the number of combinations that could be used to perform an OTA,
Table 2 shows additional results derived from the previous experiment. The Insecure
column represents the number of insecure page combinations, i.e. sum of Ideal and Easy
columns in Table 1. This means that an attacker can select any Insecure page combination
to mount an OTA using these side channels.

Among the interesting evaluation data is the minimum cardinality that could lead to
a successful OTA and the maximum bias observed. For instance, regarding PageTracer,
at least one insecure page combination exists with only two outcomes in its pmf(L)
(cardinality = 2). At the same time, the maximum bias observed among all combinations
is 50%. This implies there is at least one combination with a two-cardinality L and
equiprobable pmf labeled as insecure. Section 5.2 shows the feasibility of attacking this
kind of pmf .

The last row of Table 2 provides information on the number of root page combinations
and their size, i.e. number of pages in them. We define a combination C as root if no
smaller combination exists that is a subset of C. For instance, if C0 = (P1), C1 = (P1, P2)
and C2 = (P1, P2, P3) are insecure page combinations, then C0 is a root combination while
C1 and C2 are not. Similarly, if no single page combination were insecure in this example,
then C1 would become a root one. Root combinations can be used to pinpoint where the
leakage comes from, especially when they are single-paged ones like in the CopyCat case.

Smaller root combinations imply less addresses to be tracked during the attack. This
is not an issue for PageTracer and CopyCat due to their noise-free feature. On the
other hand, noisy attacks like Flush+Reload will definitely benefit from small root

Table 2: libgcrypt combination details.

Attack Insecure Min card Max bias Root combs/size
PageTracer 87% 2 50% 23/2

CopyCat 98% 7 30% 6/1



Alejandro Cabrera Aldaya and Billy Bob Brumley 43

combinations to decrease noise impact.
PageTracer has 23 root combinations, all with two pages in them, while CopyCat has

six single-page ones. Therefore, it could be possible to perform a successful OTA using
only two pages for PageTracer and a single one for CopyCat, instead of using all 17 pages
involved in our libgcrypt template implementation. According to the definition of root,
all page combinations are composed by mixing the root ones. Therefore, in addition to
knowing the smaller combinations that could be used to succeed, it is also interesting to
know how many an attacker would need to achieve the maximum cardinality3.

Figure 3 shows how the cardinality progresses as the number of used memory pages
increases from one to four. Insecure combinations are found starting from two pages
and reaching the maximum cardinality (889 in our experiments) with four pages. The
results for CopyCat are even better, achieving an ideal attack scenario with only two pages.
Therefore, if an adversary wishes to reduce the number of pages to track, e.g. for noise
mitigation or error correction, both attacks achieved their maximum cardinality even with
a reduced set of pages.

1 2 3 4
Combination size

0

200

400

600

800

1000

Ca
rd

in
al

ity

CopyCat
PageTracer

Figure 3: libgcrypt cardinality vs. combination size (partial).

4.3 mbedTLS template implementation
We analyzed mbedTLS v2.16.3 in the context of the elliptic curve secp256r1 (i.e. NIST
P-256). Elliptic curve computations for this curve use Jacobian projective coordinates.
Algorithm 3 shows a simplified version of the scalar multiplication algorithm in this library.
It follows a comb approach based on the proposal in [HPB05]. This algorithm randomizes
the starting value of R. However, Section 5 expands on how this affects both OTA variants,
surprisingly concluding that it can be ignored for this analysis.

This algorithm encodes the scalar k into a sequence of Ki, where the encoding details
are irrelevant because it is invertible. Thus, if an adversary recovers all Ki she immediately
obtains k. The second step precomputes an array P which, for the targeted curve, contains
32 multiples of G. At each iteration, one point of this array is employed based on Ki.
Hence, identifying which point is selected at each iteration will reveal Ki. We employ R
as state in this implementation, initialized at line 3 to an unknown value based on K1.

3Here cardinality is used as attack performance, considering that all combinations labeled as insecure
have an easy bias, see Section 4.1.



44 Online Template Attacks: Revisited

Algorithm 3: mbedTLS comb scalar multiplication
Input: Integer k and elliptic curve point G
Output: kG

1 K = Encode(k)
2 P = Precompute(G)
3 R = Select(K1, P )
4 for Ki ∈ K : i = [2, n] do
5 R = 2R
6 T = Select(Ki, P )
7 R = R + T

8 return R

Still, the attacker knows that R ∈ P so there are only 32 candidates, and can start by
considering all of them.

To demonstrate the flexibility of OTAs, for this implementation we chose a Process
operation composed of only the point doubling operation, ignoring the leakage produced
by addition. This operation is implemented in function ecp_double_jac. In contrast to
the libgcrypt case, this function is not an exported symbol, therefore building a template
implementation to reach it requires additional effort. The first strategy we explored was
building our own copy of mbedTLS where this symbol is actually exported, hoping that the
symbol table does not significantly change wrt an original (attack) build. We analyzed
both library binaries and the differences were not significant at 4 KB granularity, therefore
we proceeded with this option.

Following the OTA implementation evaluation metrics shown in Figure 1, we used
TracerGrind to assess the determinism of ecp_double_jac using 1000 different points
and 10 trials per point. We deduce that this implementation is likely to be deterministic
regarding PageTracer and CopyCat. The execution of ecp_double_jac was distributed
among 14 memory pages, meaning 16383 page combinations that could be used to mount
an attack.

Similar to our libgcrypt analysis, we estimated the pmf(L) for each of these combi-
nations, and Table 3 summarizes the results. Regarding CopyCat, all combinations are
insecure, with PageTracer close behind. Moreover, the number of total ideal attacker
combinations is very high for both PageTracer and CopyCat. The maximum bias found
is 62% for PageTracer, yet it is still considered insecure based on our estimations.

Table 3: mbedTLS combination details.

Attack Ideal Insecure Min card Max bias Root combs/size
PageTracer 84% 99% 2 62% 63/2

CopyCat 99% 100% 9 24% 14/1

The number of root combinations increases significantly in comparison to libgcrypt.
Centering the analysis on CopyCat results, it is worth highlighting that the number of
single-sized root combinations is equal to the number of memory pages executed by
ecp_double_jac. Hence, any page in this set can be used to distinguish the processed
point.

Figure 4 shows the cardinality progression against combination size. The ideal scenario
is achieved using CopyCat for almost every two-page combination, whereas PageTracer
requires at least three pages to achieve ideal. Both results demonstrate the threat this
library faces, especially considering the high number of small size combinations that achieve
the ideal scenario.



Alejandro Cabrera Aldaya and Billy Bob Brumley 45

1 2 3
Combination size

0

200

400

600

800

1000

Ca
rd

in
al

ity

CopyCat
PageTracer

Figure 4: mbedTLS cardinality vs. combination size (partial).

4.4 wolfSSL template implementation
We analyzed wolfSSL v4.4.0 with default build options, including various timing at-
tack countermeasures. Our analysis focuses on secp256r1, where the library uses the
Montgomery ladder to compute scalar multiplications (Algorithm 4). The state for this
implementation consists of two elliptic curve points R and S, initialized to G and 2G
respectively. The Montgomery ladder aims at providing side-channel resistance against
trivial attacks by executing a point addition and a doubling at each iteration, despite the
value for bit i of k. However, the arguments for these operations (i.e. the state) do depend
on ki.

Algorithm 4: Montgomery ladder scalar multiplication
Input: Positive integer k and elliptic curve point G
Output: P = kG

1 R = G, S = 2G
2 for i = blog2(k)c − 1 downto 0 do
3 if ki = 0 then
4 S = R + S, R = 2R

5 else
6 R = R + S, S = 2S

7 return R

For this implementation, we selected the doubling operation as our targeted Process,
implemented in function ecc_projective_dbl_point that is not exported by default.
However, the attacker can build her own version of the library where this symbol is
exported, similar to mbedTLS. Using TracerGrind, we captured some traces for this
function and observed only seven memory pages were executed. Hence, the number of page
combinations is only 127, a considerable reduction wrt to the thousands of libgcrypt and
mbedTLS.

Similar to the previous cases, we estimated the determinism of this Process implemen-
tation, concluding that it has deterministic leakage for both PageTracer and CopyCat.



46 Online Template Attacks: Revisited

Following the evaluation flow, we estimated each pmf(L) for each page combination.
Table 4 shows the results, highlighting that the majority of page combinations are in-
secure using PageTracer, and every page combination is insecure using CopyCat. For
PageTracer, the maximum observed bias was 52% with a minimum cardinality of two.
A closer inspection of this leakage revealed it is produced by a modular division by two
which executes an addition before dividing if an intermediate value is odd4.

Table 4: wolfSSL combination details.

Attack Ideal Insecure Min card Max bias Root combs/size
PageTracer 0 69% 2 52% 7/2

CopyCat 47% 94% 7 24% 4/1

Figure 5 shows how the cardinality progresses with the combination size for wolfSSL.
We reach an ideal scenario for two-size page combinations with CopyCat, while three pages
are required to achieve the maximum cardinality with PageTracer. In summary, these
results show that even when wolfSSL employs only seven pages in our targeted Process,
OTAs are possible for many page combinations.

1 2 3 4 5 6 7
Combination size

0

200

400

600

800

1000

Ca
rd

in
al

ity

CopyCat
PageTracer

Figure 5: wolfSSL cardinality vs. combination size.

5 Real-World Attacks: Evaluating End-to-End OTAs
In this section, we develop end-to-end attacks on libgcrypt, mbedTLS, and wolfSSL scalar
multiplication algorithms using the template implementations described in Section 4. All
three attacked libraries share the experiment setup and basic OTA approach. We consider
the threat model described in Section 4.

Experiments setup. For validating OTAs on the three analyzed libraries, we employed
the same environment for capturing the traces. It consists of a desktop workstation running
Ubuntu 18.04.1 LTS on an SGX-capable Intel i7-7700 CPU. We used the Graphene-SGX
framework for a straightforward porting of each targeted library to SGX, requiring no code

4https://github.com/wolfSSL/wolfssl/blob/v4.4.0-stable/wolfcrypt/src/ecc.c#L2179

https://github.com/wolfSSL/wolfssl/blob/v4.4.0-stable/wolfcrypt/src/ecc.c#L2179


Alejandro Cabrera Aldaya and Billy Bob Brumley 47

changes [TPV17]. We developed PageTracer-based attacks using the SGX-Step framework
[VBPS17]. Usually PageTracer attacks require the adversary to select which pages to
track in advance, based on a known leakage model. A huge advantage of the pmf analysis
performed for each library in previous sections is that the selection of these pages can be
fully automated. That is, just selecting an insecure page combination, without knowledge
of what is actually executed in those pages.

For all experiments, we compiled the targeted libraries using the latest versions at
the time of writing and the default build options. For each library, we developed an
SGX enclave on top of the Graphene-SGX framework. These enclaves are our attack
targets, which instantiate ECC protocols (libgcrypt) and scalar multiplication primitives
(mbedTLS, wolfSSL) from within their respective libraries. In all cases, the exploited scalar
multiplication primitives are the default in their libraries for the targeted elliptic curve
and protocol: EdDSA in libgcrypt, and ECDSA/ECDH in both mbedTLS and wolfSSL.

Attack implementation. We implemented OTAs as described in Section 2 using depth-
first search with an early exit when recovering the targeted scalar. The exit condition
varies between library and attack direction. We followed a state-based attack, therefore the
attacker must compute the processed state based on a Ki guess as explained in Section 3.2.
The recovery code is independent of the targeted pmf , therefore we made no optimizations
in this regard.

For each library, we selected a pmf and configured SGX-Step to track its corresponding
page combination. After capturing the trace, the recovery code locates the start of the
scalar multiplication execution, then separates its trace in iterations I = {I1, I2, . . , In},
where each Ii corresponds to the Process operation of the implementation. The OTAs
proceed from there. We give specific details regarding state computation and scalar
multiplication algorithms in the corresponding sections.

Leakage origins and previous works. For each attacked library, we pointed to the leaking
source code sections to satisfy reader curiosity. However, we highlight that this information
is not needed by an OTA adversary and was not used in our attacks. One of the advantages
of OTAs is that they can exploit these weaknesses without knowing those specifics nor the
leakage models. During responsible disclosure (see Appendix A), we provided generic leak
descriptions and mitigation approaches.

Previous works on microarchitecture side channels do not cover OTAs. This means many
attacks follow a leakage model-based approach where authors identify a leaky code path,
then find a way to relate it to a secret. A recent example is LadderLeak, where the authors
located leaky ECC arithmetic code in older versions of OpenSSL and developed a leakage
model to recover a single bit from the scalar [Ara+20]. On the other hand, OTAs remove
the leakage model requirement from the equation. Using tooling presented in Section 4 and
the evaluation metrics we propose, it is possible to detect which implementation features
(e.g. memory pages) can be used to exploit these leaks, achieving full scalar recovery in
many cases.

The leakage origins mentioned in the next sections are only a subset of those that
can be exploited. Enumerating all of them is a time consuming task and irrelevant to
this work. For instance, the number of root page combinations gives an approximation
of this quantity (e.g. mbedTLS has 63 for PageTracer, see Table 3). Moreover, even those
are not exhaustive because, as previously stated, the tooling was not designed to detect
leakages at all granularities. For the inclined, we suggest tools like the DATA framework
which aims at detecting leakages in software binaries using statistical tools and leakage
models [Wei+18, Wei+20]. DATA is also interesting for our work because its final step uses
known leakage models to assess the severity of a potential leak. However, in many cases it
detects a potential leak but omits information concerning impact. Our OTA evaluation



48 Online Template Attacks: Revisited

framework can be used to fill this gap in DATA and similar tools. Finding a potential leak
in the ECC scalar multiplication code path using these leakage detection frameworks, the
adversary/evaluator can configure OTA tooling (see Section 4) to estimate the leakage
pmf . This helps understand the security impact of these potential leakage points on the
implementation.

5.1 End-to-end attack on libgcrypt

For an end-to-end attack, we followed the signature generation scenario using EdDSA with
the Curve25519 twist curve (i.e. Ed25519). Generating a signature using Ed25519 involves
computing a pseudorandom 512-bit nonce r and computing the scalar multiplication rG.
This cryptosystem was designed to avoid e.g. lattice cryptanalysis [HS01] where small
information disclosures on different r break the scheme. For inner details about this
cryptosystem and how r is generated, we refer the reader to [Ber+12]. Regarding our
research, we aim at recovering all 512 bits of r that is sufficient to forge signatures, therefore
further details are irrelevant.

For this library, we arbitrary selected an insecure (but not ideal) page combination
with a pmf of 48 observed outcomes after 1000 samples (see its pmf in Figure 6). This
page combination consists of the following offsets: 0xd5000, 0xd6000, 0xd7000, 0xd8000.
Additionally, we used5 offset 0xa3000 to detect when signature generation starts.

1 48
Leakage trace index (freq. sorted)

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f o
cc

ur
en

ce
s i

n 
10

00
 sa

m
pl

es

Figure 6: libgcrypt attack pmf .

Forward attack. Following the libgcrypt scalar multiplication implementation (Algo-
rithm 2), the adversary must detect which point Ri was processed at each iteration i,
knowing that it is initialized to R1 = O. This algorithm scans the binary representation of
the scalar (i.e. Ki), starting from the most significant bit that is always set. Therefore,
at the start of the second iteration, R2 = 2R1 + G = G, and this is the input to the
double-and-add-based Process. According to Algorithm 2, R is updated at each iteration
using (2), hence each Ri depends on Ki−1.

Ri = 2Ri−1 + G ·Ki−1 (2)
5No code in this page is executed during scalar multiplication, not affecting the pmf .



Alejandro Cabrera Aldaya and Billy Bob Brumley 49

Thus, R3 = 3G if K2 is set and R3 = 2G otherwise. Here is where OTAs enter into
play by generating template traces for each possible value of R3 (i.e. T3,K2=1 and T3,K2=0).
Then eliminating the one that does not match with the target iteration trace (i.e. I3). For
this task, we used the template implementation described in Section 4.2 to generate the
required template traces using TracerGrind. Table 5 shows example traces, where the
memory pages are encoded using the characters {., a, A, D } and the specific assignment
is irrelevant. According to these traces, I3 matches T3,K2=1 and differs from the other: In
this example, the adversary deduces K2 = 1. Continuing this process, each Ii and the
corresponding template traces can be used to reveal Ki−1, eventually disclosing all6 Ki.

Table 5: Example traces from libgcrypt.

Name Trace
I3 aD.DA.DADA.ADA.ADA.ADA.A.AD.DA.DA.A.AD.DA.D.DA.aA.A.A.A.A.A.A.A.A[..].A.A.A.A.A.A.A.A.A.D

T3,K2=1 aD.DA.DADA.ADA.ADA.ADA.A.AD.DA.DA.A.AD.DA.D.DA.aA.A.A.A.A.A.A.A.A[..].A.A.A.A.A.A.A.A.A.D

T3,K2=0 aD.DA.DA.A.DA.ADA.A.ADADA.ADADA.ADA.DA.aA.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.D

We captured 100 libgcrypt traces corresponding to the generation of Ed25519 signa-
tures. Using our template implementation based on TracerGrind, we launched OTAs on
them using the page combination described below, recovering the processed Ed22519 nonce
for each signature in all trials. The average number of calls to the template implementation
was 1038, meaning the attack is very computationally feasible in practice.

Backward attack. This attack assumes the adversary knows the projective coordinates
of the last Ri just before converting the point to affine coordinates. This requirement can
be fulfilled using a side-channel attack on the modular inversion algorithm in libgcrypt
[APGB20]. The last value of R will be the initial OTA state, thus the adversary reverses
the target trace order, such that the first iteration processed by an OTA will be the last
one executed by the algorithm. In this case, the attacker knows the state resulting from
the Process execution, i.e. Ri in (2). Therefore, the first step is to compute the Process
input, i.e. Ri−1 for all possible Ki−1 using (3).

Ri−1 = (Ri −G ·Ki−1)/2 (3)

Indeed (3) implies computing modular roots [NSS04, APGB20]. Therefore, multiple
Ri−1 candidates might be obtained for a single pair (Ri, Ki−1). This implies more template
traces must be captured wrt the forward case.

Using this approach, we recovered the scalars processed in all 100 traces, validating our
augmented projective coordinates attack. In this case, the average number of calls to the
template implementation was 2851. Note that the original projective coordinates attack
by Naccache, Smart, and Stern [NSS04] only recovers a few bits of the scalar, hence does
not threaten EdDSA. On the other hand, our proposed augmented version can be used to
break this cryptosystem.

Leakage origin. The leaks exploited in our attacks come from the libgcrypt bignum
implementation. For instance, the function _gcry_mpi_add has many conditional branches
depending on its inputs7. Each of these branches produce different PageTracer footprints,
hence can be distinguished in a trace. Another leak is produced by the function ecc_subm,
where the modular reduction after a subtraction is executed using an add loop8.

6The last Ki remains unknown to an OTA adversary, as there is no related Ii+1, yet this binary value
is recovered through direct inspection of the two cases along with public data.

7https://github.com/gpg/libgcrypt/blob/libgcrypt-1.8.5/mpi/mpi-add.c#L88
8https://github.com/gpg/libgcrypt/blob/libgcrypt-1.8.5/mpi/ec.c#L290

https://github.com/gpg/libgcrypt/blob/libgcrypt-1.8.5/mpi/mpi-add.c#L88
https://github.com/gpg/libgcrypt/blob/libgcrypt-1.8.5/mpi/ec.c#L290


50 Online Template Attacks: Revisited

The advantage of OTAs over ad hoc attacks is that the former can exploit these leaks
without knowing a leakage model. That is, the attacker does not need to know how a
particular branch in these functions leaks information related to the scalar. Each time
these functions are called during an execution of Process, they leave leakage footprints
related to the data they are processing. Generally speaking, each of these leakages alone
may reveal limited information, yet their combination composes stronger leakage.

5.2 End-to-end attack on mbedTLS

mbedTLS scalar multiplication (Algorithm 3) has an OTA countermeasure in place: It
randomizes the starting coordinates of R just after line 3. However, there are at least two
scenarios where OTAs can be applied. (i) Said point randomization is only executed before
the scalar multiplication, therefore it offers protection against a forward OTA, but the
backward approach is still a threat. (ii) Said countermeasure only works if an mbedTLS
randomization object is passed as an argument to this function. Regarding ECDSA, this
randomization takes places as expected. Yet we discovered two cases where it fails: When
loading an ECC private key without the public key or in compressed representation, the
library computes the public key on the fly without initializing the randomization object.
This leaves the door open to a forward OTA.

Therefore, the backward case is useful when analyzing protocols like ECDSA or ECDH,
and the forward case when the library loads a private key with missing (such keys are
valid [PG+20]) or compressed public key. Accordingly, we focus our attention on the
scalar multiplication primitive in this library. The attack procedure is very similar to the
libgcrypt description in Section 5.1. In the curve secp256r1 case, the scalar has 256
bits and at each iteration out of 52, the adversary must guess 32 possible Ki, due to the
windowed feature of Algorithm 3.

We employed the page combination 0x2f000, 0xf000, 0x10000, 0x36000 that has an
ideal pmf . We used9 auxiliary page offsets 0x30000 and 0x31000 to detect the start of the
scalar multiplication routine and the Process operation (i.e. function ecp_double_jac).

We captured 100 traces using PageTracer against an SGX enclave running scalar
multiplication, attempting to recover the scalar using OTAs in both the forward and
backward directions. The forward attack succeeded for all traces, disclosing all10 Ki: The
number of calls to the template implementation was 1664 per attack (i.e. 32 templates for
52 iterations). This is due to the ideal pmf employed acting as a perfect state distinguisher.
The backward attack instances also succeed for all traces, with an average number of calls
to the template implementation of 1959. The number varies between different attacks due
to the modular roots involved, generating additional candidates per each guessed Ki (see
Section 5.1 for details). Remarkably, our backward OTA bypasses the mitigation (projective
coordinates randomization of the starting state). A differentiating characteristic compared
to the libgcrypt case is that the victim executed within an unmodified mbedTLS library,
while the template implementation used a patched one that exported the ecp_double_jac
symbol.

The leakage in mbedTLS mainly originates from the modular reduction techniques specific
to secp256r111. This implementation uses NIST fast reduction techniques, involving
several12 branches13. Note that every modular reduction executed during the Process
operation produces leakage. The combination of all these leaks from branch outcomes
produces a perfect state distinguisher, hence an ideal pmf .

9No code in these pages is executed during ecp_double_jac, not affecting the pmf .
10The last Ki remains unknown to an OTA adversary, as there is no related Process executed after

selection, yet this value is recovered through direct inspection of the 32 cases along with public data.
11https://github.com/ARMmbed/mbedtls/blob/mbedtls-2.16.3/library/ecp.c#L1000
12https://github.com/ARMmbed/mbedtls/blob/mbedtls-2.16.3/library/ecp_curves.c#L1010
13https://github.com/ARMmbed/mbedtls/blob/mbedtls-2.16.3/library/ecp_curves.c#L1022

https://github.com/ARMmbed/mbedtls/blob/mbedtls-2.16.3/library/ecp.c#L1000
https://github.com/ARMmbed/mbedtls/blob/mbedtls-2.16.3/library/ecp_curves.c#L1010
https://github.com/ARMmbed/mbedtls/blob/mbedtls-2.16.3/library/ecp_curves.c#L1022


Alejandro Cabrera Aldaya and Billy Bob Brumley 51

5.3 End-to-end attack on wolfSSL

Finally, we demonstrate the feasibility of OTAs using PageTracer on wolfSSL, where we
captured 100 traces using PageTracer against an SGX enclave running scalar multiplication.
We employed the page combination consisting of the offsets 0x25000, 0x29000, 0x2a000,
0x4b000 that has an ideal pmf . We additionally used14 0x2c000 to detect the start of
the scalar multiplication routine.

We executed only forward OTAs against wolfSSL, resulting in full key recovery in
all trials, requiring 512 calls to the template implementation in all cases. Note that an
ideal pmf and a binary scalar multiplication algorithm like the Montgomery ladder allow
reducing this number to only 256 (i.e. one call per bit). However, as stated at the beginning
of this section, we implemented our recovery algorithm to always be oblivious to the pmf
to retain generality.

In addition to the previous pmf , we attacked this implementation using other ap-
proaches. (i) We considered a two-cardinality equiprobable pmf , and executed this attack
for three traces, recovering the full scalar in all trials. Naturally, the number of calls to
the template implementation increases, and also the number of solutions to test. The
pairs for these values for the three instances were (5780, 10), (19454, 76), and (30640, 177),
all practical attacks. (ii) We considered the scalar-based OTA theoretically presented in
Section 3.2. Instead of guessing the state, this approach assumes the adversary has access
to a template implementation allowing chosen-input scalars. For this scenario, we used
100 traces and the same ideal page combination employed before, indeed recovering the
full scalar in all trials. In addition, we released a proof-of-concept tooling that simulates
this OTA approach against this library [AB21].

The leaks exploited in our wolfSSL OTAs come in different flavors. For instance, the
doubling function ecc_projective_dbl_point contains several branches related to its
inputs15. The modular division by two is straightforwardly implemented using a branch
that first checks if the input is odd16. Modular additions17 and subtractions18 are handled
in similar ways. Additionally, the functions fp_sub19 and fp_montgomery_reduce20 have
PageTracer-distinguishable branches in their implementations.

As commented at the start of this section, the attacker does not need to know where
the leakage originates, rather the page combination that leads to a successful attack. This
can be identified during a template implementation evaluation, as explained in Section 4.
This way, OTAs abstract the exploited leakage model from the adversary, resulting in very
powerful attacks.

6 Conclusion
Previous works related to the OTA technique only considered part of its potential. In this
paper, we revisited that description, proposing a framework and evaluation metrics to
detect if an implementation is vulnerable to OTAs. Additionally, we demonstrated that
OTAs can also work in the backward direction, a case not considered before. This shows
that randomizing the initial state of the targeted algorithm does not blanketly prevent
OTAs, as previously believed. In this regard, an augmented projective coordinate attack is
one example of a backward OTA because it can recover the entire scalar using a single

14No code in this page is executed during ecc_projective_dbl_point, not affecting the pmf .
15https://github.com/wolfSSL/wolfssl/blob/v4.4.0-stable/wolfcrypt/src/ecc.c#L1932
16https://github.com/wolfSSL/wolfssl/blob/v4.4.0-stable/wolfcrypt/src/ecc.c#L2179
17https://github.com/wolfSSL/wolfssl/blob/v4.4.0-stable/wolfcrypt/src/ecc.c#L2133
18https://github.com/wolfSSL/wolfssl/blob/v4.4.0-stable/wolfcrypt/src/ecc.c#L2201
19https://github.com/wolfSSL/wolfssl/blob/v4.4.0-stable/wolfcrypt/src/tfm.c#L166
20https://github.com/wolfSSL/wolfssl/blob/v4.4.0-stable/wolfcrypt/src/tfm.c#L3035

https://github.com/wolfSSL/wolfssl/blob/v4.4.0-stable/wolfcrypt/src/ecc.c#L1932
https://github.com/wolfSSL/wolfssl/blob/v4.4.0-stable/wolfcrypt/src/ecc.c#L2179
https://github.com/wolfSSL/wolfssl/blob/v4.4.0-stable/wolfcrypt/src/ecc.c#L2133
https://github.com/wolfSSL/wolfssl/blob/v4.4.0-stable/wolfcrypt/src/ecc.c#L2201
https://github.com/wolfSSL/wolfssl/blob/v4.4.0-stable/wolfcrypt/src/tfm.c#L166
https://github.com/wolfSSL/wolfssl/blob/v4.4.0-stable/wolfcrypt/src/tfm.c#L3035


52 Online Template Attacks: Revisited

trace. This is in contrast to the thousands needed by the original projective coordinates
attack by Naccache, Smart, and Stern [NSS04].

The three analyzed libraries libgcrypt, mbedTLS, and wolfSSL have many leaky points
that can be exploited using OTAs. We demonstrated practical attacks for the three libraries,
in all cases recovering the full scalar by employing a single trace using a microarchitecture
side channel after extensive experiments. In the microarchitecture realm, it is possible to
have an ideal attacker scenario as demonstrated for the analyzed libraries. At the same
time, it is also possible to achieve safe ones if the implementation follows a constant-address
approach. These scenarios are not common at all in the power consumption case, where
the original OTA technique was proposed.

Our tool proposed to detect OTA vulnerabilities is not exhaustive, therefore there
could be additional exploitable paths. At the same time, its idea serves as a starting point
to develop a leakage assessment tool for address-based side channels. Such a tool is ideally
able to detect any OTA vulnerability in the hierarchy of a cryptosystem implementation,
certainly not restricted to ECC.

In conclusion, OTAs can exploit non-trivial input-dependent execution flows without
knowing the leakage model, highlighting the need for secure-by-default implementations.

Acknowledgments
This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No
804476).

Supported in part by CSIC’s i-LINK+ 2019 “Advancing in cybersecurity technologies”
(Ref. LINKA20216).

References
[AB20] Alejandro Cabrera Aldaya and Billy Bob Brumley. “When one vulnerable

primitive turns viral: Novel single-trace attacks on ECDSA and RSA”. In:
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020.2 (2020), pp. 196–221. url:
https://doi.org/10.13154/tches.v2020.i2.196-221.

[AB21] Alejandro Cabrera Aldaya and Billy Bob Brumley. Online Template Attacks:
Revisited - Proof of Concept. Zenodo, Apr. 2021. url: https://doi.org/10.
5281/zenodo.4680071.

[ABG10] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. “New Results
on Instruction Cache Attacks”. In: Cryptographic Hardware and Embedded
Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA,
August 17-20, 2010. Proceedings. Ed. by Stefan Mangard and François-Xavier
Standaert. Vol. 6225. Lecture Notes in Computer Science. Springer, 2010,
pp. 110–124. url: https://doi.org/10.1007/978-3-642-15031-9_8.

[AK09] Onur Acıiçmez and Çetin Kaya Koç. “Microarchitectural Attacks and Coun-
termeasures”. In: Cryptographic Engineering. Boston, MA: Springer US, 2009,
pp. 475–504. isbn: 978-0-387-71817-0. doi: 10.1007/978-0-387-71817-0_18.
url: https://doi.org/10.1007/978-0-387-71817-0_18.

[Ald+19] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar
Pereida García, and Nicola Tuveri. “Port Contention for Fun and Profit”. In:
2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA,
USA, May 19-23, 2019. IEEE, 2019, pp. 870–887. url: https://doi.org/10.
1109/SP.2019.00066.

https://doi.org/10.13154/tches.v2020.i2.196-221
https://doi.org/10.5281/zenodo.4680071
https://doi.org/10.5281/zenodo.4680071
https://doi.org/10.1007/978-3-642-15031-9_8
https://doi.org/10.1007/978-0-387-71817-0_18
https://doi.org/10.1007/978-0-387-71817-0_18
https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1109/SP.2019.00066


Alejandro Cabrera Aldaya and Billy Bob Brumley 53

[APGB20] Alejandro Cabrera Aldaya, Cesar Pereida García, and Billy Bob Brumley.
“From A to Z: Projective coordinates leakage in the wild”. In: IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2020.3 (2020), pp. 428–453. url: https :
//doi.org/10.13154/tches.v2020.i3.428-453.

[Ara+20] Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi,
and Yuval Yarom. “LadderLeak: Breaking ECDSA with Less than One Bit of
Nonce Leakage”. In: CCS ’20: 2020 ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, USA, November 9-13, 2020.
Ed. by Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna. ACM,
2020, pp. 225–242. url: https://doi.org/10.1145/3372297.3417268.

[Bat+14] Lejla Batina, Lukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe,
and Michael Tunstall. “Online Template Attacks”. In: Progress in Cryptology
- INDOCRYPT 2014 - 15th International Conference on Cryptology in India,
New Delhi, India, December 14-17, 2014, Proceedings. Ed. by Willi Meier
and Debdeep Mukhopadhyay. Vol. 8885. Lecture Notes in Computer Science.
Springer, 2014, pp. 21–36. url: https://doi.org/10.1007/978-3-319-
13039-2_2.

[Ber+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
“High-speed high-security signatures”. In: J. Cryptographic Engineering 2.2
(2012), pp. 77–89. url: https://doi.org/10.1007/s13389-012-0027-1.

[BH09] Billy Bob Brumley and Risto M. Hakala. “Cache-Timing Template Attacks”.
In: Advances in Cryptology - ASIACRYPT 2009, 15th International Conference
on the Theory and Application of Cryptology and Information Security, Tokyo,
Japan, December 6-10, 2009. Proceedings. Ed. by Mitsuru Matsui. Vol. 5912.
Lecture Notes in Computer Science. Springer, 2009, pp. 667–684. url: https:
//doi.org/10.1007/978-3-642-10366-7_39.

[Bha+20] Sarani Bhattacharya, Clémentine Maurice, Shivam Bhasin, and Debdeep
Mukhopadhyay. “Branch Prediction Attack on Blinded Scalar Multiplication”.
In: IEEE Trans. Computers 69.5 (2020), pp. 633–648. url: https://doi.
org/10.1109/TC.2019.2958611.

[Bos+16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. “Differen-
tial Computation Analysis: Hiding Your White-Box Designs is Not Enough”.
In: Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th
International Conference, Santa Barbara, CA, USA, August 17-19, 2016,
Proceedings. Ed. by Benedikt Gierlichs and Axel Y. Poschmann. Vol. 9813.
Lecture Notes in Computer Science. Springer, 2016, pp. 215–236. url: https:
//doi.org/10.1007/978-3-662-53140-2_11.

[Bos+18] Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and
Martijn Stam. “Assessing the Feasibility of Single Trace Power Analysis of
Frodo”. In: Selected Areas in Cryptography - SAC 2018 - 25th International
Conference, Calgary, AB, Canada, August 15-17, 2018, Revised Selected
Papers. Ed. by Carlos Cid and Michael J. Jacobson Jr. Vol. 11349. Lecture
Notes in Computer Science. Springer, 2018, pp. 216–234. url: https://doi.
org/10.1007/978-3-030-10970-7_10.

[CD16] Victor Costan and Srinivas Devadas. “Intel SGX Explained”. In: IACR Cryptol-
ogy ePrint Archive 2016.86 (2016). url: http://eprint.iacr.org/2016/086.

[Che+19] Cai-sen Chen, Yang-xia Xiang, Jia-xing Du, and Zhiwei Cheng. “An Improved
Data Cache Timing Attack against RSA Based on Hidden Markov Model”.
In: Journal of Computers 30.1 (2019), pp. 87–95. url: https://doi.org/10.
3966/199115992019023001009.

https://doi.org/10.13154/tches.v2020.i3.428-453
https://doi.org/10.13154/tches.v2020.i3.428-453
https://doi.org/10.1145/3372297.3417268
https://doi.org/10.1007/978-3-319-13039-2_2
https://doi.org/10.1007/978-3-319-13039-2_2
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/978-3-642-10366-7_39
https://doi.org/10.1007/978-3-642-10366-7_39
https://doi.org/10.1109/TC.2019.2958611
https://doi.org/10.1109/TC.2019.2958611
https://doi.org/10.1007/978-3-662-53140-2_11
https://doi.org/10.1007/978-3-662-53140-2_11
https://doi.org/10.1007/978-3-030-10970-7_10
https://doi.org/10.1007/978-3-030-10970-7_10
http://eprint.iacr.org/2016/086
https://doi.org/10.3966/199115992019023001009
https://doi.org/10.3966/199115992019023001009


54 Online Template Attacks: Revisited

[Cla+10] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and
Vincent Verneuil. “Horizontal Correlation Analysis on Exponentiation”. In:
Information and Communications Security - 12th International Conference,
ICICS 2010, Barcelona, Spain, December 15-17, 2010. Proceedings. Ed. by
Miguel Soriano, Sihan Qing, and Javier López. Vol. 6476. Lecture Notes in
Computer Science. Springer, 2010, pp. 46–61. url: https://doi.org/10.
1007/978-3-642-17650-0_5.

[Cop+09] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter.
“Practical Mitigations for Timing-Based Side-Channel Attacks on Modern x86
Processors”. In: 30th IEEE Symposium on Security and Privacy (S&P 2009),
17-20 May 2009, Oakland, California, USA. IEEE Computer Society, 2009,
pp. 45–60. url: https://doi.org/10.1109/SP.2009.19.

[Cor99] Jean-Sébastien Coron. “Resistance against Differential Power Analysis for
Elliptic Curve Cryptosystems”. In: Cryptographic Hardware and Embedded
Systems, First International Workshop, CHES’99, Worcester, MA, USA,
August 12-13, 1999, Proceedings. Ed. by Çetin Kaya Koç and Christof Paar.
Vol. 1717. Lecture Notes in Computer Science. Springer, 1999, pp. 292–302.
url: https://doi.org/10.1007/3-540-48059-5_25.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. “Template Attacks”. In:
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th Interna-
tional Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers. Ed. by Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar.
Vol. 2523. Lecture Notes in Computer Science. Springer, 2002, pp. 13–28. url:
https://doi.org/10.1007/3-540-36400-5_3.

[Du+15] Shaoyu Du, Zhenqi Li, Bin Zhang, and Dongdai Lin. “Combined Cache Timing
Attacks and Template Attacks on Stream Cipher MUGI”. In: Information
Security Practice and Experience - 11th International Conference, ISPEC
2015, Beijing, China, May 5-8, 2015. Proceedings. Ed. by Javier López and
Yongdong Wu. Vol. 9065. Lecture Notes in Computer Science. Springer, 2015,
pp. 235–249. url: https://doi.org/10.1007/978-3-319-17533-1_17.

[Dug+16] Margaux Dugardin, Louiza Papachristodoulou, Zakaria Najm, Lejla Batina,
Jean-Luc Danger, and Sylvain Guilley. “Dismantling Real-World ECC with
Horizontal and Vertical Template Attacks”. In: Constructive Side-Channel
Analysis and Secure Design - 7th International Workshop, COSADE 2016,
Graz, Austria, April 14-15, 2016, Revised Selected Papers. Ed. by François-
Xavier Standaert and Elisabeth Oswald. Vol. 9689. Lecture Notes in Computer
Science. Springer, 2016, pp. 88–108. url: https://doi.org/10.1007/978-
3-319-43283-0_6.

[Ge+18] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. “A survey of mi-
croarchitectural timing attacks and countermeasures on contemporary hard-
ware”. In: J. Cryptographic Engineering 8.1 (2018), pp. 1–27. url: https:
//doi.org/10.1007/s13389-016-0141-6.

[GSM15] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. “Cache Template At-
tacks: Automating Attacks on Inclusive Last-Level Caches”. In: 24th USENIX
Security Symposium, USENIX Security 15, Washington, D.C., USA, August
12-14, 2015. Ed. by Jaeyeon Jung and Thorsten Holz. USENIX Associa-
tion, 2015, pp. 897–912. url: https : / / www . usenix . org / conference /
usenixsecurity15/technical-sessions/presentation/gruss.

https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1109/SP.2009.19
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-319-17533-1_17
https://doi.org/10.1007/978-3-319-43283-0_6
https://doi.org/10.1007/978-3-319-43283-0_6
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/s13389-016-0141-6
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss


Alejandro Cabrera Aldaya and Billy Bob Brumley 55

[HMV04] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to elliptic curve
cryptography. Springer Professional Computing. Springer-Verlag, New York,
2004, pp. xx+311. isbn: 0-387-95273-X. url: https://doi.org/10.1016/
s0012-365x(04)00102-5.

[HPB05] Mustapha Hedabou, Pierre Pinel, and Lucien Bénéteau. “Countermeasures
for Preventing Comb Method Against SCA Attacks”. In: Information Secu-
rity Practice and Experience, First International Conference, ISPEC 2005,
Singapore, April 11-14, 2005, Proceedings. Ed. by Robert H. Deng, Feng Bao,
HweeHwa Pang, and Jianying Zhou. Vol. 3439. Lecture Notes in Computer
Science. Springer, 2005, pp. 85–96. url: https://doi.org/10.1007/978-3-
540-31979-5_8.

[HS01] Nick Howgrave-Graham and Nigel P. Smart. “Lattice Attacks on Digital
Signature Schemes”. In: Des. Codes Cryptogr. 23.3 (2001), pp. 283–290. url:
https://doi.org/10.1023/A:1011214926272.

[Joy07] Marc Joye. “Highly Regular Right-to-Left Algorithms for Scalar Multipli-
cation”. In: Cryptographic Hardware and Embedded Systems - CHES 2007,
9th International Workshop, Vienna, Austria, September 10-13, 2007, Pro-
ceedings. Ed. by Pascal Paillier and Ingrid Verbauwhede. Vol. 4727. Lec-
ture Notes in Computer Science. Springer, 2007, pp. 135–147. url: https:
//doi.org/10.1007/978-3-540-74735-2_10.

[JY02] Marc Joye and Sung-Ming Yen. “The Montgomery Powering Ladder”. In:
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th Interna-
tional Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers. Ed. by Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar.
Vol. 2523. Lecture Notes in Computer Science. Springer, 2002, pp. 291–302.
url: https://doi.org/10.1007/3-540-36400-5_22.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analy-
sis”. In: Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings. Ed. by Michael J. Wiener. Vol. 1666. Lecture Notes in Computer
Science. Springer, 1999, pp. 388–397. url: https://doi.org/10.1007/3-
540-48405-1_25.

[Koc96] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”. In: Advances in Cryptology - CRYPTO ’96, 16th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 18-22, 1996, Proceedings. Ed. by Neal Koblitz. Vol. 1109. Lecture
Notes in Computer Science. Springer, 1996, pp. 104–113. url: https://doi.
org/10.1007/3-540-68697-5_9.

[Liu+15] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. “Last-
Level Cache Side-Channel Attacks are Practical”. In: 2015 IEEE Symposium
on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015.
IEEE Computer Society, 2015, pp. 605–622. url: https://doi.org/10.
1109/SP.2015.43.

[Luo18] Chao Luo. “Novel Side-Channel Attacks on Emerging Cryptographic Algo-
rithms and Computing Systems”. PhD thesis. Northeastern University, 2018.
url: http://hdl.handle.net/2047/D20316363.

https://doi.org/10.1016/s0012-365x(04)00102-5
https://doi.org/10.1016/s0012-365x(04)00102-5
https://doi.org/10.1007/978-3-540-31979-5_8
https://doi.org/10.1007/978-3-540-31979-5_8
https://doi.org/10.1023/A:1011214926272
https://doi.org/10.1007/978-3-540-74735-2_10
https://doi.org/10.1007/978-3-540-74735-2_10
https://doi.org/10.1007/3-540-36400-5_22
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/SP.2015.43
http://hdl.handle.net/2047/D20316363


56 Online Template Attacks: Revisited

[Mai+13] Diana Maimut, Cédric Murdica, David Naccache, and Mehdi Tibouchi. “Fault
Attacks on Projective-to-Affine Coordinates Conversion”. In: Constructive
Side-Channel Analysis and Secure Design - 4th International Workshop,
COSADE 2013, Paris, France, March 6-8, 2013, Revised Selected Papers.
Ed. by Emmanuel Prouff. Vol. 7864. Lecture Notes in Computer Science.
Springer, 2013, pp. 46–61. url: https://doi.org/10.1007/978-3-642-
40026-1_4.

[MO08] Marcel Medwed and Elisabeth Oswald. “Template Attacks on ECDSA”. In:
Information Security Applications, 9th International Workshop, WISA 2008,
Jeju Island, Korea, September 23-25, 2008, Revised Selected Papers. Ed. by
Kyo-Il Chung, Kiwook Sohn, and Moti Yung. Vol. 5379. Lecture Notes in
Computer Science. Springer, 2008, pp. 14–27. url: https://doi.org/10.
1007/978-3-642-00306-6_2.

[Mog+20] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk
Sunar. “CopyCat: Controlled Instruction-Level Attacks on Enclaves”. In: 29th
USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020. Ed.
by Srdjan Capkun and Franziska Roesner. USENIX Association, 2020, pp. 469–
486. url: https : / / www . usenix . org / conference / usenixsecurity20 /
presentation/moghimi-copycat.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks
- revealing the secrets of smart cards. Springer, 2007. isbn: 978-0-387-30857-9.
url: https://doi.org/10.1007/978-0-387-38162-6.

[MOW17] David McCann, Elisabeth Oswald, and Carolyn Whitnall. “Towards Practical
Tools for Side Channel Aware Software Engineering: ’Grey Box’ Modelling
for Instruction Leakages”. In: 26th USENIX Security Symposium, USENIX
Security 2017, Vancouver, BC, Canada, August 16-18, 2017. Ed. by Engin
Kirda and Thomas Ristenpart. USENIX Association, 2017, pp. 199–216. url:
https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/mccann.

[NS03] Phong Q. Nguyen and Igor E. Shparlinski. “The Insecurity of the Elliptic
Curve Digital Signature Algorithm with Partially Known Nonces”. In: Des.
Codes Cryptogr. 30.2 (2003), pp. 201–217. url: https://doi.org/10.1023/A:
1025436905711.

[NSS04] David Naccache, Nigel P. Smart, and Jacques Stern. “Projective Coordinates
Leak”. In: Advances in Cryptology - EUROCRYPT 2004, International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004, Proceedings. Ed. by Christian Cachin and Jan
Camenisch. Vol. 3027. Lecture Notes in Computer Science. Springer, 2004,
pp. 257–267. url: https://doi.org/10.1007/978-3-540-24676-3_16.

[OPB16] Elif Ozgen, Louiza Papachristodoulou, and Lejla Batina. “Template attacks
using classification algorithms”. In: 2016 IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2016, McLean, VA, USA, May
3-5, 2016. Ed. by William H. Robinson, Swarup Bhunia, and Ryan Kastner.
IEEE Computer Society, 2016, pp. 242–247. url: https://doi.org/10.
1109/HST.2016.7495589.

[Pap19] Louiza Papachristodoulou. “Masking Curves: Side-Channel Attacks on Elliptic
Curve Cryptography and Countermeasures”. PhD thesis. Radboud University,
2019. url: http://hdl.handle.net/2066/201163.

https://doi.org/10.1007/978-3-642-40026-1_4
https://doi.org/10.1007/978-3-642-40026-1_4
https://doi.org/10.1007/978-3-642-00306-6_2
https://doi.org/10.1007/978-3-642-00306-6_2
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://doi.org/10.1007/978-0-387-38162-6
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/mccann
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/mccann
https://doi.org/10.1023/A:1025436905711
https://doi.org/10.1023/A:1025436905711
https://doi.org/10.1007/978-3-540-24676-3_16
https://doi.org/10.1109/HST.2016.7495589
https://doi.org/10.1109/HST.2016.7495589
http://hdl.handle.net/2066/201163


Alejandro Cabrera Aldaya and Billy Bob Brumley 57

[Per05] Colin Percival. “Cache Missing for Fun and Profit”. In: BSDCan 2005, Ottawa,
Canada, May 13-14, 2005, Proceedings. 2005. url: http://www.daemonology.
net/papers/cachemissing.pdf.

[PG+20] Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri, Iaroslav Gridin,
Alejandro Cabrera Aldaya, and Billy Bob Brumley. “Certified Side Chan-
nels”. In: 29th USENIX Security Symposium, USENIX Security 2020, August
12-14, 2020. Ed. by Srdjan Capkun and Franziska Roesner. USENIX Asso-
ciation, 2020, pp. 2021–2038. url: https://www.usenix.org/conference/
usenixsecurity20/presentation/garcia.

[PMO07] Thomas Popp, Stefan Mangard, and Elisabeth Oswald. “Power Analysis
Attacks and Countermeasures”. In: IEEE Design & Test of Computers 24.6
(2007), pp. 535–543. url: https://doi.org/10.1109/MDT.2007.200.

[Roe19] N.W.A. Roelofs. “Online Template Attack on ECDSA: Extracting keys via
the other side”. MA thesis. Radboud University, 2019. url: https://www.ru.
nl/publish/pages/769526/z3_master_thesis_roelofs_v1.pdf.

[San18] Tom Sandmann. “Online Template Attack on a Hardware Implementation of
FourQ”. MA thesis. Radboud University, 2018. url: https://www.ru.nl/
publish/pages/769526/tom_sandmann-master_thesis_final.pdf.

[Sch+17] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and
Stefan Mangard. “Malware Guard Extension: Using SGX to Conceal Cache
Attacks”. In: Detection of Intrusions and Malware, and Vulnerability Assess-
ment - 14th International Conference, DIMVA 2017, Bonn, Germany, July
6-7, 2017, Proceedings. Ed. by Michalis Polychronakis and Michael Meier.
Vol. 10327. Lecture Notes in Computer Science. Springer, 2017, pp. 3–24. url:
https://doi.org/10.1007/978-3-319-60876-1_1.

[Shi+16] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.
“Preventing Page Faults from Telling Your Secrets”. In: Proceedings of the
11th ACM on Asia Conference on Computer and Communications Security,
AsiaCCS 2016, Xi’an, China, May 30 - June 3, 2016. Ed. by Xiaofeng Chen,
XiaoFeng Wang, and Xinyi Huang. ACM, 2016, pp. 317–328. url: https:
//doi.org/10.1145/2897845.2897885.

[Sze19] Jakub Szefer. “Survey of Microarchitectural Side and Covert Channels, Attacks,
and Defenses”. In: J. Hardware and Systems Security 3.3 (2019), pp. 219–234.
url: https://doi.org/10.1007/s41635-018-0046-1.

[TPV17] Chia-che Tsai, Donald E. Porter, and Mona Vij. “Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX”. In: 2017 USENIX Annual
Technical Conference, USENIX ATC 2017, Santa Clara, CA, USA, July
12-14, 2017. Ed. by Dilma Da Silva and Bryan Ford. USENIX Association,
2017, pp. 645–658. url: https://www.usenix.org/conference/atc17/
technical-sessions/presentation/tsai.

[VB+17] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. “Telling Your Secrets without Page Faults: Stealthy Page Table-
Based Attacks on Enclaved Execution”. In: 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017. Ed. by
Engin Kirda and Thomas Ristenpart. USENIX Association, 2017, pp. 1041–
1056. url: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/van-bulck.

http://www.daemonology.net/papers/cachemissing.pdf
http://www.daemonology.net/papers/cachemissing.pdf
https://www.usenix.org/conference/usenixsecurity20/presentation/garcia
https://www.usenix.org/conference/usenixsecurity20/presentation/garcia
https://doi.org/10.1109/MDT.2007.200
https://www.ru.nl/publish/pages/769526/z3_master_thesis_roelofs_v1.pdf
https://www.ru.nl/publish/pages/769526/z3_master_thesis_roelofs_v1.pdf
https://www.ru.nl/publish/pages/769526/tom_sandmann-master_thesis_final.pdf
https://www.ru.nl/publish/pages/769526/tom_sandmann-master_thesis_final.pdf
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1145/2897845.2897885
https://doi.org/10.1145/2897845.2897885
https://doi.org/10.1007/s41635-018-0046-1
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck


58 Online Template Attacks: Revisited

[VBPS17] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “SGX-Step: A Practical
Attack Framework for Precise Enclave Execution Control”. In: Proceedings of
the 2nd Workshop on System Software for Trusted Execution, SysTEX@SOSP
2017, Shanghai, China, October 28, 2017. ACM, 2017, pp. 1–6. url: https:
//doi.org/10.1145/3152701.3152706.

[Wan+17] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. “Leaky Cauldron on
the Dark Land: Understanding Memory Side-Channel Hazards in SGX”. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017. Ed. by Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu. ACM, 2017, pp. 2421–2434. url: https://doi.org/10.1145/
3133956.3134038.

[Wei+18] Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja Miller, Stefan Man-
gard, and Georg Sigl. “DATA - Differential Address Trace Analysis: Find-
ing Address-based Side-Channels in Binaries”. In: 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018. Ed. by William Enck and Adrienne Porter Felt. USENIX Associa-
tion, 2018, pp. 603–620. url: https : / / www . usenix . org / conference /
usenixsecurity18/presentation/weiser.

[Wei+20] Samuel Weiser, David Schrammel, Lukas Bodner, and Raphael Spreitzer.
“Big Numbers - Big Troubles: Systematically Analyzing Nonce Leakage in
(EC)DSA Implementations”. In: 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020. Ed. by Srdjan Capkun and Franziska
Roesner. USENIX Association, 2020, pp. 1767–1784. url: https://www.
usenix.org/conference/usenixsecurity20/presentation/weiser.

[WHS12] Michael Weiß, Benedikt Heinz, and Frederic Stumpf. “A Cache Timing Attack
on AES in Virtualization Environments”. In: Financial Cryptography and
Data Security - 16th International Conference, FC 2012, Kralendijk, Bonaire,
Februray 27-March 2, 2012, Revised Selected Papers. Ed. by Angelos D.
Keromytis. Vol. 7397. Lecture Notes in Computer Science. Springer, 2012,
pp. 314–328. url: https://doi.org/10.1007/978-3-642-32946-3_23.

[WSB18] Samuel Weiser, Raphael Spreitzer, and Lukas Bodner. “Single Trace Attack
Against RSA Key Generation in Intel SGX SSL”. In: Proceedings of the 2018
on Asia Conference on Computer and Communications Security, AsiaCCS
2018, Incheon, Republic of Korea, June 04-08, 2018. Ed. by Jong Kim, Gail-
Joon Ahn, Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo Kim. ACM,
2018, pp. 575–586. url: http://doi.acm.org/10.1145/3196494.3196524.

[XCP15] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems”. In:
2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015. IEEE Computer Society, 2015, pp. 640–656. url:
https://doi.org/10.1109/SP.2015.45.

[YF14] Yuval Yarom and Katrina Falkner. “FLUSH+RELOAD: A High Resolu-
tion, Low Noise, L3 Cache Side-Channel Attack”. In: Proceedings of the
23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22,
2014. USENIX Association, 2014, pp. 719–732. isbn: 978-1-931971-15-7. url:
https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/yarom.

https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1145/3133956.3134038
https://doi.org/10.1145/3133956.3134038
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://www.usenix.org/conference/usenixsecurity20/presentation/weiser
https://www.usenix.org/conference/usenixsecurity20/presentation/weiser
https://doi.org/10.1007/978-3-642-32946-3_23
http://doi.acm.org/10.1145/3196494.3196524
https://doi.org/10.1109/SP.2015.45
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom


Alejandro Cabrera Aldaya and Billy Bob Brumley 59

A Disclosure and library responses
We contacted the development teams of the analyzed libraries to disclose the leakage
sources, proposing countermeasures according to the analysis in Section 3.4. We did not
focus the disclosure nor our work on specific vulnerabilities, but instead on a generic
countermeasure approach. Therefore, the proposed countermeasures were independent of
the exploited code path we used in our practical evaluation (Section 5).

During disclosure, we highlighted the strengths of the projective coordinates random-
ization countermeasure over constant-time code (i.e. address-independent code):

1. Constant-time code only prevents address-based leakage OTAs (likely sufficient to
prevent microarchitecture attacks), but does not thwart value-base leakage OTAs
like power consumption.

2. The experiments in this work employed PageTracer and CopyCat traces, therefore
even an implementation with a safe pmf could have leaks under other channels.

3. These libraries have a large inherited codebase developed when side-channel attacks
were not a concept, therefore migrating the entire ECC stack to constant-time code,
while doable, require significant effort.

Regarding the individual responses from libraries, libgcrypt does not implement
projective coordinates randomization. However, as part of the disclosure, we were asked
to test an upcoming constant-time implementation for the Curve25519 field, hence we
repeated the experiments performed in Section 4.2. We found that all page combinations
generated a single leakage trace under PageTracer and CopyCat. Therefore, according to
our evaluation flow, said code can be considered OTA-safe regarding these side channels.

The mbedTLS team decided to randomize the projective coordinates before and after
the scalar multiplication, preventing both forward and backward OTAs. This was logical,
since their library already featured a randomization primitive implementation. Finally,
they fixed the bug preventing randomization in some cases (see Section 5.2 for details).

As a consequence of our work, wolfSSL implemented the coordinates randomization
countermeasure to prevent both address and value-based OTAs against its ECC implemen-
tation. In addition, their library features a very mature constant-time implementation,
enabled by setting the non-default flags WOLFSSL_SP and WOLFSSL_HAVE_SP_ECC. Upon
their request, we tested said implementation, repeating the Section 4.4 experiments as
part of the disclosure, and found no evidence of leakage under PageTracer and CopyCat
side channels.


	Introduction
	Background
	Elliptic curve scalar multiplication
	Microarchitecture side-channels

	Reexamining the OTA Technique
	Attack input and direction
	Revisited OTA requirements
	Evaluation metrics
	Mitigation analysis

	Microarchitecture OTAs
	Microarchitecture OTA evaluation tool
	libgcrypt template implementation
	mbedTLS template implementation
	wolfSSL template implementation

	Real-World Attacks: Evaluating End-to-End OTAs
	End-to-end attack on libgcrypt
	End-to-end attack on mbedTLS
	End-to-end attack on wolfSSL

	Conclusion
	Disclosure and library responses

