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Abstract. Functional encryption is a new paradigm for encryption where decryption
does not give the entire plaintext but only some function of it. Functional encryp-
tion has great potential in privacy-enhancing technologies but suffers from excessive
computational overheads. We introduce the first hardware accelerator that supports
functional encryption for quadratic functions. Our accelerator is implemented on a
reprogrammable system-on-chip following the hardware/software codesign methogol-
ogy. We benchmark our implementation for two privacy-preserving machine learning
applications: (1) classification of handwritten digits from the MNIST database and
(2) classification of clothes images from the Fashion MNIST database. In both cases,
classification is performed with encrypted images. We show that our implementation
offers speedups of over 200 times compared to a published software implementation
and permits applications which are unfeasible with software-only solutions.
Keywords: Functional encryption · Hardware implementation · Privacy enhancing
technologies · HW/SW codesign · FPGA · System-on-chip · Machine learning

1 Introduction
Functional Encryption (FE) [BSW11, O’N10] is a new paradigm for encryption where
decryption does not return the original plaintext pt but only some function of it f(pt). FE
has great potential for improving privacy. E.g., users can encrypt their sensitive data so
that a cloud server may compute statistics over the users’ data without learning anything
else about the data except the results of these computations. It is noteworthy that such
solutions are not possible even with Fully Homomorphic Encryption (FHE) because FHE
allows the cloud server to perform the required computations with the users’ data, but the
users’ interaction would be needed to get the decrypted result.

Although theoretical FE constructions for arbitrary polynomial-sized circuits have
been introduced (e.g., [Wat15, GGH+13]), they are not practical. (Semi-)practical FE
constructions exist only for simple functions, namely, Inner Products (IP) (e.g., [ABDP15,
ALS16, ACF+18]) and Quadratic Functions (QF) (e.g., [BCFG17, DGP18, Gay20, Wee20]).
FE-IP allows computing (weighted) means over encrypted data sets and even simple
Machine Learning (ML) models based, e.g., on linear regression. FE-QF opens up a
significantly larger set of applications including more robust ML applications over encrypted
data. An efficient FE-QF scheme was introduced by Dufour Sans et al. [DGP18] in the paper
titled “Reading in the Dark” where they also demonstrated how it can be used for classifying
handwritten digits from the well-known MNIST database1 with encrypted images. Even

1Available in http://yann.lecun.com/exdb/mnist/
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FE-IP and, especially, FE-QF have practical limitations because computational overheads
get excessive when data sets get large. Stopar et al. [MSH+19] recently published GoFE, an
open source cryptographic library2 written in Go language. The library supports multiple
FE schemes including the FE-QF scheme from [DGP18]. They tested the FE-QF scheme
for the MNIST database and stated that “the decryption of one image [. . . ] takes under
20 seconds” which is still excessive for many practical applications.

Our objective is to show that the performance limitations of FE can be pushed
significantly further by utilizing hardware acceleration. Specifically, we introduce an
implementation for computing decryption of the FE-QF scheme from [DGP18] on a repro-
grammable System-on-Chip (SoC) platform and demonstrate major speedups compared
to a software implementation with GoFE. Our accelerator could be installed in a cloud
server and it would enable significantly more complex privacy-preserving solutions than
what are possible with software-only systems. To the best of our knowledge, the only
published hardware acceleration result for FE was recently provided by Bahadori and
Järvinen in [BJ20b]. They implemented a multi-input FE-IP scheme based on Paillier
encryption from [ALS16, ACF+18] using Xilinx programmable SoC platforms.

Contributions In this paper, we provide the following contributions:

• We present the first hardware accelerator3 for an FE-QF scheme. The accelerator
is a hardware/software codesign implemented in a Xilinx reprogrammable SoC to
maximally utilize the advantages of both software and hardware. The accelerator
is optimized particularly for decryption. An FE-QF decryption consists of several
cryptographic pairings followed by a discrete logarithm. The hardware side is
implemented in programmable logic as a multi-core architecture where the cores
are designed for efficient computation of cryptographic pairings and the discrete
logarithm is implemented via an efficient interplay of software and hardware.

• We describe a parallel version of Shanks’ baby-step giant-step discrete logarithm
algorithm which is optimized for reasonably small positive and negative output
values. The algorithm splits into precomputation and on-the-fly phases that compute
and use a large precomputed table, respectively. We show that this algorithm has
importance beyond our work by importing it into the GoFE software library where
it provides significant speedups.

• We show that our accelerator provides large speedups compared to software-only
implementations. In particular, we show that classification of handwritten digits
from the MNIST database can be computed in 87ms, representing over 200 times
speedup compared to the original GoFE software library from [MSH+19] and 15.5
times speedup even against the optimized GoFE library that uses our algorithm for
discrete logarithms. Our accelerator also opens up new applications that are out
of the reach of published software-only solutions such as accurate classification of
clothes images from the Fashion MNIST database4. The model that we use in this
classification is arguably too complicated to be practical with software as even the
optimized GoFE library requires several seconds for a single classification—a task
that our accelerator solves in only 0.38 seconds.

Paper organization The remainder of the paper is structured as follows. Sect. 2 introduces
the preliminaries of FE, cryptographic pairings, and the specific FE-QF scheme that is
implemented in this paper. Sect. 3 describes the architecture of the accelerator and Sect. 4

2Available in https://github.com/fentec-project/gofe
3Available in https://github.com/fentec-project/fe-qf-hardware-accelerated
4Available in https://www.kaggle.com/zalando-research/fashionmnist
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shows how the FE-QF decryption is mapped into this architecture. Sect. 5 provides
implementation results and general performance comparisons against software libraries.
Sect. 6 introduces the use cases, provides the results for them, and compares the results
with software implementations. Finally, Sect. 7 ends the paper by drawing conclusions.

2 Preliminaries
This section provides the required preliminaries for the rest of the paper. We present the
background for FE and cryptographic pairings in Sect. 2.1 and Sect. 2.2, respectively. In
Sect. 2.3, we describe the FE-QF scheme from [DGP18] that we implement in this paper.

2.1 Functional Encryption
Traditional encryption is all-or-nothing because decryption returns the entire plaintext pt
from the ciphertext ct and nothing can be learned about the contents without the correct
decryption key dk. FE [BSW11, O’N10] provides more fine-grained control. FE allows to
derive decryption keys dkf for different functions f so that dkf enables to compute the
value of f(pt) from ct without giving any additional information about pt. Many potential
applications of FE include spam filtering from encrypted email, facial recognition from
encrypted photos or video, privacy-preserving medical data processing, etc.

While such applications are theoretically possible with the existing FE constructions
for arbitrary polynomial-sized circuits (e.g., [Wat15, GGH+13]), they are not practical as
these FE constructions are extremely inefficient. Abdalla et al. [ABDP15] chose to take
a different, more practical approach where FE schemes are designed for simple but still
practically meaningful functions. This trend of research has resulted in many schemes for IP
(e.g., [ABDP15, ALS16, ACF+18]), i.e. functions of the form: 〈f ,x〉 =

∑n−1
i=0 fixi. Baltico

et al. [BCFG17] proposed the first efficient FE scheme for other than linear functions. Their
FE-QF scheme supports functions of the form x>F y =

∑n−1
i=0

∑m−1
j=0 fi,jxiyj . Dufour

Sans et al. presented a slightly more efficient FE-QF in [DGP18]. The latter plays the
central role in our work and is described with more details in Sect. 2.3.

The support for more complex functions increases the applicability of FE in practical
applications. FE-IP computes (weighted) sums of inputs and, consequently, supports
applications like voting (e.g., sums), basic statistics (e.g., weighted average) or simple
machine learning (e.g., linear regression). Thanks to the ability to compute sums of
products of inputs, FE-QF additionally supports applications like variance and correlation
in statistics or simple neural networks in machine learning enabling better prediction
accuracy. The use cases considered in Sect. 6 are examples of the capabilities of FE-QF,
but the applications are certainly not limited to them.

2.2 Cryptographic Pairings
A cryptographic pairing is a bilinear map G1×G2 → G3 from two additive groups G1 and
G2 to a multiplicative group G3. The first use of bilinear pairings in cryptology was for
cryptanalysis [MOV93]. Later they have been utilized for multiple cryptographic construc-
tions including tripartite key exchange [Jou04], identity-based encryption [BF01], short
signatures [BLS04], attribute-based encryption [GPSW06, BSW07], searchable encryp-
tion [ABC+08], and—most importantly for this work—FE [BCFG17, DGP18, AGRW17].
These applications need efficiently computable pairings and research for improving ef-
ficiency has resulted in various types of pairing algorithms and pairing-friendly elliptic
curves such as the Barreto-Naehrig (BN) curves [BN06]. In this paper, we use optimal ate
pairings [Ver10] on BN curves as proposed by Beuchat et al. in [BGM+10]. In that case,
G1 and G2 are points on elliptic curves E(Fp) and E(Fp2) and G3 is the multiplicative
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group of Fp12 such that p is a 254-bit prime. Due to Kim and Barbulescu’s extended
number field sieve algorithm [KB16], it is considered to offer over 100-bit security.

2.3 Functional Encryption for Quadratic Functions from Pairings
Next, we describe the FE-QF scheme introduced by Dufour Sans, Gay, and Pointcheval
in [DGP18]. The scheme is based on cryptographic pairings and is secure under the
generic group model. It supports QF f(x,y) parametrized with n,Bx, By, Bf ∈ N∗ so that
f(x,y) =

∑n−1
i=0

∑n−1
j=0 fi,jxiyj where xi ∈ [−Bx, Bx], yj ∈ [−By, By], and fi,j ∈ [−Bf , Bf ].

The scheme defines four routines:

Set-up generates a public key pk and a master secret key msk. It takes a bilinear pairing
scheme PG = (G1,G2, p, g1, g2, e) for a security parameter 1λ and the maximum
values for the above function parameters as inputs. It returns a public key pk = (gs

1, g
t
2)

and a master secret key msk = (s, t), where s, t are n random elements of Zp.

Encryption encrypts the data vectors x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1)
where xi ∈ [−Bx, Bx] and yj ∈ [−By, By]. It selects a random γ ∈ Zp and a
random 2 × 2 invertible matrix W and computes ai = (W−1)> (xi, γsi)> and
bi = W (yi,−ti)>. Then, it returns the ciphertext ct =

(
gγ1 , {g

ai
1 , g

bi
2 }i∈[n]

)
.

Key Generation generates a decryption key dkf for a specific f , for which fi,j ∈ [−Bf , Bf ],
by using msk. Specifically, it computes and outputs dkf =

(
g
f(s,t)
2 , f

)
.

Decryption evaluates the function f on the ciphertext ct using the decryption key dkf
and the public key pk and returns an integer value r = f(x,y). It computes

ρ = e(gγ1 , g
f(s,t)
2 ) ·

∏
i,j∈[n]

e(gai
1 , g

bi
2 )fi,j (1)

where e is the bilinear pairing. The final result r is obtained by solving the discrete
logarithm r = logg3(ρ) where g3 = e(g1, g2). Because we focus particularly on the
decryption routine in this paper, we describe it with more details in Alg. 1.

The details about the correctness and security of the scheme are presented in [DGP18].
As can be seen above, the encryption and key generation routines consist mainly of

scalar multiplications in the elliptic curve groups G1 and G2 with base points g1 and
g2, respectively. Decryption divides in two parts: (a) 2n2 + 1 cryptographic pairing
computations and (b) one discrete logarithm in the finite field G3 = Fp12 . In addition

Algorithm 1: Decryption of the FE-QF scheme [DGP18]

Input: ct = (gγ1 , {g
ai
1 , g

bi
2 }i∈[n]), dkf = (gf(s,t)

2 , f), g3 = e(g1, g2)
Output: r ∈ Z

1 ρ← e(gγ1 , g
f(s,t)
2 ) // Pairing

2 for i = 0, . . . , n− 1 do
3 for j = 0, . . . , n− 1 do
4 e0 ← e(gai,0

1 , g
bj,0
2 ) // Pairing

5 e1 ← e(gai,1
1 , g

bj,1
2 ) // Pairing

6 ρ← ρ · (e0 · e1)fi,j // Inv. (if fi,j < 0), exp., and two mults.

7 r ← logg3(ρ) // Discrete logarithm
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Algorithm 2: Optimal ate pairing over BN curves [BGM+10]
Input: P ∈ G1 and Q ∈ G2.
Output: e(Q,P ) = f , where f ∈ Fp12 .
Constant: s = 6t+ 2 =

∑L−1
i=0 si 2i, where t = 262 − 254 + 244 and si ∈ {0,±1}.

1 T ← Q ; f ← 1
2 for i = L− 2 to 0 do
3 f ← f2 · lT,T (P ) ; T ← 2T
4 if si 6= 0 then f ← f · lT,siQ(P ) ; T ← T + siQ

5 Q1 ← πp(Q) ; Q2 ← −πp2(Q)
6 f ← f · lT,Q1(P ) ; T ← T +Q1
7 f ← f · lT,Q2(P ) ; T ← T +Q2

8 return f (p12−1)/r

to these, Alg. 1 requires n2 exponentiations (typically with small exponents) and 2n2

multiplications in Fp12 as well as one inversion in Fp12 for each fi,j < 0. However, the cost
of these operations is insignificant compared to the pairings and the discrete logarithm.

The function f is applied in Alg. 1 by computing exponentiations with fi,j in line 6.
If fi,j = 0, then the result of this exponentiation is 1 ∈ Fp12 and the multiplications
and the optional inversion in line 6 are not needed. Even more importantly, the pairings
in lines 4 and 5 can be skipped too. For this reason, decryption with sparse functions
are significantly cheaper operations than general decryptions. This has been utilized
extensively in [DGP18, MSH+19] where image classifications utilize projections that result
in f where only the diagonal values (i = j) are nonzero. We utilize similar projections in
the use cases of Sect. 6 and compute functions of the form f(x,x) =

∑n−1
i=0 f̂ix

2
i where f̂i

is the ith value of the diagonal reducing the number of required operations per decryption
to only 2n + 1 pairings and one discrete logarithm in Fp12 (and 2n multiplications, n
exponentiations, and one inversion for each negative f̂i). However, our implementation is
not limited to such structure of f and we provide performance results for both general
and diagonal f in Sect. 5.

We instantiate the FE scheme of [DGP18] with optimal ate pairings over BN curves as
described by Beuchat et al. [BGM+10] and Shanks’ baby-step giant-step discrete logarithm
algorithm, which are discussed in Sects. 2.3.1 and 2.3.2, respectively.

2.3.1 Optimal Ate Pairing over a Barreto-Naehrig Curve

The optimal ate pairing over BN curves introduced by Beuchat et al. in [BGM+10] is
given in Alg. 2. The main operations in Alg. 2 are the Miller loop in lines 2–4 and the
final exponentiation in line 8. The Miller loop consists of elliptic curve point additions
and doublings in E(Fp2) and line evaluations in Fp12 . The final exponentiation is the
computation of f (p12−1)/r in Fp12 that can be decomposed into f (p6−1)(p2+1)(p4−p2+1)/r

as shown by Scott et al. in [SBC+09]. The decomposition allows significantly faster
computation because the two first terms can utilize Frobenius operators and conjugations.
The last term f (p4−p2+1)/r is the hard part, but it can be computed more efficiently with
a vectorial addition chain as shown in [SBC+09]. We refer the readers to [BDM+10] for
detailed algorithms (31 in total) for computing each suboperation of Alg. 2.

2.3.2 Discrete Logarithms with Shanks’ Baby-Step Giant-Step Algorithm

Baby-step giant-step algorithm given in Alg. 3 is a classical meet-in-the-middle algo-
rithm invented by Daniel Shanks in the early-1970s for computing discrete logarithms in
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Algorithm 3: Shanks’ baby-step giant-step algorithm for discrete loga-
rithms [Sha71]

Input: α, β ∈ G such that β = αx with x ∈ Z and G is a cyclic group of order ν
Output: x = logα(β) ∈ {1, . . . , ν − 1}

1 µ← d
√
ν e ; γ ← 1

2 for 1 ≤ j < µ do
3 γ ← γ · α
4 Add (j, γ) to the table T
5 α′ ← α−µ ; γ′ ← β
6 for 0 ≤ i < µ do
7 if ∃(j, αj) ∈ T such that αj = γ′ then return x = i · µ+ j
8 γ′ ← γ′ · α′

groups [Sha71]. When given α and β such that α, β ∈ G with an order ν and β = αx, it
returns x ∈ [0, ν − 1]. The algorithm works in two phases. Firstly, a table T is constructed
comprising tuples (j, αj) for all powers j = 0, 1, . . . , µ− 1 where µ = d

√
ν e. This is the

so-called baby-step phase. Secondly, it makes trials by computing β · (α−µ)i for i = 0, 1, . . .
until it finds a match in T . This is the giant-step phase. When a match is found, then
x = i · µ+ j because αj = β(α−µ)i implies β = αi·µ+j .

Instead of a general discrete logarithm in G3 = Fp12 , the FE-QF scheme requires discrete
logarithms where the outputs are bounded to [−Bt, Bt] where Bt = n2 ·Bx ·By ·Bf such
that Bt � ν. Consequently, the discrete logarithm problem can be solved in reasonable
time. Because g3 in Alg. 1 is a fixed domain parameter (g3 = e(g1, g2) ∈ Fp12), the table
T can be precomputed. Sect. 4.5 describes how Alg. 3 is computed in our implementation.

3 Architecture
This section describes the architecture of our accelerator. It is a HW/SW codesign, where
the computationally heavy cryptographic pairings and Fp12 arithmetic are supported by
the HW domain (programmable logic). The SW domain controls the HW domain and
computates auxiliary operations. In many settings, the HW/SW codesign paradigm allows
combining high performance with low resource usage and flexibility. This is certainly true
for implementing the FE-QF scheme which must support a myriad of separate algorithms
(i.e., suboperations of cryptographic pairings, arithmetic in Fp12 , and discrete logarithms)
so that computations still mostly rely on the same low-level arithmetic in Fp.

The FE-QF decryption includes a lot of inherent parallelism. Consequently, we design
the HW domain as a multi-core architecture including multiple parallel and programmable
Cryptography Processor (CP) cores. We base our CP cores on the pairing cryptography
processor architecture recently published in [BJ20a] because it has a good balance between
performance and area requirements and is already designed for a HW/SW codesign in a
reprogrammable SoC. We instantiate a multi-core architecture where each CP core can be
programmed with different microprograms and, hence, the architecture supports two types
of processing: (a) symmetric processing, where the CP cores process the same computations
(but with different data), and (b) asymmetric processing, where the CP cores process
different computations. Implementation of the FE-QF scheme requires significant amounts
of data and microcode transfers between the HW and SW domains that easily become the
bottleneck for performance. We mitigate this limitation by introducing different levels of
data and program memories in the HW domain to reduce HW/SW communication. These
memories include both global (for all CP cores) and local (for a single CP core) data and
program memories. In the SW domain, we utilize both on-chip and off-chip memories.
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 Figure 1: High level architecture of the programmable HW/SW codesign accelerator.

Also other HW/SW codesigns for pairings than [BJ20a] could be potentially used, such
as [SDK17]. However, they may require adaptation of slightly different approaches in the
codesign; e.g., [SDK17] presents a slower and smaller core compared to [BJ20a] and would
require a much larger number of parallel cores for similar performance. Certain stand-alone
coprocessors for pairings such as [SGZ+15, YFCV13] allow faster pairings than [BJ20a]
but they are typically much larger and would not permit computation of other operations
needed in FE-QF. Consequently, we focus solely on the use of [BJ20a] in this paper.

3.1 High-Level Architecture of HW/SW Codesign
Fig. 1 illustrates the high-level architecture of the HW/SW codesign which is divided into
two main parts: (1) SW domain and (2) HW domain. The architecture is generic in the sense
that it can be instantiated in various programmable SoCs with minor modifications (see
App. A for additional discussion). However, in this paper, we consider only instantiations
in Xilinx all-programmable SoCs because we use a Xilinx Zynq Ultrascale+ multiprocessor
SoC (MPSoC) platform for prototyping. In an MPSoC, the SW domain consists of multi-
core ARM processors and the HW domain is a powerful Field Programmable Gate Array
(FPGA). To provide programmability and to decrease resource utilization, the HW domain
utilizes a microprogramming approach instead of hardwired Finite State Machines (FSMs).

3.1.1 SW Domain

The SW domain (on the left in Fig. 1) is responsible for controlling all operations in the
HW domain and external peripherals (i.e., DDR memory and I/O peripherals) as well as
performing computations which are not supported by the multi-core architecture of the
HW domain. The SW domain controls all actions in the HW domain including sending and
receiving data and microprogram packs between the SW and HW domains, issuing/receiving
commands/statuses to/from the HW domain, configuring and programming all CP cores
and other modules in the HW domain, and making control decisions for symmetric or
asymmetric parallel execution of the CP cores based on the received statuses and different
conditions. The communication between the SW and HW domains is performed via two
types of interfaces: High Performance (HP) and General Purpose (GP) interfaces. The HP
interfaces are employed for high performance data and microprograms communications
whereas the GP interfaces are used for transfering commands and statuses.
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3.1.2 HW Domain

The HW domain (on the right in Fig. 1) contains the parallel CP cores for performing
the actual computations and many supporting modules for data and microprograms
communication and storage as well as for commands and status communication. All
modules in the HW domain are connected to the Advanced Extensible Interface (AXI)
structure. The main challenge is communicating data and microprogram packs between
the SW and HW domains so that it does not become a bottleneck for performance. To
alleviate this limitation, various global and local data and program memories are used in
the HW domain. As mentioned above, this communication uses the HP interfaces that
connect to the global interface unit via an AXI Direct Memory Access (DMA) module.
The global interface unit in the HW domain is controlled by the command and status
signals and is connected to the Global Data Memory (GDM), Global Program Memory
(GPM), as well as directly to the parallel CP cores. It is responsible for managing all data
and microprogram transactions between the SW domain memories, global memories, and
local memories of the CP cores. Each CP core has its own Local Data Memory (LDM)
and Local Program Memory (LPM). Memory transactions for data and microprograms
can be done between (1) the SW domain and the global memories of the HW domain, (2)
the SW domain and the local memories of the HW domain, and (3) the global and local
memories of the HW domain. Fig. 1 also shows the simplified architectural diagram of the
CP core which we discuss with more details in Sect. 3.2.

The multi-core architecture contains N parallel CP cores and supports two types of
execution flows: (a) symmetric and (b) asymmetric parallel execution. In the symmetric
parallel execution, each CP core uses its own LDM and the shared GPM. One CP core
(i.e., CP core 1 in Fig. 1) works as the supervisor core and interacts with the GPM by
fetching the required microprograms. All CP cores (i.e., CP cores 1, 2, 3, . . . , N) then
execute the fetched instructions in a symmetric manner so that the same microprograms
are executed in parallel with different data. In the asymmetric parallel execution, each
CP core works independently using its own LPM and LDM. As the result, all CP cores
can execute different microprograms in parallel. The GDM is a global shared memory for
storing input, output, and intermediate data. It allows fast data transfers between the CP
cores without the need to move the data between the HW and SW domains.

3.2 Cryptography Core
The architecture of the CP core is based on the pairing cryptography processor described
in [BJ20a]. The main idea behind its design was to achieve a good trade-off between
speed and area requirements by optimizing the core for the resources of modern FPGAs
and by using the HW/SW codesign paradigm. This is in contrast with many other cores
available in the literature which have been designed to minimize the latency of a single
pairing computation with an expense of a larger resource usage. Having a core that is
optimized for the speed-area tradeoff and the HW/SW codesign paradigm provides an
excellent starting point for designing an efficient multi-core architecture for FE-QF. The
CP core from [BJ20a] was considered to be implemented primarily as a stand-alone core,
but our architecture requires its use in a multi-core architecture and, consequently, we
introduce certain changes into the architecture of the CP core and its interfaces.

The CP core is based on a microprogramming architecture in order to combine runtime
programmability with a small area footprint. The optimal ate pairing of Alg. 2 and the
discrete logarithms with Alg. 3 both rely on Fp12 arithmetic which is ultimately based on
Fp arithmetic. Hence, the efficiency of the entire FE-QF scheme strongly depends on the
efficiency of Fp arithmetic and the scheduling of these arithmetic operations.

Although the CP core is based on the core in [BJ20a], we modified and extended the
original architecture in multiple ways in particular to facilitate its efficient use in the
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multi-core architecture. We changed its LDM and LPM units as well as its local interface
unit to support local and global modes required for symmetric and asymmetric processing.
The architecture details of the CP core are depicted in Fig. 2, which contains local interface,
arithmetic (datapath), the LDM, the LPM, and address generation and control units. The
local interface unit communicates commands, statuses, data, and microprograms with
the global interface unit and other HW modules. This unit loads data into the LDM
and microprograms into the LPM. The latter can be done in two ways: offline before the
actual FE-QF computations or on-the-fly during the computations. The LPM contains a
simple dual-port RAM and a controller for different address branch scenarios. The LPM
stores microprograms for algorithm(s) that are run in the CP core. Each instruction in a
microprogram consists of several fields providing commands to the corresponding units
for a working cycle of the CP core. The LPM is partitioned into several segments, where
each segment can be loaded separately via the local interface unit during the runtime. In
addition, full microprogram loading of the LPM can be done directly from the SW domain
or from the GPM of the HW domain.

The control unit generates addresses for the LDM and makes decisions for loop iterations
and conditional statements. The inputs and outputs of the arithmetic unit are connected
to the LDM. The LDM is a duplicated true dual-port RAM with two independent read and
write ports and supports “4-read”, “2-write”, or “2-read and 1-write” operations from/to
the LDM. This facilitates efficient scheduling and parallelization of Fp arithmetic. The
LDM is also interfaced with the local interface unit for communicating data with the global
interface unit (i.e., data communications with the GDM and the SW domain).

The arithmetic unit (datapath) is described in Fig. 2. In this work, the datapath
width is 256-bit and it supports up to 256-bit arithmetic computations in Fp. It consists
of three parts: source registers, arithmetic blocks, and output selectors. The arithmetic
blocks comprise three Montgomery Modular Multiplier Blocks (MMMBs) and two Modular
Adder/Subtractor Blocks (MASBs) and they can operate in parallel and independently
of each other. The inputs of all arithmetic blocks can be loaded from the LDM but the
inputs of the MASBs can be additionally loaded from the outputs of the arithmetic blocks.
This arrangement together with the multi-read/write feature of the LDM allows efficient
computation of Fp12 arithmetic. The modulus and the precomputed constant for the
Montgomery arithmetic are registered into the arithmetic unit. Because the arithmetic
unit is similar to the one in [BJ20a], we provide a brief summary of its structure in App. B
and refer to [BJ20a] for a detailed description.

4 Implementation of the Algorithms
This section describes how the algorithms of the FE-QF scheme are mapped into the
architecture introduced in Sect. 3. The entire mapping is done by writing the required
software for the SW domain and the microprograms for the HW domain. In general, the
mapping of the pairing algorithm is done following the guidelines of [BJ20a]. The discrete
logarithm computations and parallel processing of the pairings and Fp12 arithmetic are
novel contributions of this paper. Hence, the focus of this section is on these topics.

4.1 Working Principles of the HW/SW Codesign Accelerator
Fig. 3 explains the working principles and memory taxonomy of the SW and HW domains.
It describes the details of different memories in the SW and HW domains as well as how
they are utilized in the HW/SW codesign. Fig. 3 also shows the interaction principles
including the formats of the instruction set of the CP core and the command and status
signals. The HW/SW codesign must be initialized at the boot-up time. The initialization
step must be done only once for each parameter set. It configures the SW and HW
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Figure 2: Architecture details of the CP core.

domains with the specific parameters and algorithms of the FE scheme and performs the
precomputation for the discrete logarithm.

The algorithms are implemented via optimized microprograms which divide into two
types: segment and full microprogram packs. The former allows updating only parts of the
microprogram that is currently in the HW domain. To implement a specific subalgorithm
of Alg. 1, an indepth analysis was performed and the algorithms were translated into
microprograms (i.e., several segments and/or full sub-routine packs). The microprograms
were generated by hand through a customized platform and scripts. The microprograms
are sequences of instructions for different units of the CP core. The instructions are
72 bits long and divide into 14 fields (e.g., arithmetic, control, next program memory
address, LDM address values, LDM, and LPM fields). All microprograms required for the
FE-QF decryption are stored in the (off/on-chip) SW domain memory (i.e., DRR memory).
Whenever a (set of) particular computation(s) needs to be executed in a specific CP core
or in all CP cores, the corresponding microcode(s) are loaded into LPM or GPM, as
explained before. Finite field arithmetic has the largest impact on the overall performance
and, therefore, special care was taken to optimize microprograms for them to maximimally
utilize the datapath of the CP cores (see Sect. 4.2).

In the HW domain, the (full and segment) microprogram packs are stored in the LPM
and/or GPM memories depending on how they need to be executed. In this work, the
sizes of segment and full packs are 288B and 18KB, respectively. In symmetric parallel
execution, all microprogram packs are first stored in the GPM and the supervisor core
(i.e., CP core 1) interacts with the GPM to get the suitable packs for all CP cores. In
asymmetric execution, the SW domain stores different microprogram packs into the LPMs
of different CP cores. The latencies reported in the following sections include all latencies
related to transferring microprograms, commands, and statuses between the SW and HW
domains and also between different modules inside the HW domain. The SW domain
contains a large off-chip memory (i.e., a 4GB DDR memory) and most of this memory is
occupied by a large precomputed table for discrete logarithm computations (see Sect. 4.5).
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Figure 3: Memory taxonomy and interaction principles of the SW and HW domains.

4.2 Tower Extension Field Arithmetic
The first step in implementing the FE-QF scheme is to efficiently implement the finite field
arithmetic in Fp12 . In this work, we adopt the tower extension field definitions for Fp12

from [BDM+10] and, consequently, arithmetic operations are computed with series of oper-
ations in Fp. In particular, Karatsuba-like multiplications in the quadratic extension fields
Fp2 and Fp12 can be computed with three multiplications (and additions/subtractions)
in Fp and Fp6 , respectively. Multiplications in Fp6 require six multiplications in Fp2

(see [BDM+10] for detailed algorithms). As our CP core is based on the pairing cryptogra-
phy processor from [BJ20a], we use the same approach for scheduling the tower extension
field arithmetic (from Fp to Fp12). The main observation was that the parallel processing
capabilities of the datapath can be utilized so that costs of all additions/subtractions are
effectively hidden as they are executed in parallel with multiplications. Fig. 9 in App. B
presents the timing diagrams and [BJ20a] provides additional details.

4.3 Optimal Ate Pairings over BN Curves
Implementation of optimal ate pairings (Alg. 2) consists of three main levels. The first
level is the finite field arithmetic (from Fp to Fp12) discussed in Sect. 4.2. The second level
are the elliptic curve doubling/addition steps and line evaluation functions (i.e., lines 3, 4,
6, and 7) as well as Frobenius operators (i.e., line 5). Finally, the third level controls the
high-level operations of Alg. 2, which are the Miller loop (lines 2–4), Frobenius operators
and final addition steps (lines 5–7), and final exponentiation (line 8). All levels are
implemented by using the algorithms from [BDM+10]. The entire implementation contains
8 full and 24 segment microprogram packs. The Miller loop, Frobenius operators and
final addition steps, and final exponentiation consist of 1/12, 1/2, and 6/10 full/segment
packs, respectively. Alg. 2 contains 8 parts (and as many full packs). The Miller loop
and lines 5–7 are the two first parts. The final exponentiation divides into 6 consecutive
parts, which are computed following the procedure in [SBC+09] and the specific algorithms
from [BDM+10]. Alg. 2 needs, in total, 14681 multiplications/squarings in Fp.
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4.4 Parallel Pairings and Fp12 Arithmetic Calculations

As mentioned in Sect. 2.3, the FE-QF decryption algorithm given in Alg. 1 is divided
into two parts: (1) parallel pairings and Fp12 computations and (2) discrete logarithm in
G3 = Fp12 . These parts are discussed in this section and Sect. 4.5, respectively.

Fig. 4(a) illustrates the implementation and timing diagrams of the pairings and
Fp12 computations of Alg. 1 (i.e., lines 1–6). In this part, the SW domain controls the
execution-flow with parallel symmetric or asymmetric executions while all pairings and
Fp12 operations are computed in the HW domain. First, 2n2 + 1 pairings are calculated
with the N parallel CP cores through d(2n2 + 1)/Ne iterations. They are shown with blue
blocks in Fig. 4(a). In this step, the SW domain sends all inputs (i.e., gai

1 and gbi
2 ) into the

LDMs of the CP cores and the pairing outputs (i.e., ei) are stored in the GDM or, when
the space limit of the GDM is reached, are sent to memories of the SW domain. These
communications are shown with orange and gray blocks in Fig. 4(a), respectively. Second,
Fp12 computations (i.e., exponentiations, inversions, and multiplications) are calculated
with the N parallel CP cores. These computations are shown with green blocks in Fig. 4(a).
In this step, all inputs are loaded to the LDMs of the CP cores by the GDM of the
HW domain and/or SW domain memories (i.e., orange and gray blocks in Fig. 4(a)).
Furthermore, several segment and full microprogram packs are transferred from the GPM
to all LPMs of the CP cores during each pairing (and Fp12 arithmetic operation) in the
HW domain. These communications are shown with narrow orange blocks in Fig. 4(a).

4.5 Discrete Logarithms

Alg. 4 describes the parallel baby-step giant-step algorithm for discrete logarithms with
N parallel CP cores. Compared to the standard baby-step giant-step algorithm shown in
Alg. 3, it introduces two main improvements: (1) the computation is efficiently allocated
to N parallel CP cores and (2) it splits the computation to precomputation and on-the-fly
computation. Precomputation comprises the baby-step phase of Alg. 3 and makes it a
one-time effort needed only in the beginning. On-the-fly computation is the giant-step
phase of Alg. 3 and must be computed separately for each input.

Regarding the former improvement, the computations of Alg. 4 are almost optimally
distributed to N parallel CP cores resulting in a speedup factor that is very close to N .
The latter improvement gives a significant speedup because the baby-step phase typically
contributes most of the delay as it always needs to be computed in full whereas the
giant-step phase terminates as soon as a match is found. We designed also a Constant-
Time (CT) variant for cases where timing attacks are a threat (see Sect. 5.4 for more
discussion). The FE-QF decryption guarantees that the result of a decryption from valid
ciphertexts is in the interval [−B,B] that is determined by the function f . Consequently,
the precomputation phase must compute a table of size d

√
B e. However, in this work, we

chose to precompute a table of size Bp where Bp is the maximum size that fits into the
memory so that our implementation supports all functions, for which the output bound B
satisfies Bp ≥ d

√
B e, without the need of new precomputations; obviously, the price of

this choice is a slightly longer precomputation phase. Then again, this choice improves
the speed of the on-the-fly computation even for functions with smaller output bounds
because fewer iterations are needed in the giant-step phase (in particular, the on-the-fly
computation terminates before entering the main for loop if the result is at most Bp).
The minor improvements of Alg. 4 over Alg. 3 include support for interval [−B,B] where
B � ν and includes the negative values. Notice that the last line (i.e., line 18) is never
reached with inputs fulfilling all input requirements of Alg. 4, but it is included to cleanly
capture decryption failures with faulty ciphertexts. We describe the precomputation and
on-the-fly phases with more details in the following subsections.
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Algorithm 4: Parallel baby-step giant-step algorithm for discrete logarithms with
precomputation using N parallel cores (where N is even). (a) The precomputation
phase computes a table T with a memory bound Bp and (b) the on-the-fly
computation phase solves the discrete logarithm in the interval [−B,B] given that
Bp ≥ d

√
B e.

// (a) Precomputation phase

Input: α ∈ G; a function h; a memory bound Bp
Output: Table T , values γ′u for 1 ≤ u ≤ N/2 and δ′

1 µ← Bp ; δ ← αN

2 Add (0, h(1 ∈ G)) to a shared table T
3 for 0 ≤ j < dµ/Ne do
4 parallel 1 ≤ u ≤ N do // Assign to CP1, . . . , CPN
5 if j = 0 then γu ← αu

6 else γu ← γu · δ
7 Add (u+ j ·N,h(γu)) to a shared table T

8 Sort the shared table T in ascending order on column h(αj) values
9 α′ ← α−µ ; M = N/2 ; δ′ ← α′M

10 parallel 1 ≤ u ≤M do // Assign to CP1, . . . , CPN/2
11 γ′u ← α′u

12 return T , γ′1, . . . , γ′M , δ′

// (b) On-the-fly computation phase

Input: β ∈ G such that β = αx with −B ≤ x ≤ B ∈ Z; a function h; the table T
with a memory bound Bp ≥ d

√
B e; values γ′u for 1 ≤ u ≤M = N/2 and δ′

Output: x ∈ {−B, . . . , B,⊥} where ⊥ denotes failure

1 µ← Bp ; µ′ ← dB/µe − 1 ; β(+) ← β ; β(−) ← β−1

2 if ∃(j, h(αj)) ∈ T such that h(αj) = h(β(+)) then
3 return x = j // For all 0 ≤ x ≤ Bp
4 if ∃(j, h(αj)) ∈ T such that h(αj) = h(β(−)) then
5 return x = −j // For all −Bp ≤ x < 0
6 for 0 ≤ i < dµ′/Me do
7 parallel do
8 parallel 1 ≤ u ≤M do // Assign to CP1, . . . , CPN/2
9 if i = 0 then γ′u(+) ← γ′u · β(+)

10 else γ′u(+) ← γ′u(+) · δ
′

11 if ∃(j, h(αj)) ∈ T such that h(αj) = h(γ′u(+)) then
12 return x = (u+ i ·M) · µ+ j

13 parallel 1 ≤ u ≤M do // Assign to CPN/2+1, . . . , CPN
14 if i = 0 then γ′u(−) ← γ′u · β(−)

15 else γ′u(−) ← γ′u(−) · δ
′

16 if ∃(j, h(αj)) ∈ T such that h(αj) = h(γ′u(−)) then
17 return x = −((u+ i ·M) · µ+ j)

18 return ⊥
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Figure 4: Implementation and timing diagrams of (a) the parallel pairings and Fp12

arithmetic computations of Alg. 1 (i.e., lines 1-6), (b) the precomputation part of Alg. 4(a),
and (c) the on-the-fly computation part of Alg. 4(b).

4.5.1 Precomputation Phase

As mentioned in Sect. 2.3.2, g3 in Alg. 1 is a domain parameter (the element g3 = e(g1, g2) ∈
Fp12) that can be fixed. Because the shared table T in Alg. 4 includes powers of α = g3
from 0 to Bp, it can be precomputed. Based on the specifications of our implementation
platform, we chose Bp = 227 and to precompute the table when the platform boots up
(instead of storing it to non-volatile storage). In Alg. 4, we also employ a function h, which
truncates the value of αj to ` bits, to decrease the memory space for storing T and to
increase the performance of data communication from the HW domain to the SW domain.
We used ` = 64 which still guarantees the uniqueness of each h(αj).

Fig. 4(b) illustrates the implementation method and timing diagram of Alg. 4(a) in
the HW/SW codesign. The precomputation phase contains a main for-loop (i.e., line 3 of
Alg. 4(a)), and the SW domain controls and executes its iterations by assigning N parallel
Fp12 computations (i.e., lines 5 and 6) to the CP cores. These computations are shown
with green blocks of Fig. 4(b). In each iteration, all CP cores send the `-bit results (i.e.,
h(γu) for u = 1, 2, . . . , N) to the SW domain; this is shown with narrow gray blocks in
Fig. 4(b). The SW domain stores the tuples (j, h(αj)) of the shared table T in the DDR
memory (see Fig. 3). In addition to the table T , Alg. 4 precomputes also δ′ and γ′u for
u = 1, 2, . . . , N . The parallel computations in lines 4–7 compute also αµ, which can be
used to be compute α′ through an inversion in line 9. As the figure shows, after computing
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lines 1–9, the SW domain initiates the parallel computations of lines 10–11 in the HW
domain (i.e., gray, green, and orange blocks). At the same time, it sorts the shared table
T (i.e., the black block) using a quicksort routine. A sorted table allows efficient binary
searches from the table during the on-the-fly computation phase.

4.5.2 On-The-Fly Computation Phase

This phase is the on-the-fly computation that must be executed separately for each FE-QF
decryption. It contains two types of operations: (1) searching from the sorted shared table
T and (2) performing Fp12 multiplications. They are handled in parallel in the SW and
HW domains, respectively. Fig. 4(c) describes the implementation and timing diagram of
the on-the-fly computation. At the beginning, the SW domain loads the LDM and LPM of
a CP core with the input data (i.e., β) and the microprogram packs of the inversion. It is
shown with the first gray block of Fig. 4(c). Then, the same CP core is initiated to compute
a Fp12 inversion needed for β(−) in line 1 of Alg. 4(b), which is shown with the first green
block in Fig. 4(c). Simultaneously, the SW domain performs the first search from the table
T (i.e., line 2 of Alg. 4(b)) which are shown with the first narrow red block of Fig. 4(c).
After computing the Fp12 inversion, the SW domain performs the second search from the
table T (i.e., line 4 of Alg. 4(b)) which are shown with the second narrow red block of
Fig. 4(c). After that, the SW domain loads the LDMs and LPMs of the CP cores with the
input data (i.e., γ′u, and δ′) and the microprogram packs of the multiplication. It is shown
with the third gray block of Fig. 4(c). Then, the SW domain controls and executes the
main for-loop (i.e., line 6 of Alg. 4(b)) by assigning N parallel Fp12 multiplications (i.e.,
lines 9–10 and 14–15) to the CP cores, which are shown with the green blocks in Fig. 4(c).
In each iteration, all CP cores send the `-bit results (i.e., h(γ′u) for u = 1, 2, . . . , N) to
the SW domain as shown with the narrow gray blocks in Fig. 4(c). In the main for-loop,
the SW domain performs N sequential binary searches from the sorted shared table T
(i.e., lines 11 and 16) in each iteration. The parallel computations in lines 8–12 and 13–17
correspond to the positive and negative output values, respectively. This process continues
until the SW domain finds a match in T and then returns the output x. This is illustrated
with the consecutive and parallel red and green blocks in Fig. 4(c).

5 Results and Analysis
In this section, we present and analyze the implementation results. To the best of our
knowledge, we presented the first hardware accelerator for an FE-QF scheme and, therefore,
we compare our implementation results with the state-of-the-art software implementations.

5.1 Experimental Setup
In order to evaluate the performance of the HW/SW codesign accelerator, we implemented
it on real hardware. We targeted Xilinx programmable SoCs and specifically we used the
Zynq UltraScale+ MPSoC ZCU102 evaluation kit including a Xilinx Zynq UltraScale+
MPSoC XCZU9EG-2FFVB1156 device, which features a quad-core ARM Cortex-A53
processor running up to 1.5GHz in the SW domain and a 16nm FinFET+ based FPGA
in the HW domain. For the SW domain, we used C programming and Xilinx Software
Development Kit (SDK) as the development environment. For the HW domain, we used
Verilog (HDL) and Xilinx Vivado v2019.1 tool for compiling and implementing the design
to the FPGA. The source codes are publicly available3.

Area Consumption The resource requirements for the HW domain are shown in Table 1.
We were able to fit N = 16 CP cores into the FPGA by using 33,057 slices (96.5%), 401
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Table 1: Resource requirements of the HW domain (FPGA) in Xilinx Zynq UltraScale+
MPSoC ZU9EG device. The clock frequency constraint was set to 210 MHz in Vivado.

Component LUTs Flip-Flops CLB Slices† DSPs BRAM Tiles

Local interface unit 902 79 161 0 2
LDM unit 67 0 31 0 16
LPM unit 716 42 138 0 4
Control unit 184 67 37 0 0
Datapath unit 7,276 10,640 1,602 36 0
Single CP core 9,145 10,828 1,969 36 22
(% of overall FPGA) 3.3% 2.0% 5.7% 1.9% 2.4%

Global interface unit 1,925 164 339 0 4
GDM unit 897 0 228 0 8
GPM unit 74 0 46 0 32
Parallel CPs (N = 16) 146,320 173,248 30,205 576 352
Other blocks‡ 5,259 9,027 2,239 0 5
Multi-core HW domain 154,475 182,439 33,057 576 401
(% of overall FPGA) 56.4% 33.3% 96.5% 22.8% 44.0%

† Each CLB slice contains eight 6-input LUTs and sixteen flip-flops.
‡ This unit contains AXI connections (DMA, peripheral and memory interconnect blocks,
and several GPIO blocks), command and status logic, and processor system reset blocks.

BRAMs (44.0%), and 576 DSPs (22.8%). The maximum clock frequencies for the FPGA
(i.e., HW domain) and ARM (i.e., SW domain) are 210 and 1,200 MHz, respectively5.
Based on Vivado, the total on-chip power consumption is about 17.47W. All reported
results are final post-place&route results and validated with real hardware.

Timing results of the SW/HW primitive operations Table 2 presents total execution
times and HW latencies of different low-level operations. It includes four parts. (1)
The top part presents the initialization and precomputation part. The initialization step
initializes all SW and HW memories with data and microprograms and configures all HW
domain modules. The precomputation computes the sorted shared table T for the discrete
logarithms using Alg. 4(a). In this work, we chose the largest memory bound, for which
the precomputed table T still fits into the DDR memory of the evaluation kit. Specifically,
we have Bp = 227 that supports up to 54-bit outputs and results in a 1.9GB precomputed
table T . It takes 535 seconds to perform all operations required to construct a sorted table
T . Although this part needs to be executed only once at boot-up, it takes long and can be
problematic in some settings. In such cases, the precomputed table T could be stored in
a non-volatile memory (e.g., an SD card) or loaded via an external interface at boot-up.
(2) The second part shows the timings for interacting different command/status, data,
and microprogram packs between different domains and local/global memories. (3) The
third part shows the timings for computing Fp12 arithmetic. Squaring, multiplication, and
inversion are CT by default, but exponentiation has two versions: a Variable-Time (VT)
square-and-multiply and CT square-and-multiply-always. (4) The bottom part reports the
timing for an optimal ate pairing calculation, which is CT.

5The maximum clock frequency for a single instance of the CP core is 230MHz [BJ20a] so the
frequency drop to 210MHz with N = 16 is only a minor one and greatly outweighed by the advantages of
parallelization. Arguably, the reason why the high slice utilization (96.5%) did not cause a more significant
frequency drop is the fact that the slices are relatively sparsely filled as the LUT utilization is only 56.4%.
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Table 2: Total execution times and HW latencies of different SW/HW primitives.

SW/HW primitive operation HW cycles Total time (µs)
Init., config., and program loading of HW units 27,103 267.946
Precomputation phase for Bp = 227 (Alg. 4(a)) 5,712,944,669 535,450,051.424
32-bit command/status transfer SW↔HW 5/4 0.047/0.042
256-bit word transfer SW↔GDM/LDM 9/11 0.072/0.081
256-bit word transfer GDM↔LDM 5 0.024
Segment/full pack† transfer SW→GPM 26/584 0.339/11.156
Segment/full pack transfer SW→LPM 28/586 0.348/11.166
Segment/full pack transfer GPM→LPM 12/291 0.052/1.386
Squaring/multiplication in Fp12 (CT) 475/703 2.262/3.348
Exponentiation in Fp12 (Exp-CT/Exp-VT)‡ 12,028/9,223 57.276/43.919
Inversion in Fp/Fp12 (CT) 11,938/13,511 56.848/64.338
Optimal ate pairing (Alg. 2) 200,158 982.597

† Segment and full pack sizes are 2.25Kb (32× 72b) and 72Kb (1024× 72b), resp.
‡ Exp-CT/VT assume a 11-bit exponent; Exp-VT also assumes Hamming weight of 6.

5.2 Implementation Results of the FE-QF Algorithms

Fig. 5(a) depicts the timing results for the pairings and Fp12 arithmetic part of Alg. 1
(i.e., lines 1–6) as a function of n, the length of x and y, for both general and diagonal f .
As discussed in Sect. 2.3, a diagonal f requires 2n+ 1 pairings (and arithmetic in Fp12)
whereas a general f requires 2n2 + 1 pairings. This difference is clearly visible in Fig. 5(a)
which shows that, when n = 140, a diagonal f requires only about 22ms compared to
about 3 s required by a general f . Fig. 5(b) presents the timing results for the discrete
logarithm part of Alg. 1 (i.e., line 7) as a function of the bit-length of the output result in
bits. Because we use a precomputed table with Bp = 227, the computation for at most
27-bit results takes around 0.11ms because the result is directly available in T . For larger
outputs, the computation time increases quickly. For example, for output sizes of 29, 38,
and 54 bits, the computation times are 1.2ms, 17.5ms, and 1,096,478ms, respectively.
Hence, functions, for which results are typically small, are relatively fast to compute with
the VT discrete logarithm algorithm even if the theoretical bound Bt for that function is
large. The CT-variant of the discrete logarithm computation always executes all iterations
of Alg. 4 up to µ′ required by the maximum output bound Bt of that particular function f .
Hence, the cost of CT vs. VT discrete logarithms depends on both Bt and the distribution
of the outputs for the particular function and use case. Fig. 5 allows estimating the total
execution time of a FE-QF decryption with Alg. 1 for different functions and features.

Table 3 collects timing results for functions of different sizes and types (i.e., general
and diagonal f) and for both VT and CT variants. The CT variant computes discrete
logarithms always with the maximum number of iterations for that function whereas the
VT variant terminates immediately after the result is found. The VT timings assume
uniformly random input vectors x, y, and function f . Table 3 presents also the timing
results for the worst cases of the n and Bt parameters of the two use cases from Sect. 6. As
can be seen, the difference between CT and VT results grows when Bt increases for both
general and diagonal f . This trend is more obvious for diagonal f because the discrete
logarithm computation is more dominant thanks to fewer number of pairings.
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Figure 5: Timing results of the HW/SW codesign for (a) pairings and Fp12 arithmetic
(Alg. 1 lines 1–6) as a function of n, the length of x and y, and (b) discrete logarithm
(Alg. 1 line 7) as a function of the length of the result in bits.

Table 3: Timing results for functions with different parameters n and Bt (in milliseconds).
The VT times are calculated with uniformly random input vectors x, y and function f .

FE-QF decryption variant Times in ms for (n , Bt in bits)
(10 , 20) (20 , 27) (30 , 30) (40 , 33)† (128 , 41)‡

CT, general f 16.244 58.224 141.516 261.916 2,731.384
CT, diagonal f 2.786 4.361 6.315 9.606 156.002
VT, general f 15.757 56.334 136.199 253.409 2,535.900
VT, diagonal f 2.678 4.170 5.084 8.281 36.757

† The worst case inMNISTdataset.
‡ The worst case in FashionMNISTdataset.

5.3 Comparison and Discussion

Table 4 presents a performance comparison against two software implementations. The
decryption timings are for the general f with the maximum output bound (i.e., Bt =
n2 ·Bx ·By ·Bf ). The first software results (the original GoFE library) are from [MSH+19]
and contain timings of key generation, encryption, and decryption with different parameters.
It is evident that it becomes impractical for larger parameters n and Bt due to the slowness
of the decryption. Moreover, it can be observed that key generation and encryption are
considerably faster and do not form significant performance challenges for the real-life
FE-QF schemes, supporting our choice to focus on decryption in this work. The original
GoFE library reported in [MSH+19] does not use precomputation tables for discrete
logarithms. Hence, we included the second software results from an optimized GoFE
library that uses Alg. 4 with Bp = 225 for discrete logarithms. This significantly improved
the software decryption timings and provides fairer comparisons against software.

Table 4 shows that our HW/SW codesign offers speedups between 2.3–20.0 times
compared to the optimized GoFE library and up to over 1000 times compared to the
original GoFE library from [MSH+19]. The results demonstrate that the original GoFE
library suffers from slow discrete logarithms and, hence, the use of Alg. 4 provides major
improvements also in software. Compared to the optimized GoFE library, the largest
speedups are obtained when the number of pairings is high.
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Table 4: Performance comparison of the FE-QF algorithms against software implementa-
tions (in seconds). Decryption timing results are for uniformly random x, y, f (with inputs
from [−Bx,y,f , Bx,y,f ]) and decryption upper bound Bt = n2 ·Bx ·By ·Bf .

Parameters GoFE [MSH+19] GoFE † HW/SW codesign
Bx,y,f n Bt KeyGen Enc. Dec. Dec. Dec. Speedup ‡

100 1 20-bit 0.0001 0.0241 0.0910 0.0050 0.0012 75.8 / 4.2
100 5 23-bit 0.0001 0.1104 0.7502 0.0760 0.0051 147.1 / 14.9
100 20 29-bit 0.0002 0.4334 9.8077 1.1810 0.0591 166.0 / 20.0
500 1 27-bit 0.0001 0.0251 0.4986 0.0050 0.0012 41.6 / 4.2
1000 1 30-bit 0.0001 0.0251 1.1859 0.0050 0.0022 539.0 / 2.3
1000 20 39-bit 0.0002 0.4541 92.3084 1.4760 0.0805 1146.7 / 18.3

† Optimized GoFE library using Alg. 4 with Bp = 225.
‡ Factors compared to both GoFE versions.

5.4 Discussion on Side-Channels
Side-channel attacks are a significant threat to practical cryptosystems and implementations
should include countermeasures against attacks that are considered possible in the threat
models of applications where the implementations could be deployed. FE has certain
features that provide inherent resilience against side-channel attacks. E.g., if we consider
the specific case of our HW/SW codesign for FE-QF decryptions, the only (potentially)
sensitive values handled by the implementation are the decryption keys dkf and the results
of the decryptions. By the nature of FE, the decryption keys do not provide full access to
the plaintexts reducing their lucrativeness as targets of side-channel attacks compared to
keys of traditional cryptosystems. Nevertheless, one may envision applications where they
need to be protected against side-channel attacks. The output results may also be sensitive
and an attacker could try to learn information about them via side-channel attacks.

We consider timing attacks as the main threats for our implementation because, in
most envisioned applications, the implementation would be installed as an accelerator for
a server and it is unlikely that attackers could get physical access to the device. Hence, we
have considered CT implementation as the main method to protect against side-channel
attacks. Notice that—in our case—this implies protection even against simple power and
electromagnetic attacks because the operation patterns are constant. We leave protections
against advanced power attacks as topics for future research.

The decryption key dkf =
(
g
f(s,t)
2 , f

)
is used in Alg. 1 in line 1 in a pairing computation

and in line 6 as an exponent in exponentiations in Fp12 . The pairings in our implementation
are CT by default so line 1 does not leak any information about gf(s,t)

2 via the timing
channel. In the VT variants, the computations of line 6 leak information about the
function f , but not about the entire decryption key dkf . I.e., even if the attacker learns f ,
(s)he cannot decrypt any ciphertexts with that information alone as gf(s,t)

2 would still be
required. If even the function itself is secret, then it could be protected against timing
attacks by adopting a CT exponentiation algorithm. The CT variants in Table 3 utilize
CT square-and-multiply-always exponentiations. Notice that there are also function hiding
FE schemes (e.g., [BRS13, BJK15, ACF+18]), which would hide f even from a legitimate
decryptor but they are out of the scope of this work.

The discrete logarithm in line 7 of Alg. 1 does not utilize the decryption key but may
still require side-channel protections if the output result is sensitive. In particular, the
timing of the computation with Alg. 4(b) relies heavily on the size of the result. E.g., if
the result is smaller than Bp, the computation terminates almost immediately (0.11ms),
but if the result is close to the maximum value 254, the computation takes several minutes.
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Consequently, an outside observer could learn information about decryption results simply
by measuring response times. However, in a normal setting, the variation of discrete
logarithm timings is much more moderate than in the above extreme case (see, e.g., Fig. 7
for output bit-length distributions in the two use cases). Anyways, this leakage can be
prevented by using the CT variant of the discrete logarithm algorithm where all iterations
of the for loop in lines 6–17 of Alg. 4(b) are always computed regardless of when the
match is found. It is crucial that the number of iterations is determined by using the
bounds of the particular function f and not by using the maximum bound supported by
the implementation (254). Table 3 shows that the cost of CT discrete logarithms starts to
dominate when the upper bound for the output is large. E.g., with at most 33-bit results
the overhead compared to the VT variant is only 16% with uniformly distributed inputs,
but it is already 324% for at most 41-bit results.

To conclude, the implementation can be fully protected against timing attacks, but the
cost depends heavily on the function that is computed. Hence, the use of the countermea-
sures should be decided based on the performance and threat model of the application.

6 Use Cases
Design and implementation of ML models on the encrypted data are difficult and require
special techniques like FE. The performance of such models is typically not comparable
to the performance of the models that are executed on the unencrypted data. In what
follows, we show how the performance of such models can be significantly improved by
using a hardware accelerator.

6.1 ML Classification on the Encrypted MNIST Dataset
One of the main tasks that demonstrate the power of ML is image classification. Contem-
porary ML algorithms are able to solve tasks such as recognition of traffic signs or deciding
a patient’s condition based on his/her medical image. In many cases images contain private
information that should be kept secret. Using traditional encryption, nothing can (and
must not) be learned from the encrypted data. FE, on the other hand, permits image
classifications without revealing the images themselves.

A basic example used to test ML algorithms is the MNIST (Modified National Institute
of Standards and Technology) dataset. It consists of 60,000 images of handwritten digits
(28× 28 pixels), and a test set of 10,000 images. The task is to classify the images into 10
classes based on which digit is written in the image. Modern ML algorithms can achieve
above 99.7% accuracy in this task. However, practical FE supports only limited functions
that can be evaluated and such accuracy cannot be reached.

Papers [LCFS17, DGP18, MSH+19] demonstrated how the classification of handwritten
digits can be done using FE-IP and FE-QF, where the latter is achieving higher accuracy.
The proposed model is a neural network with one hidden layer where the non-linear
function used as the activation function in the hidden layer is the element-wise quadratic
function. The output layer is of dimension 10 and can be interpreted as the likelihoods
of each 10 digits being in the image. A different dkfi

is provided for each digit i and
the decryption that provides the largest output value is interpreted as the digit in the
image. The FE-QF scheme in [DGP18] has homomorphic properties that can be used as
a linear transformation between the input and hidden layers. Moreover, the evaluation
of 10 quadratic functions with diagonal entries can be used to evaluate the activation
function and the linear transformation to the output layer. Such a model—which is in
fact equivalent to [DGP18]—achieves an accuracy of about 97% [DGP18, MSH+19]. We
report the timings for FE-QF decryptions from images that have already been projected to
support decryption with diagonal f . Fig. 6 gives a visual representation of this use case.
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Figure 6: Visual representation of the MNIST use case.

Training of the model needs to be done on unencrypted data, while classification is done
on encrypted images. The images have been presented as 785-coordinate vectors (28 · 28
and one for bias) and we use n = 40 dimensional hidden layer. The inputs as well as linear
transformations between layers must be discretized to be used by FE. Discretization to
greater intervals of integers leads to slow decryption, while discretization to small intervals
decreases the prediction accuracy. We chose Bx = 4 for the inputs and B1 = 200, B2 = 40
as the discretization bounds for the first and the second linear transformation. Choosing
such bounds, the accuracy does not significantly change and the output values can be
bounded with Bt = 239; however, they are much smaller in practice (see Fig. 7).

6.2 ML Classification on the Encrypted Fashion MNIST Dataset
The prediction power of an ML model used with FE depends on both the ML techniques
(e.g., model design, training algorithm, etc.) and the functionality and performance of FE.
In this paper we demonstrated how to boost the performance of FE-QF using HW/SW
codesign. A speedup in the FE part implies that the model can use more parameters
and a less strict discretization and, consequently, achieve better accuracy while remaining
practical. In the neural network model, the hidden layer can have a higher dimension and
the discretization for inputs and linear transformations can use wider ranges.

Fashion MNIST is a dataset that is very similar to MNIST but consists of images of 10
different clothing objects (e.g., shoes, t-shirts, coats, etc.). The task of classifying clothes
is harder than classifying digits and the most advanced algorithms achieve about 95%
accuracy on Fashion MNIST (compared to 99.7% on MNIST). Using the parameters of
the MNIST model on Fashion MNIST dataset gives poor classification accuracy. However,
increasing the size of the hidden layer to n = 128 and the discretization bounds to Bx = 10,
B1 = 1000, and B2 = 50 achieves an accuracy of above 87.5%. Consequently, the number
of pairings is higher and the output values are larger (see Fig. 7) leading to slower discrete
logarithms. However, these numbers are still manageable by our HW/SW design.

6.3 Results and Comparisons
Table 5 presents the result for the ML classification models on encrypted MNIST and
Fashion MNIST images using our accelerator. Moreover, we compare the performance
with both original and optimized GoFE libraries. Table 5 shows that the HW/SW design
gives a similar speedup as reported in the previous section even for real use cases.

7 Conclusions
In this paper, we presented the first published accelerator architecture for FE-QF. We
showed that HW/SW-codesign based acceleration results in significant speedups compared
to software-only solutions. Moreover, we demonstrated that large speedups can be received
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Table 5: Performance comparison for the ML classification on the encrypted MNIST and
Fashion MNIST datasets. Timings (in seconds) include all 10 FE-QF decryptions.

Implementation Platform MNIST Fashion MNIST
Original GoFE [MSH+19] Core i7 @ 3.40GHz < 20 s —
Optimized GoFE with Bp = 225 Core i7 @ 2.80GHz 1.344 s 5.221 s
This work
(Speedup factor)

Zynq UltraScale+
MPSoC ZU9EG

0.0866 s
(≈ 15.5×)

0.3796 s
(≈ 13.8×)

also in real use cases, namely, for image classifications using encrypted MNIST and Fashion
MNIST datasets. We anticipate that our results will help FE to become more feasible
for practical adaptation, as the overheads of FE are often excessive and have presented
obstacles for practical use of FE in real applications. In general, our accelerator allows
to pair FE with complex systems, such as FE-QF based on cryptographic pairings with
advanced ML models.

We implemented the FE-QF scheme from [DGP18] but also other published FE-QF
schemes (e.g., [BCFG17, Gay20, Wee20]) have very similar decryption routines consisting
of pairings and discrete logarithms. Consequently, our implementation could be relatively
easily adapted to such schemes, too. The discrete logarithm algorithm and its implementa-
tion can be used also for other cryptographic schemes including certain FE-IP schemes
(e.g., [ABDP15, ALS16, ACF+18]). Such adaptations are topics for future research.
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A Adaptability to Other SoC Architectures
In this appendix, we provide a brief discussion on the efforts and modifications that would
be required to use the proposed SoC architecture (i.e., HW/SW codesign) in a different
SoC platform than Xilinx Zynq UltraScale+ MPSoC. The proposed HW/SW codesign
architecture is generic and only minor modifications are needed to instantiate it in various
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programmable SoCs, including other FPGA vendors (e.g., Intel) and soft-core CPUs (e.g.,
RISC V, NIOS II, Microblaze). In the current HW/SW codesign system instantiated on
the Xilinx Zynq UltraScale+ MPSoC, we applied a 128-bit high-performance interface (i.e.,
AXI HP) and several 32-bit general-purpose (i.e., AXI GP) interfaces between the SW
and HW domains for communicating data/microprogram and command/status packets,
respectively. Therefore, the main modifications would be required in the HW/SW interfaces
because HDL codes for the HW domain (i.e., Verilog source codes) and C codes for the
SW domain are mostly generic. More precisely, the current implementation uses 128-bit
AXI HP and 32-bit AXI GP interfaces (of Xilinx SoC platforms), but other SoCs may
require different interfaces with the same or different sizes. It should be considered that
in the targeted SoC platform, the HW side (i.e., FPGA) contains enough logic cells and
block memories for implementing the parallel CP cores (i.e., in this work, 16 CP cores)
and global/local memories, respectively. Moreover, the SW domain must be interfaced
with an external RAM memory (i.e., off/on-chip DDR memory) with at least 2GB space.
If enough resources are not available, then fewer parallel CP cores must be used or the
size of the precomputed table for discrete logarithms must be decreased, which may have
significant effects on the performance compared to the numbers reported in this paper.
Naturally, also the overall performance of the FPGA and the processor cores of the target
SoC affect the performance.

B Implementation Details

Stucture of the Arithmetic Unit [BJ20a] Fig. 8(a) and 8(b) describe the structure of
the MMMB for computing Fp multiplications/squarings, and also Fig. 8(c) depicts the
structure of the MASB for computing Fp additions/subtractions. The MMMB contains
three nested parts which are organized bottom-up as a Multiply-Add-Add Block (MAAB), a
Multiply-Add-Add-Accumulator Block (MAAAB), and the overall structure of the MMMB.
The MAAB is the primary computation block in the datapath and consists of a 64× 64-bit
Karatsuba multiplier (constructed from three parallel 32× 32-bit multipliers) combined
with adders to compute a× b+ c+d (all 64-bit values) in a five-stage pipeline. The MAAB
consumes most of the FPGA resources, has the highest dynamic power consumption, and
also contains the critical path of the CP core. In order to maximize its efficiency, it is
implemented using the DSP slices. In the next part, the MAAB is complemented with
an accumulation operation (i.e., the MAAAB). The lower part of the MAAB result is
accumulated with the previous higher part as well as with the previous most significant bit
of the accumulation result (i.e., the input carry). The output carry and the higher part
of the MAAB result are stored for the next accumulation (see Fig. 8)(b). The latencies
for computing rlow and rhigh are five and six clock cycles, respectively. This accumulation
method and the one clock cycle difference between rlow and rhigh are essential for efficient
implementation of high-radix Montgomery modular multiplication algorithm. Finally, in
the top part, MAAAB (as the main computing core) as well as multiplexers, registers,
and FSMs are used for implementing radix-264 Montgomery modular multiplication.
The MMMB computes a multiplication/squaring in Fp with a total latency of 43 clock
cycles, but a new multiplication/squaring can be started already after 38 clock cycles
due to the pipelined scheme. Furthermore, the structure of MASB with a two-stage
pipeline is illustrated in Fig.8(c). Addition and subtraction in Fp can be realized by two
consecutive adder/subtractor circuits which produce the result in two cycles. Due to the
pipeline, its throughput is one Fp addition/subtraction per cycle. Applying two MASBs and
connecting the outputs of the datapath back to its inputs facilitates efficient field arithmetic
operations such as Fp2 addition/subtraction/negation, Fp2 multiplication/squaring, and
multiplications by small constants.
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Figure 8: Structures of (a) MMMB, (b) MAAAB, and (c) MASB blocks [BJ20a].

Scheduling of the Tower Field Arithmetic [BJ20a] The timing diagram and scheduling
technique of the tower extension field arithmetic are depicted in Fig. 9. On the top, it shows
how three parallel Fp multiplications/squarings and several parallel additions/subtractions
can be computed simultaneously in the datapath by utilizing parallelism and pipelining. In
the middle, it depicts how this scheduling allows computing Fp2 multiplications/squarings
effectively in 38 clock cycles and, also, that up to eleven Fp2 additions/subtractions can
be done during each Fp2 multiplication/squaring. The Fp and Fp2 operations are further
used for implementing Fp4 , Fp6 , and Fp12 arithmetic. An inversion in Fp12 is decomposed
into several additions/subtractions, multiplications/squarings, and a single inversion in
Fp. We compute the inversion in Fp with Fermat’s Little Theorem through the modular
exponentiation. We compute this Fp exponentiation and also Fp12 exponentiation using
the right-to-left square-and-multiply algorithm because it allows computing multiplications
in parallel with squarings and results in more efficient implementation.
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Figure 9: Timing diagram and scheduling technique of the tower extension field arithmetic
operations (i.e., Fp, Fp2 , Fp4 , Fp6 , and Fp12 arithmetic) in our datapath [BJ20a].
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