
SAEB: A Lightweight Blockcipher-Based AEAD
Mode of Operation

Yusuke Naito1, Mitsuru Matsui1, Takeshi Sugawara2 and Daisuke Suzuki1

1 Mitsubishi Electric Corporation, Japan
{Naito.Yusuke@ce,Matsui.Mitsuru@ab,Suzuki.Daisuke@bx}.MitsubishiElectric.co.jp

2 The University of Electro-Communications, Japan
sugawara@uec.ac.jp

Abstract. Lightweight cryptography in computationally constrained devices is ac-
tively studied. In contrast to advances of lightweight blockcipher in the last decade,
lightweight mode of operation is seemingly not so mature, yet it has large impact
in performance. Therefore, there is a great demand for lightweight mode of oper-
ation, especially that for authenticated encryption with associated data (AEAD).
Among many known properties of conventional modes of operation, the following
four properties are essential for constrained devices:

1. Minimum State Size: the state size equals to a block size of a blockcipher.
2. Inverse Free: no need for a blockcipher decryption.
3. XOR Only: only XOR is needed in addition to a blockcipher encryption.
4. Online: a data block is processed only once.

The properties 1 and 4 contribute to small memory usage, and the properties 2 and 3
contribute to small program/circuit footprint. On top of the above properties, the
fifth property regarding associated data (AD) is also important for performance:

5. Efficient Handling of Static AD: static AD can be precomputed.
We design a lightweight blockcipher-based AEAD mode of operation called SAEB: the
first mode of operation that satisfies all the five properties to the best of our knowledge.
Performance of SAEB is evaluated in various software and hardware platforms. The
evaluation results show that SAEB outperforms conventional blockcipher-based AEAD
modes of operation in various performance metrics for lightweight cryptography.
Keywords: Lightweight cryptography · authenticated encryption with associated data
· blockcipher · mode of operation.

1 Introduction
There is a huge demand for secure connectivity in constrained embedded devices used for
pervasive computing. The technology trend has made lightweight cryptography a very
active research topic in cryptography. Indeed, a number of lightweight blockciphers have
been proposed so far [BBI+15, BPP+17, BSS+13, BJK+16, BCG+12, GPPR11, SIH+11,
SMMK13] and PRESENT [BKL+07] and CLEFIA [SSA+07] are standardized in ISO/IEC
29192-2.

A blockcipher is usually used within a mode of operation. Notably, authenticated
encryption with associated data (AEAD) that provides both confidentiality and authenticity
is widely used. Blockcipher-based AEAD schemes (or modes of operation) have been
studied over the last two decades. As a result, blockcipher-based AEAD schemes such
as AES-GCM [Dwoa] and AES-CTR [Dwob] with HMAC-SHA256 [Dan] are used as de facto

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 2, pp. 192–217
DOI:10.13154/tches.v2018.i2.192-217

mailto:Naito.Yusuke@ce.MitsubishiElectric.co.jp,Matsui.Mitsuru@ab.MitsubishiElectric.co.jp,Suzuki.Daisuke@bx.MitsubishiElectric.co.jp
mailto:sugawara@uec.ac.jp
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i2.192-217

Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara and Daisuke Suzuki 193

standard. However, the research is being pushed forward even today along with the
CAESAR competition [CAE] aiming to make a portfolio of AEAD schemes that have
advantages over the conventional ones.

Based on the above background, study on lightweight AEAD mode of operation is
emerging. However, the study of lightweight AEAD mode of operation is less mature
compared to that of lightweight blockcipher. Although some lightweight AEAD schemes
have been submitted to the CAESAR competition, most of them use dedicated construction.
In practice, there is a number of cases wherein a blockcipher-based AEAD mode of
operation is needed. For example, more and more computing platforms are having
accelerators for existing blockciphers such as AES. Moreover, most of the countermeasures
against side-channel analysis and fault analysis are studied considering such blockciphers.
Efficient implementation of such countermeasures for a dedicated AEAD scheme is not
trivial [MPL+11]. Therefore, lightweight blockcipher-based AEAD mode of operation is
studied and a new mode of operation called SAEB is proposed in the paper.

1.1 Design Goal
Although the term “lightweight” is not strictly defined, it usually refers to a primitive that
allows a compact implementation in a target platform. That can be a small program/RAM
footprint in software implementation and compact circuit/register area in hardware imple-
mentation. Meanwhile there are conventionally known good properties of AEAD schemes
(e.g., online and inverse-free). All the good properties cannot be satisfied at the same time
because some properties are incompatible. Therefore, choosing good properties considering
trade-offs is essential in designing an AEAD mode of operation. What is the properties
desirable for lightweight AEAD mode of operation? In the current study, we prioritized
the following four properties in designing SAEB.

1. Minimum State Size: State size is the size of memory needed for storing internal
values for an AEAD scheme. That is important because the state size directly
corresponds to the size of memory (i.e., RAM and register in software and hardware,
respectively). When a block size of an underlying blockcipher is n bits, the state
sizes of AEAD modes of operation should be greater than or equal to n bits. Hence,
the minimum state size is n bits.

2. Inverse Free: A blockcipher-based scheme is said to be inverse free if it does not call
a blockcipher decryption. The property contributes to reduce resource consumption
(e.g., ROM and/or circuit) because the blockcipher decryption can be omitted.

3. XOR Only: Blockcipher-based AEAD scheme is composed of a blockcipher and
extra operations. For example, AES-GCM requires XOR and GHASH in addition to AES
encryption. A scheme is said to be XOR Only if the extra operation is XOR only. We
consider this conceptually minimum because XOR is a basic operation even needed
for basic modes of operation such as CTR and CBC. The property is also practical. A
common strategy for compact implementation is to share ROM/RAM/gate between
operations. XOR is suitable for resource sharing because it is frequently used within
blockciphers and is bitwise operation.

4. Online: A scheme is said to be online if a data block is processed only once.
Otherwise a data buffer (i.e., memory) is needed to store intermediate results for
later use. Memory resource needed for the data buffer can dominate the size of an
implementation because the data buffer should be as large as a maximum possible
data length. In case of Ethernet, the data size can be as large as 1500 bytes.

On top of the above properties, the fifth property regarding associated data (AD) is added:

194 SAEB: A Lightweight Blockcipher-Based AEAD Mode of Operation

5. Efficient Handling of Static AD: In some use cases, the same AD is used for
every encryption procedure, i.e., AD is static. A scheme is efficient regarding static
AD if an intermediate result on static AD can be reused. In that case, static AD is
processed only once in the precomputation phase thereby reducing computational
load [Rog02]. Indeed, AES-GCM and many other blockcipher-based AEAD schemes
satisfy this property.

In summary, our goal is to design an AEAD mode of operation that satisfies all the
above properties.

1.2 Our Contribution
In this paper, we present the mode of operation SAEB (which stands for Small (Simple,
Slim, Sponge-based) AEAD from Blockcipher). That is the first mode of operation that
satisfies the five good properties at the same time.

1.2.1 Design

SAEB is a nonce-based AEAD mode of operation, and its design follows the sponge-based
design methodology [BDPA08, BDPA12a, BDPA12b]; the technique conventionally used
with permutation is applied to blockcipher. SAEB can be thought as a cascaded n-bit
blockcipher. Data block (either for AD, nonce, plaintext, or ciphertext) is absorbed in
between encryptions with XOR. Hence, the properties 3 and 4 are satisfied. AD, nonce,
and plaintext are fed in the order. Since AD is fed before nonce, static AD can be processed
in advance, and thus the property 5 is satisfied. Moreover, the state size of SAEB is n bits
and a blockcipher decryption is not used, thus the properties 1 and 2 are satisfied.

1.2.2 Security and Parameter Choice

We prove that SAEB achieves the birthday-bound security. The dominant terms in our
bound are (σA + σD)/2c and (σE + σD)2/2n, where r is the length of a plaintext block,
c = n − r, σE is the number of all data blocks (AD blocks and plaintext blocks) by
encryption queries, σD is the number of all data blocks (AD blocks and ciphertext blocks)
by decryption queries, and σA is the number of all AD blocks by encryption queries. By
setting c = r = n/2, SAEB achieves the birthday-bound security. On the other hand, since
c and σE are independent, if σA + σD � 2n/2 (e.g., σA � 2n/2 is satisfied for static AD;
σD � 2n/2 is satisfied when the number of forgeries by decryption queries is limited by
a system), the parameter c can be shorter than n/2 bits, that is, the efficiency of the
procedure to take plaintext blocks can be improved, while keeping the birthday-bound
security.

1.2.3 Comparison

Table 1 summarizes the five properties discussed in Subsection 1.1 satisfied in SAEB and
existing blockcipher-based AEAD modes of operation, namely GCM [MV04], OCB [RBBK01,
Rog04, KR11], OTR [Min14], CLOC [IMGM14], JAMBU [WH], and COFB [CIMN17]. The
table shows that only SAEB satisfies all the properties. Especially, only SAEB achieves the
property 1. That outperforms conventionally smallest state size of 3n/2 bits achieved by
JAMBU [WH] and COFB [CIMN17].

It would be fair to mention properties not satisfied in SAEB: efficiency and parallelizabil-
ity. They are undoubtedly important properties but not chosen because the five properties
are prioritized considering the purpose of a lightweight AEAD mode of operation. OCB,
OTR and COFB are rate-1, that is, a blockcipher is called only once for each n-bit data block.
Others involving SAEB require more than one blockcipher calls. Therefore, rate-1 schemes

Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara and Daisuke Suzuki 195

Table 1: Comparison between SAEB and existing AEAD modes of operation GCM [MV04],
OCB [KR11, Rog04, RBBK01], OTR [Min14], CLOC [IMGM14], JAMBU [WH] and
COFB [CIMN17] with respect to the properties 1-5. “X” (resp., “—”) means that the
corresponding property is satisfied (resp., not satisfied). The line with “Min. State Size”
considers the property 1, where the inernal state sizes are given. The line with “Inv.
Free” considers the property 2. The line with “XOR Only” considers the property 3. The
line with “Online” considers the property 4. The line with “Static AD” considers the
property 5.

Scheme Min. State Size Inv. Free XOR Only Online Static AD
GCM — (4n bits) X — X X

OCB — (3n bits) — — X X

OTR — (4n bits) X — X X

CLOC — (2n bits) X X X X

JAMBU — (3n/2 bits) X X X —
COFB — (3n/2 bits) X — X —
SAEB X (n bits) X X X X

are more efficient in terms of asymptotic throughput. It is worth noting that CLOC and SAEB
can be more efficient for short-length data likely to be used in constrained devices. That is
because the rate-1 modes of operation require high initial cost due to precomputation. The
experimental result shown in [IMGM14] indicates that CLOC outperforms other schemes
up to data size around 100 bytes. Since the block size of SAEB is equal to or longer than
CLOC, the same result is expected for SAEB. In addition, SAEB, CLOC, JAMBU and COFB
and are not parallelizable, i.e., its computational latency cannot be simply reduced by
parallelizing an implementation. The property is not prioritized because that is mainly for
high-performance application and not for constrained devices.

1.2.4 Software Implementation on a Low-end Microcontroller

SAEB can be implemented with an extremely small footprint in software on embedded
environments. We demonstrate this on Renesas’s RL78 low-end microcontroller [Ren]. In
fact, by adding 20 RAM bytes and 200 ROM bytes to any 128-bit block cipher, we can
design full SAEB software with the underlying blockcipher, including the procedures to
handle AD blocks, plaintext/ciphertext blocks and tag generation/verification. We believe
that this is the smallest AEAD mode of operation ever published.

1.2.5 Hardware Implementation

SAEB also achieves small circuit area in hardware implementation. The performance is
evaluated in various platforms namely ASIC (NanGate 45-nm CMOS [Nan]) and FPGA
(Xilinx Virtex-7, and Intel Cyclone V). In ASIC, SAEB can be implemented with an
extra 832 [GE] in addition to a blockcipher implemenation. If it is combined with a
conventional compact AES implementation [MPL+11], the total circuit area is 3, 502 [GE]
which outperforms conventional implementations of CLOC, SILC, and AES-OTR given
in [BBM16]. The same circuit for SAEB with AES can be realized using 348 [LUTs] with
242 [FFs] on Virtex-7 and 299 [ALMs] with 127 [FFs] on Cyclone V. That outperforms
conventional FPGA implementations of COFB, ACORN, JAMBU, and ASCON evaluated in the
same FPGA chips [CIMN17][GMU].

196 SAEB: A Lightweight Blockcipher-Based AEAD Mode of Operation

1.3 Further Related Work
To our knowledge, existing sponge-based AEAD schemes based on permutations satisfying
the property 5 were given in only [BDPA12a].1 The security bound, which is based on
the indifferentiability of the sponge function [BDPA08], is roughly σ2/2s, where σ is the
number of data blocks by all queries and s is the permutation size minus the size of a data
block for each permutation call. Hence, applying the security bound to SAEB (blockcipher
setting), the resultant bound does not achieve the birthday one with respect to the block
size n. Other sponge-based AEAD schemes based on permutations [BDPA12a, BDPA12b,
JLM14, DMA17] do not satisfy the property 5, because nonce is processed before AD
blocks.

On the other hand, using the Even-Mansour scheme [DKS12, EM91, EM97], SAEB can
be converted from the blockcipher setting into the permutation one.2 This conversion
offers the birthday term with respect to the permutation size from the security bound
of the Even-Mansour scheme, and the resultant bound is the same as the best bound of
the permutation-based sponge-based AEAD schemes [JLM14], while the resultant AEAD
scheme satisfies the property 5.

Finally, note that unlike a blockcipher, a permutation has no key scheduling, that is,
the memory to keep the subkey is not required. Hence, using a permutation with size n+k
or less (k is the subkey size of the blockcipher), the memory size of a permutation-based
AEAD scheme might be improved over SAEB without reducing the security level. However,
as discussed earlier, there are still many use cases in which blockcipher-based scheme is
preferred.

2 Preliminaries
2.1 Notations
Let {0, 1}∗ be the set of all bit strings, {0, 1}n the set of n-bit strings, λ an empty string,
and ∅ an empty set. Let [i] := {1, 2, . . . , i} for a positive integer i. ic denotes a c-bit
representation of i where c and i are positive integers. For a finite set X , x� X means
that an element is randomly drawn from X and is assigned to x. For a bit string x and
a set X , we denote by |x| and |X | the bit length of x and the number of elements in X ,
respectively. For a bit string x and a positive integer l such that l < |x|, [x]l and [x]l
denote the first and last l-bit strings of x, respectively. For a bit string x and a positive
integer r, (x1, . . . , xl)

r←− x means x is partitioned into r-bit blocks, where x = x1‖ · · · ‖xl,
if |x| is not a multiple of r then |xl| is less than r, and if x = λ then l = 1 and x1 = λ. Let
Perm(B) be the set of all permutations over a non-empty set B. A random permutation
in Perm(B) is defined as P � Perm(B). Let Func(B) be the set of all functions from B
to B for a non-empty set B. A random function in Func(B) is defined as R � Func(B).
An adversary A with oracle access to O is denoted by AO. An event that AO outputs a
result y is denoted by AO ⇒ y.

2.2 Definitions
2.2.1 Blockcipher

Let BC(K,B) be the set of all encryptions of blockciphers with the set of keys K and the
set of (plain/ciphertext) blocks B. Fixing a blockcipher E ∈ BC(K,B), E having a key
K ∈ K, denoted by E(K, ·) or EK(·), becomes a permutation over B.

1 In [BDPA12a], the duplex construction that becomes components of sponge-based AEAD schemes is
given, and the security result offers the security bounds of the AEAD schemes.

2 Previous works such as [CDH+12, MMH+14, ADMA15], using the Even-Mansour scheme [DKS12,
EM91, EM97], proved the the security of permutation-based schemes.

Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara and Daisuke Suzuki 197

We consider Pseudo-Random Permutation (PRP) security that is indistinguishability
between a keyed blockcipher and a random permutation in the chosen plaintext attack
setting. Let E ∈ BC(K,B) be a blockcipher with the sets of keys K and blocks B. The
advantage function of a PRP-adversary A that outputs a bit is defined as

Advprp
E (A) =Pr[K � K; AEK ⇒ 1]− Pr[P � Perm(B); AP ⇒ 1] ,

where the probabilities are taken over A, K and P .

2.2.2 Nonce-Based Authenticated Encryption

A nonce-based authenticated encryption (nAE) scheme based on a blockcipher E ∈
BC(K,B) is denoted by Π and is a pair of encryption and decryption algorithms. K,N ,M, C,A
and T are the sets of keys, nonces, plaintexts, ciphertexts, associated data (AD) and
tags of the nAE scheme. The encryption algorithm using EK for a key K ∈ K, de-
noted by Π.Enc[EK], takes a nonce N ∈ N , AD A ∈ A, and a plaintext M ∈ M.
Π.Enc[EK](N,A,M) returns, deterministically, a pair of a ciphertext C ∈ C and a tag
T ∈ T . The decryption algorithm using EK for a key K ∈ K, denoted by Π.Dec[EK],
takes a tuple (N,A,C, T) ∈ N × A × C × T . Π.Dec[EK](N,A,C, T) returns, determin-
istically, either the distinguished invalid symbol ⊥ or a plaintext M ∈ M. We require
|Π.Enc[EK](N,A,M)| = |Π.Enc[EK](N,A,M ′)| when the encryption are strings and
|M | = |M ′|.

We follow the security definition in [NRS14, RS06, NRS14, GL15] that considers the
indistinguishability between (Π.Enc[EK],Π.Dec[EK]) and ($,⊥), where $ is a random-
bits oracle that has the same interface as Π.Enc[EK] and for query (N,A,M) returns a
random bit string of length |Π.Enc[EK](N,A,M)|; ⊥ is an oracle that returns the reject
symbol ⊥ for any query. Formally, we consider an adversary A that first interacts with
either (Π.Enc[EK],Π.Dec[EK]) or ($,⊥), and then returns a decision bit b ∈ {0, 1}. The
nAE-advantage function of A is defined as

AdvnAE
Π (A) = Pr[K � K; AΠ.Enc[EK],Π.Dec[EK] ⇒ 1]− Pr[A$,⊥ ⇒ 1] .

We demand that A is nonce-respecting (all nonces by encryption queries are distinct), that
A never asks a trivial decryption query (N,A,C, tag) such that there is a prior encryption
query (N,A,M) with (C, tag) = Π.Enc[EK](N,A,M), and that A never repeats a query.

3 Specification of SAEB

For positive integers n and k, let E ∈ BC({0, 1}k, {0, 1}n) be the underlying blockcipher.
Positive integers r1, r2 and r are the sizes of an AD block, a nonce and a plaintext block in
SAEB respectively such that 1 ≤ r1 ≤ n− 2, 1 ≤ r2 ≤ n− 2, and 1 ≤ r ≤ n− 2. A positive
integer τ is the tag size. Let c1 := n−r1, c2 := n−r2, and c := n−r. The sets K,N ,M, C,A
and T of SAEB are defined as K := {0, 1}k, N := {0, 1}r2 , M = C := {0, 1}∗\{λ},
A := {0, 1}∗, and T := {0, 1}τ . SAEB uses a one-zeros padding: for a positive integer r∗
and a bit string x with 0 < |x| < r∗, x‖10∗r∗ denotes a bit string where a bit 1 is appended
to x, and then a minimum number of bits 0 is appended so that the length in bits becomes
r∗. For example, 101‖10∗8 = 10110000 and 011‖10∗4 = 0111. SAEB is defined in Algorithm 1,
and the encryption algorithm SAEB.Enc[EK] is illustrated in Figure 1.

198 SAEB: A Lightweight Blockcipher-Based AEAD Mode of Operation

Algorithm 1 SAEB
I Encryption SAEB.Enc[EK](N,A,M)
1: iv← Hash[EK](N,A)
2: (C, T)← Core.Enc[EK](iv,M)
3: return (C, T)

I Decryption SAEB.Dec[EK](N,A,C, T)
1: iv← Hash[EK](N,A)
2: (M,T ′)← Core.Dec[EK](iv, C)
3: if T = T ′ then return M
4: if T 6= T ′ then return ⊥

. Subroutine Hash[EK](N,A)
1: sa← 0n; A1, . . . , Aa

r1←− A
2: for i = 1 to a− 1 do [sa]r1 ← [sa]r1 ⊕Ai; sa← EK(sa)
3: if |Aa| = r1 then sa← sa⊕ (Aa‖1c1); sa← EK(sa)
4: if |Aa| < r1 then sa← sa⊕ ((Aa‖10∗r1

)‖2c1); sa← EK(sa)
5: iv← sa⊕ (N‖3c2)
6: return iv

. Subroutine Core.Enc[EK](iv,M)
1: sm← EK(iv); M1, . . . ,Mm

r←−M
2: for i = 1 to m− 1 do [sm]r ← [sm]r ⊕Mi; Ci ← [sm]r; sm← EK(sm)
3: if |Mm| = r then sm← sm⊕ (Mm‖1c); Cm ← [sm]r
4: if |Mm| < r then sm← sm⊕ ((Mm‖10∗r)‖2c); Cm ← [sm]|Mm|

5: sm← EK(sm); T ← [sm]τ
6: return (C1‖C2‖ · · · ‖Cm, T)

. Subroutine Core.Dec[EK](iv, C)
1: sm← EK(iv); C1, . . . , Cm

r←− C
2: for i = 1 to m− 1 do Mi ← [sm]r ⊕ Ci; [sm]r ←Mi ⊕ [sm]r; sm← EK(sm)
3: if |Cm| = r then Mm ← [sm]r ⊕ Cm; sm← sm⊕ (Mm‖1c)
4: if |Cm| < r then Mm ← [sm]|Cm| ⊕ Cm; sm← sm⊕ ((Mm‖10∗r)‖2c)
5: sm← EK(sm); T ′ ← [sm]τ
6: return (M1‖M2‖ · · · ‖Mm, T

′)

4 Security of SAEB

4.1 Security Bound
We prove the nAE-security of SAEB in the information-theoretic model, namely, the
underlying keyed blockcipher EK whereK � {0, 1}k is replaced with a random permutation
P where P � Perm({0, 1}n). The upper-bound of the nAE-security advantage is given in
the following theorem. The security proof is given in Subsection 4.2. Note that using a
concrete blockcipher E, the PRP-security advantage function of E is introduced in the
upper-bound.

Theorem 1. Let A be an adversary that makes qE encryption queries and qD decryption
queries. Let σE and σD be the total numbers of blockcipher calls with distinct inputs by
encryption and decryption queries, respectively. Let σA be the total number of blockcipher
calls with distinct inputs in Hash in SAEB.Enc (only encryption queries). Let σ be the total
number of blockcipher calls with distinct inputs by all queries. For any positive integer ρ,

Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara and Daisuke Suzuki 199

c2 ����

�� E
K

E
KE

K

M1

C1

M2

C2

�
E

K T���
τ

1
c

or 2
c

�

M
m

or M
m
||10*

C
m

r ����

c ����

����

����	
��

E
KE

K

�
E

K

A2 A
a

or A
a
||10*A1

��

�

N

�
��

�

3c2
1 or 2

c1 c1

r2 ����

� �

r1 ����

c1 ����
0c1

0r1

Figure 1: LightAE.Enc.

we have

AdvnAE
SAEB(A) ≤ 2σ2

2n + (ρ− 1)(σA + σD)
2c + 2r

(
eσE
ρ2r

)ρ

+ qD
2τ .

In the above upper-bound, the parameter c depends only on σA and σD. The integer ρ
is a free parameter and can be defined so that σE depends only on the block size n. In
Section 5, we discuss how to choose these parameters.

4.2 Proof of Theorem 1
Let Π := SAEB. In this subsection, we upper-bound the following advantage function.

AdvnAE
Π (A) = Pr [WorldR]− Pr [WorldI] ,

where

WorldR :=
(
P � Perm({0, 1}n); AΠ.Enc[P],Π.Dec[P] ⇒ 1

)
and WorldI :=

(
A$,⊥ ⇒ 1

)
.

In this proof, the advantage function is upper-bounded via two worlds: World1 and World2,
which will be defined later. Then we have

AdvnAE
Π (A) = (Pr [WorldR]− Pr [World1]) + (Pr [World1]− Pr [World2]) +

(Pr [World2]− Pr [WorldI]) . (1)

Upper-Bound of Pr [WorldR] − Pr [World1]
World1 is defined as

World1 :=
(
R� Func({0, 1}n); AΠ.Enc[R],Π.Dec[R] ⇒ 1

)
.

From WorldR to World1, a random permutation P is replaced with a random function R.
By the PRP/PRF switching lemma [BR06], we have

Pr [WorldR]− Pr [World1] ≤ σ2

2n+1 . (2)

200 SAEB: A Lightweight Blockcipher-Based AEAD Mode of Operation

Initialization
1: R� Func({0, 1}n); for ∀x ∈ {0, 1}n do flag[x]← 0
2: colliv/sm ← false; forge← false; bad := colliv/sm ∨ forge

Encryption Π∗.Enc(N,A,M)
1: iv← Hash∗(N,A) . Given in Figure 3
2: (T,C)← Core∗.Enc(iv,M) . Given in Figure 3
3: return (T,C)

Decryption Π∗.Dec(N,A,C, T)
1: iv← Hash∗(N,A) . Given in Figure 3
2: (T ′,M)← Core∗.Dec(iv, C) . Given in Figure 3
3: if bad = false ∧ T = T ′ then forge← true
4: if bad = true then return M
5: return ⊥

Figure 2: World1 (without boxed statements) and World2 (with boxed statements).

Upper-Bound of Pr [World1] − Pr [World2]
World2 is defined as

World2 :=
(

AΠ∗.Enc,Π∗.Dec ⇒ 1
)
,

where Π∗.Enc and Π∗.Dec are defined in Figure 2 and the subroutines are defined in
Figure 3, where the boxed statements are removed in World1 and included in World2. Note
that Figures 2 and 3 without boxed statements equal World1. In Figures 2 and 3, an array
flag is introduced, where initially all entries are 0 and if x ∈ {0, 1}n is input to R then
flag[x] becomes 1. In Figure 2, events colliv/sm and forge are introduced, and flag is used
to define the event colliv/sm. colliv/sm = false ensures that all inputs to R in Core∗.Enc are
distinct, and thus all outputs of Π∗.Enc are randomly drawn. forge = false ensures that
all outputs of Π∗.Dec are ⊥. Note that before the first query, the initialization procedure
is performed. By the fundamental lemma of game-playing [BR06], we have

Pr [World1]− Pr [World2] ≤ Pr[bad] .

Next, four events that will be used to upper-bound Pr[bad] are defined. In these events,
the following sets are used.

• Lsa: a multi set of all input values in sa (defined by encryption or decryption queries).

• Lsm: a multi set of all input values in sm.

• Liv/sm: a multi set of all input values in iv or sm defined by encryption queries (the
values defined by decryption queries are not included).

Then, these events are defined below.

• collsa is a collision event for Lsa:

collsa ⇔ ∃sa1, sa2 ∈ Lsa s.t. ←−sa1 6=←−sa2 ∧ sa1 = sa2,

where ←−sai is the previous input block of sai for i ∈ {1, 2}, and if sai is the first input
block in Hash∗ then ←−sai := λ.

Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara and Daisuke Suzuki 201

. Subroutine Hash∗(N,A)
1: s̃a← 0n; A1, . . . , Aa

r1←− A
2: for i = 1 to a− 1 do
3: sa← s̃a⊕ (Ai‖0c1)
4: s̃a← R(sa)
5: end for
6: if |Aa| = r1 then sa← s̃a⊕ (Aa‖1c1)
7: if |Aa| < r1 then sa← s̃a⊕ ((Aa‖10∗r1

)‖2c1)
8: s̃a← R(sa); iv← s̃a⊕ (N‖3c2)
9: return iv

. Subroutine Core∗.Enc(iv,M)
1: M1, . . . ,Mm

r←−M
2: if flag[iv] = 1 then coll← true
3: ˜sm← R(iv); flag[iv]← 1; if bad = true then ˜sm� {0, 1}n

4: for i = 1 to m− 1 do
5: sm← ˜sm⊕ (Mi‖0c); Ci ← [sm]r
6: if flag[sm] = 1 then coll← true
7: ˜sm← R(sm); if bad = true then ˜sm� {0, 1}n

8: end for
9: if |Mm| = r then sm← ˜sm⊕ (Mm‖1c); Cm ← [sm]r
10: if |Mm| < r then sm← ˜sm⊕ ((Mm‖10∗r)‖2c); Cm ← [sm]|Mm|

11: if flag[sm] = 1 then coll← true
12: ˜sm← R(sm); if bad = true then ˜sm� {0, 1}n

13: T ← [˜sm]τ ; return (T,C1‖C2‖ · · · ‖Cm)

. Subroutine Core∗.Dec(iv, C)
1: s̃c← R(iv); C1, . . . , Cm

r←− C
2: for i = 1 to m− 1 do Mi ← [s̃c]r ⊕ Ci; sc← s̃c⊕ (Mi‖0c); s̃c← R(sc)
3: if |Cm| = r then Mm ← [s̃c]r ⊕ Cm; sc← s̃c⊕ (Mm‖1c)
4: if |Cm| < r then Mm ← [s̃c]|Cm| ⊕ Cm; sc← s̃c⊕ (Mm‖10∗r‖2c)
5: s̃c← R(sc); T ′ ← [s̃c]τ ; return (T ′,M1‖M2‖ · · · ‖Mm)

Figure 3: Subroutines in World1 (without boxed statements) and World2 (with boxed
statements).

• collsa,iv/sm is a collision event between Lsa and Liv/sm:

collsa,iv/sm ⇔ ∃sa ∈ Lsa, sm ∈ Liv/sm s.t. sa = sm.

• mcoll is a ρ-multi-collision event in the r-bit parts of values in Lsm:

mcoll⇔ ∃sm1, sm2, . . . , smρ ∈ Lsm s.t. [sm1]r = [sm2]r = · · · = [smρ]r.

Hence, the following analyses consider the five events colliv/sm, forge, collsa, collsa,iv/sm
and mcoll. Hereafter, for each event x ∈ {colliv/sm, forge, collsa, collsa,iv/sm,mcoll}, we upper-
bound the probability that x occurs as long as other events {colliv/sm, forge, collsa, collsa,iv/sm,mcoll}\{x}
have not occurred. The probability is denoted by Pr[x]. Then we have

Pr[bad] ≤ Pr[colliv/sm] + Pr[forge] + Pr[collsa] + Pr[collsa,iv/sm] + Pr[mcoll] .

Let σD,A be the total number of blockcipher calls with distinct inputs in Hash in Π∗.Dec
(only decryption queries).

202 SAEB: A Lightweight Blockcipher-Based AEAD Mode of Operation

• Upper-Bound of Pr[collsa]

Pr[collsa] is upper-bounded: the probability that collsa occurs as long as other events have
not occurred.

Firstly, note that values in Lsa are defined as

sa[1] = A1‖0c1 (first block) (3)
sa[i] = (Ai‖const[i])⊕R(sa[i− 1]) (i-th block with i 6= 1) (4)

where Ai is the i-th associated data block (a padding value is included at the last block),
and const[i] is 0c1 (middle blocks); 1c1 or 2c1 (last block). Let sa[0] := λ. Fix two
elements sa[i], sa′[j] ∈ Lsa such that sa[i − 1] 6= sa′[j − 1], and evaluate the probability
that sa[i] = sa′[j] is satisfied. Let Ai and A′j be the AD blocks corresponding with sa[i]
and sa′[j], respectively. Note that if sa[i − 1] = λ (i.e., i = 1) then sa′[j − 1] 6= λ, and
vice versa. Without loss of generality, assume that sa[i − 1] 6= λ, that is, i 6= 1. By
forge = false, all outputs of Π∗.Dec are ⊥. By collsa,iv/sm = false, sa[i − 1] is distinct
from all input values in Liv/sm. Thus R(sa[i− 1]) is drawn independently of all outputs of
Π∗.Enc and of Π∗.Dec, and A defines Ai and A′j without R(sa[i− 1]). Since R(sa[i− 1])
is randomly drawn from {0, 1}n, the probability that sa[i] = sa′[j] is at most 1/2n.

Since the number of elements in Lsa is at most σA + σD,A, we have

Pr[collsa] ≤
(
σA + σD,A

2

)
· 1

2n ≤
(σA + σD,A)2

2n+1 .

• Upper-Bound of Pr[collsa,iv/sm]

Pr[collsa,iv/sm] is upper-bounded: the probability that collsa,iv/sm occurs as long as other
events have not occurred.

Firstly, note that values in Lsa are defined as the equations (3) and (4) (see the analysis
of collsa). Secondly, note that values in Liv/sm are inputs to R in Core∗.Enc and defined as

sm′[1] = (N ′‖3c2)⊕R(sa′[a]) (first block), (5)
sm′[j] = (M ′j−1‖const′[j])⊕R(sm′[j − 1]) (j-th blocks with j 6= 1) (6)

where N ′ is the nonce, M ′j−1 is the (j − 1)-th plaintext block (a padding value is included
at the last block), sa′[a] is the value in sa at the last block in Hash∗, and const′[j] is
0c1 (middle blocks); 1c1 or 2c1 (last block). Note that sm′[1] is a value defined in iv.
Hence, collsa,iv/sm implies that one of the following cases occurs: (a) sa[1] = sm′[1]; (b)
sa[1] = sm′[j] (j 6= 1); (c) sa[i] = sm′[1] (i 6= 1); (d) sa[i] = sm′[j] (i 6= 1, j 6= 1).

• (a) is considered, i.e., fixing sa[1] and sm′[1], the probability that sa[1] = sm′[1]
is upper-bounded. By forge = false, all outputs of Π∗.Dec are ⊥. By collsa,iv/sm =
false, sa′[a] (see (5)) is distinct from all values in Liv/sm. Thus R(sa′[a]) is drawn
independently of all outputs of Π∗.Enc and of Π∗.Dec, and A defines A1 and N ′

without R(sa′[a]). Since R(sa′[a]) is randomly drawn from {0, 1}n, the probability
that sa[1] = sm′[1] is at most 1/2n.

• (b) is considered, i.e., fixing sa[1] and sm′[j], and the probability that sa[1] = sm′[j]
is upper-bounded. Note that this probability is upper-bounded by the one that
[sa[1]]c = [sm′[j]]c. Since [R(sm′[j − 1])]c is randomly drawn from {0, 1}c, the
probability that [sa[1]]c = [sm′[j]]c is at most 1/2c.

• (c) is considered, i.e., fixing sa[i] and sm′[1], the probability that sa[i] = sm′[1] is
upper-bounded. Note that by const[i] 6= 3c2 ,

sa[i] = sm′[1]⇔ R(sa[i− 1])⊕R(sa′[a]) = (Ai‖const[i])⊕ (N ′‖3c2) 6= 0n.

Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara and Daisuke Suzuki 203

Hence, sa[i−1] 6= sa′[a] is satisfied, and R(sa[i−1]) and R(sa′[a]) are independently
drawn. By forge = false, all outputs of Π∗.Dec are ⊥. By collsa,iv/sm = false, sa′[a]
is distinct from all values in Liv/sm. Thus R(sa′[a]) are drawn independently of all
outputs of Π∗.Enc and of Π∗.Dec, and A defines Ai and N ′ without R(sa′[a]). Since
R(sa′[a]) is randomly drawn from {0, 1}n, the probability that sa[i] = sm′[1] is at
most 1/2n.

• (d) is considered, i.e., fixing sa[i] and sm′[j], the probability that sa[i] = sm′[j]
is upper-bounded. The collision probability is upper-bounded by the one that
[sa[i]]c = [sm′[j]]c. By collsa,iv/sm = false, sa[i−1] 6= sm′[j−1], thus R(sa[i−1]) and
R(sm′[j − 1]) are independently drawn, and the probability that [sa[i]]c = [sm′[j]]c
is at most 1/2c.

Regarding (b) and (d), by mcoll = false, for sa[i] ∈ Lsa, the number of values in Lsm whose
first r-bit values equal [sa[i]]r is at most ρ− 1. Hence, fixing sa[i] ∈ Lsa, the probability
that for some sm ∈ Liv/sm sa[i] = sm is at most (ρ− 1)/2c.

Finally, since there are at most σA + σD,A distinct values in Lsa, we have

Pr[collsa,iv/sm] ≤ (ρ− 1)(σA + σD,A)
2c + qE(σA + σD,A)

2n .

• Upper-Bound of Pr[colliv/sm]

Pr[colliv/sm] is upper-bounded: the probability that colliv/sm occurs as long as other events
have not occurred.

Firstly, note that values defined at the α-th encryption query in Liv/sm are defined as

smα[1] = (Nα‖3c2)⊕R(saα[aα]) (first block),
smα[i] = (Mα

i−1‖constα[i])⊕R(smα[i− 1]) (i-th blocks with i 6= 1)

where α ∈ [qE], Nα is the nonce, Mα
i−1 is the (i− 1)-th plaintext block (a padding value

is included at the last block), saα[aα] is the value in sa at the last block in Hash∗, and
constα[i] is 0c1 (middle blocks); 1c1 or 2c1 (last block). Note that smα[1] is a value defined
in iv. Then, for α, β ∈ [qE], colliv/sm consists of three collision cases: (a) smα[1] = smβ [1]
with α 6= β; (b) smα[1] = smβ [i] with i 6= 1; (c) smα[i] = smβ [j] with (α, i) 6= (β, j), i 6= 1
and j 6= 1.

• (a) is considered, i.e., fixing smα[1] and smβ [1], the probability that smα[1] = smβ [1]
is upper-bounded. Note that by Nα 6= Nβ ,

smα[1] = smβ [1]⇔ R(saα[aα])⊕R(saβ [aβ]) = (Nα ⊕Nβ)‖0c2 6= 0n.

Thus, saα[aα] 6= saβ [aβ] and R(saα[aα]) and R(saβ [aβ]) are independently drawn. By
forge = false, all outputs of Π∗.Dec are ⊥. By collsa,iv/sm = false, saα[aα] is distinct
from all values in iv or sm. Thus R(saα[aα]) is drawn independently of all outputs
of Π∗.Enc and of Π∗.Dec, and A defines Nα and Nβ without R(saα[aα]). Since
R(saα[aα]) is randomly drawn from {0, 1}n, the probability that smα[1] = smβ [1] is
at most 1/2n.

• (b) is considered, i.e., fixing smα[1] and smβ [i], the probability that smα[1] = smβ [i]
is upper-bounded. Note that

smα[1] = smβ [i]⇔ R(saα[aα])⊕R(smβ [i− 1]) = (Nα‖0c2)⊕ (Mβ
i−1‖const

β [i]).

By collsa,iv/sm = false, saα[aα] 6= smβ [i− 1], and R(saα[aα]) and R(smβ [i− 1]) are
independently drawn. Similar to (a), by forge = false and collsa,iv/sm = false, A
defines Nα and Mβ

i−1 without R(saα[aα]). Since R(saα[aα]) is randomly drawn from
{0, 1}n, the probability that smα[1] = smβ [i] is at most 1/2n.

204 SAEB: A Lightweight Blockcipher-Based AEAD Mode of Operation

• (c) is considered, i.e., fixing smα[i] and smβ [j], the probability that smα[i] = smβ [j]
is upper-bounded. Without loss of generality, assume that smα[i] is defined after
smβ [j] is defined, and colliv/sm has not occurred until smα[i] is defined. Note that

smα[i] = smβ [j]

⇔ R(smα[i− 1])⊕R(smβ [j − 1]) = (Mα
i−1‖constα[i])⊕ (Mβ

j−1‖const
β [j]).

Since colliv/sm has not occurred until smα[i] is defined, smα[i − 1] is distinct from
all values defined in iv or sm, including smβ [j − 1]. Thus, R(smα[i− 1]) is defined
independently of R(smβ [j − 1]) and of all previous outputs of Π∗.Enc. By forge =
false, all outputs of Π∗.Dec are ⊥. Thus, A defines Mα

i−1 and Mβ
j−1 without

R(smα[i− 1]). Since R(smα[i− 1]) is randomly drawn from {0, 1}n, the probability
that smα[i] = smβ [j] is at most 1/2n.

Finally, since there are at most (σE − σA) values in Liv/sm, we have

Pr[colliv/sm] ≤
(
σE − σA

2

)
· 1

2n ≤
(σE − σA)2

2n+1 .

• Upper-Bound of Pr[mcoll]

Pr[mcoll] is upper-bounded: the probability that mcoll occurs as long as other events have
not occurred.

Fix sm ∈ {0, 1}r and sm(1), sm(2), . . . , sm(ρ) ∈ Lsm. Note that sm(i) is defined as
sm(i) = (M (i)‖consti) ⊕ R(←−sm(i)), where ←−sm(i) is the input at the previous block, M (i)

is the plaintext block, and consti is 0c1 (middle blocks); 1c1 or 2c1 (last block). By
forge = false, all outputs of Π∗.Dec are ⊥. By colliv/sm = false, ←−sm(1), . . . ,←−sm(ρ) are
distinct, i.e, R(←−sm(1)), . . . , R(←−sm(ρ)) are independently drawn, and for each j ∈ [ρ] A
defines M (j) without R(←−sm(j)). Since R(←−sm(1)), . . . , R(←−sm(ρ)) are randomly drawn from
{0, 1}n, the probability that [sm(1)]r = [sm(2)]r = · · · = [sm(ρ)]r = sm is at most (1/2r)ρ,
and we have

Pr[mcoll] ≤ 2r
(
σE
ρ

) (
1
2r

)ρ

≤ 2r
(
eσE
ρ2r

)ρ

,

where Stirling’s approximation is used (ρ! ≥ (ρ/e)ρ for any ρ).

• Upper-Bound of Pr[forge]

Pr[forge] is upper-bounded: the probability that forge occurs as long as other events have
not occurred. In this evaluation, the following two cases are considered. Let Lsc be the
set of all inputs values in sc at the last block in Core∗.Dec (defined at the step 3 or 4 in
Core∗.Dec).

(A) ∀sc ∈ Lsc, sm ∈ Liv/sm such that sm is defined before sc is defined: sc 6= sm.

(B) ∃sc ∈ Lsc, sm ∈ Liv/sm such that sm is defined before sc is defined and sc = sm.

Hence, forge can be divided into the following two cases.

• The case (A) has been satisfied (i.e., the case (B) has not occurred) and then forge
becomes true.

• The case (B) occurs and then forge becomes true.

Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara and Daisuke Suzuki 205

Hence, Pr[forge] is upper-bounded by the sum of the probabilities that the first case
occurs and that the second case occurs. Note that the probability for the first case is
upper-bounded by Pr[forge|(A)] and the probability for the second case is upper-bounded
by the probability that the case (B) occurs as long as forge = false, i.e., Pr[(B)|¬forge].
Thus, we have

Pr[forge] ≤ Pr[forge|(A)] + Pr[(B)|¬forge] .
For Pr[forge|(A)], the case (A) ensures that all tags T ′ defined in Π∗.Dec are drawn
independently of all outputs of Π∗.Enc, and thus we have Pr[forge|(A)] ≤ qD/2τ . Hereafter,
Pr[(B)|¬forge] is upper-bounded.

Firstly, note that values at the α-th encryption query in Liv/sm are defined as

smα[1] = (NE,α‖3c2)⊕R(saα[aα]) (first block),
smα[i] = (Mα

i−1‖constα[i])⊕R(smα[i− 1]) (i-th blocks with i 6= 1)

where NE,α is the nonce, Mα
i−1 is the (i−1)-th plaintext block (a padding value is included

at the last block), saα[aα] is the value in sa at the last block in Hash∗, and constα[i] is
0c1 (middle blocks); 1c1 or 2c1 (last block). Let smα[0] := saα[aα]. Note that smα[1] is
a value defined in iv. Let mα be the number of plaintext blocks at the α-th encryption
query, i.e., i ≤ mα + 1.

Secondly, values in iv or sc in Core∗.Dec at the β-th decryption query are defined as

scβ [1] = (ND,β‖3c2)⊕R(saβ [aβ]) (first block),

scβ [j] = (Mβ
j−1‖const

β [j])⊕R(scβ [j − 1]) (j-th blocks with i 6= 1)

where ND,β is the nonce, Mβ
j−1 is the (j − 1)-th (decrypted) plaintext block (a padding

value is included at the last block), saβ [aβ] is the value in sa at the last block in Hash∗,
and constβ [j] is 0c1 (middle blocks); 1c or 2c (last block). Let scβ [0] := saβ [aβ]. Note
that scβ [1] is a value defined in iv. Let mβ be the number of ciphertext blocks at the β-th
decryption query, i.e., j ≤ mβ + 1.

Then, the case (B) implies that ∃α, β, i s.t. smα[i] = scβ [mβ + 1] and scβ [mβ + 1]
is defined after smα[i] is defined. Since A never asks a trivial decryption query, for
j = 0, 1, 2, . . . searching two inputs smα[i− j] and scβ [mβ + 1− j] at the same time, there
exists j such that smα[i− j] = scβ [mβ + 1− j] and smα[i− (j+ 1)] 6= scβ [mβ + 1− (j+ 1)].
The detail analysis to derive the fact is given in Appendix A. Hence, if the case (B) occurs,
there exist α ∈ [qE], β ∈ [qD], i ∈ [mα + 1], j ∈ [mβ + 1] such that one of the following
collisions occurs, that is, Pr[(B)|¬forge] is upper-bounded by the sum of these collision
probabilities.

• (a) smα[0] 6= scβ [0] ∧ smα[1] = scβ [1]

• (b) smα[0] 6= scβ [j − 1] ∧ smα[1] = scβ [j] with j 6= 1

• (c) smα[i− 1] 6= scβ [0] ∧ smα[i] = scβ [1] with i 6= 1

• (d) smα[i− 1] 6= scβ [j − 1] ∧ smα[i] = scβ [j] with i 6= 1 and j 6= 1

These collision probabilities are upper-bounded below.

• (a) is considered. First, fixing α ∈ [qE] and β ∈ [qD] with smα[0] 6= scβ [0], the
probability that smα[1] = scβ [1] is upper-bounded. By forge = false, all outputs
of Π∗.Dec are ⊥. By collsa,iv/sm = false, smα[0] (= saα[aα]) is distinct from all
elements in Liv/sm. Thus R(smα[0]) is drawn independently of all outputs of Π∗.Enc
and of Π∗.Dec, and A defines NE,α and ND,β without R(smα[0]). Since R(smα[0])
is randomly drawn from {0, 1}n, the probability that smα[1] = scβ [1] is at most
1/2n. Thus, the probability that ∃α, β s.t. smα[0] 6= scβ [0] and smα[1] = scβ [1] is at
most qEqD/2n.

206 SAEB: A Lightweight Blockcipher-Based AEAD Mode of Operation

• (b) is considered. This analysis is similar to (a). First, fixing α ∈ [qE], β ∈ [qD] and
j ∈ [mβ + 1]\{1} with smα[0] 6= scβ [j − 1], the probability that smα[1] = scβ [j]
is upper-bounded. By forge = false and collsa,iv/sm = false, R(smα[0]) is drawn
independently of all outputs of Π∗.Enc and of Π∗.Dec, and A defines Mα

i−1 and
Mβ
j−1 without R(smα[0]). Since R(smα[0]) is randomly drawn from {0, 1}n, the

probability that smα[1] = scβ [j] is at most 1/2n. Thus, the probability that ∃α, β, j
s.t. smα[0] 6= scβ [j − 1] and smα[1] = scβ [j] is at most qE(σD − σD,A − qD)/2n.

• (c) is considered. This analysis is similar to (a). First, fixing α ∈ [qE], β ∈ [qD]
and i ∈ [mα + 1]\{1} with smα[i− 1] 6= scβ [0], the probability that smα[i] = scβ [1]
is upper-bounded. By forge = false and collsa,iv/sm = false, R(scβ [0]) is drawn
independently of all outputs of Π∗.Enc and of Π∗.Dec, and A defines Mα

i−1 and
ND,β without R(scβ [0]). Since R(scβ [0]) is randomly drawn from {0, 1}n, the
probability that smα[i] = scβ [1] is at most 1/2n. Thus, the probability that ∃α, β, i
s.t. smα[i− 1] 6= scβ [0] and smα[i] = scβ [1] is at most (σE − σA − qE)qD/2n.

• (d) is considered. First, fixing α ∈ [qE], β ∈ [qD], i ∈ [mα + 1]\{1} and j ∈
[mβ + 1]\{1} with smα[i − 1] 6= scβ [j − 1], the probability that smα[i] = scβ [j] is
upper-bounded. Note that the probability that smα[i] = scβ [j] is upper-bounded
by the one that [smα[i]]c = [scβ [j]]c. By smα[i− 1] 6= scβ [j − 1], R(smα[i− 1]) and
R(scβ [j−1]) are independently drawn. Thus the probability that [smα[i]]c = [scβ [j]]c
is at most 1/2c. Next fix only β, j. By mcoll = false, the number of elements for
smα[i] whose first r-bit values equal [scβ [j]]r is at most ρ− 1. Thus the probability
that ∃α, i s.t. [smα[i]]c = [scβ [j]]c is at most (ρ − 1)/2c. Finally, the probability
that ∃α, β, i, j s.t. smα[i − 1] 6= scβ [j − 1] and [smα[i]]c = [scβ [j]]c is at most
(ρ− 1)(σD − σD,A − qD)/2c.

Summing the above upper-bounds gives

Pr[(B)|¬forge] ≤ qE(σD − σD,A) + (σE − σA)qD
2n + (ρ− 1)(σD − σD,A)

2c .

Finally, we have

Pr[forge] ≤ Pr[forge|(A)] + Pr[(B)|¬forge]

≤ qD
2τ + qE(σD − σD,A) + (σE − σA)qD

2n + (ρ− 1)(σD − σD,A)
2c .

• Upper-Bound of Pr [World1] − Pr [World2]

Finally, the above upper-bounds give

Pr [World1]− Pr [World2]

≤ (σA + σD,A)2

2n+1 + (ρ− 1)(σA + σD,A)
2c + qE(σA + σD,A)

2n + (σE − σA)2

2n+1

+ 2r
(
eσE
ρ2r

)ρ

+ qE(σD − σD,A) + (σE − σA)qD
2n + (ρ− 1)(σD − σD,A)

2c + qD
2τ

≤ (ρ− 1)(σA + σD)
2c + (σA + σD,A)2 + (σE − σA)2

2n+1

+ qE(σA + σD) + (σE − σA)qD
2n + 2r

(
eσE
ρ2r

)ρ

+ qD
2τ

≤ (ρ− 1)(σA + σD)
2c + (σE + σD,A)2

2n+1 + σ2

2n + 2r
(
eσE
ρ2r

)ρ

+ qD
2τ

≤ (ρ− 1)(σA + σD)
2c + 1.5σ2

2n + 2r
(
eσE
ρ2r

)ρ

+ qD
2τ . (7)

Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara and Daisuke Suzuki 207

Upper-Bound of Pr [World2] − Pr [WorldI]

In World2, for any encryption query, the response is randomly drawn, and for any decryption
query, ⊥ is returned. Hence, World2 is indistinguishable from WorldI , that is,

Pr [World2]− Pr [WorldI] = 0 . (8)

Conclusion of the Proof

Putting the upper-bounds (2), (7), and (8) into (1) gives

AdvnAE
Π (A) ≤ 2σ2

2n + (ρ− 1)(σA + σD)
2c + 2r

(
eσE
ρ2r

)ρ

+ qD
2τ .

4.3 Remark

Although SAEB defined in Section 3 is defined so that the plaintext space M and the
ciphertext space C do not include an empty string λ, SAEB given in Algorithm 1 also works
even when λ is included inM and C, where for an empty plaintext, m = 1, M1 = 10∗r , the
constant 2c is used, and C = λ. By the same the proof as in Subsection 4.2 (but Hash∗,
Core∗.Enc and Core∗.Dec are modified so that the empty plaintext case is included), the
same security bound given in Theorem 1 can be obtained.

5 Parameters

In this section, we study how to choose parameters of SAEB.

5.1 Recommended Parameters

First we give the recommended parameters of SAEB: the lengths of an AD block, a nonce,
and a plaintext block are defined as (r1, r2, r) = (n − 8, n/2, n/2). In this setting, for
each n-bit plaintext block, a blockcipher is performed twice. For each n-bit AD block, a
blockcipher is called n/(n− 8) times.

Next, we study the security bound of SAEB in Theorem 1 for the parameters. In this
setting, the upper-bound of SAEB becomes

2σ2

2n + (ρ− 1)(σA + σD)
2n/2

+ 2n/2
(
eσE
ρ2n/2

)ρ

+ qD
2τ .

Putting ρ = n/2, the upper-bound becomes

2σ2

2n + (n− 2)(σA + σD)
2(n/2)+1 +

(
2eσE
n2n/2

)n/2
+ qD

2τ .

Hence, SAEB is a secure nAE scheme as long as (σ, σA, σD, qD) are less than roughly
(2n/2, 2n/2/n, 2n/2/n, 2τ), and if σA � 2n/2/n, σD � 2n/2/n, qD � 2τ , then SAEB achieves
birthday-bound security (security up to 2n/2 blockcipher calls).

208 SAEB: A Lightweight Blockcipher-Based AEAD Mode of Operation

5.2 Parameters with Better Efficiency
In the security bound of SAEB, the parameter c depends only on σD and σA.3 Hence, if σD
and σA are limited,4 c can be reduced less than n/2, thereby the efficiency of Core.Enc
and Core.Dec can be improved. We give parameters that cover important applications
such as HTTPs, MQTT, firmware updating, etc, when using a 128-bit blockcipher, i.e.,
n = 128: the lengths of an AD block, a nonce and a plaintext block are defined so that
(r1, r2) = (120, 64) and r ≤ 80. Hereafter, the faster parameters (r1, r2, r) = (120, 64, 80)
are considered. Regarding the security bound, putting ρ = 4, it becomes

2σ2

2128 + 3(σA + σD)
248 +

(eσE
4 · 263

)4
+ qD

2τ .

Hence, SAEB is a secure nAE scheme as long as (σ, σA, σD, qD) are less than roughly
(263, 248/3, 248/3, 2τ), and if σA, σD and qD are limited as σA � 248/3, σD � 248/3
and qD � 2τ , SAEB achieves birthday-bound security. Regarding the efficiency, for each
128-bit plaintext block, a blockcipher is called 1.6 times on average, that is, regarding the
procedure to take plaintext blocks, SAEB is performed roughly 5/4 times faster than the
recommended parameters.

Next, for these parameters, we study the relation between c = 48 and the parameters
(σA, σD). For simplicity, we assume that the term qD/2τ is negligible compared with other
terms. Hence, we focus on the term 3(σA + σD)/248. Regarding the term 3σA/248, it
becomes a constant when roughly σA = 246 (250 bytes for distinct AD blocks), that is,
the number of distinct AD blocks should be limited as σA � 246. Regarding the term
3σD/248, it becomes a constant when roughly σD = 246 (250 bytes for distinct ciphertext
blocks given by an adversary). For simplicity, the ciphertext length ` in blocks is fixed
for all queries. Then, the number of forgery attempts should be limited as qD � 246/`,
e.g., qD � 239 if ` = 103 (1K byte); qD � 229 if ` = 104858 (1M byte); qD � 219 if
` = 107374183 (1G byte); etc. Usually, a key is changed if the security bound reaches some
threshold such as 1/220 and 1/232, e.g., for the threshold 1/220, a key is changed when
σD = 228/3; for for the threshold 1/232, a key is changed when σD = 214/3.

6 Software Implementation
In this section we demonstrate that SAEB can be implemented with an extremely small
footprint in software on a low-end microcontroller. Our target is Renesas’s RL78, which
is a 16-bit CISC processor widely used in industrial embedded systems [Ren]. First we
implemented three blockciphers AES, SIMON and SPECK [BSS+13] with 128-bit block and
128-bit key on the microcontroller and measured their size and performance as shown
in Table 2. For each blockcipher we designed two versions; Tiny, aiming at minimizing
ROM size, and Fast, focusing on high speed with reasonable ROM size. All codes adopt
on-the-fly key scheduling to minimize the size of RAM, which is usually much more
expensive than ROM.

The ROM size includes code and constant value area, and the RAM size includes stack
and temporary value area excluding that for key and message. The right-most column
shows the number of consecutive rounds that are unrolled in an internal loop, where 1/x

3 σD is the number of blockcipher calls with distinct inputs by decryption queries made by an adversary.
Hence, it does not include blockcipher calls with repeated inputs and blockcipher calls whose queries are
sent from honest parties. σA is the number of blockcipher calls with distinct AD blocks by encryption
queries made by an adversary. Hence, it does not include blockcipher calls with repeated AD blocks.

4 Usually, AD is short and is not frequently changed i.e., σA is small. For example, as mentioned
in [Rog02], AD is used as a packet header that is not frequently changed. Regarding the parameter σD,
when the number of forgery attempts qD is limited, i.e., a key is changed when qD reaches some threshold,
σD can be small.

Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara and Daisuke Suzuki 209

Table 2: Our Implementation of blockciphers on RL78.

Version ROM bytes RAM bytes Cycles/block Unrolled rounds
AES Tiny 399 42 8704 1/16

Fast 926 20 3554 1
SIMON Tiny 111 20 21050 1/8

Fast 629 18 10836 2
SPECK Tiny 71 39 11432 1/8

Fast 309 18 4793 2

Table 3: Our Implementation of SAEB with the default parameters on RL78.

Underlying ROM RAM Operation Cycles/byte for x-byte data
blockcipher bytes bytes 16 32 64 128 256 ∞
AES_tiny 599 68 Hash 1118 838 687 617 616 583

Enc/Dec 1656 1380 1232 1162 1127 1093
AES_fast 1126 46 Hash 475 356 285 255 254 240

Enc/Dec 691 576 508 479 464 449
SIMON_tiny 311 46 Hash 2662 1996 1652 1486 1484 1406

Enc/Dec 3971 3310 2968 2802 2719 2636
SIMON_fast 829 44 Hash 1385 1038 854 767 766 725

Enc/Dec 2056 1714 1532 1446 1403 1360
SPECK_tiny 271 65 Hash 1460 1094 901 809 808 765

Enc/Dec 2168 1807 1616 1525 1479 1434
SPECK_fast 509 44 Hash 630 472 382 343 341 322

Enc/Dec 923 770 682 643 624 604

means that a single round consists of an x-time loop. All programs have been implemented
within 1KB ROM and 50-byte RAM, and in particular our tiny versions attain extremely
small memory size; SIMON and SPECK requires only 111 and 71 ROM bytes, respectively.

Next we designed full SAEB software containing Hash, Core.Enc and Core.Dec for all
the six blockcipher versions. As a result, our implementation requires only 200 ROM bytes
for the mode of operation, independent of parameters, which means SAEB can be fully
implemented with 200-byte overhead in addition to the size of its underlying blockcipher.
As far as we know, this is the smallest AEAD mode in a low-end software environment.

Table 3 shows our implementation results for SAEB with the recommended param-
eters: r1 = n − 8 and r = n/2. The speed was measured for the Hash part and the
Core.Enc/Core.Dec part separately, where the former processes AD and the latter handles
plaintext/ciphertext and tag. Our codes run exactly in the same number of cycles for
encryption and decryption for any input data, and hence have resistance against timing
attacks.

It is seen that SAEB with SPECK_tiny has an extremely small footprint, within 300
ROM bytes. Even SAEB with AES_tiny can be implemented within 600 ROM bytes.
RAM requirement is also very small within 70 bytes for all algorithms, which is due to
the design of our mode of operation and our on-the-fly implementation of underlying
blockciphers. SAEB with AES_fast is the fastest with 691 cycles/byte for encryption and
decryption. Meanwhile SAEB with SPECK_fast is 35% slower but 55% smaller than SAEB
with AES_fast.

In Table 4, our implementations of SAEB with recommended parameters: r1 = n− 8
and r = n/2 are compared with implementations of CLOC [IMGM14] and OCB [KR11]
evaluated in the previous work [IMGM14]. The previous work uses another low-end 8-bit
microcontroller ATmega128 as an evaluation platform. Note that in general a program
on RISC ATmega128 processor tends to be larger and faster than that on CISC RL78
processor. Since [IMGM14] measured the speed with 16-byte fixed length AD, SAEB is
implemented under the same condition. Also, the numbers of cycles for initialization
and message processing measured separately in [IMGM14] are summed in Table 4 for

210 SAEB: A Lightweight Blockcipher-Based AEAD Mode of Operation

Table 4: Performance comparison with existing AEAD schemes.

Mode of Underlying ROM RAM Cycles/byte for x-byte data
operation blockcipher bytes bytes 16 32 64 128 256 ∞

[IMGM14] CLOC AES 2980 362 875 612 480 414 381 -
[IMGM14] OCB-E AES 5010 971 1527 891 573 414 334 -
[IMGM14] OCB-D AES 5010 971 1562 928 611 453 374 -
This work SAEB AES_fast 1126 46 1166 813 626 538 493 449

comparison.
Table 4 clearly shows that SAEB outperforms CLOC and OCB in ROM and RAM sizes.

Processing speed of SAEB outperforms that of the rate-1 AEAD scheme OCB up to 32-byte
data. Compared to CLOC, SAEB requires more cycles to process the same amount of data
although the number of blockcipher calls for message is the same. The difference is caused
by the different number of blockcipher calls for AD: SAEB needs two blockcipher calls
to process 16-byte AD because of its block size for AD (15 bytes). That is a boundary
condition, and the difference is expected to be smaller with other conditions e.g., 15-byte
or 17-byte AD or to be removed for static AD. Note that AES_fast is implemented with
on-the-fly key scheduling. That means our implementation has a room for significant
speed improvement by separating the key scheduling part in return for additional RAM
requirement, specifically 160/528/240 additional bytes for AES/SIMON/SPECK, respectively,
and small additional ROM bytes.

Finally, SAEB is compared with the state-of-the-art lightweight blockcipher-based AEAD
COFB [CIMN17]. Although no software implementation is given for COFB [CIMN17], SAEB
is expected to achieve smaller RAM size thanks to the small state size as shown in Table 1.

7 Hardware Implementation
In this section, lightweight hardware architecture of SAEB is shown. We consider a concrete
implementation using AES as a blockcipher, however, its extensions to other blockciphers
(e.g., SIMON and SPECK) should be easy.

Figure 4 shows the proposed architecture. There is a 8-bit bus for feeding AD A, nonce
N , and message M . A, N , and M are distinguished by a 2-bit control signal. In addition,
there is another 1-bit control signal indicating the final block of A and M . The final
blocks are padded automatically in hardware side. In addition, there is another 8-bit bus
dedicated for key K.

In Figure 4, a circuit block indicated by “blockcipher encryption engine” is a light-weight
AES implementation based on [MPL+11] except that decryption capability is removed. The
AES circuit has 8-bit input and output buses. By feeding input bytes and getting output
bytes synchronously, the maximum throughput of “block cipher encryption engine” can be
achieved. There are 56-bit and 64-bit shift registers used to temporarily store incoming
byte stream for A, N , and M , and feed them to the AES circuit synchronously. Note that
the shift registers are not strictly a part of SAEB, and thus can be removed from the design
in order to minimize the circuit area within the IP. However, having the shift registers
in the IP thereby simplifying the IP interface is a practical design decision as far as the
authors believe.

Performance of the circuit architecture in Figure 4 is evaluated in ASIC and FPGA.
Table 5 and Table 6 summarizes the performances in ASIC and FPGA, respectively. The
performance is shown in three ways namely SAEB, AES, and diff. SAEB and AES correspond
to the area of the whole and AES-only circuits, respectively. diff is a difference between
SAEB and AES and represents an extra circuit area needed for the mode of operation.

Firstly, the performance in ASIC shown in Table 5 is discussed. NanGate 45-nm CMOS
standard cell library is used for the evaluation [Nan]. SAEB is implemented with 3,502

Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara and Daisuke Suzuki 211

0x01
0x02
0x03
0x80

Data

Reg.

C, tag

K

block cipher encryption engine

8

Key

Reg.

round

function

key

schedule

8

8

8-bit shift

register (64 bit)

Seq
uen
cer

Control

A, N, M

8-bit shift

register (56 bit)

8

Figure 4: A lightweight hardware architecture for SAEB.

[GE]: 2,679 [GE] for AES and extra 823 [GE] for the mode. The result shows that the
overhead for the mode is small compared to the circuit area for AES. Note that even
smaller AES implementations are possible at the cost of speed. For example, the design
by Jean et al. [JMPS17] achieves 1,982 [GE] in the same cell library. The extra cost for
SAEB is small even compared with the state-of-the-art compact AES implementations. The
performance is compared with conventional implementations of CLOC, SILC, and AES-OTR
by Banik et al. [BBM16]. In the previous work, CLOC, SILC, AES-OTR are implemented
with 4, 310, 4, 220, and 6, 770 [GE], respectively. The circuit area of 3, 502 [GE] achieved
by SAEB is smaller than any of them. The circuit areas needed CLOC, SILC, AES-OTR
excluding a blockcipher implementation are 1, 530, 1, 470, and 4, 220 [GE], respectively.
Again, 823 [GE] achieved by SAEB (diff in Table 5) is the smallest5.

Secondly, the performance in FPGA shown in Table 6 is discussed. Xilinx Virtex-7
and Intel Cyclone V are used as target devices. The table also shows performances in
conventional works [CIMN17, GMU] for comparison. Chakraborti et al. evaluated hardware
implementation of COFB [CIMN17] and showed that a circuit architecture supporting
encryption only can be realized with 1, 456 [LUTs] and 722 [FFs] in Virtex-7 FPGA
(xc7vx330t). The circuit area of SAEB (348 [LUTs] and 242 FFs) is roughly 1/4 of the
COFB implementation. This is not a fair comparison because Chakraborti et al. uses
an AES implementation with 128-bit datapath. However, even a light-weight hardware
implementation of COFB, designed with the same strategy as that in Figure 4, should
be larger than that of SAEB. That is because (i) COFB requires extra 64-bit register for
managing tweaks ∆ in addition to a 128-bit state and (ii) a combinatorial circuit for
updating the tweak is also needed. Table 6 also shows some data from the ATHENa
database [GMU] in which hardware performances of the candidates for the CAESAR
competition are registered. Among numerous results in the database, the smallest three
implementations evaluated for Virtex-7, at the time of writing, are shown in the table.
SAEB is smaller than ACORN (566 [LUTs]) which is the smallest in the database. This is
a remarkable result considering that ACORN is a stream-cipher based dedicated design.
Chakraborti et al. compared the aforementioned COFB implementation with ones in the

5Banik et al. implemented two sets of implementations namely “Aggressive” and “Conservative”. In
this paper, “Conservative” is used for the evaluation because the “Aggressive” implementations expect
some input restrictions e.g., AD should be empty.

212 SAEB: A Lightweight Blockcipher-Based AEAD Mode of Operation

Table 5: Performance of SAEB in ASIC.
Standard Target Circuit Area Max. Freq. Latency

Cell Library [GE] [MHz] [Cycles]
[BBM16] STMicroelectronics CLOC 4,310 — —

90-nm CMOS SILC 4,220 — —
AES-OTR 6,770 — —

This NanGate SAEB 3,502 122.0 231
work 45-nm CMOS • AES 2,679 126.4 231

• diff 823 — —

Table 6: Performance of SAEB in FPGA.
Platform Target Look-up Table Flip-flop Max. Freq. Latency

[LUTs/ALMs] [FFs] [MHz] [Cycles]
[CIMN17] Xilinx Virtex-7 COFB 1,456 722 264.2 —

xc7vx330t
[GMU] Xilinx Virtex-7 ACORN 566 — 466.0 —

xc7vx485t JAMBU 1,051 — 491.0 —
ffg1761-3 ASCON 1,557 — 444.0 —

This Xilinx Virtex-7 SAEB 348 242 145.9 231
work xc7vx330t • AES 304 218 144.2 231

ffg1157-1 • diff 44 24 — —
This Intel Cyclone V SAEB 299 410 83.3 231
work 5CEBA2F17C8 • AES 264 283 87.8 231

• diff 35 127 — —

ATHENa database. They conclude that COFB can be smaller than other block-cipher based
candidates. The same is true for SAEB because SAEB can be smaller than COFB as discussed
above.

8 Conclusion

In this paper, a new lightweight blockcipher-based AEAD mode SAEB is proposed. The
five good properties for blockcipher-based lightweight AEAD is discussed firstly. With the
minimum state size and online properties, the size of working memory can be reduced.
The inverse-free and XOR-only properties contribute to small program/circuit footprint.
Efficient handling of static AD enables efficient computation based on precomputation.
SAEB is the first mode that satisfy all the properties. SAEB is proved to be secure up to the
birthday bound. Performance of SAEB is evaluated in software and hardware platforms.
As a result, SAEB outperforms conventional algorithms in various performance metrics for
lightweight cryptography.

References

[ADMA15] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security
of Keyed Sponge Constructions Using a Modular Proof Approach. In FSE
2015, volume 9054 of LNCS, pages 364–384. Springer, 2015.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
Block Cipher for Low Energy. In ASIACRYPT 2015, volume 9453 of LNCS,
pages 411–436. Springer, 2015.

Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara and Daisuke Suzuki 213

[BBM16] Subhadeep Banik, Andrey Bogdanov, and Kazuhiko Minematsu. Low-area
hardware implementations of CLOC, SILC and AES-OTR. In HOST 2016,
pages 71–74. IEEE Computer Society, 2016.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications
- Extended Abstract. In ASIACRYPT 2012, volume 7658 of LNCS, pages
208–225. Springer, 2012.

[BDPA08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the Indifferentiability of the Sponge Construction. In EUROCRYPT 2008,
volume 4965 of LNCS, pages 181–197. Springer, 2008.

[BDPA12a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the Sponge: Single-Pass Authenticated Encryption and Other Applications.
In SAC 2011, volume 7118 of LNCS, pages 320–337. Springer, 2012.

[BDPA12b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Permutation-based encryption, authentication and authenticated encryption.
In DIAC 2012, 2012.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In
CRYPTO 2016, volume 9815 of LNCS, pages 123–153. Springer, 2016.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In CHES 2007, volume 4727
of LNCS, pages 450–466. Springer, 2007.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A Small Present - Towards
Reaching the Limit of Lightweight Encryption. In CHES 2017, volume 10529
of LNCS, pages 321–345. Springer, 2017.

[BR06] Mihir Bellare and Phillip Rogaway. The Security of Triple Encryption and
a Framework for Code-Based Game-Playing Proofs. In EUROCRYPT 2006,
volume 4004 of LNCS, pages 409–426. Springer, 2006.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. IACR Cryptology ePrint Archive, 2013:404, 2013.

[CAE] CAESAR: Competition for Authenticated Encryption: Security, Applicability,
and Robustness. http://competitions.cr.yp.to/caesar.html.

[CDH+12] Dong H. Chang, Morris J. Dworkin, Seokhie Hong, John M. Kelsey, and
Mridul Nandi. A Keyed Sponge Construction with Pseudorandomness in the
Standard Model, 2012.

[CIMN17] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-Based Authenticated Encryption: How Small Can We Go? In
CHES 2017, volume 10529 of LNCS, pages 277–298. Springer, 2017.

http://competitions.cr.yp.to/caesar.html

214 SAEB: A Lightweight Blockcipher-Based AEAD Mode of Operation

[Dan] Quynh H. Dang. The Keyed-Hash Message Authentication Code (HMAC).
FIPS PUB 198-1 (2008).

[DKS12] Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in Cryptography:
The Even-Mansour Scheme Revisited. In EUROCRYPT 2012, volume 7237
of LNCS, pages 336–354. Springer, 2012.

[DMA17] Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-State Keyed Duplex
with Built-In Multi-user Support. In ASIACRYPT 2017, volume 10625 of
LNCS, pages 606–637. Springer, 2017.

[Dwoa] Morris Dworkin. Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. NIST Special Publication 800-38D
(2007).

[Dwob] Morris Dworkin. Recommendation for Block Cipher Modes of Operation:
Methods and Techniques. NIST Special Publication 800-38A (2001).

[EM91] Shimon Even and Yishay Mansour. A Construction of a Cioher From a Single
Pseudorandom Permutation. In ASIACRYPT ’91, volume 739 of LNCS, pages
210–224. Springer, 1991.

[EM97] Shimon Even and Yishay Mansour. A Construction of a Cipher from a Single
Pseudorandom Permutation. J. Cryptology, 10(3):151–162, 1997.

[GL15] Shay Gueron and Yehuda Lindell. GCM-SIV: Full Nonce Misuse-Resistant
Authenticated Encryption at Under One Cycle per Byte. In ACM CCS 2015,
pages 109–119. ACM, 2015.

[GMU] Authenticated Encryption FPGA Ranking. https://cryptography.gmu.
edu/athenadb/fpga_auth_cipher/rankings_view.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED Block Cipher. In CHES 2011, volume 6917 of LNCS, pages 326–341.
Springer, 2011.

[IMGM14] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, and Sumio Morioka. CLOC:
Authenticated Encryption for Short Input. In FSE 2014, volume 8540 of
LNCS, pages 149–167. Springer, 2014.

[JLM14] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2 c/2 Security
in Sponge-Based Authenticated Encryption Modes. In ASIACRYPT 2014,
volume 8873 of LNCS, pages 85–104. Springer, 2014.

[JMPS17] Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich. Bit-Sliding:
A Generic Technique for Bit-Serial Implementations of SPN-based Primitives -
Applications to AES, PRESENT and SKINNY. In CHES 2017, LNCS, pages
687–707. Springer, 2017.

[KR11] Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-
Encryption Modes. In FSE 2011, volume 6733 of LNCS, pages 306–327.
Springer, 2011.

[Min14] Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption from
Pseudorandom Functions. In EUROCRYPT 2014, volume 8441 of LNCS,
pages 275–292. Springer, 2014.

https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view

Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara and Daisuke Suzuki 215

[MMH+14] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart
Preneel, and Ingrid Verbauwhede. Chaskey: An Efficient MAC Algorithm for
32-bit Microcontrollers. In SAC 2014, volume 8781 of LNCS, pages 306–323.
Springer, 2014.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the Limits: A Very Compact and a Threshold Implementation of
AES. In EUROCRYPT 2011, volume 6632 of LNCS, pages 69–88. Springer,
2011.

[MV04] David A. McGrew and John Viega. The Security and Performance of the
Galois/Counter Mode (GCM) of Operation. In INDOCRYPT 2004, volume
3348 of LNCS, pages 343–355. Springer, 2004.

[Nan] NanGate Open Cell Library. http://www.nangate.com/.

[NRS14] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Reconsid-
ering Generic Composition. In EUROCRYPT 2014, volume 8441 of LNCS,
pages 257–274. Springer, 2014.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a block-
cipher mode of operation for efficient authenticated encryption. In CCS 2001,
pages 196–205. ACM, 2001.

[Ren] Renesas Electronics Corporation. RL78 Family. https://www.renesas.com/
en-us/products/microcontrollers-microprocessors/rl78.html.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In CCS
2002, pages 98–107. ACM, 2002.

[Rog04] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and
Refinements to Modes OCB and PMAC. In ASIACRYPT 2004, volume 3329
of LNCS, pages 16–31. Springer, 2004.

[RS06] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of
the Key-Wrap Problem. In EUROCRYPT 2006, volume 4004 of LNCS, pages
373–390. Springer, 2006.

[SIH+11] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru
Akishita, and Taizo Shirai. Piccolo: An Ultra-Lightweight Blockcipher. In
CHES 2011, volume 6917 of LNCS, pages 342–357. Springer, 2011.

[SMMK13] Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
TWINE: A Lightweight Block Cipher for Multiple Platforms. In SAC 2012,
volume 7707 of LNCS, pages 339–354. Springer, 2013.

[SSA+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata.
The 128-Bit Blockcipher CLEFIA (Extended Abstract). In FSE 2007, volume
4593 of LNCS, pages 181–195. Springer, 2007.

[WH] Hongjun Wu and Tao Huang. The JAMBU Lightweight Authentication
Encryption Mode (v2.1). Submitted to the CAESAR competition (September
2016).

http://www.nangate.com/
https://www.renesas.com/en-us/products/microcontrollers-microprocessors/rl78.html
https://www.renesas.com/en-us/products/microcontrollers-microprocessors/rl78.html

216 SAEB: A Lightweight Blockcipher-Based AEAD Mode of Operation

A The Detail Analysis of the Case (B) in forge
Fix α ∈ [qE] and β ∈ [qD] such that the β-th decryption query is made after the α-th
encryption query, and assume that forge = false. Then we show that if the case (B) occurs
due to the α-th encryption and β-th decryption queries, i.e.,

∃α, β, i s.t. smα[i] = scβ [mβ + 1],

then

∃j ∈ {0, . . . ,min{i− 1,mβ}} s.t. smα[i− (j + 1)] 6= scβ [mβ + 1− (j + 1)] and
smα[i− j] = scβ [mβ + 1− j].

Let (AE,α, CE,α) (resp., (AE,β , CD,β)) be AD and the ciphertext defined at the α-th encryp-
tion query (resp., the β-th decryption query). Let sm[a, b] := sm[a]‖sm[a+ 1]‖ · · · ‖sm[b]
with a ≤ b, and sc[a, b] := sc[a]‖sc[a+1]‖ · · · ‖sc[b]. Then the following cases are considered.

• If i 6= mα + 1, then by the constant xor ⊕1c/⊕2c at the last block in Core∗.Dec,

smα[i] = scβ [mβ + 1]
⇒ R(smα[i− 1])⊕R(scβ [mβ]) = (Mα

i−1‖constα[i])⊕ (Mα
mβ
‖constβ [mβ + 1]) 6= 0,

where constα[i] = 0c, and constβ [mβ + 1] = 1c or 2c. Thus, smα[i− 1] 6= scβ [mβ]
(and smα[i] = scβ [mβ + 1]).

• If i = mα + 1 and mα = mβ , then

– if CE,α 6= CD,β and ∃a s.t. Mα
a 6= Mβ

a , then

∃j ∈ {0, . . . ,mα} s.t. smα[mα + 1− (j + 1)] 6= scβ [mβ + 1− (j + 1)] and
smα[mα + 1− j] = scβ [mβ + 1− j].

– if CE,α 6= CD,β and ∀a ∈ [mα] : Mα
a = Mβ

a , then constα[m+1] 6= constβ [m+1],
and thus

smα[mα + 1] = scβ [mα + 1] ∧ smα[mα] 6= scβ [mα].

– if CE,α = CD,β , then (AE,α, NE,α) 6= (AE,β , ND,β) is satisfied.
If AE,α 6= AD,β , then by collsa = false and the constant xor ⊕1c/⊕2c, smα[0] 6=
scβ [0] is satisfied.
If AE,α = AD,β , i.e., NE,α 6= ND,β , then smα[1] 6= scβ [1] is satisfied.
Hence,

∃j ∈ {0, . . . ,mα} s.t. smα[mα + 1− (j + 1)] 6= scβ [mβ + 1− (j + 1)] and
smα[mα + 1− j] = scβ [mβ + 1− j].

• If i = mα + 1, mα < mβ and smα[1,mα] 6= scβ [mβ −mα + 1,mβ], then

∃j ∈ {1, . . . ,mα} s.t. smα[mα + 1− (j + 1)] 6= scβ [mβ + 1− (j + 1)] and
smα[mα + 1− j] = scβ [mβ + 1− j].

• If iα = mα + 1, mα < mβ and smα[1,mα] = scβ [mβ −mα + 1,mβ], then

smα[1] = scβ [mβ −mα + 1]
⇒ R(smα[0])⊕R(scβ [mβ −mα]) = (NE,α‖3c2)⊕ (Mα

j−1‖0c) 6= 0.

Thus, smα[0] 6= scβ [mβ −mα] (and smα[1] = scβ [mβ −mα + 1]).

Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara and Daisuke Suzuki 217

• If iα = mα + 1 and mα > mβ , then by the same analyses as the above two cases,

smα[mα −mβ] 6= scβ [0] ∧ smα[mα −mβ + 1] = scβ [0].

Hence, if the case (B) occurs, then

∃j ∈ {0, . . . ,min{i− 1,mβ}} s.t. smα[i− (j + 1)] 6= scβ [mβ + 1− (j + 1)] and
smα[i− j] = scβ [mβ + 1− j].

	Introduction
	Design Goal
	Our Contribution
	Further Related Work

	Preliminaries
	Notations
	Definitions

	Specification of SAEB
	Security of SAEB
	Security Bound
	Proof of Theorem 1
	Remark

	Parameters
	Recommended Parameters
	Parameters with Better Efficiency

	Software Implementation
	Hardware Implementation
	Conclusion
	The Detail Analysis of the Case (B) in forge

