

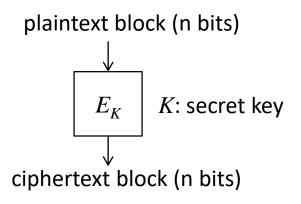
SAEB: A Lightweight Blockcipher-Based AEAD Mode of Operation

Authenticated Encryption with Associated Data

Yusuke Naito¹, Mitsuru Matsui¹,

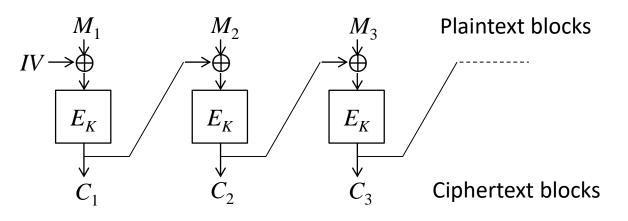
Takeshi Sugawara², Daisuke Suzuki¹

1. Mitsubishi Electric Corporation, Japan

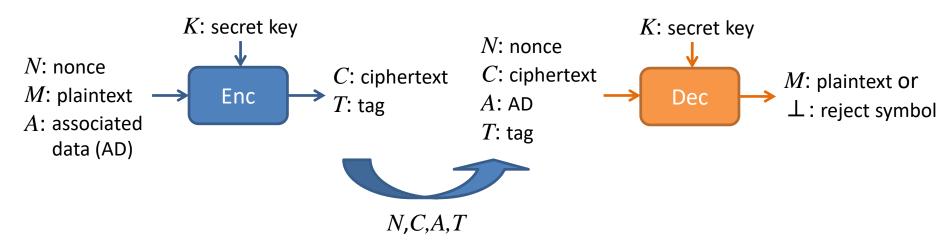

2. The University of Electro-Communications, Japan

CHES 2018, September 11

- Resource-constrained devices
 - such as RFID, sensor nodes, IoT devices, ...,
 - have access to insecure networks,
 - require lightweight cryptographic algorithms for secure communication & authentication.
- Lightweight blockciphers (fixed input length primitives) have actively designed, e.g.,
 - PRESENT (ISO/IEC 29192-2)
 - LED, Piccolo, TWINE, PRINCE, Midori, SKINNY, GIFT, ...
- We need not only a lightweight blockcipher
 - but also a lightweight mode of operation that offers a variable input length cryptographic primitive.



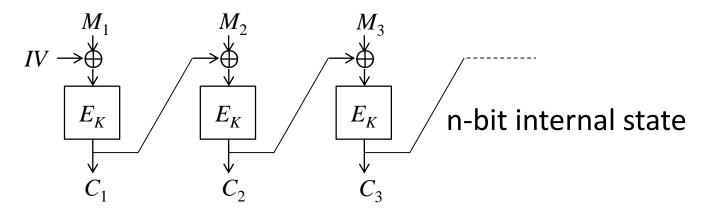
- Family of permutations indexed by a key.
- A blockcipher key is randomly drawn.
- Security: Pseudo-Random Permutation.


- A procedure to realize the desired algorithm, where a blockcipher is used as a component,
 - e.g., CBC encryption mode:

- Types of Mode of Operation
 - Authenticated Encryption with Associated Data (AEAD)
 - Encryption of Variable-Length Plaintexts
 - Message Authentication Code
 - Pseudorandom Function

- Blockcipher-based AEAD mode:
 - a procedure to ensures jointly privacy and authenticity.
- Nonce-based AEAD consists of encryption and decryption algorithms.

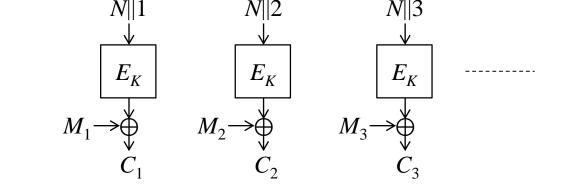
- Nonce *N* is changed for every encryption.
- Plaintext *M* is authenticated and encrypted.
- AD A is authenticated but not encrypted.



Lightweight AEAD Mode of Operation

- "Lightweight" usually refers to a primitive that allows a compact implementation in a target platform.
 - Small program/RAM footprint in SW.
 - Compact circuit/resister area in HW.
- Blockcipher-based AEAD:
 - internal state, plain/ciphertext block -> RAM/resister.
 - blockcipher, mode of operation -> program/circuit.
- In order to design a lightweight blockcipher-based AEAD mode, we consider the following requirements.
 - 1. Minimum state size.
 - 2. Online.
 - 3. Inverse-free.
 - 4. XOR Only.

- A memory to keep an internal state is considered.
- E.g., CBC encryption mode requires an n-bit memory.


- A memory to keep an internal state impacts on RAM/resister sizes.
- The internal state size should be small as much as possible.
- Using an n-bit blockcipher, any AEAD mode requires at least n-bit memory.
- The minimum state size is n bits.

I Two types of mode regarding memory to keep plaintext blocks.

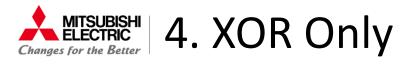
• Online: each plaintext block is processed only once

2. Online

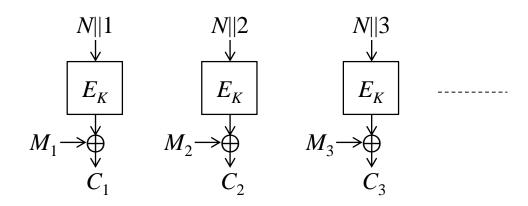
e.g., CTR mode.

- Offline: all plaintext blocks are processed twice or more,
 - e.g., Deterministic AEAD: SIV, GCM-SIV.
 - require a memory to keep all plaintext blocks.
- A memory to keep plaintext bocks impacts on RAM/resister sizes.
- A lightweight AEAD mode should be online.

М


MAC

Enc



Two types of mode regarding blockcipher implementation:

- both forward E_K and inverse E_K^{-1} are used, e.g., OCB1,2,3,
- only forward E_K is used, e.g., OTR, COFB,...
- The latter (inverse-free) modes do not require the inverse E_K^{-1} , more compact than the former modes for program/circuit.
- An implementation size of a blockcipher impacts on program/circuit sizes.
- A lightweight mode should be inverse-free.

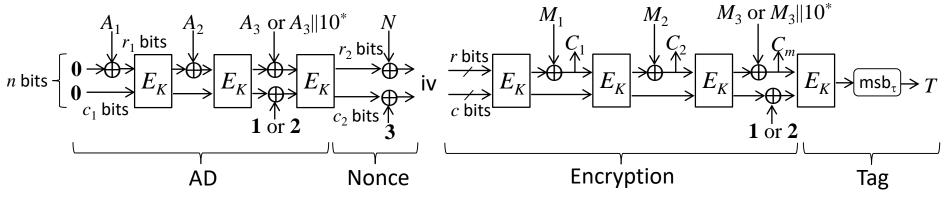
- A mode consists of only XOR operations except for a blockcipher.
 An XOR operation is essential for encrypting a plaintext block,
 - e.g., CTR mode.

- An implementation size from a mode impacts on program/circuit sizes.
- A lightweight mode should be XOR only.

Previous AEAD modes do not satisfy some of the four requirements.

	Minimum State Size	Inverse Free	Online	XOR Only
GCM	— (4n bits)	1	1	—
ОСВ	— (3n bits)	_	1	—
OTR	— (4n bits)	\checkmark	1	\checkmark
CLOC	— (2n bits)	\checkmark	1	\checkmark
JAMBU	— (1.5n bits)	1	1	—
COFB	— (1.5n bits)	\checkmark	1	1

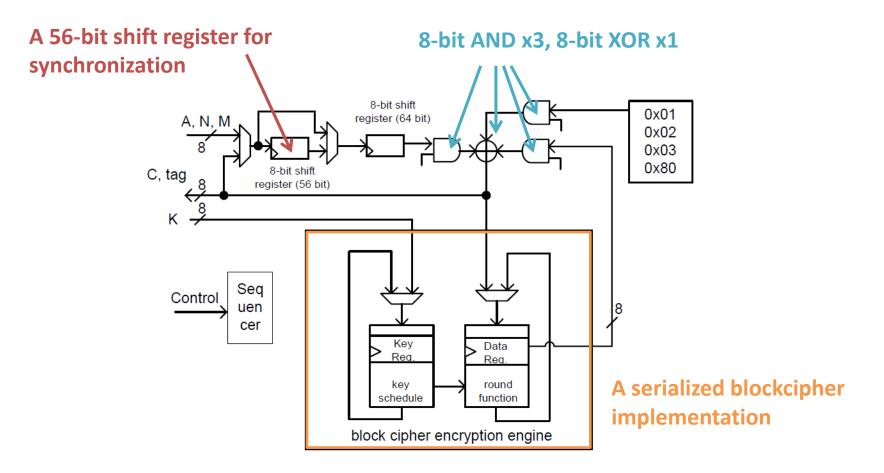
Open problem: design a blockcipher-based AEAD mode with the four requirements.



Efficient Handling of Static AD

- In addition to the four requirements for lightweight AEAD modes, efficient handling of static AD is an important requirement.
- Static AD:
 - the same AD is used for every encryption procedure, e.g., packet header.
- Efficient handling of static AD:
 - if AD is not changed, so is the result of handling AD, i.e., the procedure can be skipped.
- Important AEAD modes were designed so that this requirement is satisfied,
 - e.g., GCM, OCB, OTR, ...

- Design a blockcipher-based AEAD mode, SAEB
 - based on the sponge-style design methodology.


Security: security up to O(2^{n/2}) query complexity when c=n/2 i.e., birthday-bound security.

■ Five Requirements:

	Minimum State Size		XOR Only	Inverse Free	Efficient Handling Static AD
SAEB	🗸 (n bits)	1	1	1	✓

■ The extra cost from the SAEB mode is very small.

Circuit area in hardware implementations

ASIC impl. on NanGate 45-nm CMOS

	Area [GE]
AES	2679
mode	823
Total	3502

FPGA impl. on Xilinx Virtex-7

	#LUTs	#FFs
AES	304	218
mode	44	24
Total	348	242

Software costs

Renesas 16-bit microcontroller RL78

	ROM	RAM
AES	926	20
mode	200	26
Total	1126	46

Hardware Performance Comparisons

Table 5: Performance of SAEB in ASIC.

	Standard	Target	Circuit Area	Max. Freq.	Latency
	Cell Library		[GE]	[MHz]	[Cycles]
[BBM16]	STMicroelectronics	CLOC	4,310		
	90-nm CMOS	SILC	4,220		
		AES-OTR	$6,\!770$		
This	NanGate	SAEB	3,502	122.0	231
work	45-nm CMOS	• AES	$2,\!679$	126.4	231
		• diff	823		

Table 6: Performance of SAEB in FPGA.

	Platform	Target	Look-up Table	Flip-flop	Max. Freq.	Latency
			[LUTs/ALMs]	[FFs]	[MHz]	[Cycles]
[CIMN17]	Xilinx Virtex-7	COFB	$1,\!456$	722	264.2	
	xc7vx330t					
[GMU]	Xilinx Virtex-7	ACORN	566		466.0	
	xc7vx485t	JAMBU	$1,\!051$		491.0	
	ffg1761-3	ASCON	1,557		444.0	
This	Xilinx Virtex-7	SAEB	348	242	145.9	231
work	xc7vx330t	• AES	304	218	144.2	231
	ffg1157-1	• diff	44	24		

Define the five requirements for lightweight AEAD modes

- Minimum State Size, XOR Only, Inverse-free, Online, Efficient handling of static AD.
- Previous blockcipher-based AEAD modes do not satisfy some of the five requirements.
- Present SAEB
 - lightweight blockcipher-based AEAD mode,
 - achieves birthday bound security when c=n/2,
 - satisfies the five requirements,
 - offers compact HW/SW implementations.

Thank you for your attention!

Software Performance Comparison

Table 4: Performance comparison with existing AEAD schemes.

	Mode of	Underlying	ROM	RAM	(Cycles/	byte fo	r x-byt	te data	,
	operation	blockcipher	bytes	bytes	16	32	64	128	256	∞
[IMGM14]	CLOC	AES	2980	362	875	612	480	414	381	-
[IMGM14]	OCB-E	AES	5010	971	1527	891	573	414	334	-
[IMGM14]	OCB-D	AES	5010	971	1562	928	611	453	374	-
This work	SAEB	AES_fast	1126	46	1166	813	626	538	493	449
				Mode: 2 AES: 9	200 byte 926 byte					

- CLOC, OCB are implemented on ATmega128.
- SAEB is implemented on RL78.

	ROM	RAM
AES	926	20
mode	200	26
Total	1126	46

nAE-Security: Ind. between SAEB and an ideal AE (\$,⊥)
 For any adversary A and free parameter ρ,

$$\mathsf{Adv}_{\mathsf{SAEB}}^{\mathsf{nAE}}(\mathsf{A}) \leq \frac{2\sigma^2}{2^n} + \frac{(\rho-1)(\sigma_A + \sigma_D)}{2^c} + 2^r \left(\frac{e\sigma_{\varepsilon}}{\rho 2^r}\right)^{\rho} + \frac{q_D}{2^\tau}$$

where σ is # of blockcipher calls by all queries, $\sigma_{\varepsilon}, \sigma_{D}$ are # of blockcipher calls by all enc., dec. queries, σ_{A} is # of blockcipher calls hangling AD by all enc. queries.

• Putting c=r=n/2, ρ =n/2, τ =n/2, the bound becomes

$$\mathsf{Adv}_{\mathsf{SAEB}}^{\mathsf{nAE}}(\mathsf{A}) \leq \frac{2\sigma^2}{2^n} + \frac{n(\sigma_A + \sigma_D)}{2^{\frac{n}{2} + 1}} + \left(\frac{4e}{n} \cdot \frac{\sigma_{\varepsilon}}{2^{n/2}}\right)^{n/2}$$

If $\sigma_A + \sigma_D \ll 2^{n/2}$, SAEB is secure AEAD up to O(2^{n/2}) query complexity.

Comparison for the Five Requirements

	Minimum State Size	Inverse Free	XOR Only	Online	Efficinent Handling Static AD	Security
GCM	— (4n bits)	\checkmark	—	1	\checkmark	Birthday Security
OCB	— (3n bits)	—	—	1	\checkmark	Birthday Security
OTR	— (4n bits)	1	1	1	✓	Birthday Security
CLOC	— (2n bits)	\checkmark	1	1	\checkmark	Birthday Security
JAMBU	— (1.5n bits)	\checkmark	—	1	_	—
COFB	— (1.5n bits)	\checkmark	1	1	_	Birthday Security
SAEB	🗸 (n bits)	√	1	1	✓	Birthday Security