
Smashing the
Implementation Records of

AES S-box

Arash Reyhani-Masoleh, Mostafa Taha, and Doaa Ashmawy

Western University
London, Ontario, Canada

CHES-2018

1

• Introduction.

• Proposed AES S-box Architecture.

• New Logic-Minimization Algorithms.

• New GF((24)2) Inversion.
• New Exponentiation Stage.

• New Representation of Subfield Inversion.

• New Output Multipliers.

• Comparisons and Concluding Remarks.

Outline

2

Introduction

3

1998 2001 2005 2010 2015 2016 2018

First Introduction
of Rijndael

Rijmen & Daemen

Standardizing
Rijndael as the

AES

First Imp. using
Tower Fields

Satoh et al.

Target small area

Introduction

3

1998 2001 2005 2010 2015 2016 2018

First Introduction
of Rijndael

Rijmen & Daemen

Standardizing
Rijndael as the

AES

Most compact
S-box

Canright

Reduce the number of
gates in Canright to 115

Boyar and Peralta

Then
to 113

CMT

First Imp. using
Tower Fields

Satoh et al.

Target small delay
/ high efficiency

Target small area

Introduction

3

1998 2001 2005 2010 2015 2016 2018

First Introduction
of Rijndael

Rijmen & Daemen

Standardizing
Rijndael as the

AES

Most compact
S-box

Canright

Reduce the number of
gates in Canright to 115

Boyar and Peralta

Most efficient
S-box

Ueno et al.

Reduce the depth
of S-box to 16 gates
Boyar, Find and Peralta

Then
to 113

CMT

First Imp. using
Tower Fields

Satoh et al.

Target small delay
/ high efficiency

Target small area

Introduction

3

1998 2001 2005 2010 2015 2016 2018

First Introduction
of Rijndael

Rijmen & Daemen

Standardizing
Rijndael as the

AES

Most compact
S-box

Canright

Reduce the number of
gates in Canright to 115

Boyar and Peralta

Most efficient
S-box

Ueno et al.

Reduce the depth
of S-box to 16 gates
Boyar, Find and Peralta

Then
to 113

CMT

1. The most compact S-box to date. 2. The most efficient S-box to date.

In this paper, we propose:

First Imp. using
Tower Fields

Satoh et al.

Implementation Pitfalls
1. Use AND gates,

when NAND gates have smaller area and delay in all technology libraries.

4

Implementation Pitfalls
1. Use AND gates,

when NAND gates have smaller area and delay in all technology libraries.

2. Use only simple gates,
when compound gates (AND-OR-Invert, OR-AND-Invert) may be more efficient.

4

Implementation Pitfalls
1. Use AND gates,

when NAND gates have smaller area and delay in all technology libraries.

2. Use only simple gates,
when compound gates (AND-OR-Invert, OR-AND-Invert) may be more efficient.

• We improved previous designs using AND gates to the ones using NAND/NOR gates:

Targeting STM 65-nm CMOS standard library

4

S-box
Area (GEs) Delay (ns)

Original Improved Original Improved

Canright [Can05b] 200 1.253

113-gates [Boy16] 202 194 1.523 1.346

Depth-16 (2012) [BP12] 230.5 222 0.960 0.906

Depth-16 (2017) [BFP17] 224.5 216 0.957 0.912

Ueno et al. [UHS+15] 256.5 238 0.831 0.772

Implementation Pitfalls
1. Use AND gates,

when NAND gates have smaller area and delay in all technology libraries.

2. Use only simple gates,
when compound gates (AND-OR-Invert, OR-AND-Invert) may be more efficient.

• We improved previous designs using AND gates to the ones using NAND/NOR gates:

Targeting STM 65-nm CMOS standard library

4

S-box
Area (GEs) Delay (ns)

Original Improved Original Improved

Canright [Can05b] 200 1.253

113-gates [Boy16] 202 194 1.523 1.346

Depth-16 (2012) [BP12] 230.5 222 0.960 0.906

Depth-16 (2017) [BFP17] 224.5 216 0.957 0.912

Ueno et al. [UHS+15] 256.5 238 0.831 0.772

The smallest
original

The fastest
original

Implementation Pitfalls
1. Use AND gates,

when NAND gates have smaller area and delay in all technology libraries.

2. Use only simple gates,
when compound gates (AND-OR-Invert, OR-AND-Invert) may be more efficient.

• We improved previous designs using AND gates to the ones using NAND/NOR gates:

Targeting STM 65-nm CMOS standard library

4

S-box
Area (GEs) Delay (ns)

Original Improved Original Improved

Canright [Can05b] 200 1.253

113-gates [Boy16] 202 194 1.523 1.346

Depth-16 (2012) [BP12] 230.5 222 0.960 0.906

Depth-16 (2017) [BFP17] 224.5 216 0.957 0.912

Ueno et al. [UHS+15] 256.5 238 0.831 0.772

The smallest
original

The smallest
improved

The fastest
original

The fastest
improved

Implementation Pitfalls
1. Use AND gates,

when NAND gates have smaller area and delay in all technology libraries.

2. Use only simple gates,
when compound gates (AND-OR-Invert, OR-AND-Invert) may be more efficient.

• We improved previous designs using AND gates to the ones using NAND/NOR gates:

Targeting STM 65-nm CMOS standard library

At the end, we compare only against the Improved Versions.
Formulations of the improved designs are included in the paper.

4

S-box
Area (GEs) Delay (ns)

Original Improved Original Improved

Canright [Can05b] 200 1.253

113-gates [Boy16] 202 194 1.523 1.346

Depth-16 (2012) [BP12] 230.5 222 0.960 0.906

Depth-16 (2017) [BFP17] 224.5 216 0.957 0.912

Ueno et al. [UHS+15] 256.5 238 0.831 0.772

The smallest
original

The smallest
improved

The fastest
original

The fastest
improved

• Original S-box

AES S-box

5

Inversion
GF(28)g x M + h s

• Original S-box

• Typical implementation using Composite Fields in Normal Basis

AES S-box

5

Inversion
GF(28)g x M + h s

x M + h sXX-1g

()2

Composite field Inversion

• 12 terms are shared between the Exponentiation and Multipliers

Proposed AES S-box Architecture

6

sToutTing 12

5

10

5

Composite field Inversion

6

6

• 12 terms are shared between the Exponentiation and Multipliers

New Logic-
Minimization
Algorithms

New Logic-
Minimization
Algorithms

New
Formulations

New, Improved
Representations

New
Formulations

New
Multipliers

Proposed AES S-box Architecture

6

sToutTing 12

5

10

5

Composite field Inversion

6

6

• 12 terms are shared between the Exponentiation and Multipliers

New Logic-
Minimization
Algorithms

New Logic-
Minimization
Algorithms

New
Formulations

New, Improved
Representations

New
Formulations

New
Multipliers

Proposed AES S-box Architecture

6

sToutTing 12

5

10

5

Everything optimized by-hand and by CAD tools at various abstraction levels
(promote using NAND/NOR and compound gates)

Composite field Inversion

6

6

• Introduction, Motivation and Previous Work.

• Proposed AES S-box Architecture.

• New Logic-Minimization Algorithms.

• New GF((24)2) Inversion.
• New Exponentiation Stage.

• New Representation of Subfield Inversion.

• New Output Multipliers.

• Comparisons and Concluding Remarks.

Outline

7

In
p

u
t

R
ep

. i
n

 G
F(

(2
4
)2

)
1

2
 s

h
ar

ed
 t

er
m

s

• Implement isomorphic transformation
matrices using smallest number of gates.

• NP-hard problem [BMP08].

Logic-Minimization Algorithms

Tin

Ting 12

8

• Implement isomorphic transformation
matrices using smallest number of gates.

• NP-hard problem [BMP08].

• Previous work
• Cancellation-free search:

Gates are never used to cancel-out common
terms, Canright [Can05b] and Paar [Paa94].

Logic-Minimization Algorithms (cont.)

9

First 8 rows of Tin

• Implement isomorphic transformation
matrices using smallest number of gates.

• NP-hard problem [BMP08].

• Previous work
• Cancellation-free search:

Gates are never used to cancel-out common
terms, Canright [Can05b] and Paar [Paa94].

• Heuristics (with cancellation):
Normal-BP (Boyar and Peralta [BP10])

Logic-Minimization Algorithms (cont.)

9

First 8 rows of Tin

• Implement isomorphic transformation
matrices using smallest number of gates.

• NP-hard problem [BMP08].

• Previous work
• Cancellation-free search:

Gates are never used to cancel-out common
terms, Canright [Can05b] and Paar [Paa94].

• Heuristics (with cancellation):
Normal-BP (Boyar and Peralta [BP10])

1. Test adding one gate
2. Compute Distance to each target

(assuming no sharing)
3. Select a gate leading to the (min average Dist)

Resolve ties using different methods.

Logic-Minimization Algorithms (cont.)

1

9

First 8 rows of Tin

• Implement isomorphic transformation
matrices using smallest number of gates.

• NP-hard problem [BMP08].

• Previous work
• Cancellation-free search:

Gates are never used to cancel-out common
terms, Canright [Can05b] and Paar [Paa94].

• Heuristics (with cancellation):
Normal-BP (Boyar and Peralta [BP10])

1. Test adding one gate
2. Compute Distance to each target

(assuming no sharing)
3. Select a gate leading to the (min average Dist)

Resolve ties using different methods.

Logic-Minimization Algorithms (cont.)

1

Compute
Dist2

9

First 8 rows of Tin

• Implement isomorphic transformation
matrices using smallest number of gates.

• NP-hard problem [BMP08].

• Previous work
• Cancellation-free search:

Gates are never used to cancel-out common
terms, Canright [Can05b] and Paar [Paa94].

• Heuristics (with cancellation):
Normal-BP (Boyar and Peralta [BP10])

1. Test adding one gate
2. Compute Distance to each target

(assuming no sharing)
3. Select a gate leading to the (min average Dist)

Resolve ties using different methods.

Logic-Minimization Algorithms (cont.)

1

Compute
Dist2

9

3

First 8 rows of Tin

• Implement isomorphic transformation
matrices using smallest number of gates.

• NP-hard problem [BMP08].

• Previous work
• Cancellation-free search:

Gates are never used to cancel-out common
terms, Canright [Can05b] and Paar [Paa94].

• Heuristics (with cancellation):
Normal-BP (Boyar and Peralta [BP10])

1. Test adding one gate
2. Compute Distance to each target

(assuming no sharing)
3. Select a gate leading to the (min average Dist)

Resolve ties using different methods.

Logic-Minimization Algorithms (cont.)

1

Compute
Dist2

9

3

First 8 rows of Tin

Add the
selected
gate and

redo

• Proposed Logic-Minimization Algorithms
• Improved-BP:

• Test all the ties.

• Monitor progress of the delay.

• Shortest-Dist-First:
• Select a gate leading to many small (short) Distances

(prioritize small Distances, not the average).

• Test all the ties and monitor the delay.

• Focused-Search:
• Select a gate leading to any small (short) Distance

(ignore the count and search through more cases)
(close to exhaustive search).

• Test all the ties and monitor the delay.

10

First 8 rows of Tin

Logic-Minimization Algorithms (cont.)

1

Compute
Dist2

3

• Studied Tin and Tout for all possible isomorphic transformations (a total
of 96 matrices).

11

Logic-Minimization Algorithms (cont.)

• Studied Tin and Tout for all possible isomorphic transformations (a total
of 96 matrices).

• The proposed algorithms consistently lead to equal or better
implementations.

11

Logic-Minimization Algorithms (cont.)

• Studied Tin and Tout for all possible isomorphic transformations (a total
of 96 matrices).

• The proposed algorithms consistently lead to equal or better
implementations.

• Lightweight Implementation

Optimized
by CAD tools

Normal-BP Improved-BP
Shortest-Dist-

First
Focused-Search

Tin (#gates) 29 19 19 19 19

Tout (#gates) 23 19 17 17 16

11

Logic-Minimization Algorithms (cont.)

• Studied Tin and Tout for all possible isomorphic transformations (a total
of 96 matrices).

• The proposed algorithms consistently lead to equal or better
implementations.

• Lightweight Implementation

• Fast Implementation

Optimized
by CAD tools

Normal-BP Improved-BP
Shortest-Dist-

First
Focused-Search

Tin (#gates) 29 19 19 19 19

Tout (#gates) 23 19 17 17 16

11

Area (# XOR gates) Delay (levels of XOR gates)

Tin (#gates) 24 3

Tout (#gates) 21 3

Logic-Minimization Algorithms (cont.)

• Introduction, Motivation and Previous Work.

• Proposed AES S-box Architecture.

• New Logic-Minimization Algorithms.

• New GF((24)2) Inversion.
• New Exponentiation Stage.

• New Representation of Subfield Inversion.

• New Output Multipliers.

• Comparisons and Concluding Remarks.

Outline

12

• Express as one operation with
closed-form equations
(allows for maximum sharing).

New Exponentiation Stage

13

()2

• Express as one operation with
closed-form equations
(allows for maximum sharing).

• Two designs: Lightweight and Fast.

(Optimized by hand)

• One design optimized by CAD tools.

New Exponentiation Stage

13

()2

New Exponentiation Stage (cont.)

14

Area (GEs) Delay (ns)

1. Lightweight (optimized by-hand) 30 0.103

2. Fast (optimized by-hand) 30 0.091

3. Optimized by CAD tool 29.25 0.100

1. Lightweight
(optimized by-hand)

2. Fast
(optimized by-hand)

3. Optimized by CAD tool
(Used XOR3 gates)

• Express in closed-form equations

• Derive 12 equivalent functions using Karnough maps,
and optimize by-hand.

• Optimized using CAD tools.

New Subfield Inversion

15

• Express in closed-form equations

• Derive 12 equivalent functions using Karnough maps,
and optimize by-hand.

• Optimized using CAD tools.

New Subfield Inversion

15

Area (GEs) Delay (ns)

Lightweight and fast (optimized by-hand) 36 0.121

Optimized by CAD tools 31 0.102

Lightweight and fast, optimized by-hand
Used NAND3 gates

Optimized by CAD tools
Used OR-AND-Invert gates

• Two multipliers with a common input:
W = B x E & Z = A x E

New Output Multipliers

16

5

5
Z

WB

E

A

• Two multipliers with a common input:
W = B x E & Z = A x E

• Input and output terms represented as
4 bits x 4 bits  5 bits

Reduction from 5 bits back to 4 bits is part of Tout .

New Output Multipliers

16

5

5
Z

WB

E

A

• Two multipliers with a common input:
W = B x E & Z = A x E

• Input and output terms represented as
4 bits x 4 bits  5 bits

Reduction from 5 bits back to 4 bits is part of Tout .

• Previous work:
4x4  4 [Can05b], 5x5  5 [NNI12], 4x5  5 [UHS+15]

New Output Multipliers

16

5

5
Z

WB

E

A

• Focus on the combined cost of the two
multipliers (deploy maximum sharing).

New Output Multipliers (cont.)

17

5

5
Z

WB

E

A

Z

WB

E

A

bi + bj

ei + ej

ai + aj

5

6

6

6

5

4

4

4

• Focus on the combined cost of the two
multipliers (deploy maximum sharing).

New Output Multipliers (cont.)

17

5

5
Z

WB

E

A

Z

WB

E

A

bi + bj

ei + ej

ai + aj

Used NAND3 gatesPart of Tin

5

6

6

6

5

4

4

4

• Focus on the combined cost of the two
multipliers (deploy maximum sharing).

New Output Multipliers (cont.)

17

5

5
Z

WB

E

A

Z

WB

E

A

bi + bj

ei + ej

ai + aj

Used NAND3 gatesPart of Tin

Implemented once
(shared)

5

6

6

6

5

4

4

4

• Focus on the combined cost of the two
multipliers (deploy maximum sharing).

• Some multipliers do not allow sharing ([Mas91], [RDJ+01] and [GM16]).

New Output Multipliers (cont.)

17

5

5
Z

WB

E

A

Z

WB

E

A

bi + bj

ei + ej

ai + aj

Used NAND3 gatesPart of Tin

Implemented once
(shared)

5

6

6

6

5

4

4

4

Space and time complexities of a single multiplier

New Output Multipliers (cont.)

18

Multiplier used in Space Complexity Time Complexity

G
F(

((
2

2
)2

)2
) Satoh et al. [SMTM01] 21 XOR + 9 AND 4 DX + DAD

Canright [Can05b] 20 XOR + 9 NAND 4 DX + DND

Nogami et al. [NNT+10] 21 XOR + 9 AND 4 DX + DAD

G
F(

(2
4
)2

)

Rudra et al. [RDJ+01] 15 XOR + 16 AND 3 DX + DAD

Gueron et al. [GM16] 15 XOR + 16 AND 3 DX + DND

Nekado et al. [NNI12] 25 XOR + 10 AND 2 DX + DAD

Ueno et al. [UHS+15] 21 XOR + 10 AND 2 DX + DAD

This work 17 XOR + 10 NAND 2 DX + DND

Space and time complexities of a single multiplier

The smallest and fastest 4-bit multiplier to date
among all the GF((24)2) and GF(((22)2)2) multipliers

New Output Multipliers (cont.)

18

Multiplier used in Space Complexity Time Complexity

G
F(

((
2

2
)2

)2
) Satoh et al. [SMTM01] 21 XOR + 9 AND 4 DX + DAD

Canright [Can05b] 20 XOR + 9 NAND 4 DX + DND

Nogami et al. [NNT+10] 21 XOR + 9 AND 4 DX + DAD

G
F(

(2
4
)2

)

Rudra et al. [RDJ+01] 15 XOR + 16 AND 3 DX + DAD

Gueron et al. [GM16] 15 XOR + 16 AND 3 DX + DND

Nekado et al. [NNI12] 25 XOR + 10 AND 2 DX + DAD

Ueno et al. [UHS+15] 21 XOR + 10 AND 2 DX + DAD

This work 17 XOR + 10 NAND 2 DX + DND

Additional area and delay
required for the multipliers

Area (GEs) Delay (ns)

Optimized by-hand 52 0.099

Optimized by CAD tools 53.5 0.121

Optimized by-hand

Z

W

bi

E
ei + ej

5

6

6

6

5

4

4

4

bij=bi + bj

aij=ai + aj

ai

Tin

New Output Multipliers (cont.)

19

• Introduction, Motivation and Previous Work.

• Architecture of the Proposed AES S-box.

• New Logic-Minimization Algorithms.

• New GF((24)2) Inversion.
• New Exponentiation Stage.

• New Representation of Subfield Inversion.

• New Output Multipliers.

• Comparisons and Concluding Remarks.

Outline

20

• Targeting Lightweight Implementation

21

Comparisons

S-box Area (GEs) Delay (ns) Area-Time Product

Canright [Can05b] 200 1.25 250

Improved 113-gates 194 1.35 261.9

This work (Lightweight) 182.25 1.20 218.7

The smallest, fastest and most
efficient Lightweight S-box

• Targeting Lightweight Implementation

• Targeting Fast Implementation

At STM 65-nm CMOS standard technology library

21

Comparisons

S-box Area (GEs) Delay (ns) Area-Time Product

Canright [Can05b] 200 1.25 250

Improved 113-gates 194 1.35 261.9

This work (Lightweight) 182.25 1.20 218.7

S-box Area (GEs) Delay (ns) Area-Time Product

Improved Depth-16 (2012) 222 0.91 202.02

Improved Depth-16 (2017) 216 0.91 196.56

Improved Ueno et al. 238 0.77 183.26

This work (Fast) 208 0.78 162.24

The smallest, fastest and most
efficient Lightweight S-box

The smallest, fastest and most
efficient Fast S-box

• Targeting Lightweight Implementation

• Targeting Fast Implementation

At STM 65-nm CMOS standard technology library

21

Comparisons

S-box Area (GEs) Delay (ns) Area-Time Product

Canright [Can05b] 200 1.25 250

Improved 113-gates 194 1.35 261.9

This work (Lightweight) 182.25 1.20 218.7

S-box Area (GEs) Delay (ns) Area-Time Product

Improved Depth-16 (2012) 222 0.91 202.02

Improved Depth-16 (2017) 216 0.91 196.56

Improved Ueno et al. 238 0.77 183.26

This work (Fast) 208 0.78 162.24

The smallest, fastest and most
efficient Lightweight S-box

The smallest, fastest and most
efficient Fast S-box

As compared against the improved versions
proposed in this paper

As a result of testing more than 46 pieces of VHDL
code, at various abstraction levels of the designs

22

Effect of Target Library
• Industrial technology libraries (e.g., STM and TSMC):

• Lightweight: Used XOR3 and OAI32  182.25 GEs.

• Fast: Used NAND3  208 GEs.

22

Effect of Target Library
• Industrial technology libraries (e.g., STM and TSMC):

• Lightweight: Used XOR3 and OAI32  182.25 GEs.

• Fast: Used NAND3  208 GEs.

• NanGate45nm:

• Lightweight: Used AOI12 and OAI12 gates  186 GEs.

• Fast: Used NAND3  208 GEs (no change).

22

Effect of Target Library
• Industrial technology libraries (e.g., STM and TSMC):

• Lightweight: Used XOR3 and OAI32  182.25 GEs.

• Fast: Used NAND3  208 GEs.

• NanGate45nm:

• Lightweight: Used AOI12 and OAI12 gates  186 GEs.

• Fast: Used NAND3  208 GEs (no change).

• Without using any compound gate:

• Lightweight: 191 GEs (best previous work: 194 GEs)

• Fast: 211 GEs (best previous work: 216 GEs)

22

Effect of Target Library
• Industrial technology libraries (e.g., STM and TSMC):

• Lightweight: Used XOR3 and OAI32  182.25 GEs.

• Fast: Used NAND3  208 GEs.

• NanGate45nm:

• Lightweight: Used AOI12 and OAI12 gates  186 GEs.

• Fast: Used NAND3  208 GEs (no change).

• Without using any compound gate:

• Lightweight: 191 GEs (best previous work: 194 GEs)

• Fast: 211 GEs (best previous work: 216 GEs)

The proposed designs are superior under
any restriction by the target library.

Concluding Remarks

23

• In this paper, we proposed:

• Two new designs for the AES S-box: Lightweight and fast.

• New logic-minimization heuristics.

• New formulations for each stage of the S-box.

• New output multipliers.

• Design methodology for an optimum synergy between
theoretical analysis and technology-assisted CAD tools.

References

24

• [Can05b] David Canright. A very compact S-box for AES. CHES-2005.

• [Boy16] CMT: Circuit minimization team, 2016. http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html,

• [BP12] Joan Boyar and René Peralta. A small depth-16 circuit for the AES S-box. Information Security and Privacy Conference, SEC 2012.

• [BFP17] Joan Boyar, Magnus Find, and René Peralta. Low-depth, low-size circuits for cryptographic applications. In Boolean Functions and their
Applications BFA-2017.

• [UHS+15] Rei Ueno, Naofumi Homma, Yukihiro Sugawara, Yasuyuki Nogami, and Takafumi Aoki. Highly efficient GF(28) inversion circuit based on
redundant GF arithmetic and its application to AES design. CHES-2015.

• [BMP08] Joan Boyar, Philip Matthews, and René Peralta. On the shortest linear straight-line program for computing linear forms. Mathematical
Foundations of Computer Science, MFCS 2008.

• [Paa94] Christof Paar. Efficient VLSI architectures for bit parallel computation in Galios fields. PhD thesis, University of Duisburg-Essen, Germany, 1994.

• [BP10] Joan Boyar and René Peralta. A new combinational logic minimization technique with applications to cryptology. Symposium on Experimental
Algorithms, SEA 2010.

• [NNI12] Kenta Nekado, Yasuyuki Nogami, and Kengo Iokibe. Very short critical path implementation of AES with direct logic gates. International
Workshop on Security, IWSEC 2012.

• [Mas91] E. D. Mastrovito. VLSI Architectures for Computation in Galois Fields. PhD thesis, Linkoping Univ., Linkoping Sweden, 1991.

• [RDJ+01] Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, Vijay Kumar, Josyula R.Rao, and Pankaj Rohatgi. Efficient Rijndael encryption implementation
with composite field arithmetic. CHES 2001.

• [GM16] Shay Gueron and Sanu Mathew. Hardware implementation of AES using area-optimal polynomials for composite-field representation GF((24)2)
of GF(28). ARITH 2016.

• [SMTM01] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A compact Rijndael hardware architecture with S-box optimization.
ASIACRYPT 2001.

• [NNT+10] Yasuyuki Nogami, Kenta Nekado, Tetsumi Toyota, Naoto Hongo, and Yoshitaka Morikawa. Mixed bases for efficient inversion in F((22)2)2 and
conversion matrices of subbytes of AES. CHES-2010.

25

Thank You,

Questions?

Logic-Minimization Algorithms
Tout

Input and Dist, using
original the inputs

3

7
7

5

3
3

1

5

Dist, assume
using w0+w1

3

5
6

4

3
2

1

5

Sum(Dist) = 29

Dist, assume
using w0+w2

3

6
7

5

3
2

1

5

Sum(Dist) = 32

First, add all gates
with Dist=1

3

6
7

5

3
2

1

5

Dist, assume
using w0+w4

3

6
6

5

3
2

1

5

Sum(Dist) = 31
• Normal-BP:

1.Test all the possible XOR gates that can use the previous level gates (the inputs and (w2+w4)). That is: from (w0+w1) all the way to (z4 + (w2+w4)).
2.Select one gate that leads to [min (sum (Dist))]. In case of ties, select one gate based on different tie breaking criteria.
For example, within the best gates, select one gate that maximizes the Euclidean norm of Dist

• Improved-BP:
Similar to Normal-BP, but try all the tie, and monitor progress of the Delay.

• Shortest-Dist-First
Similar to Norma-BP, but select all the gates that as many small numbers in the Dist as possible. If we consider the four cases above, we will select all of them
because the smallest number is 2 (excluding ones), and this number (2) appears one time in each case. If it were to appear twice in any case, I would have
selected that case. If the smallest number is 3, so that is the smallest Dist, and select the case that leads to as many (Dist=3) as possible.

• Focused-Search
Similar to ‘Shortest-Dist-First’, but we ignore the count of (Dist=2) or (Dist=3). Here, we select all the gates that include (Dist=2) within the vector of Distances.
We do not differentiate based on the count. If there is no gate that lead to Dist=2, select all the gates that include Dist=3, and so on.

Dist, assume
using w0+w3

3

6
6

5

3
2

1

5

Sum(Dist) = 31

26

