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Implementation Pitfalls
1. Use AND gates, 

when NAND gates have smaller area and delay in all technology libraries.

2. Use only simple gates, 
when compound gates (AND-OR-Invert, OR-AND-Invert) may be more efficient.

• We improved previous designs using AND gates to the ones using NAND/NOR gates:

Targeting STM 65-nm CMOS standard library

At the end, we compare only against the Improved Versions.
Formulations of the improved designs are included in the paper.
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• Original S-box

• Typical implementation using Composite Fields in Normal Basis

AES S-box
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• Implement isomorphic transformation
matrices using smallest number of gates.

• NP-hard problem [BMP08].

Logic-Minimization Algorithms

Tin

Ting 12
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• Proposed Logic-Minimization Algorithms
• Improved-BP:

• Test all the ties.

• Monitor progress of the delay.

• Shortest-Dist-First:
• Select a gate leading to many small (short) Distances

(prioritize small Distances, not the average).

• Test all the ties and monitor the delay.

• Focused-Search:
• Select a gate leading to any small (short) Distance 

(ignore the count and search through more cases)
(close to exhaustive search).

• Test all the ties and monitor the delay.
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• Studied Tin and Tout for all possible isomorphic transformations (a total 
of 96 matrices).
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• Studied Tin and Tout for all possible isomorphic transformations (a total 
of 96 matrices).

• The proposed algorithms consistently lead to equal or better
implementations.

• Lightweight Implementation

Optimized
by CAD tools

Normal-BP Improved-BP
Shortest-Dist-

First
Focused-Search

Tin (#gates) 29 19 19 19 19

Tout (#gates) 23 19 17 17 16
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• Studied Tin and Tout for all possible isomorphic transformations (a total 
of 96 matrices).

• The proposed algorithms consistently lead to equal or better
implementations.

• Lightweight Implementation

• Fast Implementation

Optimized
by CAD tools

Normal-BP Improved-BP
Shortest-Dist-

First
Focused-Search

Tin (#gates) 29 19 19 19 19

Tout (#gates) 23 19 17 17 16
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Area (# XOR gates) Delay (levels of XOR gates)

Tin (#gates) 24 3

Tout (#gates) 21 3

Logic-Minimization Algorithms (cont.)
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• Express as one operation with
closed-form equations 
(allows for maximum sharing).

New Exponentiation Stage
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• Express as one operation with
closed-form equations 
(allows for maximum sharing).

• Two designs: Lightweight and Fast.

(Optimized by hand)

• One design optimized by CAD tools.

New Exponentiation Stage
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New Exponentiation Stage (cont.)
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Area (GEs) Delay (ns)

1. Lightweight (optimized by-hand) 30 0.103

2. Fast (optimized by-hand) 30 0.091

3. Optimized by CAD tool 29.25 0.100

1. Lightweight
(optimized by-hand)

2. Fast 
(optimized by-hand)

3. Optimized by CAD tool
(Used XOR3 gates)
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• Optimized using CAD tools.
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• Express in closed-form equations 

• Derive 12 equivalent functions using Karnough maps,
and optimize by-hand.

• Optimized using CAD tools.

New Subfield Inversion
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Area (GEs) Delay (ns)

Lightweight and fast (optimized by-hand) 36 0.121

Optimized by CAD tools 31 0.102

Lightweight and fast, optimized by-hand
Used NAND3 gates

Optimized by CAD tools
Used OR-AND-Invert gates
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• Two multipliers with a common input:
W = B x E & Z = A x E

• Input and output terms represented as 
4 bits x 4 bits  5 bits

Reduction from 5 bits back to 4 bits is part of Tout .

• Previous work: 
4x4  4 [Can05b],  5x5  5 [NNI12],  4x5  5 [UHS+15] 
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• Focus on the combined cost of the two
multipliers (deploy maximum sharing).
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• Focus on the combined cost of the two
multipliers (deploy maximum sharing).

• Some multipliers do not allow sharing ([Mas91], [RDJ+01] and [GM16]).
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Space and time complexities of a single multiplier

New Output Multipliers (cont.)
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Multiplier used in Space Complexity Time Complexity

G
F(

((
2

2
)2

)2
) Satoh et al. [SMTM01] 21 XOR + 9 AND 4 DX + DAD

Canright [Can05b] 20 XOR + 9 NAND 4 DX + DND

Nogami et al. [NNT+10] 21 XOR + 9 AND 4 DX + DAD

G
F(

(2
4
)2

)

Rudra et al. [RDJ+01] 15 XOR + 16 AND 3 DX + DAD

Gueron et al. [GM16] 15 XOR + 16 AND 3 DX + DND

Nekado et al. [NNI12] 25 XOR + 10 AND 2 DX + DAD

Ueno et al. [UHS+15] 21 XOR + 10 AND 2 DX + DAD

This work 17 XOR + 10 NAND 2 DX + DND



Space and time complexities of a single multiplier

The smallest and fastest 4-bit multiplier to date 
among all the GF((24)2) and GF(((22)2)2) multipliers
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Additional area and delay 
required for the multipliers

Area (GEs) Delay (ns)

Optimized by-hand 52 0.099

Optimized by CAD tools 53.5 0.121

Optimized by-hand

Z

W
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E
ei + ej
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6
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5

4

4

4

bij=bi + bj

aij=ai + aj

ai

Tin

New Output Multipliers (cont.)
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• Targeting Lightweight Implementation
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Comparisons

S-box Area (GEs) Delay (ns) Area-Time Product

Canright [Can05b] 200 1.25 250

Improved 113-gates 194 1.35 261.9

This work (Lightweight) 182.25 1.20 218.7

The smallest, fastest and most 
efficient Lightweight S-box
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At STM 65-nm CMOS standard technology library
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• Targeting Lightweight Implementation

• Targeting Fast Implementation

At STM 65-nm CMOS standard technology library
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Comparisons

S-box Area (GEs) Delay (ns) Area-Time Product

Canright [Can05b] 200 1.25 250

Improved 113-gates 194 1.35 261.9

This work (Lightweight) 182.25 1.20 218.7

S-box Area (GEs) Delay (ns) Area-Time Product

Improved Depth-16 (2012) 222 0.91 202.02

Improved Depth-16 (2017) 216 0.91 196.56

Improved Ueno et al. 238 0.77 183.26

This work (Fast) 208 0.78 162.24

The smallest, fastest and most 
efficient Lightweight S-box

The smallest, fastest and most 
efficient Fast S-box

As compared against the improved versions 
proposed in this paper

As a result of testing more than 46 pieces of VHDL 
code, at various abstraction levels of the designs
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Effect of Target Library
• Industrial technology libraries (e.g., STM and TSMC):

• Lightweight: Used XOR3 and OAI32  182.25 GEs.

• Fast: Used NAND3  208 GEs.

• NanGate45nm:

• Lightweight: Used AOI12 and OAI12 gates  186 GEs.

• Fast: Used NAND3  208 GEs (no change).

• Without using any compound gate:

• Lightweight: 191 GEs (best previous work: 194 GEs)

• Fast: 211 GEs (best previous work: 216 GEs)

The proposed designs are superior under 
any restriction by the target library.



Concluding Remarks
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• In this paper, we proposed:

• Two new designs for the AES S-box: Lightweight and fast. 

• New logic-minimization heuristics.

• New formulations for each stage of the S-box.

• New output multipliers.

• Design methodology for an optimum synergy between 
theoretical analysis and technology-assisted CAD tools.
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Thank You,

Questions?



Logic-Minimization Algorithms
Tout

Input and Dist, using 
original the inputs

3

7
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3
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Dist, assume 
using w0+w1
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5
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3
2
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5

Sum(Dist) = 29

Dist, assume 
using w0+w2

3

6
7

5

3
2
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5

Sum(Dist) = 32

First, add all gates 
with Dist=1
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Dist, assume 
using w0+w4

3

6
6

5

3
2
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5

Sum(Dist) = 31
• Normal-BP:

1.Test all the possible XOR gates that can use the previous level gates (the inputs and (w2+w4)). That is: from (w0+w1) all the way to (z4 + (w2+w4)).
2.Select one gate that leads to [ min (sum (Dist)) ]. In case of ties, select one gate based on different tie breaking criteria.
For example, within the best gates, select one gate that maximizes the Euclidean norm of Dist

• Improved-BP:
Similar to Normal-BP, but try all the tie, and monitor progress of the Delay.

• Shortest-Dist-First
Similar to Norma-BP, but select all the gates that as many small numbers in the Dist as possible. If we consider the four cases above, we will select all of them
because the smallest number is 2 (excluding ones), and this number (2) appears one time in each case. If it were to appear twice in any case, I would have 
selected that case. If the smallest number is 3, so that is the smallest Dist, and select the case that leads to as many (Dist=3) as possible.

• Focused-Search
Similar to  ‘Shortest-Dist-First’, but we ignore the count of (Dist=2) or (Dist=3). Here, we select all the gates that include (Dist=2) within the vector of Distances. 
We do not differentiate based on the count. If there is no gate that lead to Dist=2, select all the gates that include Dist=3, and so on.
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