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Abstract. Malicious exploitation of faults for extracting secrets is one of the most practical
and potent threats to modern cryptographic primitives. Interestingly, not every possible fault
for a cryptosystem is maliciously exploitable, and evaluation of the exploitability of a fault is
nontrivial. In order to devise precise defense mechanisms against such rogue faults, a compre-
hensive knowledge is required about the exploitable part of the fault space of a cryptosystem.
Unfortunately, the fault space is diversified and of formidable size even while a single crypto-
primitive is considered and traditional manual fault analysis techniques may often fall short
to practically cover such a fault space within reasonable time. An automation for analyzing
individual fault instances for their exploitability is thus inevitable. Such an automation is
supposed to work as the core engine for analyzing the fault spaces of cryptographic primitives.
In this paper, we propose an automation for evaluating the exploitability status of fault instances
from block ciphers, mainly in the context of Differential Fault Analysis (DFA) attacks. The
proposed framework is generic and scalable, which are perhaps the two most important features
for covering diversified fault spaces of formidable size originating from different ciphers. As a
proof-of-concept, we reconstruct some known attack examples on AES and PRESENT using
the framework and finally analyze a recently proposed cipher GIFT [BPP+17] for the first time.
It is found that the secret key of GIFT can be uniquely determined with 1 nibble fault instance
injected at the beginning of the 25th round with a reasonable computational complexity of 214.
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Introduction
Almost every modern computing device provides support for cryptographic computation – both
in the form of hardware extensions and software libraries. Block ciphers, being one of the
most prominent constituents of modern cryptographic protocols, are deployed with most of the
computing platforms. However, resource constraint of a platform is one of the determining factors
for the nature of cryptographic supports provided. For example, the pervasive use of low-resource
embedded electronic systems has led to the development of several lightweight block cipher
algorithms like PRESENT [BKL+07], LED [GPPR11], SKINNY [BJK+16] etc. Concurrently,
there is an increasing trend of developing new ciphers engineered for specific applications, so that
optimal performance-resource trade-offs can be achieved. As a result, we have numerous block
ciphers available today and their numbers are still increasing.
The common trend in cipher design is to evaluate the security of the cipher against classical

attacks like differential, and linear cryptanalysis before it is deployed. However, security evaluation
against implementation based side channel and fault attacks has also become essential, given the
practicality and potency of such attacks. Usually, cipher-specific countermeasures are designed to
defend against such implementation based attacks. However, countermeasures do incur overheads
which have to be optimised carefully in order to provide proper security bounds within specified
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resource-constraints. Such precisely engineered countermeasures can be devised only if the
complete attack space of a given cipher is well-understood.
In this paper, we address the problem of attack space exploration in the context of fault-based

cryptanalysis of block ciphers – more precisely, for Differential Fault Analysis (DFA) attacks [BS97,
TMA11, DLV03]. DFA is the most widely explored and complex class of fault attacks so far and is
particularly interesting given their (relatively) low data/fault complexity and easy-to-mount nature.
It is well-established that even a single properly placed malicious fault is able to compromise the
security of mathematically strong crypto-primitives in certain cases. However, not every possible
fault in a cipher is exploitable by an attacker to cause a practical attack, and determining the
exploitability of a fault instance is nontrivial.1 In this work, we refer to such malicious faults
as exploitable faults. While finding a single exploitable fault instance for a system is sufficient
from the perspective of an attacker, certifying a system for fault attack resilience demands the
characterization of the complete space of exploitable faults. This is, however, a notoriously difficult
task given the formidable size and diversity of the fault space even for a single block cipher.
The situation clearly indicates that an automation is inevitable in this context and the very first
step towards building such an automation is to devise a framework which can determine the
exploitability status of an individual fault instance on a given block cipher. The main target of this
paper is to propose a framework which can automate DFA attacks.
Potential Challenges in Fault Attack Automation: Typically, faults in a cipher (let us focus
on the block ciphers only) are specified by multiple attributes (e.g. the location, width of the fault,
fault model and the mathematical structure of the cipher), which eventually lead to a fault space
of formidable size. Any automation, which targets individual fault instances for exploitability
evaluation should be sufficiently fast and scalable in order to practically explore the fault space. On
the other hand, the automation should be applicable to most of the available block ciphers and fault
models. Another point of concern is the interpretability of an attack instance. Interpretability of
an attack is extremely important to get necessary insights which may eventually lead to improved
cipher and countermeasure designs.
Our Contributions: In this paper, we initiate an automated framework ExpFault for DFA, simul-
taneously meeting the goals specified in the last paragraph. In order to achieve these goals a simple
strategy has been adopted, which just estimates the attack complexity instead of doing the attack
explicitly to recover the secret. In the light of this simple strategy, and a rigorous formalization
of the cipher description and DFA, ExpFault evaluates fault exploitability in three steps, the first
among which is the identification of a set of potential wrong key distinguishers. The generic
distinguisher identification step is realized by analyzing fault simulation data with assistance from
standard data-mining strategies. The goodness of each DFA distinguisher is also evaluated by
means of a metric based on Shannon Entropy. The next step to distinguisher identification is the
evaluation of attack complexity. We propose a graph based abstraction of the cipher to realize
this step, which works by automatically identifying a divide-and-conquer strategy for evaluating
distinguishers on different key guesses. The choice of the divide-and-conquer strategy has a major
role in determining the attack complexity. Finally, we figure out the overall attack complexity by
calculating the size of the keyspace after a single fault injection and estimate the number of fault
injections required to reasonably figure out the key.
In order to explain the main concepts, three attack examples corresponding to AES [DR13] and

PRESENT [BKL+07] block ciphers have been used in this paper. However, the second major
contribution of this work is to analyze a recently proposed cipher GIFT [BPP+17]. A thorough
analysis of GIFT with different fault models has been performed with the help of the proposed
framework. Interestingly, we found that complete 128 bit key of GIFT can be extracted with a
computational complexity of 214 by means of a single nibble fault injected at the 25th round of the
cipher in the best case. Moreover, the attack is found to be optimal from an information theoretic
perspective.2.

1This claim is certainly not restricted to DFAs only and is valid for other classes of fault attacks as well.
2The proof of optimality is provided in the Appendix B
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Related Work: Automation of fault attacks has been addressed in recent past via the Algebraic
Fault Analysis (AFA) framework [ZGZ+16]. The main idea of AFA is to encode the cipher and a
fault instance to a low-degree system of multivariate polynomial equations, which is then solved
with SAT solvers by converting it to a Boolean formula in Conjunctive Normal Form (CNF).
Analyzing a single fault instance in AFA thus involves solving a SAT problem, which often requires
prohibitively long time, making it a bad choice in the exploitable fault space characterization
context. Moreover, the attacks reported by AFA are often difficult to interpret. As a result,
they do not provide any clue by which one may improve the design and implementation of the
cipher. Recently, Barthe et.al. [BDF+14] have proposed a framework for synthesizing fault attacks
automatically given a software implementation using concepts of program synthesis. However,
their framework mainly targets for public key cryptosystems.

The most relevant work in the present context is due to Khanna et. al. [KRH17], who proposed
a framework called XFC based on principles somewhat similar to that of ExpFault. The key
component of XFC is the characterization of the fault propagation path by means of coloring,
where each color represents a variable. The coloring based static analysis eventually provides
a scalable way for the calculation of the attack complexity as well. Albeit being scalable, the
usability of the XFC scheme is found to be limited to a specific class of DFAs. More specifically,
it fails to detect distinguishers, which typically exploit the constraints on the values that certain
fault difference variables may assume. Impossible Differential Fault Analysis (IDFA) attacks are
prominent examples of such cases. Further, XFC scheme lacks proper automation in its attack
complexity analysis algorithm and makes certain simplifying assumptions, which fails to capture
the most generic scenario. The potential drawbacks of XFC have been elaborated by means of
examples in the Appendix C of this paper, which also establishes the relevance of different strategies
used in ExpFault. A prior approach of using data mining for DFA identification was proposed
in [SKMD17]. However, the work there does not provide any instance of novel fault analysis,
neither discusses their optimality. Moreover, [SKMD17] does not shed any light on the exact
implementation details of the framework, which the present work attempts. The appendix here
presents extensive descriptions of the tool with actual outputs, illustrating the working principles
of the automation with exact cipher instances.

Scopes of a Data-based Approach: The ExpFault framework mines distinguishers from fault
simulation data. This data analysis approach of distinguisher identification shows enough potential
to be extended for other genres of fault attacks viz. Integral Fault Attacks [Kim11] and Differential
Fault Intensity Analysis attacks (DFIA) [GYTS14]. A unified framework for automated fault
analysis will be the ultimate goal which is initiated in this work by means of ExpFault. One should
notice that it is not straightforward to extend equation based approaches like AFA for attacks like
DFIA which are mainly statistical in nature. Data analysis thus seems to be a better alternative for
such cases.

The rest of the paper is organized as follows. We start by describing two well-known ciphers AES
and PRESENT, for which we provide 3 attack examples using the proposed framework (Sec. 1).
In Sec. 2, the cipher, and the fault models are formalized. The ExpFault framework is described
next in Sec. 3. Proof-of-Concept evaluations of some known attacks on AES and PRESENT are
elaborated as examples while describing the scheme. Sec. 4 presents DFA results on the GIFT
block cipher. Finally, we conclude in Sec. 5.

1 Preliminaries
In this section, we introduce some basic terminology encountered frequently in this paper. Some
of them will be formally defined according to our cipher model in the following section. We also
provide a brief description of the two ciphers AES and PRESENT in this section which are to be
used as examples throughout this paper.
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1.1 Basic Terminology
Block ciphers are the realizations of Pseudo-Random Permutations (PRP). In general, block ciphers
are constructed by repeating a round multiple times (perhaps with slight modifications in some
iterations). Each round is a sequence of sub-operations. In this paper, the input of each sub-
operation is called an intermediate state (also known simply as a state). With the injection of a
fault, states assume faulty values which differ from the correct values assumed by them in the
absence of the fault. We use the term state differential to represent the XOR-difference between
the correct and faulty computation of a state. Each state differential consists of word variables
known as state differential variables, where the word size typically depends on the cipher under
consideration.

1.2 AES
The AES block cipher is the current worldwide standard for symmetric key cryptography. The
widely used version AES-128 uses a block size of 128 bits and a master key of the same size, all of
which are processed as 1-byte chunks. The encryption is realized by iterating a round function 10
times. The round function of AES consists of 4 sub-operations namely, SubBytes, ShiftRows,
Mixcolumns and AddRoundKey. The SubBytes consists of 16 identical 8×8 nonlinear S-Boxes.
The ShiftRows sub-operation is a permutation realized at the byte level, whereas the Mixcolumns
is a linear transformation by means of a Maximum Distance Separable (MDS) matrix. The last
sub-operation in a round is the AddRoundKey, which performs a bitwise XOR operations between
the state and 128-bit round keys generated by means of a key schedule for each round, from the
master key. It is worth mentioning that the round function in the last round of AES does not include
the Mixcolumns sub-operation.

AES is the most widely analyzed cipher in the context of fault attacks, especially for DFA [BS97].
Most of the DFA attempts on AES till date target the last three rounds of the cipher. The most
optimal attack on AES is due to Tunstall et. al. [TMA11], which requires only a single byte fault
injection at the beginning of the 8-th round of the cipher resulting in a keyspace of size 28. The
computational complexity of this attack is 232. In [SMC09], Saha et. al. have shown that the same
attack can still be realized even if multiple bytes at the beginning of 8-th round gets faulty. The only
constraint is that the faulty bytes must remain within the same diagonal in the matrix representation
of the AES state. Further, in [DFL11], Derbez et. al. proposed Impossible Differential Fault Attack
(IDFA) and Meet-in-the-Middle (MitM) attack, both of which target the beginning of the 7th round
of AES. Finally, Kim et. al. proposed Integral Fault Attacks on AES [Kim11]. Being well explored,
AES is a major mean for experimentally validating our framework in this paper. More specifically,
we shall show that our framework, in its current state can detect the standard DFA attempts on AES
including the IDFA attacks.

1.3 PRESENT
The PRESENT [BKL+07] is a widely known block cipher of the lightweight genre. The PRESENT–
80 version of the cipher utilizes an 80 bit master key with a 64 bit block size. Round keys of
64 bits are generated from the 80 bit key state for 31 iterations having the same round structure.
The constituent sub-operations for the round function are AddKey, sBoxLayer, and pLayer, of
which the sBoxLayer is a nonlinear layer consisting 16 identical 4× 4 bijective S-Boxes. The
linear diffusion layer of PRESENT is constructed with a simple bit-permutation operation which is
significantly different and simpler than that of the MDS based diffusion functions of AES.

Just like AES, PRESENT has gone through several fault analysis attempts mostly targeting the
28, 29th rounds of the cipher as well as the key schedule. [ZGW+12, WW10, PBMB17, ZGZ+16].
In this paper, we shall use the attack proposed by Jeong et. al. [JLSH13] on the 28-th round of the
cipher to explain various parts of the framework. This attack requires 2 instances of 16 bit faults
injected at the beginning of the 28th round. The computational complexity of the attack is O(232).
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2 A Formalization of the Differential Fault Analysis
In this section, we construct a formal notion of the cipher representation as well as the differential
fault analysis, which perfectly suits our purpose in this paper. We begin with a general view of the
DFA attacks and eventually present the formal framework.

2.1 DFA on Block Ciphers: A Generic View
The general concept of DFA remains the same for most of the ciphers, except some manual cipher-
specific tricks, which make the automation a challenging task. DFAs broadly follow three major
steps:

1. Distinguisher Identification: The key step of DFA is to identify wrong key distinguishers,
which are typically relations on the state differential variables. According to the well-known
wrong key assumption, a distinguisher attains a uniform distribution with a wrong key
guess and a non-uniform one with a correct key guess, which eventually helps to reduce the
candidate key space. In the context of DFA, however, distinguishers are mostly described as
mathematical expressions rather than statistical distributions.

2. Divide-and-Conquer: The step following the distinguisher identification is the evaluation
of the same with different key guesses to filter out the wrong keys in a computationally
efficient manner. Not every distinguisher is efficiently computable and the computational
efficiency lies in two facts: 1) whether it can be partitioned into independent subparts;
and, 2) whether each subpart is efficiently computable, that is with a reasonable number of
exhaustive key guesses.

3. Estimating the Number of Possible Key Candidates: The sole idea of DFA is to reduce
the complexity of the exhaustive key search by means of the distinguisher. However,
the reduction of the search space typically depends upon the distinguisher used. If the
distinguisher is unable to sufficiently reduce the search space complexity, more faults should
be injected. Thus, the quality of a distinguisher must be quantified to achieve successful and
practical attacks.

Automation of the above-mentioned steps demands a mathematical specification of the cipher and
the faults, to begin with. The following subsections present a formalization of the cipher and the
differential fault attacks in this context. To maintain clarity, a list of notations used is provided in
Table 1.

2.2 Representing A Block Cipher
A block cipher is a mapping Fk : P → C , where, P and C denote the plaintext and ciphertext
space, respectively. The mapping is typically specified by a key k ∈K . Structurally, they can be
represented as a tuple of invertible functions as:

Fk = 〈o1
1,o

2
1, ....,o

d
1 ,o

1
2,o

2
2, ....,o

d
2 , ....o

1
R,o

2
R, ....,o

d
R〉 (1)

Typically, for a given p ∈P and a fixed k ∈ K , there exists a unique c ∈ C such that, c =
od

R(o
d−1
R (...(o2

1(o
1
1(p))...). Here, each oi

j represents the i-th sub-operation in the j-th round of a R
round cipher. Further, each oi

j can be represented as:

oi
j(x1,x2, ....xl) =

h1=l⊕
h1=1

ah1 · xh1 , if oi
j is linear (2)

oi
j(x1,x2, ....xl) =

h1=2l⊕
h1=1

ah1 ·∏
h2∈I

xh2 , if oi
j is nonlinear (3)
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Table 1: List of Notations used
Notation Meaning

| · | Size of a set
Fk Block Cipher
P , C , K Plaintext, Ciphertext and Key space
R Total number of iterative rounds in the block cipher.
d Total number of sub-operations in each round.
oi

j The i-th sub-operation in the j-th round.
Ek Data-centric view of the cipher.
si

j The state at the input of the i-th sub-operation in the j-th round.
λ , m Block size; word-size (size of each word in the cipher state in bits)
l = λ

m word count
F A fault instance.
X Fault affected register.
r, wd, t, f Fault round, width, location and value.
δ i

j state differential at the input of
the i-th sub-operation in the j-th round.

wi j
z a state differential variable (discrete random variable) corresponding to

a m-bit word of the state differential δ i
j

∆k Set of state differentials of the cipher
pwi j

z probability distribution of wi j
z

H(·) Entropy
T (.) Dataset for state differentials for each wi j

z .
{D i

j} Set of distinguishers formed with state differentials
T the enumeration algorithm for the key set using distinguisher
Comp(T ) the complexity of the distinguisher enumeration algorithm
R Remaining key space.
IS, V S Itemset and Variable set.
MKS, V G Maximal independent key set, and Variable group.

Here, I ⊆ {1,2, ....l}, and each ah1 is a constant. The data width of the function inputs is a notable
factor in this description. Given the block width of a cipher is λ bits, it is processed as m-bit words,
where m = λ

l . We call m as the word size of the cipher. It is worth mentioning that the data width
of each sub-operation might not be the same for a given cipher. In such cases, we assume the data
width of the input of nonlinear sub-operations as the word size.

In an alternative data-centric view, the cipher Fk is represented as a sequence of states as
follows:

Ek = 〈s1
1,s

2
1, ....,s

d
1 ,s

1
2,s

2
2, ....,s

d
2 , ....s

1
R,s

2
R, ....,s

d
R,c〉 (4)

where each si
j represents the input of the i-th sub-operation in the j-th round of a R round cipher.

Intuitively this representation presents an execution trace of the cipher on a plaintext p and a key k.
Each si

j actually refers to an internal state (or simply state) of the cipher. The Ek is also referred to
as the execution trace of the cipher. The state sequence begins with the plaintext p = s1

1. Each state
si

j is a vector of length l of m-bit words. The values assumed by the state vectors are subject to
change with the variation of the plaintext and the key. Intuitively, the data-centric specification
formally represents the simulation data from the cipher.

2.3 Formalization of the DFA
The formalization of DFA requires a precise specification of the injected faults. In general, it is
assumed that injected faults are localized and transient so that they can affect at least one bit from
a chunk of contiguous bits within a state, at some specific round. If a fault affects some part of
the input state of the sub-function oi

j, the output of oi
j will differ from its expected value. We

provide a formal representation of a fault as a tuple F = 〈si1
r ,λ ,wd, t〉, which is similar to that

of [ZGZ+16]. Here, si1
r represents the state, where the fault is injected. It is apparent that r < R.

The λ parameter denotes the data width of the state, wd is the width of the fault, and t is the fault
location within the state. Let us denote any si

j = 〈V1,V2, ....Vl〉, where each Vz (z ∈ {1,2, ..., l}) is
an m-bit variable. The localized fault, depending on the scenario, will affect one or more of these
variables. In general, this is determined by the width of the fault wd. To simplify the matter we
assume that wd is either ≤ m or it is a multiple of m. As a result, one or more of the Vzs can be
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affected by the fault. For simplicity, it is further assumed that only consecutive Vzs can be affected
by the fault and the location of that is indicated by the fault location parameter t, in the fault model.
The width of the fault wd is often used to represent the fault models. In this work, we only consider
standard fault models (the bit (wd = 1), nibble (wd = 4), and byte (wd = 8) fault models), although
the framework is not limited to them.

Once the cipher and the fault model are determined, we can now formally describe the DFA
attack on a cipher. In order to construct a general model for DFA, we first need to formally define the
state differentials and the state differential variables, already introduced in Sec. 1.1. Let us consider
the execution trace Ek of a cipher, as described in (4). In order to capture the effect of an injected
fault, we define a faulty execution trace E

′
k = 〈s1

1,s
2
1, ....,s

d
1 , ....,s

′i1
r ,s

′i1+1
r , ....,s

′d
r , ....,s

′d
R ,c′〉. Here

each s
′i
j denotes the faulty input of the i-th sub-operation in the j-th round (r ≤ j ≤ R) starting

from the injection point of the fault at round r. Before the r-th round the states remain the same.
A state differential is defined as δ i

j = si
j
⊕

s′ij = 〈V
i j
1 ⊕V

′i j
1 ,V i j

2 ⊕V
′i j
2 , ...,V i j

l ⊕V
′i j
l 〉= 〈w

i j
1 ,w

i j
2 , ..

.,wi j
l 〉, r ≤ j < R, where, V i j

z denotes the z-th m-bit correct state variable, and V
′i j
z denotes the

corresponding faulty state variable. For each such word, ⊕ denote the bitwise XOR operation.
Each wi j

z denotes a state differential variable. Finally, we define another formal structure called
differential execution trace ∆k as, ∆k = 〈δ i1

r ,δ i1+1
r , ....,δ d

r , ...,δ
1
R ,δ

2
R , ....,δ

d
R 〉. Each of the state

differentials δ i
j in ∆k may potentially form a distinguisher.

Given a cipher Fk and a fault F in it, the DFA can be formally described as:

A = 〈{D i
j},T ,R〉 (5)

where:

• {D i
j} denotes a set of distinguishers, each of which could be a non uniform distribution or

mathematical relation, over the state differential variables of some state differential δ i
j.

• T is the exhaustive enumeration algorithm for the key set K via distinguisher evaluation.
A proper divide-and-conquer strategy is essential for this enumeration algorithm, which
enables the evaluation of the distinguishers in parts. The time complexity of the enumeration
algorithm is one of the determining factors of the overall DFA complexity, which is O(2n),
with n≤ log2(|K |). For practical cases n� log2(|K |), whereas n = log2(|K |) implies no
gain from the perspective of an attacker.

• R is the remaining key search space after the injection of a single instance of the fault F .
The evaluation of the distinguishers over the complete key set K partitions the set into
two non-overlapping subsets Kw and Kcr; the first one being the set of wrong keys and
the second one being the set of candidate keys one of which is the correct key. Evidently,
R = Kcr and |R| � |K | for an efficient fault attack. One should note that, it is sufficient to
consider the search space reduction for one single fault instance, as the reduction for multiple
fault instances can be easily calculated from that. R is often represented as the solution set
of a system of equations or inequations, involving the keys and distinguisher variables.

3 A Framework for Exploitable Fault Characterization

In this section, we describe the proposed automated framework in detail. The following subsections,
will provide generic algorithms for computing each of the components described in (5). The input
to the framework is a mathematical description (linear layers as matrices and the S-Boxes as tables)
and an executable model (software/hardware implementation) of the target block cipher along with
an enumeration of the fault space under consideration. The output is the exploitable fault space.
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3.1 Automatic Identification of Distinguishers

Algorithm 1 Procedure RngChk
Input: The dataset for a state δ i

j as T
δ i

j
= 〈T

wi j
1
, T

wi j
2
, ..., T

wi j
l
〉

Output: 〈{Rng
wi j

z
}l

z=1, HInd(δ
i
j)〉

1: HInd(δ
i
j) := 0

2: for each T
wi j

z
∈ T

δ i
j

do . 1

3: Store all distinct values assumed by wi j
z in Rng

wi j
z

. 2

4: Calculate the probability distribution of wi j
z as p′w

i j
z . 3

5: Calculate the Entropy of wi j
z as HInd(w

i j
z ) using p′w

i j
z

6: end for
7: Return 〈{Rng

wi j
z
}l

z=1, HInd(δ
i
j)〉

1z = 1,2, ..., l
2Values of wi j

z belongs to the set {0,1, ...2m−1}
3 p′w

i j
z

q := #q
|T

wi j
z
| , where #q denote the frequency of q∈{0,1, ...2m−

1} in T
wi j

z

Algorithm 2 Procedure Miner
Input: T

δ i
j
= 〈T

wi j
1
, T

wi j
2
, ..., T

wi j
l
〉

Output: 〈V S
δ i

j
, {ISv

δ i
j
}
|V S

δ i
j
|

v=1 , HAssn(δ
i
j)〉

1: 〈V S
δ i

j
, {ISv

δ i
j
}
|V S

δ i
j
|

v=1 〉 := Apriori(T
δ i

j
)

2: HAssn(δ
i
j) := 0

3: for each v ∈V S
δ i

j
do

4: tot := VarCount(v)×m . 4

5: p′vq := 1
|ISv

δ i
j
| , ∀q ∈ ISv

δ i
j

. 5

6: p′vq := 0, ∀q 6∈ ISv
δ i

j

7: HAssn(v) :=−
2tot−1

∑
q=0

p′vq log2(p′vq ) . 6

8: HAssn(δ
i
j) := HAssn(δ

i
j)+HAssn(v)

9: end for

10: Return 〈V S
δ i

j
, {ISv

δ i
j
}
|V S

δ i
j
|

v=1
, HAssn(δ

i
j)〉

4VarCount returns the number of variables in a variable set
5Calculate the probability distribution of each variable set
6Calculate the entropy of variable sets

In the last section, we have abstractly defined distinguishers as state differentials having certain
mathematical or statistical properties. However, a metric is required which can identify the state
differentials having such special properties and also quantify the goodness of distinguishers. We
define such a metric based on the entropy of state differentials. Here the state differential variables
are considered as random variables.

Definition 1. [Entropy of a State Differential] The entropy of a state differential δ i
j = 〈w

i j
1 ,w

i j
2 , ...,

wi j
l 〉, where each wi j

z is a discrete random variable with probability distribution pwi j
z , is defined as

H(δ i
j) =H(wi j

1 ,w
i j
2 , ...,w

i j
l ), that is the joint entropy of the random variables in the state differential.

Definition 2. [Maximum Entropy of a State Differential] The maximum entropy of a state differ-

ential δ i
j = 〈w

i j
1 ,w

i j
2 , ...,w

i j
l 〉, is defined as Hmax(δ

i
j) =

l
∑

z=1
Hmax(w

i j
z ) =

l
∑

z=1
(−

2m−1
∑

q=0
pwi j

z
q log2(pwi j

z
q )),

where each wi j
z is independent and uniformly distributed within the range [0,2m−1], given m is

the bit width of variable wi j
z .

Note that, the maximum entropy defined here assumes the uniformity and independence of the
associated random variables within a specific range [0,2m−1], where m is the bit length of each
variable. In case, the variable is not uniform within this complete range the entropy will be less than
the maximum entropy. Correlations among the variables will also cause entropy reduction. Next,
we define the distinguishing criteria – the decision criterion for determining the distinguishing
capability of state differentials.

Definition 3. [Distinguisher Criteria] A state differential δ i
j is called a distinguisher if the entropy

H(δ i
j) is less than the maximum entropy of the state differential.

The main idea of our dynamic distinguisher identification scheme is to learn the distinguishers
from the fault simulation data, acquired from the executable cipher model by varying the plaintexts,
keys, and the fault values. Let us consider the differential execution trace ∆k corresponding to a
fault F . The values assumed by the variables associated with ∆k vary with the change of plaintext,
key and the fault value. Such variations result in a fault simulation dataset which is analyzed to
identify distinguishers. Let us denote the datasets corresponding to each state differential δ i

j as T
δ i

j
.
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Figure 1: Fault propagation in impossible differential fault attack on AES and formation of the
IDFA property (marked in red). None of the variables in this state differential can assume the value
0 for the correct key guess.

Each T
δ i

j
is a table, containing l, m-bit variables wi j

z (1≤ z≤ l) and data values, corresponding to
each of them. For convenience, we further denote each column of a T

δ i
j

as Twi j
z

. Corresponding to
each fault according to our formalization, we have many such tables corresponding to each state
differential in ∆k. Typically, a subset of the possible state differentials actually qualifies as potential
distinguishers. We denote T∆k = 〈Tδ 1

r
,Tδ 2

r
, ....,T

δ d
r
, ...,T

δ 1
R
,T

δ 2
R
, ....,T

δ d
R
〉 as the set of the tables for

the state differentials. Our data-based framework tests each δ i
j separately and decides whether it

constructs a distinguisher. Two distinct cases can be identified in the course of the distinguisher
identification which we outline next.

3.1.1 Case 1. The Variables are Independent, but not Uniform within the Complete
Range:

In this typical case, the probability distributions of individual state differential variables change,
while they still remain independent. Decrease in individual entropies of the variables due to
their non-uniformity over the complete range [0,2m−1] (note that uniformity may still hold over
some sub-range of [0,2m−1]), causes a drop in the total state differential entropy. The situation
is described in Algorithm 1, where the changed probability distributions are denoted as p′w

i j

z

(z= 1,2, ..., l), and the joint state differential entropy as HInd(δ
i
j)=∑

l
z=1(−∑

2m−1
q=0 p′w

i j
q

z log2(p′w
i j
q

z )).

Each column of the table T
δ i

j
(denoted as Twi j

z
), corresponding to each variable wi j

z is treated

separately for missing values (if any) within the range of [0,2m−1]. As a concrete example, if a
state differential pose an impossible differential property, none of the wi j

z s can assume value 0, and
as a result, the value 0 will be missing in the table Twi j

z
for any z. Information regarding the values

which are not missing are important in the context of the distinguisher and hence preserved for
each wi j

z in the set Rngwi j
z

. Typical examples of Case. 1 include the IDFA attack on AES and the
attack on PRESENT described in [JLSH13].

Example 1: IDFA Attack distinguisher on AES: IDFA attacks exploit a typical cipher
property that, depending on the fault, the variables of a state differential corresponding to some
internal state of a cipher may not attain certain values within their domains. Such a property is
used in IDFA attacks to distinguish correct key guesses from wrong ones. For the IDFA attack
on AES, a byte fault is injected at the beginning of the 7-th round of the cipher resulting in some
state differentials none of whose variables can assume the value 0, with the correct key guess. The
situation is elaborated in Fig. 1, where each large square represents an intermediate state differential
of AES, with the fault injected at the beginning of the 7-th round in the 0-th byte location. Each
small square in the figure represents a state differential variable of size one byte. The shaded
states in Fig. 1 denote the existence of an impossible differential, with all bytes being active (fault
difference cannot be 0). It is convenient to use the last among them as a distinguisher due to its
proximity to the ciphertext (marked red in Fig. 1).
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Table 2: Frequent Itemset Mining: Toy Example
TID v1 v2 v3 v4 v5
1 1 5 7 8 11
2 2 4 6 9 13
3 1 5 7 10 2
4 2 4 6 11 4
5 3 9 8 6 5
6 1 10 11 9 8
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Figure 2: Fault propagation in AES with the fault injected at the beginning of 8-th round. Distin-
guisher is formed at the input of the 10-th round S-Box (marked in red)

It is apparent that the distinguisher identification framework of ours identify this impossible
differential property as an instance of case 1. The RngChk function detects the absence of 0 in each

of the variables, and as a result, the entropy becomes HInd(δ
3
9 ) =∑

16
z=1(−∑

28−1
q=0 p′w

i j
q

z log2(p′w
i j
q

z )) =

∑
16
z=1(−0−∑

28−1
q=1

1
255 log2(

1
255 )) = ∑

16
z=1(−255× 1

255 log2(
1

255 )) = 127.90, which makes the state
differential qualify as a distinguisher. One should note that, the state differentials δ 1

9 and δ 2
9 also

possess the impossible differential property and are detected by the RngChk routine.

Example 2: A Distinguisher on PRESENT In this example, a fault is injected at the
beginning of the 28-th round of the PRESENT cipher. The width of the fault is of 16 bits.
The distinguisher identification algorithm, in this case, identify the input state of the S-Box of the
30− th round (δ 1

30) as the best distinguisher. The RngChk function identifies that each of the 4 bit
variables in this state differential can assume only 2 values among 24 possible values (although
the 2 values assumed may change depending on the fault locations), and as a result, the entropy
becomes HInd(δ

2
30) = ∑

16
z=1(−2× 1

2 log2(
1
2 )) = 16.

3.1.2 Case 2. The Variables are not Independent

The second case of the distinguisher identification problem deals with the scenarios where
correlations exist between some of the variables within a state differential, which eventually cause
the reduction of state differential entropy. Typical examples exist for the ciphers with MDS
matrices. Detection of the associations/correlations among the variables is crucial for calculating
the entropy HAssn(δ

i
j) = H(wi j

1 ,w
i j
2 , ...,w

i j
l ) in this case. We utilize well-known association rule

mining (itemset mining) strategies for this purpose.

Frequent Itemset and Association Rule Mining:
Association rule/itemset mining is a widely explored, classical problem in the domain of data

mining, which refers to the discovery of association relationships or correlations among a set
of items. Formally, given a large number of variables (attributes) (var1,var2, ...,varn), and a
table/database of values they assume within their respective domains, an item is defined as varq =
val, where val lies in the domain of varq. The simplest case occurs while dealing with discrete-
valued variables having small ranges, where each item can be defined precisely. If I = {i1, i2, ..., ia}
is a set of all items constructed from a table of discrete valued variables, then any Is ⊂ I is called
an itemset. The prime task of an association rule mining algorithm is to figure out associations (if
any) of the form A⇒ B, where both A and B are propositional logic formulae over the items.
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In the present context, we are mainly interested in itemsets and the variables associated with
them. The number of all possible itemsets are exponential with the size of I, and most of them
are not interesting for practical purpose. This fact leads to the finding of itemsets occurring
frequently in a table, which is known as frequent itemset mining. The frequent itemset mining task
is governed by a statistical parameter support, which represents the frequency of occurrence of
an itemset in the database. Formally support of an itemset Is in a table/database DB is defined as,
supp(Is) = |Is(ti)|/|DB|, where Is(ti) = {ti|ti is an entry in DB and ti contains Is}. An itemset
is called a frequent itemset if its support is greater than or equal to some predefined minimum
support value. Further, an itemset is called a maximal frequent itemset if none of its immediate
supersets is frequent.

To illustrate the above-mentioned concepts precisely, let us consider the toy database presented in
Table. 2. There are 5 discrete valued variables in this table having value ranges from 1 to 13. We
set the support as 2

6 = 0.33. It can be easily figured out from Table. 2, that there are two itemsets of
size 3, beyond this support threshold – namely (v1 = 1,v2 = 5,v3 = 7) and (v1 = 2,v2 = 4,v3 = 6).
It is worth to note that, no superset of these itemsets are frequent (that is, these are the maximal
frequent itemsets), and all subsets of these are frequent. Further, it is interesting to note that, for
variable v4 and v5 all the itemsets are of cardinality 1. Intuitively, this implies that the variables
v4 and v5 are statistically uncorrelated. Note that, setting the proper support is imperative, as
otherwise, one may obtain a large number of itemsets of little practical interest.

Finding Itemsets within State Differentials:
In the context of distinguisher identification, we are mainly interested in the maximal frequent

itemsets within some reasonable support. The key idea is to figure out the variables within a state
differential, which are strongly correlated. For this purpose, we utilize the well-known Apriori
association rule mining framework. The complete procedure is described in Algorithm 2. The
algorithm takes a T

δ i
j

as input, which is then fed to the Apriori function after some basic prepro-
cessing. From, each of the itemsets generated by the miner, we separate out the variables and create
sets called Variable Sets. Variables within the same variable set are dependent, whereas they are
assumed to be independent across different variable sets. Multiple itemsets exist corresponding to
each Variable Set and a table is formed which stores each Variable Set, along with its corresponding
itemsets. This table contains complete information regarding the distinguisher of our interest

and is represented here as a pair (V S
δ i

j
, {ISv

δ i
j
}
|V S

δ i
j
|

v=1
), where V S

δ i
j

denote the set of all variable

sets and {ISv
δ i

j
}
|V S

δ i
j
|

v=1
denote the set of itemsets corresponding to each variable set v. Next, the

state differential entropy is calculated using this table, which involves the calculation of the joint
distribution followed by the joint entropy of each variable set v ∈V S

δ i
j

(line 6-8 in Algorithm 2).
Using the independence assumption of the variable sets, these entropies can be summed up giving
the total entropy of the state as HAssn(δ

i
j).

Example 3. A Distinguisher for AES with a Byte Fault Injected at the Beginning of
8-th Round: This example elaborates the case 2 of the distinguisher identification problem. In
this attack a byte fault is injected at the 0th byte of AES state at the beginning of 8th round. The
propagation of the fault is illustrated in Fig. 2. Let us consider the state differential δ 1

10, which
is the output of the 9-th round MixColumn. This state differential achieves the smallest entropy
value and is eventually selected as the potential distinguisher for the attack. We now elaborate
the entropy calculation for this state differential. The state differential δ 1

10 = 〈w110
1 ,w110

2 , ...,w110
l 〉

contains 16 state differential variables, each with bit-width m = 8. The maximum entropy here is
Hmax(δ

1
10) = 128. However, the function Miner reveals variable associations. More specifically,

there are 4 variable sets (w110
1 ,w110

2 ,w110
3 ,w110

4 ), (w110
5 ,w110

6 ,w110
7 ,w110

8 ), (w110
9 ,w110

10 ,w110
11 ,w110

12 ),
and (w110

13 ,w110
14 ,w110

15 ,w110
16 ) (variable numbering was done column-wise maintaining the convention

in AES), each having 255 itemsets for them. The joint entropy of each variable set v becomes
HAssn(v) = ∑

255
q=1

1
255 log2(255) = 7.99, which finally results in the state differential entropy of
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Figure 3: Example: Subgraphs corresponding to different sub-operations of a cipher

HAssn(δ
1
10) = 4×7.99 = 31.96.

Complete Distinguisher Identification Flow:
The complete distinguisher identification algorithm takes the dataset T∆k = 〈Tδ 1

r
,Tδ 2

r
, ....,T

δ d
R
〉 as

input, and outputs a set Dist = {〈D i
j, H i

j〉}, where D i
j is a distinguisher corresponding to the state

δ i
j (only if δ i

j satisfies the distinguishing criterion), and H i
j is the entropy of this distinguisher.

The entropy H i
j is typically the minimum of HInd(δ

i
j), HAssn(δ

i
j) (returned by RngChk and Miner,

respectively), and Hmax(δ
i
j) (calculated according to the Definition 2). Indeed, H i

j < Hmax(δ
i
j) is

the essential criterion for a state differential to qualify as a distinguisher. It is worth to note that, D i
j

contains the complete description of a distinguisher, obtained by combining the outputs of RngChk

and Miner, given by, D i
j := 〈{wi j

z }l
z=1, {Rngwi j

z
}l

z=1, V S
δ i

j
, {ISv

δ i
j
}
|V S

δ i
j
|

v=1
〉. The pseudocode for this

algorithm is rather straightforward and is thus omitted here.

Determining the proper distinguisher:
The distinguisher identification step usually returns a set of potential distinguishers with their

respective entropies specifying their qualities. In general, the distinguisher having the lowest
entropy is the best for obvious reasons. However, the evaluation complexity of a given distinguisher
plays a crucial role in its selection for a practical attack, as will be shown in the next subsection.
After the completion of the first phase of the algorithm, we simply retain all the discovered
distinguishers. This is because their usefulness is difficult to decide at this point. However, some
of the distinguishers can be instantly eliminated based on some simple rules. It is mandatory
to have an S-Box between any distinguisher and the ciphertext. In an even strict sense, if one
intends to extract round keys from a specific round with a given distinguisher, he/she must have an
S-Box between the distinguisher and the key addition step. Otherwise, the difference equations for
key extraction cannot be constructed. Based on this rule, one can clearly eliminate some of the
distinguishers, if possible. A concrete example of such a situation is discussed in the next section
in the context of IDFA attack on AES.

3.2 Enabling Divide-and-Conquer in Distinguisher Enumeration algo-
rithm T

Injection of a fault results in a set of distinguishers with different entropy values, as shown in
the previous subsection. However, only a few of them are practically utilizable for attack, as the
usability of a distinguisher depends on the complexity of evaluating it exhaustively. In DFA, the
distinguishers are evaluated in the form of a system of difference equations (or inequations) and
the solution space of the system results in a reduced set of candidate keys containing the correct
key. Given this system, the practicality of a DFA attack depends on two factors:
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1. Distinguisher Evaluation Complexity: The complexity of exhaustively enumerating the
system for all possible key guesses.

2. Offline Complexity: Size of the remaining keyspace after distinguisher evaluation, which has
to be searched exhaustively.

Following the notation described in Eq. 5, we denote the Distinguisher Evaluation Complexity
with Comp(T ) where T is the distinguisher enumeration algorithm and Comp(·) denotes the
complexity of an algorithm. The Offline Complexity, on the other hand, is denoted with |R| where
R is the remaining key space after distinguisher evaluation. The Comp(T ) and the |R|, can be
estimated once the systems of equations for the distinguishers are in place. The Attack Complexity
of a DFA can be determined as:

Comp(A ) = max(Comp(T ), |R|) (6)

One should note that, the definition of attack complexity at this point assumes that only one fault
instance has been injected. The attack complexity indeed depends on the number of faults injected.
However, for most of the cases the required number of injections for making an attack practical
can be determined from the value of Comp(A ) with a single fault instance and so we define it in
terms of a single injection.

Knowing the systems of difference equations apriori, is not a very practical assumption for an
automated tool, as it depends upon the distinguisher(s) chosen. The most critical factor associated
with distinguisher evaluation is to choose a proper divide-and-conquer strategy for enumerating
the solution space of the difference equation system. Instead of guessing the complete key at
once (which has a prohibitively large complexity), such a strategy allows guessing small key
parts exhaustively and as a result the correct key can be recovered in parts with a practical time
complexity. In this work, we construct such equation systems automatically in an abstract form,
which is suitable for the purpose of attack complexity evaluation. Further, this abstract description
can be extended to concrete fault difference equations, if required. To automatically determine
the divide-and-conquer strategy we propose a graph based abstraction of the cipher called Cipher
Dependency Graph (CDG). Let us represent each state si

j as si
j = 〈b

i j
1 ,b

i j
2 , ....,b

i j
λ
〉, where each bi j

z

corresponds to a bit variable1. Given this representation of the states, we define the CDG for a
block cipher as follows:

Definition 4. [Cipher Dependency Graph] A Cipher Dependency Graph (CDG) for a block
cipher is a directed acyclic graph (DAG) G 〈V,E〉, where every node v ∈ V corresponds to a bit
variable bi j

z (1≤ z≤ λ ) at the input of round j and sub-operation i of the cipher. A directed edge
e ∈ E represents the dependency between two bit variables belonging to two consecutive states si

j

and si+1
j (or s1

j+1) imposed by the sub-operation oi+1
j at the abstraction level of bits, considering

the bit variable of si
j as input, and that of si+1

j as the output, respectively.

Certain simplifying assumptions were made, while constructing the CDGs. Some basic CDG
building blocks are illustrated in Fig. 3. For the S-Boxes, we assume that each output variable is
dependent on all the S-Box inputs (Fig. 3 (a)). The key addition operations are represented by
structures shown in Fig. 3 (b). Permutation layers are often straightforward and thus not shown here.
However, some linear operations like MDS matrices need special care (more specifically the linear
layers which involves XOR operations). Fig. 3 (d) represents one such scenario for 8-bit variables,
which are shown in groups for convenience. The MDS structures are also complete graphs (of 32
vertices in this example). It is worth to mention that, the graph G is completely cipher-specific, and
thus one needs to construct it only once while doing the exploitable fault analysis for a specific
cipher. A CDG, corresponding to a fault attack test case on PRESENT is illustrated in Fig. 4. For
ease of understanding, only the sub-graph relevant to an attack example is shown2. Interestingly,
the CDG is already divided into clearly identifiable levels.

1This is in contrary to the last subsection, where they (the states) were represented as vectors of variables of size m bits.
2We have described the distinguisher corresponding to this attack in Example 2.
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Figure 4: Example: Finding Key Parts for the Distinguisher Evaluations in PRESENT
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Figure 5: Example: Finding Key Parts for the Distinguisher Evaluations in AES:

Construction of a Divide and Conquer Strategy:
The next step to the CDG construction is the identification of independent key parts to be guessed.

For a given distinguisher, we initiate a series of breadth first searches (BFS) up to the ciphertexts
nodes of the CDG. Each BFS search begins with a bit variable at the state, where the distinguisher
has been constructed. The search typically figures out all the mutually dependent bit variables
starting from the start node, in the form of the BFS tree (refer to Fig. 4 for example). Once the
BFS tree is obtained, one can figure out the key nodes attached to it in O(1) complexity.

Example 4: For the sake of illustration, let us refer to Fig. 4 once again. The distinguisher
under consideration is the one described in Example 2, which is being constructed at the input
of the 30th round S-Box operation (the first layer of nodes shown in Fig. 4.) In the figure, the
colored circles represent the associated state bits one must compute to calculate the first bit in the
distinguisher. The key bits one need to guess to calculate the shaded state bits are shown in red,
while the associated state bits are represented in grey. All the colored variables here are the part of
a BFS tree. Further, from the BFS tree of Fig. 4, the key variables to be guessed can be extracted
which are 20 in number for the first bit. In summary, to calculate the first bit of the distinguisher,
it is sufficient to guess these 20 bits together and no other key bit is required to be guessed. This
provides the divide-and-conquer we require.

Optimizations: Certain intricacies are there to be taken care of while collecting the independent
key parts for a distinguisher. Interestingly, not all key variables obtained by the BFS search are
necessary. To illustrate this, we refer to the Fig. 5(a), which corresponds to the partial CDG for the
IDFA attack on AES. 1 For convenience, the word level representation of the CDG is also provided
along with (Fig. 5(b)). It is easy to observe from the word level representation that the key bits

1The IDFA distinguisher was described in Example 1.
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corresponding to k9 are not required to be guessed for distinguisher evaluation. The reason behind
this fact is that there is no nonlinear layer between the key variables in k9 and the distinguisher
in S9

SR. As a result, these key variables get cancelled out with the calculation of the differential.
However, these key variables will still be detected by the BFS based search. Fortunately, we can
easily enhance the proposed mechanism to encompass such scenarios. The idea is to keep the track
of the non-linear layers (S-Boxes) encountered, at each level of the CDG during the BFS traversal.
This can be easily done by maintaining counters within the nodes of the CDG. While collecting the
key variables, if it is found that the level corresponding to the key variables is not preceded by any
S-Box level, the keys can be discarded. Referring to Fig. 5(a), the key nodes in blue color thus can
be discarded. The first bit of this distinguisher can be evaluated by guessing just 32 key bits of k10.

Calculation of the Distinguisher Evaluation Complexity: The BFS based key part finding
algorithm actually returns sets of key bits, corresponding to each bit of the distinguisher state.
However, in order to calculate the quantities Comp(T ) and |R| we need to exploit some more
structural properties of the cipher, already present in the CDG. As for most of the time, we are
dealing with m bit distinguisher variables, it is trivial to combine the key bit sets corresponding
to each m bit variable. One should also consider combining the key bit sets corresponding to the
variable sets (if any). While evaluating any of these variables/variable sets, the corresponding
keys must be guessed simultaneously. At this point, certain other things are to be taken care of.
Let us consider a distinguisher δ i

j = 〈w
i j
1 ,w

i j
2 , ...,w

i j
l 〉. Corresponding to each wi j

z , there exists
a set of key bit variables. An obvious way is to view the relationships as a bipartite graph, as
shown in Fig 6. Without loss of generality, we just consider variables and not the variable sets
in this discussion, although the same logic applies to the later one. Let us denote the key set
corresponding to each variable wi j

z as Key Set (KSz). The key sets, however, may have overlaps.
As a concrete example, one may consider the PRESENT case study depicted in Fig. 4. All 4
consecutive nibbles in the distinguisher at round 30 (shown in the diagram as layer SB30), depends
upon the same 16 round key bits from the last round. Such overlaps are extremely important from
the divide-and-conquer point of view. This is because, the overlaps indicate that all the difference
equations, that can be constructed involving these key bits and the associated variables wi j

z will
share the key variables. As a result they must be evaluated simultaneously. Putting it in a more
simplified manner, if there are overlaps, computation related to all the overlapping variables must
be performed simultaneously. To deal with such cases, we define Maximum Independent Key Sets
(MKS), which are non-overlapping subsets of key variables, constructed by taking the union of
overlapping KSzs. Each MKSh also impose a grouping on the corresponding wi j

z s attached to its
component KSs. We call such groupings as Variable Groups (VG).1 Intuitively, each 〈V Gh,MKSh〉
tuple refers to a set of independent equations to be solved for the key extraction. In our graph based
representation, we informally refer them as independently computable chunks/subparts.

Calculation of Comp(T ) becomes trivial after the above-mentioned grouping. Let us consider,
an MKS as MKSh and the corresponding variable group as V Gh (note that variable groups may
also include variable sets as its elements.). Each V Gh can be evaluated independently. Let us
assume that we have M such V Ghs along with their corresponding MKShs. The time complexity of
computing each of them is given as Comp(Th) = 2|MKSh|, 1≤ h≤M. It is quite obvious that such
a search can be performed (and should be) in a parallel manner. As a result, the overall complexity
of the distinguisher enumeration algorithm T becomes:

Comp(T ) = maxh(Comp(T1),Comp(T2), ...,Comp(TM)) (7)

Example 7. IDFA attack on AES: In this example, we figure out the evaluation complexity
of the IDFA diatinguisher. It is observed that each byte of the distinguisher depends on 32 key bits
from the 10-th round. Further, 4 consecutive state differential variables are found to depend on
the same 32 key bits. Following our notation size of each V Gh here is 4 state differential variables

1Note that we have used the term “group” to differentiate it from the variable sets. From this point onwards, we shall
use variable set and variable group to identify these two separate entities. Variable sets can be members of variable groups.
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Figure 6: Illustration of the Relationships between Key and Distinguisher Variables

and the associated MKSh contains 32 bits of key. Clearly, the distinguisher evaluation complexity
Comp(T ) becomes 232 in this case.

Example 8. AES with 8th round fault injection: In this case, the distinguisher consists of 4
variable sets, containing 4 variables each. Each 8-bit variable in the distinguisher state depends on
8 consecutive key bits (that is key bytes), and with the existence of variable sets having cardinality
4, one must consider 8×4 = 32 key bits simultaneously, for guessing (i.e. |MKSh|= 32). Further,
the key bytes associated with each variable set are independent, and hence each V Gh will contain
only a single variable set. Overall, Comp(T ) = 232.

Example 9. PRESENT with 28th round fault injection: The distinguisher here is formed
at the input of the 30-th round S-Box. As it can be seen from Fig. 4, each distinguisher bit (actually
each nibble) here depends on 20 key bits. However, due to the overlappings present in different
nibble-wise key sets (KSs), the distinguisher evaluation process can eventually be partitioned into 4
independent (MKS,V G) pairs, each having 32 key bits involved – 16 from the last round and rest
from the penultimate round. The size of corresponding V Ghs become 4 state differential variables
each. As a result, Comp(T ) becomes 232.

3.3 Complexity Evaluation of the Remaining Key Space R

The final step in finding a successful DFA is the evaluation of the remaining keyspace size (|R|)
after the fault injection. Often, the complexity remains beyond the practical exhaustive search
complexity with a single fault injection and as a result, one might require multiple faulty ciphertexts.
Nevertheless, the required number of faults for the successful attack can be estimated from the
remaining space complexity of a single injection, and hence we specifically focus on the remaining
search space with a single fault. A distinguisher D i

j and the corresponding key parts obtained
in the last two steps can be utilized to figure out the remaining keyspace complexity efficiently.
Another important component of this computation is the differential characteristic of the S-Boxes.
Differential characteristic (DC) of an S-Box S basically reports the average number of solutions an
S-Box differential equation may have. They can be calculated from the Differential Distribution
Tables (DDT) of S-Boxs. The DC values for different ciphers can be found in [KRH17].

The algorithm for remaining search space evaluation is presented in Algorithm 3. The main
idea in this step is to figure out the probability, with which the distinguishing property occurs
during distinguisher enumeration with random key guesses. This probability is then multiplied
with the total key space in the corresponding MKS, giving the remaining search space complexity.
Referring to the algorithm, the input consists of the corresponding distinguisher D i

j, and a set of
tuples with cardinality M, which contains the MKSs and corresponding VGs. As an additional
component, the DC characteristic of the S-Boxes H h

S corresponding to each MKSh, V Gh pair
is also supplied. The H h

S is the DC value corresponding to each (MKSh, V Gh) pair. In some
cases, a distinguisher may involve multiple S-Box layers and as a result H h

S should be multiplied
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many times for each distinguisher variable (or variable set) evaluation. To keep things simple we
directly provide the algorithm with properly tailored values within H h

S . Values of the H h
S with

above-mentioned tailoring can be trivially obtained from the CDGs described in the last subsection,
just by keeping track of the S-Boxes encountered with the distinguisher.

Example 9. IDFA attack on AES: In this case, it turns out that |R|V G1 = 232× ( 255
28 )4

(roughly equal to 232−226). This is because each state differential variable in V G1 assumes the
distinguishing property with probability 255

28 and there are 4 such variables in V G1. The size of
the remaining keyspaces are the same for other three 〈MKSh,V Gh〉 pairs. The large size of the
remaining keyspace indicates the need of multiple fault injection. Although, the estimation of the
required number of faults here is slightly nontrivial due to the impossible differential inequalities
involved, it can be estimated using the construction from [DFL11]. Overall, the attack complexity
is O(232) and total 211 faults will be required to extract the key uniquely [DFL11].

Example 10. AES with 8th round fault injection: The MKS and VGs, which are the inputs
to the Algorithm 3 are 4 in number in this case. Further, each VG contains a single variable set and
32 key bits corresponding to that. One needs to consider the number of itemsets corresponding to
each variable set (or variable group, as in this case each group contains a single variable set) in this
case. For each of the 4 variable sets, the probability of occurrence of the distinguishing criterion
is P[V Gh] =

255
232 . The DC characteristic of AES S-Box is found to be 1 and the total number of

key possibilities are 232. The remaining keyspace corresponding to each variable set thus becomes
232×2−24 = 28, leading to a complete remaining search space complexity of (28)4 = 232. One
should exhaustively search this remaining keyspace for the correct key. The total complexity of the
attack, considering both Comp(T ) and |R| thus remains 232.

In [TMA11], Tunstall et. al. presented a 2 step approach for the attack described here, which
eventually reduces the remaining keyspace size to 28. The idea is to complete the attack just
described, and then to exploit another distinguisher δ 1

9 which was previously costly to evaluate
on the complete keyspace. However, one should notice that the attack complexity still remains
232. The distinguisher identification framework of ExpFault detects both the distinguishers. The
two-step attack requires the existence of the inverted key schedule equations. The proposed tool in
its current form requires some manual intervention to handle attacks using multiple distinguishers.
In future versions of the tool this dependency will be removed. However, it is worth mentioning
that, the results already outputted by the tool are sufficient to easily discover such attacks.

Example 11. Attack on PRESENT: The distinguisher evaluation process, in this case, can
eventually be partitioned into 4 independent 〈MKSh,V Gh〉 pairs, each having evaluation complexity
of 232. For each of the 4 (MKSh,V Gh) pair, the probability of occurrence of the distinguishing
criterion is P[V Gh] = ( 2

16 )
4 = 2−12, and the remaining key space size is |R|V Gh = 220. With a

single fault injection, thus the keyspace reduces to 280 from 2128 1 in this case, and the attack
demands the injection of at least another fault (complexity becomes (232× (2−12)2)4 = 232, which
is fairly reasonable). In summary, with 2 fault injections of 16 bit width, the 80 bit key can be
figured out with Comp(T ) = 232 and |R|= 232.

Discussion: Before going to the case studies, let us summarize the ExpFault framework in
nutshell. For each fault instance, the tool analyzes all state differentials starting from the fault
injection point and figures out a set of distinguishers from them. Each of these distinguishers
is then analyzed with the graph-based framework and the evaluation and offline complexities
are determined. The best performing distinguisher can be instantly chosen to realize the attack.
However, in certain cases, multiple distinguishers can be combined to get better attacks. In the

1The distinguisher here simultaneously extracts round keys from last two rounds of PRESENT. Total 128 key bits are
extracted which can uniquely determine the 80 bit master key by using key scheduling equations.
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Algorithm 3 Procedure EVAL_ SEARCH_ SPACE
Input: D i

j , {〈MKSh, V Gh,H h
S 〉}M

h=1
Output: Complexity of the remaining search space R, after one fault injection

(|R|).
1: |R| := 1
2: for each V Gh do
3: P[V Gh] := 1
4: for each gh ∈V Gh do
5: if (V S

δ i
j
== φ ) then . D i

j includes no variable sets

6: count := |Rnggh |
7: bc := m
8: else . D i

j includes variable sets
9: count := |IS

gh
δ i

j
|

10: bc :=VarCount(gh) ×m
11: end if
12: P[V Gh] := P[V Gh]× count

2bc
13: end for
14: ksize := BitCount(MKSh) . 1

15: |R|V Gh := 2ksize ×P[V Gh]× (H h
S )|V Gh |

16: |R| := |R|× |R|V Gh
17: end for
18: Return |R|

1BitCount returns the number of bit variables in (MKSh)

Table 3: Summary of DFA attacks on GIFT. We consider a fault injection attempt a successful
attack only if both the evaluation complexity and |R| is less than the size of the key space.
Fault
Width Round Attack Results

Evaluation
Complexity |R| No.

Faults
Keys
Extracted Comments

4

24 — — — — No attack found
25 214 214 1 128 Best attack found
26 22 22 1 96 Cannot extract full key
27 22 22 1 64 Cannot extract full key

8

24 — — — — No attack found
25 216 216 1 128 Best attack found
26 22 24 1 96 Cannot extract full key
27 22 24 1 64 Cannot extract full key

next section, we provide a typical example of such situations. Our tool was able to figure out the
optimal attacks in these cases. Further details on the framework are provided in Appendix A.

4 Case Studies
Until now we have provided proof-of-concept evaluations of the proposed framework on two
well-known ciphers – AES-128 and PRESENT-80. Three known attacks have been elaborated step
by step in the form of examples. However, both of the ciphers have been examined thoroughly
for exploitable faults. It has been observed that exploitable faults are limited up to 7-th round in
AES and 28-th round in PRESENT, which agrees with the existing literature. In this section, we
evaluate the ExpFault framework on a recently proposed cipher called GIFT [BPP+17]. To the
best of our knowledge, GIFT has never been considered explicitly in the context of DFA. With help
of the framework, we were able to figure out several interesting attack instances, which establishes
the effectiveness of the proposed framework in the context of exploitable fault characterization.

4.1 Differential Fault Attack on GIFT Block Cipher
GIFT [BPP+17] is a lightweight block cipher proposed in CHES 2017. The basic construction
of the algorithm bears resemblance to the PRESENT block cipher. However, specific changes
were made to make it even more lightweight while ensuring improved resistance against certain
attacks like linear hulls. More specifically, GIFT utilizes a different 4×4 S-Box and an improved
bit permutation layer along with a new key addition layer which uses only 32 and 64 bit round
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Table 4: Distinguishers of the best attack found
Distinguisher Location Description

w227
1 ∈ {0,3,7,11,15}, w227

2 ∈ {0,3,7,11,15}, w227
3 ∈ {0,3,7,11,15}, w227

4 ∈ {0,3,7,11,15},
Input of w227

5 ∈ {0,3,5,7,9,13}, w227
6 ∈ {0,3,5,7,9,13}, w227

7 ∈ {0,3,5,7,9,13}, w227
8 ∈ {0,3,5,7,9,13},

D2
27 PermBits w227

9 ∈ {0,5,6,9,10,13,14}, w227
10 ∈ {0,5,6,9,10,13,14}, w227

11 ∈ {0,5,6,9,10,13,14},
in round 27 w227

12 ∈ {0,5,6,9,10,13,14},
w227

13 ∈ {0,5,6,8,9,10,11,12,15}, w227
14 ∈ {0,5,6,8,9,10,11,12,15},

w227
15 ∈ {0,5,6,8,9,10,11,12,15}, w227

16 ∈ {0,5,6,8,9,10,11,12,15}
Input of w127

1 ∈ {0,8}, w127
2 ∈ {0,8}, w127

3 ∈ {0,8}, w127
4 ∈ {0,8}, w127

5 ∈ {0,4}, w127
6 ∈ {0,4},

D1
27 SubCells in w127

7 ∈ {0,4}, w127
8 ∈ {0,4}, w127

9 ∈ {0,2}, w127
10 ∈ {0,2}, w127

11 ∈ {0,2},
round 27 w127

12 ∈ {0,2}, w127
13 ∈ {0,1}, w127

14 ∈ {0,1}, w127
15 ∈ {0,1}, w127

16 ∈ {0,1}
Input of w126

1 ∈ {0,8}, w126
2 ∈ {0}, w126

3 ∈ {0}, w126
4 ∈ {0}, w126

5 ∈ {0,4}, w126
6 ∈ {0},

D1
26 SubCells in w126

7 ∈ {0}, w126
8 ∈ {0}, w126

9 ∈ {0,2}, w126
10 ∈ {0}, w126

11 ∈ {0},
round 26 w126

12 ∈ {0}, w126
13 ∈ {0,1}, w126

14 ∈ {0}, w126
15 ∈ {0}, w126

16 ∈ {0}
Input of w125

1 ∈ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}, w125
2 ∈ {0}, w125

3 ∈ {0},
D1

25 SubCells in w125
4 ∈ {0}, w125

5 ∈ {0}, w125
6 ∈ {0}, w125

7 ∈ {0}, w125
8 ∈ {0}, w125

9 ∈ {0}, w125
10 ∈ {0}, w125

11 ∈ {0},
round 25 w125

12 ∈ {0}, w125
13 ∈ {0}, w125

14 ∈ {0}, w125
15 ∈ {0}, w125

16 ∈ {0}

keys for GIFT-64 and GIFT-128, respectively. The round keys are derived from a 128-bit key state
utilizing a simple linear key schedule operation. It has been demonstrated in [BPP+17], that even
with these simplifications, GIFT is able to provide comparable (and sometimes improved) security
margins than that of PRESENT, SIMON [BTCS+15], and SKINNY, for classical attacks.

In this work, we focus on GIFT-64 which iterates 28 times to generate the ciphertext. The
round structure consists of 3 sub-operations SubCells, PermBits, and AddRoundKey, where
SubCells is the nonlinear S-Box layer, PermBits is the bit permutation and AddRoundKey is the
key addition layer. In order to optimize hardware resources, which is, in fact, the main design goal
of GIFT, the AddRoundKey layer XORs only 32 round key bits and 6 round constant bits in each
round. More specifically, 2 round key bits are XORed with each nibble. The simple key schedule
operation of GIFT deserves special mention in this context. It is observed that for any 4 consecutive
rounds, the round keys used are completely independent of each other. This observation has a
significant impact on the complexities of the fault attacks. In this subsection, we aim to examine
the security of GIFT against differential fault attacks, which to the best of our knowledge has
never been considered explicitly. In [PBMB17] authors proposed a side channel assisted DFA on
PRESENT, which is claimed to be equally applicable for GIFT. In [BJB18] Breier et. al. proposed
a side channel assisted differential plaintext attack on PRESENT which seems to be applicable
to GIFT as well. None of these attacks, so far, have tried classical DFA attacks on GIFT, which
makes GIFT a perfect candidate to be evaluated with our proposed framework.

After an extensive evaluation, we figured out several interesting attacks on GIFT-64, mostly
while faults were injected at 25, 26, and 27-th rounds. Evaluation of these attacks was done based
on 3 parameters – the distinguisher evaluation complexity Comp(T ), size of the remaining key
search space |R| and the number of injected faults, all of which are outputted by our tool for each
fault location. A summary of these attacks is presented in Table 3. In this subsection, we shall
elaborate one attack where a 4-bit fault is injected before the S-Box operation at the 25-th round.
This is the most efficient attack found so far with our framework. Further details of the attacks can
be found in the Appendix B of this paper, where we also provide a proof of optimality for the best
attack found from an information theoretic perspective.

Injection of one 4-bit fault at the beginning of 25 round constructs several distinguishers.
Examples of these distinguishers are provided in Table. 4. Here the fault is injected at nibble
location 0 from left. The attack will be described based on these distinguishers, as we have observed
that injections at other nibble locations result in equivalent situations. Notably, none of these
distinguishers contain any variable sets (i.e. variables are independent within the state differentials).
However, the values assumed by the state differential variables differ which eventually create the
distinguishing properties. The very first distinguisher utilized is being constructed in round 27 at
the output of the S-Boxes (D2

27). This distinguisher (Row 1 of Table. 4) results in the extraction of
the round keys of the 28th round. The evaluation complexity of this distinguisher is Comp(T ) = 28

and the |R| = 211.53 ≈ 212, with a single fault injection. In other words, one needs to guess the
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32 bit round key in 8 bit chunks to reduce the key search space from 232 to 212.1 The cause of
obtaining such Comp(T ) is elaborated in Appendix B with graphs outputted by the tool.

In order to obtain the master-key of GIFT, one must extract all the 128-bits. Unfortunately,
the equations from the key schedule cannot be used in extracting rest of the key-bits with the
knowledge of 32 bit, due to the very special nature of GIFT key schedule mentioned above. One
must extract all 4 consecutive round keys in order to get a complete attack. In this scenario, our
framework efficiently exploits all other distinguishers obtained. The second distinguisher that we
utilize is constructed at the input of the S-Boxes at round 27 (D1

27). This distinguisher, which can
extract the round keys of round 27, has an evaluation complexity of 22 provided the keys of round
28 are known. For each of the 212 choices of the 28th round key, the size of the remaining key
space (i.e. the keyspace of the round keys from 27-th round) is 1, which leaves us with total 212

choices for the keys of last two rounds.
In the third phase of the attack, we utilize the distinguisher formed at the input of the S-Box

layer of round 26 (D1
26). With the knowledge of the keys from round 27 and 28, keys of round 26

can be determined uniquely with an evaluation complexity of 22 only. As a result, the evaluation
this distinguisher leaves us with total 212 choices for last 3 round keys. In this final step of the
attack, we exploit the state differential as distinguisher where the fault was actually injected (D1

25).
30 key bits of round 25 can be uniquely determined (for each of the 212 choices of previous round
keys), except the 2 bits associated with nibble 0, which is the fault injection point. This is because
this nibble provides very little entropy reduction (only the value 0 is missing) and exhaustive search
is the best option here (because we have only 22 choices for the key bits associated). As a result,
we get total 22 choices for the 25-th round keys for each choice of previous round keys. Finally,
the size of the total keyspace becomes 212×22 = 214. The overall value of Comp(T ) is given by
max(28,22×212,22×212,22×212) = 214. Each of the components of Comp(T ) corresponds to
an independent computation chunk which can be executed on a single thread, in parallel to other
similar chunks running in other threads. Such independent computation chucks result from the
divide-and-conquer strategy automatically identified by our tool.

5 Conclusion
In this paper, we have proposed an automated framework for exploitable fault identification in
modern block ciphers. The main idea is to estimate the attack complexity without doing the attack in
the original sense. Moreover, the proposed framework is fairly generic to cover most of the existing
block ciphers, and provides high fault coverage and degree of automation. Three step-by-step case
studies on different ciphers and fault attack instances were presented to establish the claims. Further,
the tool has been utilized to figure out DFA attacks on a recently proposed block cipher GIFT.
Future works will target further automation and generalization of the proposed framework as well
as comprehensive analysis of different existing ciphers using it. Some obvious future extensions
include the attack automation on key schedule and round counters. Another extremely important
goal could be the detection of integral attacks, DFIA attacks, and MitM attacks [Kim11, LLW+15]
which also seems to be feasible in this data-analysis based framework.Design of countermeasures
with the assistance from this tool could be another research direction.
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1Following the terminology used in this paper, here we have |MKSh|= 8 and |V Gh|= 4
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A Implementation Details of ExpFault

This section elaborates the implementation details of an initial prototype of the ExpFault framework.
The tool is mostly written in Python-3, with an exception for the data mining algorithm (Apriori)
for which we use the WEKA [HFH+09] toolbox implemented in Java. In the following subsections,
several attributes of the tool will be elaborated. We shall also point out some limitations of our
current implementation in nutshell.

A.1 Assumptions

The main reason behind the development of ExpFault is a fast and cipher-oblivious characterization
of exploitable faults. As we shall show in later subsections, even in its prototype implementation,
ExpFault is able to characterize individual fault instances within a very reasonable time. In this
work, we have characterized each fault location of the ciphers under consideration in an exhaustive
manner (only up to a reasonable number of rounds.). However, it is worth mentioning that the
characterization can be made significantly faster considering the structural symmetries present in
standard block ciphers. For example, it is well-known that all 16 byte locations of AES in a specific
stage of computation are equivalent as fault injection points. The presence of such symmetries
should extensively reduce the number of fault locations to be checked. However, a systematic
analysis of such equivalences is out of scope for this paper.

Exploitable fault analysis is expected to be performed by an evaluator. During the construction
of the framework, we made assumptions which are only consistent in the context of an evaluator.
For example, the fault locations are assumed to be known, which is indeed a reasonable assumption
in our case. However, it is worth mentioning that the attacks discovered by our tool can be extended
in an unknown fault location context with a reasonable penalty incurred on the attack complexities.

A.2 Inputs and Outputs

In its current form, ExpFault takes an executable of the cipher algorithm as input, which is mainly
used to generate fault simulation traces. Simulation traces are dumped in .arff format which is
the default data format for the WEKA toolset. The framework also expects an input file describing
the cipher, which is used to generate the CDG and other internal data structures. We call this input
as the Cipher Description file. A cipher description file mainly contains abstract descriptions of
the sub-operations as specified in Fig. 3. As a concrete example, we provide the description for
two 4×4 S-Boxes in Fig. 7. It can be observed that the S-Box is specified in a bitwise manner,
where the number at the left side of the “=” sign specifies the sink node of a directed edge, and
the number at the right side of the “=” specifies the source nodes. The complete S-Box layer is
required to be specified within a single <BEGINBLOCK>· · ·<ENDBLOCK> construct. Likewise one
can define other sub-operations.

The outputs corresponding to each fault injection is printed in a text file. The standard output
contains the description of all the distinguishers found along with their entropy. The evaluation
complexity of each distinguisher and the size of the remaining keyspace after distinguisher eval-
uation is also outputted along with that. Attack evaluation with multiple distinguishers and key
schedule equations is not fully automated yet. However, the outputs provided are sufficient to figure
out attacks using multiple distinguishers. Example of a single distinguisher is provided in Fig. 8,
just to illustrate the output format and the information provided. It is also possible to extract the
independent and parallely executable computation chunks (resulted from the divide-and-conquer
based distinguisher evaluation) in the form of subgraphs from ExpFault. Such subgraphs are
extremely useful for interpreting and implementing the attacks. Examples of such subgraphs will
be provided in Appendix B.
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BEGINBLOCK SLAYER
OPTYPE NONLINEAR
OPINPUT 64
OPOUTPUT 64
% 0 = 0,1,2,3
% 1 = 0,1,2,3
% 2 = 0,1,2,3
% 3 = 0,1,2,3

% 4 = 4,5,6,7
% 5 = 4,5,6,7
% 6 = 4,5,6,7
% 7 = 4,5,6,7
:
:
:
:
ENDBLOCK SLAYER

0 1 2 3

0 2 31

4 5 6 7

4 6 75

...

Figure 7: Code snippet from cipher description file and its corresponding graphical representation

-----------------------------------------------------------
Distinguisher Evaluation Complexity (in log scale) 8
Remaining Key Space Complexity (in log scale) 11.53668207643374

Distinguisher Level 79
Round_no 27
Subop_no 2
Has_associations False
Entropy 43.536682076433735

V10 [0, 5, 6, 9, 10, 13, 14, ]
V12 [0, 5, 6, 8, 9, 10, 11, 12, 15, ]
V14 [0, 5, 6, 8, 9, 10, 11, 12, 15, ]
V15 [0, 5, 6, 8, 9, 10, 11, 12, 15, ]
V2 [0, 3, 7, 11, 15, ]
V6 [0, 3, 5, 7, 9, 13, ]
V8 [0, 5, 6, 9, 10, 13, 14, ]
V7 [0, 3, 5, 7, 9, 13, ]
V3 [0, 3, 7, 11, 15, ]
V1 [0, 3, 7, 11, 15, ]
V11 [0, 5, 6, 9, 10, 13, 14, ]
V9 [0, 5, 6, 9, 10, 13, 14, ]
V0 [0, 3, 7, 11, 15, ]
V13 [0, 5, 6, 8, 9, 10, 11, 12, 15, ]
V5 [0, 3, 5, 7, 9, 13, ]
V4 [0, 3, 5, 7, 9, 13, ]

No Variable sets exist..

----------------------------------

Figure 8: Description of a ditinguisher from the output file.
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Figure 9: Runtime analysis: different components of the runtime are shown. Runtimes of RngChk
and CDG based complexity analysis are found to be negligibly small (shown in zoom).

A.3 Setup for Distinguisher Identification
Frequent itemset mining is crucially dependent on the support parameter of the mining algorithm.
The implementation of the Apriori algorithm we used (from WEKA package [HFH+09]), iteratively
decrements the support from a value of 1.0 to a predefined lower bound. To generate all desired
maximal frequent itemsets, the support lower bound of Apriori was experimentally decided to be
1

2m (m: bit length of each variable). The maximality of the itemsets was ensured experimentally by
varying the support threshold as well as the data set size, which also nullifies the risk of generating
an insufficient number of itemsets. For ciphers having MDS or similar operations we found that
the dataset size of 12750 (that is 10 plaintexts, 5 different keys, and all 255 possible fault values)
for 128-bit ciphers , and 750 for 64-bit ciphers (10 plaintexts, 5 different keys, and all 15 possible
fault values), are sufficient to discover all possible itemsets. The relatively small dataset size is
attributed to their deterministic fault propagation patterns (i.e. number of active S-Boxes are same
for all fault values at a specific location). However, for ciphers with bit permutation operations, the
dataset size should be larger as the fault propagation pattern becomes probabilistic. We found that
a dataset of 25500 works well for both PRESENT and GIFT. Varying the keys, plaintexts and the
fault values ensure that the discovered rules/itemsets are independent of all these factors, which is
essential for a DFA distinguisher. An interesting feature of the itemset generation algorithm is that
it returns null when all the variables are independent. The RngChk function does not require any
parameter setting and works fine with the dataset sizes provided above.

There always exists a risk of generating spurious itemsets in frequent itemset mining, especially
with very low support values. However, detecting such spurious tuples are not very difficult as the
variables from consecutive state differentials have well-defined mathematical relations. Any itemset
not obeying these relations can be easily removed as spurious. In our experiments, we observed
some spurious tuples for GIFT with low support values which were successfully eliminated using
the structural knowledge from the cipher.1 Such structural knowledge is already available in the
form of the CDG and thus can be exploited without incurring any significant computational cost.

1In fact, all the itemsets found for GIFT were spurious and the cipher does not have variable associations. In such
cases, the support can be increased to stop spurious itemset generation.
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A.4 Analysis of Runtime
The runtime of the framework is a crucial factor for exploitable fault identification. In order to get
a clear idea about different subparts of the framework, extensive runtime analysis was performed.
The results are summarized in Fig. 9 for different attack examples considered in this paper. All the
experiments were performed on a laptop with Intel Core i5 processor, 8 Gb RAM running Ubuntu
16.04 as the OS.

It is evident from Fig. 9 that the Apriori algorithm dominates the runtime which is about 1220
sec. for the AES 7th round attack example and moderately less in other examples. Fortunately,
this step can be extensively parallelized as the analysis of state differential datasets are completely
independent of each other. Although, the current prototype does not implement any such paral-
lelization, improvement of runtime can be anticipated. Similar arguments can be made for the fault
simulation which is another dominating factor in the tool runtime. As an alternative strategy for
runtime improvement, knowledge about the cipher structure can be exploited. For example, it is
quite well understood that ciphers with bit permutation layers cannot have variable associations.
One may opt to skip the itemset mining step while analyzing such ciphers, in order to improve
the runtime. The third dominating component of the runtime is the data processing operation
which is an implementation specific overhead. This timing overhead is attributed to the python
wrapper for reading .arff files. In future versions of the tool, we shall try to get rid of such
unnecessary overheads. To summarize, the framework takes less than an hour to analyze each
fault instance which can be improved further. The usability of ExpFault for exploitable fault space
characterization is thus evident.

A.5 Current Limitations
The limitations of the initial prototype have already been elaborated in the previous subsection.
The tool at its current state cannot directly handle key schedule relations and attacks on the key
schedules. Handling key schedule relations during complexity calculation is not very difficult
and extension of the tool can handle it. However, handling key schedule attacks will require
algorithmic improvements in the complexity analysis step. It also worth to mention that the
current implementation does not directly handle attacks using multiple distinguishers and minor
human intervention is still required. However, the algorithm for using multiple distinguishers is
straightforward and is planned to be incorporated in the next version of the tool. 1

B More on the DFA of GIFT
In this section, we provide further details about the DFA attacks discovered by the ExpFault
framework. Specifically, we shall elaborate the distinguisher evaluation complexity of the attack
described in our case study with the help of graphs generated by our tool. This will be followed by
a brief discussion on some other attack instances on the cipher. Finally, a proof of optimality will
be provided for the best attack found.

B.1 Calculation of the Attack Complexity
Let us refer to the attack on GIFT described in Sec 4.1 of the paper. For each of the 4 distinguishers
found we perform a series of BFS searches on the CDG of the cipher, which eventually provides
independently and parallelly computable sub-parts (as described in Sec. 3.2) along with the attack
complexity (described in Sec. 3.3)2. For each of the distinguishers, we provide the associated
sub-graphs from the CDG, generated by our tool. As an example, Fig. 10(a) corresponds to the

1One should note that the tool is still in its initial phase and we shall try to address all the above-mentioned issues
before making it open source.

2Refer to Table 4 for the description of the distinguishers.



268 ExpFault: An Automated Framework for Exploitable Fault Characterization in Block Ciphers

(a) (b)

Figure 10: Graph corresponding to the distinguisher D2
27 for the attack with a nibble fault injection

at the 25-th round on GIFT; (a) The complete graph from the tool (used to extract the keys of round
28), (b) One independent computation chunk/ subpart
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(a) (b)

Figure 11: Graph corresponding to the distinguisher D1
27 for the attack with a nibble fault injection

at the 25-th round on GIFT; (a) The complete graph from the tool (used to extract the keys of round
27), (b) One independent computation chunk/ subpart
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sub-graph associated with the distinguisher D2
27 – the first distinguisher utilized for the attack. For

convenience, we refer to a magnified part of this sub-graph in Fig. 10(b).1 The graph in Fig. 10(b)
corresponds to one independently computable chunk for the D2

27 with 8 associated key bits, which
results in an evaluation complexity of 28. Each numbered node corresponds to a bit variable of the
cipher. The first layer of this graph (shown with its nodes colored) corresponds to state differential
variables from distinguisher D2

27. It can be observed from Fig. 10(b) that total 4 state differential
variables are associated with this independently computable chunk (their corresponding bits are
shown with 4 different colors). These 4 variables construct a variable group V Gh according to the
terminology used in the paper. The 16 key nodes in the graph are highlighted with black circles
and squares. Interestingly, the square key nodes are not required to be guessed to evaluate the
distinguisher, as there exists no nonlinear layer between these keys and the distinguisher. This
leaves us with 8 key bits for this computing part which are the members of the MKSh corresponding
to the V Gh. Evidently, there are 4 such independent computing chunks in total, each with the same
evaluation complexity of 28. As a result, Comp(T ) becomes 28.

The offline complexity |R| of the attack can now be computed individually for each com-
puting subpart/chunk. Referring to the first computing subpart/chunk, there are 4 associated
state differential variables w227

1 , w227
w , w227

3 , w227
4 in V G1, each of which can take at most 5

possible values from the set {0,3,7,11,15}. As a result, the size of the remaining key space
becomes |R|V G1 =

( 5
16

)4×28 = 2.4414. In a similar manner, remaining key space correspond-

ing to 3 other computing chucks can be estimated as |R|V G2 =
( 6

16

)4× 28 = 5.0625, |R|V G3 =( 7
16

)4 × 28 = 9.3789 and, |R|V G4 =
( 9

16

)4 × 28 = 25.6289. The offline complexity |R| thus
becomes 2.4414×5.0625×9.3789×25.6289 = 211.53 = 212.

Similar computations can be performed for the three other distinguishers associated with the
attack. The complexity calculations are even simpler in these cases as the sub-graph from the CDG
is already segregated into 16 independent components which make the complexity calculations
trivial. Fig 11 presents the graph corresponding to D1

27 outputted by ExpFault framework. Here we
assume that the 28th round keys are already set and as a result, they are not shown in the graph. It
can be noticed from Fig 11(b) that the computing chuck only contains one state differential variable
and 2 key bits (that is |V Gh|= 1 and |MKSh|= 2). Each state differential variable in D1

27 may take
2 different values. As a result |R|V Gh =

( 2
16

)
×22 = 0.5, which essentially means that the key can

be uniquely determined. Thus 27-th round keys can be uniquely extracted, provided some values
are set for the 28-th round keys. The same calculations can be repeated for two other distinguishers
and hence we omit them here.

B.2 Other Attacks On GIFT
Nibble fault injection at the 26th round of GIFT also results in a similar attack. However, in this
case, 96 key bits can be extracted with a single fault injection. The attack results targeting different
rounds of the cipher with varying fault widths are presented in Table. 3. It is interesting to observe
that even with increased fault width of 8 bits the attacks remain almost same (except an increase in
complexity by a factor of 4 due to the fault width). We found that the distinguishers corresponding
to 8 bit faults and 4 bit faults are the same. This is due to the fact that, the same set of S-Boxes
become active by a nibble fault and a byte fault in GIFT. This fact can be easily verified from the
permutation table of the cipher. It is also worth mentioning that the fault propagation in GIFT
(and in any bit permutation based cipher in general) is probabilistic as the number of the active
S-Boxes (and thus the complexity of the resulting attack) depends on the value of the plaintext and
the injected fault. The complexity figures returned by our tool are actually the best-case results and
the average and worst-case attack complexity might vary up to some extent. From the perspective
of a cipher evaluator, such best-case complexity figures are of utmost importance as they typically

1The round constant bits of GIFT cipher are not shown in the graphs as they are found to have no effect on the DFA
complexity calculation.
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Figure 12: Cipher model used in [SLIO12]

represent the highest advantage the attacker can have. However, from the perspective of an attacker,
the average success rate is also very interesting. The future versions of this tool will include
measures for calculating such average-case complexities. In the context of attacks on GIFT cipher,
we observed that the increasing width of the fault up to 8 bits actually makes the attacks more likely
to happen. This is quite obvious as a larger fault width always make the fault propagation more
rapid. However, a very wide fault window may not work as the fault paths will become overlapped
resulting the destruction of some distinguishing properties. Although we have not done any such
analysis in this paper, it is worth mentioning that doing such analysis is quite straightforward using
the ExpFault framework.

B.3 Comments on Optimality of the Attack on GIFT
In this subsection, we argue that the best attack proposed by us on GIFT (with a nibble fault
injection at round 25) is optimal from information theoretic perspective. The analysis methodology
is similar to that proposed by Sakiyama et.al. in [SLIO12]. However, certain modifications were
made in the analysis to adapt it in the context of GIFT.

B.3.1 Main Results by Sakiyama et. al. [SLIO12]

The information theoretic optimality analysis of DFA exploits the fact that each fault model
intrinsically sets an upper bound on the amount of leaked information about the secret. Any DFA
attack with a given fault model must exploit the leaked information either fully or partially to
extract the key. An optimal attack is one which is able to fully exploit the leaked information in
order to retrieve the secret key with a practical level of complexity. The information leakage is
measured in terms of Shannon Entropy of the state differentials.

Based on a simple cipher model as shown in Fig. 12, Sakiyama et.al. estimated the amount
of information leakage for an n×n bit S-Box S(·). Let X denotes the discrete random variable
associated with the input of the S-Box (X ∈ {0,1}n ) and Y denotes the random variable associated
with the output. DFA attacks usually require two observations (correct and faulty) at the input and
output of an S-Box which are denoted by random variables X1,X2 and Y1,Y2, respectively. The
random variable for the key is denoted with K. Likewise, Z1,Z2 denote random variables after the
addition of the key. Finally, ∆X , ∆Y and ∆Z denote the state differential random variables.

In [SLIO12] it was proved that,

H(X1X2|∆Y ) = H(K|Z1Z2) (8)

and
H(K|Z1Z2) = H(∆X |∆Y )+H(X1|∆X∆Y ) (9)

Further, if ∆X takes values from a set X ⊂ {0,1}n then the amount of leaked information about
the key can be estimated as:

kleak = n− log2(|X |) (10)

As a concrete example, let us consider the 8×8 S-Box of AES. If a byte fault is injected at the 0-th
byte in the beginning of the 8-th round of AES state, the leakage is of 128− log2(2

8−1)≈ 120
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bits. This is because all the bits except the first 8 bits of the input state differential are 0, which
makes |X |= 28−1.

B.3.2 Optimality of the Attack on GIFT

The leakage characterization proposed by Sakiyama et.al. in [SLIO12] for AES measures the total
leakage of the secret key at the injection point of the fault. It was argued that some of the leaked
information gets missing during the propagation of the fault. In order to become optimal, an attack,
however, must utilize the complete leakage measured at the injection point. Leakage measurement
only at the injection point is suitable for AES, as due to its structural features the information about
the complete 128 bit key state is leaked from the AddRoundKey layer following injection point.

The structure of GIFT differs for AES in two aspects. First, the key state of GIFT is of 128
bits, but the round keys are of size 32 bits. As a result, the information about only 32 key bits is
leaked at the injection point of fault. Further, one can make the following observation from the key
schedule of GIFT.

Observation: Each of the 4 consecutive round keys of GIFT are independent of each other.

It is thus evident that, in order to get information about the complete 128 key state, the leakage
should be measured at multiple locations. More specifically, the leakage must be measured at the
input differentials of S-Box layers for a 4 round differential propagation of the fault. Each of the
S-Box layers leaks information about 32 bits of keys. The second distinct feature of GIFT is that it
does not add key bits to every output bit of an S-Box. More precisely, only 2 bits of a 4 bit S-Box
output is XORed with key bits. This feature has important consequences while measuring the
leakage of the key.

Observing all the above mentioned facts, we propose the following strategy to measure the
information leakage in case of GIFT.

1. Consider the state differentials at the input of 4 consecutive S-Box layers (in other words,
the input differentials of S-Box layers).

2. Estimate the leaked information for the key bits associated, from the entropy of an input
differential (using Eq. 10).

Using this strategy we now evaluate the attack described in Sec. 4.1. The following claim can
be made.

Claim: The fault attack with a nibble fault injected at the 25th round of GIFT is information
theoretically optimal.

Proof Sketch: The attack described in Sec. 4.1 injects a nibble fault at the input of the S-Box
layer at round 25. The fault injection leaks information about the 32 bit round key of round 25. The
leakage, in this case, is measured to be of 30 bits. This is because only 2 key bits are associated
with the S-Box whose input was affected with the nibble fault. Rest of the 30 bits can be leaked.
Next, we consider the quantity |X | for each of the following S-Box input differentials. They can
be measured from the distinguisher descriptions provided in Table.4. As a concrete example, let us
consider the input differential at the input of the 27th round S-Box layer. Leaked information here
is calculated as (64− log2(2

16)) = 48 bits. However, associated key bits are only 32 bits, which
means all the key bits can be leaked. As another example, consider the input differential before
the S-Box of 28-th round (the information content of this input differential can be estimated from
the entropy of the distinguisher D2

27 in Table.4. This is because all the sub-operations between
D2

27 and this S-Box input are linear.) The leaked information about the 28th round key is thus
64−43.53 = 20.47 bits.

Referring to the attack, we obtain the following figures for the leakage:
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Figure 13: Motivating Example: Fault propagation in impossible differential fault attack on AES
in terms of colors from XFC framework. The colors are represented by circled numbers.

a Leakage for 25-th round key: 30 bits.

b Leakage for 26-th round key: 32 bits.

b Leakage for 27-th round key: 32 bits.

b Leakage for 28-th round key: 20.47 bits.

The total leakage is of 114.47 bits for the 128-bit key state. The total remaining entropy of
the key, in this case, is thus 128− 114.47 ≈ 14. It was already observed that the size of the
remaining keyspace after the attack is 214. The information theoretic optimality of the attack is
thus established.

C Comparison with the State-of-the-Art
Automation of fault attacks has gained significant attention from the research community in the
recent past. In this section, we provide a detailed comparison of the ExpFault framework with two
recently proposed automated fault attack frameworks – XFC and AFA. Brief introductions to both
were provided at the beginning of this paper.

C.1 Comparison with XFC
The XFC framework has been proposed recently by Khanna et.al. [KRH17] in DAC 2017. This
framework has certain similarities with the ExpFault framework proposed by us. In particular, both
of these frameworks try to figure out the attack complexities instead of doing the attack explicitly.
However, we observed that XFC is somewhat oversimplistic and as a result, it fails to address
certain imperative issues present in certain DFA attacks. In this subsection, we briefly discuss two
attack test cases which the XFC framework fails to detect. The first among these test cases is the
IDFA attack on AES [DFL11], which targets the 7th round of the AES state. The second one is
the fault attack on PRESENT at 28th round [JLSH13]. Both of these test cases were described
as examples in the main text of the paper. Some of the basic aspects of these test cases will be
repeated for the sake of understanding.

C.1.1 Undetected Distinguishing Properties

IDFA attacks exploit a typical cipher property that, depending on the fault, the variables of a state
differential corresponding to some internal state of a cipher may not attain certain values within
their domains. Such a property is used in IDFA attacks to distinguish correct key guesses from
wrong ones. Perhaps, the most prominent example of an IDFA attack is on AES, where a byte fault
is injected at the beginning of the 7-th round of the cipher resulting some state differentials none of
whose variables can assume the value 0, with the correct key guess. The situation is elaborated in
Fig. 13, where each large square represents an intermediate state differential of AES, with the fault
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Figure 14: Motivating Example: Key Extraction in Impossible DFA

injected at the beginning of the 7-th round in the 0-th byte location. Each small square in the figure
represents a state differential variable of size one byte. The shaded states in Fig. 13 denote the
existence of an impossible differential, with all bytes being active (fault difference cannot be 0) for
any fault value, ciphertext and key. It is convenient to use the last among them as a distinguisher
due to its proximity to the ciphertext (marked red in Fig. 13).

In order to elaborate the inability of XFC [KRH17] in detecting the IDFA distinguisher, we
mark the fault propagation path as it was done in XFC. The XFC framework represents the
propagation path of a fault by means of colors, with each color representing a new variable, which
can take all possible values within its respective domain. In Fig. 13, a color variable (corresponding
to XFC) is represented with a numbered circle where the number represents a unique color. An
induced fault is always assigned with a new color. The fault is then propagated through linear and
nonlinear functions. The output of a nonlinear function is always assigned a new color owing to its
lack of correlation with its input. On the other hand, for linear functions, a new color is assigned to
the output, only if the inputs have different colors. Otherwise, the same input color is assigned to
the output. This coloring continues through up to the generation of the ciphertext.1

The key observation here is that the coloring framework of XFC does not provide any in-
formation regarding the existence of the impossible differential property, as according to XFC,
each new color variable should assume all possible values in its range (as do the corresponding
state differential variables). So in this case, XFC would fail to detect the missing 0s in the state
differential variables. In general, the values that a state differential variable may assume depend on
several complex cipher-dependent factors and no straightforward extension of the static-analysis
based coloring framework of XFC can capture this. As a concrete example of this claim, the state
differential variables up to the 9-th round ShiftRow in Fig. 13, will never assume the value 0,
whereas, after the 9-th round MixColumn operation, they can assume values within the full range,
including 0. However, color variables cannot capture these changes in value ranges. In general, no
trivial modification of XFC can capture such a variation. Another example of a similar nature can
be provided for the fault attack on PRESENT-80, where a 2-byte fault is injected at the 28-th round
of the cipher. The fault propagation results in a typical distinguishing property at the beginning of
round 30, in which each 4-bit state differential variable can assume only 2 values from the total
possible range of 16 values. While this property leads to a successful attack, the coloring scheme
of XFC, for a reason similar to the one previously mentioned, fails to detect this. In a nutshell,
although the coloring framework of XFC is able to detect some distinguishing properties, it fails to
detect some useful ones. Additionally, XFC does not provide any indication of the goodness of the
distinguishers, so that the suitable ones can be chosen.

C.1.2 Lack of Automation and Fault Difference Equations

The practicality of a DFA attack lies within the efficient extraction of key parts in a divide-and-
conquer manner, which is often realized in the form of small systems of equations (or inequations).
For example, in the single fault based optimal attack on AES [TMA11], the state differential after

1The color variables actually represent correlations between state differential variables. If the colors corresponding to
two state differential variables are same, then they are correlated.
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the 9-th round MixColumn operation is used as a distinguisher and keys can be extracted in 4-byte
chunks with time complexity O(232). This actually results in 4 independent systems of difference
equations (one system per 4-byte key part) each containing 4 equations of the following form:

aδ = S−1(xh⊕ kh)⊕S−1(x
′
h⊕ kh) (11)

where, xh and x
′
h denote the correct and faulty ciphertext bytes, respectively; δ denotes some state

differential variable after the 9-th round MixColumn; khs denote the associated key bytes, and a
denote some constant. In practice, the structures of resulting fault difference relations may vary
significantly from (11) depending on the distinguisher chosen. For example, Fig. 14 corresponds to
the key extraction strategy for the impossible differential distinguisher of AES described in Fig. 13.
Here one shall obtain inequalities of much complex nature. The cipher states are represented by
large gray boxes, whereas the associated round key states are represented with large white boxes.
The state S9

SR works as a distinguisher here. The bold boxes in each state of the figure represent
the associated key bytes as well as the state bytes one need to guess/compute to calculate the first
column of the distinguisher (shown in bold). The fault difference relations, which are inequations,
in this case, can be represented as follows:

MC−1|b(S−1(xh⊕ kh))⊕MC−1|b(S−1(x
′
h⊕ kh)) 6= 0 (12)

In the set of relations represented by. 12, the MC−1|b for b ∈ {1,2,3,4} represent the effect of
the inverse MixColumn operations on the 4 columns of the state S9

MC. An important observation
at this point is that the 9th round keys (denoted by state k9 in the figure) are not included in the
inequations described by 12, as they get canceled out during the calculation of the XOR differences.
An automated tool is supposed to identify such simplification tricks and work according to that.
Similar complex difference equations can be obtained for the attack on PRESENT in [JLSH13].
However, XFC only assumes equations of the form (11), which is clearly an oversimplification.
Further, no automation was proposed to construct the equations. The ExpFault framework proposed
by us, however, addresses all these issues in a systematic manner through its powerful graph based
abstraction. In particular, the divide-and-conquer strategy can be automatically identified and
independently computable chunks can be extracted in an abstract form. Each of the independent
computable chunk in ExpFault refers to an independently computable equation subsystem in
classical DFA. It is also possible to construct the equations from the graphs. All these facts clearly
establish the superiority of ExpFault framework over the XFC.

C.2 Comparison with AFA
The AFA is a powerful method for automated fault analysis [ZGZ+16]. The main idea of AFA is
to construct an algebraic equation system representing the cipher and injected faults. This system
is then solved by means of state-of-the-art SAT solvers, which are sufficiently robust and powerful
to handle such large problem instances. Although the AFA approach is fairly easy to implement
and quite generic in nature, it is not very suitable for exploitable fault analysis. This is attributed to
the fact that AFA has to explicitly perform an attack to evaluate the exploitability status of a fault
instance, which can be extremely time-consuming. Evaluation of a fault instance in AFA requires
solving a SAT problem. The time required for solving SAT problems often depends on the size of
the search space. The key fact behind the success of an AFA (or any DFA attack) is that the size of
keyspace of a cipher reduces significantly with the injection of faults. Solving an AFA instance
sometimes suffers from serious scalability issues if the size of the keyspace after fault injection
is still large. Moreover, computing the exact attack complexity in AFA requires enumerating all
solutions of the corresponding SAT instance. This strategy may incur huge computational overhead.
Although in [ZGZ+16] Zhang et. al. handled such scalability issues of AFA by assuming some of
the key bits to be known, the complexity evaluation process still takes a significant amount of time.
Perhaps, the most critical problem with AFA lies in its lack of interpretability. From the perspective
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of an evaluator, a clear understanding of the attack cause is essential, because it may help him to
improve the cipher design or design good countermeasures. The CNF based abstraction used in
AFA hides all structural information of the attack. In contrast, it is evident that from the outputs
provided by the ExpFault one can have a precise understanding of each possible attack instance.

Recently, Saha et. al. [SJP+17] has proposed an alternative approach for exploitable fault
characterization which combines AFA with Machine Learning to achieve the speedup desired for
exploitable fault characterization. The scheme proposed by them utilizes a ML model to classify
exploitable faults from unexploitable ones. The ML model is constructed by extracting features
from CNF representations of certain exploitable and unexploitable fault instances already known
for a given cipher. A small set of exploitable and unexploitable fault instances can always be
constructed in an initial profiling phase of the cipher by means of AFA. This specific framework
is somewhat complementary to the ExpFault proposed in this paper. In particular, the AFA-
ML combination can explicitly characterize the exploitability status of different fault values
corresponding to a specific fault location. This property is interesting for ciphers without MDS
layers, as the exploitability of a fault instance for these ciphers critically depend upon the value
of the fault. As a result, the average success rate of a fault attack corresponding to a specific
fault location can be estimated by the AFA-ML framework exploiting this property, which is still
not possible in the ExpFault framework. However, the attacks identified by the AFA-ML based
framework lack interpretability, which is a strong point of ExpFault. Moreover, the calculation of
attack complexity is not possible with the AFA-ML tool, which is the main goal of this paper.
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