
Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Beetle Family of Lightweight and Secure Authenticated
Encryption Ciphers

Avik Chakraborti 1, Nilanjan Datta 2, Mridul Nandi 3 and Kan Yasuda 1

1. NTT Secure Platform Laboratories, Japan
2. Indian Institute of Technology, Kharagpur, India

3. Indian Statistical Institute, Kolkata, India

CHES, 2018 Sep 11, 2018

Beetle 1

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

1 Introduction

2 Motivation

3 Specification for Beetle

4 Hardware Implementation Results of Beetle

5 Conclusions

Beetle 2

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Authenticated Encryption (AE)

Figure: Data Transmission

A symmetric encryption scheme AE = (K, E ,D)

E : K ×M×N ×A → C
D : K × C ×N ×A →M∪ {⊥}
C ← set of tagged ciphertexts ((C ,T) pair)

⊥: special symbol to denote reject

Beetle 3

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Authenticated Encryption (AE)

Nonce

Arbitrary number used only once for each encryption

Useful as initialization vectors. Example: Counter

Associated Data

Header of the Message (not encrypted but authenticated)

Example: IP Address

Beetle 4

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Authenticated Encryption (AE)

Why AE?

In practice both privacy and authenticity are desirable

A doctor wishes to send medical information about Alice to the medical database.
Then

We want data privacy to ensure Alice’s medical records remain confidential

We want integrity to ensure the person sending the information is really the
doctor and the information was not modified in transit

We refer to this as authenticated encryption

Beetle 5

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Security of Authenticated Encryption

Privacy

We want IND-CPA

Integrity

Adversary’s goal: Receiver accepts a forged tuple ((C ∗,T ∗),N∗,A∗)

INT-CTXT: Any forged tuple is rejected with high probability

Goal - IND-CPA + INT-CTXT

Beetle 6

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Unified AE Security (Random permutation Model)

Adversary A runs in time t

A makes qe enc queries (σe enc blocks)

qf offline permutation queries to f or f −1 (simply f ±)

qd forge queries (σd forge blocks)

AdvAE
E (A) = ∆A((f ±, EK ,DK); (f ±, $,⊥))

$ returns a random string from the range set of EK
⊥ oracle always returns ⊥ (reject always)

AdvAE
E ((qe , qf , qd), (σe , σd), t) = maxAAdvAE

E (A)

Beetle 7

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

1 Introduction

2 Motivation

3 Specification for Beetle

4 Hardware Implementation Results of Beetle

5 Conclusions

Beetle 8

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Motivation of this Work

Designing Highly Secure Lightweight AE

The mode should be very light

It should provide sufficient security level

It should achieve better area-security trade-off among the existing designs

Beetle 9

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Designing Highly Secure Lightweight AE

Several Ways of Designing AE

Blockcipher(BC) based

Streamcipher (SC) based

Permutation based (Sponge) etc.

Our target: Highly Secure Lightweight AE

Best Choice: Sponge Based

Sequential nonce-based AE

b-bit state: r -bit rate + c-bit capacity (b = r + c)

r -bit: process then feedback, c-bit: direct feedback

Beetle 10

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Sponge Mode

Introduced as a hash mode with Keccak a hash (SHA-3)

aGuido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche, Keccak, In
EUROCRYPT 2013

Beetle 11

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

SpongeAE

Sponge based AE designed in Duplexa mode

c/2-bit AE security

aGuido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the sponge:
Single-pass authenticated encryption and other applications, SAC 2011

Beetle 12

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Sponge Based AE

Improved Bound (Jovanovic et al’s Result)

Showed min{b/2, c}-bit AE security a of Duplex sponge

Assumed number of decryption blocks ≤ 2c/2 (Impractical in real life)

Essentially c/2-bit security remains (considering decryption blocks)

aPhilipp Jovanovic, Atul Luykx, and Bart Mennink, Beyond 2c/2 security in sponge- based
authenticated encryption modes, ASIACRYPT 2014

Main Challenge of This Work

Main Difficulty: Ciphertext is injected directly to the permutation

Can we stop that and increase the security adding simple tweaks in the design?

Beetle 13

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Design of Beetle
Security Bounds
Properties

1 Introduction

2 Motivation

3 Specification for Beetle
Design of Beetle
Security Bounds
Properties

4 Hardware Implementation Results of Beetle

5 Conclusions

Beetle 14

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Design of Beetle
Security Bounds
Properties

Can we stop direct Ciphertext injection to the permutation

Possible Options for Feedback

Message Feedback: Current M[i] is the feedback X [i] for the next primitive call

Ciphertext Feedback: Current C [i] is the feedback X [i]

Output Feedback: Previous primitive output Y [i − 1] is the feedback X [i]

Combined Feedback

Exactly one of M[i], C [i], Y [i − 1] can not compute X [i]. Adversary can not
control X [i] (by enc/ dec queries). Introduced in COFBa

aAvik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu and Mridul Nandi, Blockcipher Based
Authenticated Encryption: How small can we go?, CHES 2017

Beetle 15

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Design of Beetle
Security Bounds
Properties

Different Feedback Modes and COFB (Combined Feedback) Mode

X[i]
M [i]

C[i]

ρ
R

X[i]
M [i]

C[i]

R

X[i]M [i]

C[i]

R
X[i]

M [i]

C[i]

R

X[i− 1] X[i− 1] X[i− 1]

X[i− 1]

G

Beetle 16

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Design of Beetle
Security Bounds
Properties

Design Rationale and Challenges

Beetle: Uses Combined Feedback in the first r -bit

State Size

It needs only a b bits for storing the permutation f state

Effect of Combined Feedback

Each f output is processed with M using a combined feedback ρ

(X ,C) = ρ(Y ,M): X is influenced by both Y and M

High security bound: due to feedback function, hard to forge

Beetle 17

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Design of Beetle
Security Bounds
Properties

Beetle AE Mode

N ⊕K1

K2

f f f f
Y [0]

ρ

A[1]

Z[1]

X[1] · · · Y [2]

Z[3]
⊕

ρ
X[3]

A[3]

ConstA

Y [3]‖Z[4]

Y [3]‖Z[4] f f f f
Y [4]

ρ

M [1] C[1]

Z[5]

X[5] · · · Y [7]

Z[8]
⊕

C[4]

ρ
X[8]

M [4]

ConstM

T

ConstM = 1 if M 6= λ and n divides |M|, ConstM = 2 else

Beetle 18

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Design of Beetle
Security Bounds
Properties

Selection of ρ Function in Beetle

(X ,C) = ρ(Y ,M) = (ρ1(Y ,M),Y⊕M), where

X = ρ1(Y ,M) := G · Y ⊕M, C = I · Y ⊕M

Both G and G + I: Full rank matrix 6= I

During decryption: X = (G + I) · Y + C

Distinction of G and I makes combined feedback

G : y = (y1, y2)→ (y2, y2 ⊕ y1) where y1, y2 ∈ {0, 1}r/2

Efficient to implement (r/2-bit left shift + r/2-bit XOR)

Gr×r =

(
0 I
I I

)
Beetle 19

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Design of Beetle
Security Bounds
Properties

Instantiation of Beetle AE Mode

Recommended Versions

Beetle[Light+]: Lightweight

Beetle[Secure+]: High security level

Underlying f

For Beetle[Light+]: PHOTONa P144 with b = 144, r = 64, c = 80

For Beetle[Secure+]: PHOTON P256 with b = 256, r = 128, c = 128

aJian Guo, Thomas Peyrin, and Axel Poschmann, The PHOTON family of lightweight hash
functions, CRYPTO 2011

Beetle 20

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Design of Beetle
Security Bounds
Properties

AE Security Level for Beetle Mode

AE Security Bound

Nonce-respecting adversary

min{b/2, c - log r, r} bit AE security

Beetle[Light+] has 64-bit security

Beetle[Secure+] has 121-bit security

Table: Comparative Study on the State size and Security Trade-off. Assume r = c = b/2

Design State size Security

Beetle b b/2−log b/4
SpongeAE b b/4

Beetle 21

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Design of Beetle
Security Bounds
Properties

Important Features of Beetle AE

Advantages

Very low state size of b (b: state size)

Very flexible mode (any permutation f can be used)

Inverse-free

Simple linear feedback

Very lightweight and consumes low hardware area

Limitations

Both the encryption and decryption are completely serial

Beetle 22

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

1 Introduction

2 Motivation

3 Specification for Beetle

4 Hardware Implementation Results of Beetle

5 Conclusions

Beetle 23

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Cycles per Byte Performance of Beetle[Light+]

a block AD, m block M (r = 64-bit blocks, i.e, 8 byte blocks)

cycle count = 13(a + m) + 12 (In this calculation, we assume a = m)

cpb = cycle count
len , len is length of M in bytes (actually 13×2m+12

8m = 3.25 + 1.5
m)

Table: Clock cycles per message byte for Beetle[Light+] with r = 64.

Message length (Bytes)
8 16 24 32 64 128 256 512 1024 2048 16384

cpb 3.4375 3.3437 3.3125 3.2969 3.2734 3.2617 3.2559 3.2529 3.2514 3.2507 ≈ 3.2500

Beetle 24

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Beetle[Light+] Base Architecture

Tr

64

64

80

64

144 144

144

144

144

144 144

6464

isFinal, isCompleteisAD

Init

Round12
Release,Round12

State

N

K1

K2

D

⊕⊕⊕

frnd ρcomp Con⊕

CT

Beetle 25

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Beetle[Light+] Base Architecture Properties

Serial processing of data

Round-based architecture of PHOTON P144 permutation

Processes 64 bits per 12 clock cycles

Uses very low storage registers (only b-bit)

Minimum hardware area among all the known implementations

Beetle 26

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Beetle Implemented FPGA Results (VHDL, Xilinx 13.4)

Table: Beetle[Light+]. Not compatible with CAESAR API

Platform
Slice
Registers

LUTs # Slices
Frequency
(MHZ)

Gbps
Mbps/
LUT

Mbps/
Slice

Vertex 6 185 616 252 381.592 1.879 3.050 7.369

Virtex 7 185 608 312 425.595 2.095 3.445 6.715

Table: Beetle[Secure+]

Platform
Slice
Registers

LUTs # Slices
Frequency
(MHZ)

Gbps
Mbps/
LUT

Mbps/
Slice

Vertex 6 281 998 434 256.000 2.520 2.525 5.806

Vertex 7 305 1101 512 303.965 2.993 2.718 5.846

Beetle 27

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Benchmarking Beetle[Light+] on Virtex 6

We admit our implementation does not follow CAESAR API

Scheme
Underlying
Primitive

Security
(in Bits)

LUTs # Slices Gbps
Mbps/
LUT

Mbps/
Slice

Beetle[Light+] Sponge(144, 64) 64 616 252 1.879 3.050 7.369

Ketje-JR Sponge(200, 16) 96 1236 412 2.832 2.292 6.875

ASCON-128 Sponge(320, 64) 128 1274 451 3.118 2.447 6.914

JAMBU-SIMON96 BC(64) 48 1035 386 0.931 0.899 2.411

CLOC-TWINE80 BC(80) 32 1689 532 0.343 0.203 0.645

SILC-LED80 BC(80) 32 1684 579 0.245 0.145 0.422

SILC-PRESENT80 BC(80) 32 1514 548 0.407 0.269 0.743

COFB-AES BC(128) 58 1075 442 2.850 2.240 6.450

Beetle 28

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Benchmarking Beetle[Secure+] on Virtex 6

Scheme
Underlying
Primitive

Security (in Bits) # LUTs # Slices Gbps
Mbps/
LUT

Mbps/
Slice

Beetle[Secure+] Sponge(256, 128) 121 998 434 2.520 2.525 5.806

ASCON-128 Sponge(320, 64) 128 1274 451 3.118 2.447 6.914

NORX Sponge(1024, 768) 128 5495 1724 24.524 4.463 9.139

Ketje-SR Sponge(400, 32) 128 1903 613 5.772 3.033 9.416

Riverkeyak Sponge(800, 544) 128 6234 1751 7.417 1.190 4.236

Lakekeyak Sponge(1600, 1344) 128 19860 7130 12.603 0.635 1.768

Gibbon Sponge(280, 40) 120 1807 653 1.280 0.708 1.960

Hanuman Sponge(280, 40) 120 1769 626 0.693 0.392 1.107

ICEPOLE128a Sponge(1280, 1024) 128 5734 1995 44.464 7.754 22.288

Beetle 29

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

1 Introduction

2 Motivation

3 Specification for Beetle

4 Hardware Implementation Results of Beetle

5 Conclusions

Beetle 30

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Conclusion

Beetle : Permutation based AE mode

Security level: min{b/2, c- log r, r}

Low area AE and can be used in low resource embedded devices

Beetle 31

Introduction
Motivation

Specification for Beetle
Hardware Implementation Results of Beetle

Conclusions

Thank You..!!!

Beetle 32

	Introduction
	Motivation
	Specification for Beetle
	Design of Beetle
	Security Bounds
	Properties

	Hardware Implementation Results of Beetle
	Conclusions

