
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 2, pp. 328–356. DOI:10.46586/tches.v2021.i2.328-356

A Compact Hardware Implementation of
CCA-Secure Key Exchange Mechanism

CRYSTALS-KYBER on FPGA
Yufei Xing and Shuguo Li

Institute of Microelectronics, Tsinghua University, Beijing, China
xingyf10@gmail.com, lisg@tsinghua.edu.cn

Abstract. Post-quantum cryptosystems should be prepared before the advent of
powerful quantum computers to ensure information secure in our daily life. In
2016 a post-quantum standardization contest was launched by National Institute of
Standards and Technology (NIST), and there have been lots of works concentrating
on evaluation of these candidate protocols, mainly in pure software or through
hardware-software co-design methodology on different platforms. As the contest
progresses to third round in July 2020 with only 7 finalists and 8 alternate candidates
remained, more dedicated and specific hardware designs should be considered to
illustrate the intrinsic property of a certain protocol and achieve better performance.
To this end, we present a standalone hardware design of CRYSTALS-KYBER, a
module learning-with-errors (MLWE) based key exchange mechanism (KEM) protocol
within the 7 finalists on FPGA platform. Through elaborate scheduling of sampling
and number theoretic transform (NTT) related calculations, decent performance is
achieved with limited hardware resources. The way that Encode/Decode and the
tweaked Fujisaki-Okamoto transform are implemented is demonstrated in detail.
Analysis about minimizing memory footprint is also given out. In summary, we
realize the adaptive chosen ciphertext attack (CCA) secure Kyber with all selectable
module dimension k on the smallest Xilinx Artix-7 device. Our design computes
key-generation, encapsulation (encryption) and decapsulation (decryption and re-
encryption) phase in 3768/5079/6668 cycles when k = 2, 6316/7925/10049 cycles
when k = 3, and 9380/11321/13908 cycles when k = 4, consuming 7412/6785 LUTs,
4644/3981 FFs, 2126/1899 slices, 2/2 DSPs and 3/3 BRAMs in server/client with
6.2/6.0 ns critical path delay, outperforming corresponding high level synthesis (HLS)
based designs or hardware-software co-designs to a large extent.
Keywords: CRYSTALS-KYBER · post-quantum cryptography · key exchange
mechanism · Module-LWE · full hardware implementation

1 Introduction
Powerful quantum computers would render the public key cryptosystems currently used
in our daily life insecure, with which the underlying mathematical hard problem integer
factorization, discrete logarithm that considered to be infeasible to handle in classic
computer architecture now can be broken in polynomial time by Shor’s algorithm [Sho94].
As a result, the post-quantum cryptography (PQC), study of cryptosystems that would
be secure against adversaries who have access to both classic and quantum computers, is
under intensive research not only in academia but also within industrial community. In
December 2016, NIST launched a contest of new post-quantum cryptographic schemes
and called for proposals from all over the world, aiming to form public key cryptography
standards before the upcoming quantum era. In December 2017 and January 2019, the

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-10-15 Accepted: 2020-12-15 Published: 2021-02-23

https://doi.org/10.46586/tches.v2021.i2.328-356
mailto:xingyf10@gmail.com
mailto:lisg@tsinghua.edu.cn
http://creativecommons.org/licenses/by/4.0/

Yufei Xing and Shuguo Li 329

first and second round of candidates were announced respectively, each followed by a public
comment period. Very recently, the third round of candidates were announced in July 2020.
In total 15 out of 26 second round candidates get through, of which 7 have been selected
as finalists and the other 8 as alternate candidates [AASA+20]. These schemes base their
security on different mathematical hard problems, and the evaluation criteria used to
compare schemes throughout standardization process mainly focuses on three aspects,
namely security, cost & performance, and algorithm & implementation characteristics, in
a decreasing order of importance.

There have been lots of works concentrating on achievable performance of PQC
protocols in hardware-software co-design, aiming to evaluate several candidates with
similar computational tasks on the same platform, obtaining relatively precise rankings
among them, for instance [NCD19][NVB+20][FDAG19]. It would give preference to some
protocols over others in certain use cases, and further impact the standardization process
to some extent [FDAG19]. The most time-consuming parts of the protocol are offloaded to
separate hardware accelerators, referring mainly to NTT and hash functions, while others
are implemented with software in processors such as ARM Cortex series. The hardwired
ARM core can be replaced with popular RISC-V soft cores, which can be implemented
with configurable logic in FPGA, making it possible to implement the whole design in
hardware, avoiding slow data transmission across hardware/software boundary to a large
extent, including works in [BUC19][AEL+20][FSS20][XHY+20]. The accelerators can be
designed as vector coprocessor, being able to speed up corresponding operations massively
[XHY+20]. In addition to performance gain compared with pure software design, flexibility
is another primary advantage in consideration that the PQC contest is still in progress and
different tweaks may be involved in a certain protocol. By dividing tasks into hardware
and software parts, procedures that are standard and fixed by a few parameters would be
implemented in hardware, while the ones that are subject to tweak and often intractable
to handle in hardware, would resort to software design.

Complete hardware designs are still rare up to now. As the contest progresses to
the third round, and is expected to last 12-18 months from July 2020, more dedicated
designs would better demonstrate the strength and illustrate the intrinsic property of
a certain protocol, fitting the expectation from NIST that more performance data of
seven finalists and eight alternate candidates for hardware implementation would emerge
[AASA+20]. A few published ones that reported results for Kyber are [DFA+20] and
[HHLW20]. Moreover, some procedures that are intractable to handle in hardware but
shared among different participants in the contest, can be properly designed once and
used in a similarly way among corresponding protocols, especially tasks required by the
Fujisaki-Okamoto transform in re-encryption phase. To this end, we design and implement
all building blocks of a specific protocol — CRYSTALS-KYBER in hardware.

As one of the finalists, CRYSTALS-KYBER [SAB+] is a KEM protocol basing its
security on the presumed hardness of the MLWE problem [LS12]. It first constructs public
key encryption from the original method in [Reg04] and then achieves adaptive CCA-secure
through the tweaked Fujisaki-Okamoto transform [FO99]. The scheme possesses high
performance on both hardware and software platforms, and another advantage over some
Ring-LWE-based candidates in round 2 is that the security level can be easily adjusted
by changing module dimension k. Specifically, security category 1,3 and 5, equivalent to
strength of AES-128,AES-192 and AES-256 respectively are supported in Kyber.
Contributions. A manually designed hardware implementation of Kyber is presented to
illustrate its strength over HLS-based designs and hardware-software co-designs. Through
compact scheduling of sampling and NTT related processes, decent performance is achieved
with limited computational resources in NTT core, and the method, especially the use of
predefined order sequence table and endpoint table can be extended to other candidates.
Unified butterfly pair is proposed, within which NTT-related procedures, including the

330 A Compact Hardware Implementation of CCA-Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA

special point-wise multiplication (PWM) are all well supported and can be easily switched
by short control code. A reference realization of the Fujisaki-Okamoto transform is given
out, through use of a set of FIFOs with different specifications. We also explore the
minimal memory footprint of all the RAMs and FIFOs adopted in out design. By means
of unified computation cores and minimal memory footprint, the whole design is able to
be deployed in the smallest device in Xilinx Artix-7 series. Our design has been verified
against known answer test (KAT) files of Kyber in the round-3 submission to NIST and the
Vivado project has been uploaded to https://github.com/xingyf14/CRYSTALS-KYBER
to ease comparison.
Structure. The rest of our paper is organized as follows: Section 2 clarifies the notations
adopted in our paper firstly, then gives a brief introduction to CRYSTALS-KYBER and
describes the special NTT and PWM. Section 3 describes design rationale of main hardware
modules and our optimizations in implementing the protocol, from both hardware and
algorithm point of view. The way towards minimizing memory footprint is discussed in
Section 4. Performance results on the selected FPGA device and comparison with related
works are given out in Section 5, followed by discussion about other design choices. Finally
we draw our conclusion in Section 6.

2 Preliminary
2.1 Notation
The ring of integers modulo prime q is denoted as Zq. The ring of integer polynomials
modulo prime q is denoted as Zq[X]. Then polynomials modulo both q and Xn + 1 form
the ring Rq = Zq[X]/(Xn + 1). In MLWE-based protocol Kyber, polynomial vector that
contains k elements in Rq is represented in bold lowercase where k represents module
dimension in MLWE, while pure lowercase corresponds to a single element. Furthermore,
polynomial matrix that consists of k × k elements in Rq is represented in bold uppercase.
The i-th entry within a polynomial vector s is denoted by si, and the entry that lies in i-th
row, j-th column in polynomial matrix A is denoted by Aij . Greek symbol ζ is selected
to denote the n-th primitive root of unity in Zq, in conformance with Kyber specification,
then by ξ we mean the square of ζ. The binomial distribution with parameter η is denoted
as Bη, where η directly relates with possible range of noise samples. In Kyber, n, q, ζ, η
are set to 256, 3329, 17, 2 or 3 respectively and k takes value from 2,3,4.

2.2 CRYSTALS-KYBER KEM
Kyber, as part of the Cryptographic Suite for Algebraic Lattics (CRYSTALS), is a post-
quantum key exchange mechanism that bases its security on the MLWE problem. It
follows conventional construction method to build an IND-CPA public key encryption
(PKE) scheme firstly and then turns it into an IND-CCA KEM through the tweaked
Fujisaki-Okamoto transform. Detailed procedures corresponding to KYBER.CPAPKE and
KYBER.CCAKEM are listed in Algorithm 5-Algorithm 10 in appendix. Parameter sets
and instantiation of symmetric primitives are listed in Table 6 and Table 7 respectively,
with definition of auxiliary functions depicted in Equation 12. In the first-round submission
to NIST, prime q is chosen to be 7681 and satisfies q ≡ 1 mod 2n with degree of modular
polynomial n = 256, implying classic NTT can be utilized to speed up polynomial
multiplication in Rq. Current version of Kyber adjusts the protocol in several places,
including the change of prime q from 7681 to 3329, resulting in several differences in
detailed procedure, of which the most important one is that there is no 2n-th primitive
root of unity in Zq, thus polynomials during NTT process are not evaluated at all the
2n-th roots of unity in Zq, but rather at all the n-th roots of unity. Although detailed

https://github.com/xingyf14/CRYSTALS-KYBER

Yufei Xing and Shuguo Li 331

Algorithm 1 Polynomial Multiplication over Zq[X]/(Xn + 1) using negative wrapped
convolution (NWT)
Input: a =

∑n−1
i=0 aix

i, b =
∑n−1
i=0 bix

i, both in Zq/(Xn + 1), the n-th primitive root of
unity ωn in Zq, the square root of ωn, denoted as ϕ2n, prime q satisfying q ≡ 1 mod 2n.

Output: polynomial c = a ∗ b mod (q,Xn + 1)
1: a =pre-scale(a) =

∑n−1
i=0 aiϕ

i
2nx

i

2: b =pre-scale(b) =
∑n−1
i=0 biϕ

i
2nx

i

3: â = NTT(a), b̂ = NTT(b)
4: ĉ = â ◦ b̂
5: c = INTT(ĉ) =

∑n−1
i=0 ciϕ

i
2nx

i

6: c = post-scale(c) =
∑n−1
i=0 cix

i

7: return c

algorithm is changed, the computational complexity remains the same, which would be
demonstrated further in Subsection 2.3. On the basis of a rather small prime, the noise in
Kyber can be selected within a tight range.

2.3 NTT in Kyber
NTT resembles discrete Fourier transform (DFT), which is widely used in signal processing
and conducted in complex field C. Differently, NTT is conducted in finite field Zq
and it transforms an integer polynomial from coefficient representation into point-value
representation, and can be sped up in the same way as fast Fourier transform (FFT) used
in DFT case, only if we choose a set of special points to evaluate the polynomial. By the
usage of NTT, computational complexity of multiplying two n-term integer polynomial
can be decreased from O(n2) to O(n logn). Typically, prime q is chosen such that there
exists 2n-th primitive root of unity in Zq, where the polynomial modulo Xn + 1 completely
factors into n degree 1 polynomials. Defining ϕ an arbitrary 2n-th primitive root of unity
and ω the square of ϕ, the n roots of Xn + 1 can be generated completely by ϕ2k+1 with
integer k ranges from 0 to n− 1. The n-point NTT/INTT of vector x/X are defined in
Equation 1 and Equation 2, both referred to as classic NTT hereafter.

Xm =
n−1∑
k=0

xkϕ
(2m+1)k =

n−1∑
k=0

(
xkϕ

k
)
ωmk mod q (1)

xk = 1
n

n−1∑
m=0

Xmϕ
−(2m+1)k = ϕ−k · 1

n

n−1∑
m=0

Xmω
−mk mod q (2)

Compared with evaluation process in FFT, pre-scaling is needed for input polynomial terms,
corresponding to multiplication xkϕk in Equation 1. Similarly, post-scaling (multiplication
with ϕ−k in Equation 2) should be conducted on output polynomial terms. These two
auxiliary procedures result from the chosen polynomial modulo Xn + 1, and help to make
NTT applicable to this special modular polynomial multiplication. The complete processes
are also known as negative wrapped convolution (NWC), as depicted in Algorithm 1.

NTT in Kyber is slightly different, where field Zq contains n-th primitive roots of unity,
but not 2n-th primitive ones, thus the modulo Xn + 1 can not fully factor into n degree
1 polynomials, but rather n/2 degree 2 ones. Specifically, X256 + 1 =

∏127
i=0(X2 − ζ2i+1)

in Kyber, and the evaluation process is applied to the set of all the 256-th root of unity
{ζ1, ζ3, · · · , ζ255}. For an arbitrary polynomial f(x) =

∑255
i=0 fix

i, it can be divided into two
128-term polynomials according to parity of index. Denoting x2 by y, they are expressed as

332 A Compact Hardware Implementation of CCA-Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA

20

22 40 13

11

12

10

40

40

40

22

20
2x

3x

4x

5x

6x

7x

0x

1x

2X

6X

1X

5X

3X

7X

0X

4X

0 2

2 2 0 4 3 1

1 1

2 1

0 1

0 4

0 4

0 4

2 2

0 2

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

2x

3x

4x

5x

6x

7x

0x

1x

2X

6X

1X

5X

3X

7X

0X

4X

Figure 1: Schematic of rearranged NTT in NWC (left) and INTT in INWC (right)

fe(y) =
∑127
i=0 f2iy

i, fo(y) =
∑127
i=0 f2i+1y

i, and they are related with f(x) = fe(y)+xfo(y).
The evaluation process is then simplified as substituting y with each 256-th root of unity
{ζ1, ζ3, · · · , ζ255}, i.e. f(ζ2i+1) = fe(ζ2i+1) + xfo(ζ2i+1). In an alternative form that
conforms the definition in Kyber specification, Fi = f(ζ2br(i)+1) = f̂2i + xf̂2i+1, where

f̂2i =
127∑
j=0

f2jζ
(2br(i)+1)j =

127∑
j=0

f2jζ
jξbr(i)j (3)

f̂2i+1 =
127∑
j=0

f2j+1ζ
(2br(i)+1)j =

127∑
j=0

f2j+1ζ
jξbr(i)j , (4)

ξ = ζ2 is the 128-th root of unity in Zq and br(i) for i = 0, · · · , 127 is the bit reversal of
the unsigned 7-bit integer i. To this end, one 256-term NTT process in Kyber can be
conducted by two separate 128-term classic ones as aforementioned in Equation 1.

After NTT, polynomial multiplication h(x) = f(x) · g(x) mod (Xn + 1) corresponds to
PWM at these selected points, i.e. Hi = Fi ·Gi mod (X2 − ζ2br(i)+1). Specifically,

Hi = (f̂2i+xf̂2i+1)·(ĝ2i+xĝ2i+1) = f̂2iĝ2i+ζ2br(i)+1f̂2i+1ĝ2i+1+x(f̂2if̂2i+1+ĝ2iĝ2i+1) (5)

It is quite different from classic PWM where only one multiplication in Zq would be
conducted, here five multiplications are needed to complete the calculation, as the evaluation
value at a certain point is not one element in Zq, but rather one degree 1 polynomial in Zq.

INTT in Kyber can be derived similarly as NTT, with one INTT corresponds to two
classic ones as in Equation 2. When NTT and INTT are applied to vector or matrix of
polynomials in Rq, the respective operation is conducted on each element individually.

2.4 Order-relating issues and rearranged iterative NTT algorithms
In Kyber specification, the generated secret polynomial s, r, noise polynomial e, e′, e′′
are considered to be in natural order, e.g. elements s00, s01, s02 · · · in s0 are generated
one by one in order. Besides, the reference software implementation chooses decimation
in time (DIT) strategy for NTT and decimation in frequency (DIF) strategy for INTT,
which means input vector is considered to be in natural order, and the output vector
of NTT is in bit-reversed order correspondingly, resulting from the property of NTT
calculation. After INTT, the output vector would return to natural order. Noticing
the order of input, output vector in original DIT NTT and DIF INTT is contrary to
actual requirement in Kyber, both iterative DIT and DIF algorithm need modification to
be applicable. Detailed schematic during each stage of rearranged DIT/DIF strategy is
illustrated in left/right part of Figure 1 [POG15], with corresponding algorithm presented
in Algorithm 2/Algorithm 3. It is noteworthy that twiddle factors are rearranged as
well and further merged with scaling factors, and multiplication with n−1 in INTT is

Yufei Xing and Shuguo Li 333

Algorithm 2 Rearranged Iterative DIT NTT
Input: digits vector x = (x0, x1, · · · , xn−1), precomputed ϕk for k ∈ [0, n− 1) stored in

bitreversed order of k in ROM_forward.
Output: NTT of x
1: for i = log2 n downto 1 do
2: m← 2i, r ← 0
3: for k = 0 to n− 1 by m do
4: ω ← ROM_forward [r + bitreverse(m/2)]
5: for j = 0 to m/2− 1 do
6: t← ω · xj+k+m/2
7: u← xj+k
8: xj+k ← u+ t
9: xj+k+m/2 ← u− t
10: end for
11: r ← r + 1
12: end for
13: end for
14: return X =NTT(x)

Algorithm 3 Rearranged Iterative DIF INTT
Input: digits vector X = (X0, X1, · · · , Xn−1), precomputed ϕ−k for k ∈ [0, n− 1) stored

in bitreversed order of k in ROM_backward.
Output: INTT of X
1: for i = 1 to log2 n do
2: m← 2i, r ← 0
3: for k = 0 to n− 1 by m do
4: ω ← ROM_backward [r + bitreverse(m/2)]
5: for j = 0 to m/2− 1 do
6: u← (Xj+k +Xj+k+m/2)/2
7: t← (Xj+k −Xj+k+m/2)/2
8: Xj+k ← u
9: Xj+k+m/2 ← ω · t
10: end for
11: r ← r + 1
12: end for
13: end for
14: return x = INTT(X)

distributed among stages where simple multiplication with 2−1 is conducted instead. These
two methods are meant for decreasing computational complexity in terms of the number
of multiplications in Zq. When conducting point-wise multiplication, the evaluation points
are in bit-reversed order, requiring the corresponding 256-th primitive roots of unity in
Equation 5 also in bit-reversed order, just as in Kyber specification ζ2br7(i)+1 is used in an
increasing order of i rather than ζ2i+1. For the same reason, elements of public matrix
Â, ÂT should also be generated in bit-reversed order.

2.5 Binomial sampling
The noise polynomials s, e, r, e′, e′′ in Kyber obey binomial distribution with parameter
η = 2 or 3, implying only four or six pseudo random bits are required to form one desired
sample. Taking the former as an example, four random bits, denoted as b[3 : 0] are firstly

334 A Compact Hardware Implementation of CCA-Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA

IFIFO DFIFO0

DFIFO1

ififo

ofifo0 ofifo1

OFIFO encoder

decoder

regfile
(d,sigma,rho,m,
hashpk,hashc,K,z)

row,col,
nonce

padding

keccak

NTT_core

pk

ˆencode(t)

c

pk

u

v

u

v

c

t

A s,e r,e1,e2AT

t

m

sigma,rho,K,hashpk,hashc

comp

u
t

u

v v

u ,v

rho

rho

decoder

ofifo

Figure 2: Data flow in server during the whole protocol. Symbols of intermediate values
located above/to the left of data path arrows correspond to key generation and decryption
phase, while values located below/to the right correspond to re-encryption phase.

segmented into b[3 : 2] and b[1 : 0], then Hamming weight of each part is calculated by
w1 = b[3] + b[2], w0 = b[1] + b[0]. The output sample would simply be w1 − w0, lying
within [−2, 2] ∩ Z. As can be seen, the whole process is pretty succinct and easy to realize
in constant time.

3 Design Rationale
The overall data flow chart in server is depicted in Figure 2, details corresponding to major
parts will be demonstrated further in the following subsections, including NTT core and
its components, encoder/decoder as well as hash module.

3.1 Butterfly unit
As aforementioned in Subsection 2.3, one 256-term NTT in Kyber can be regarded as
two separate 128-term ones, namely the even index one and the odd index one, and each
of them can be implemented in a classic way. These two separate NTTs share the same
scaling factors and twiddle factors, thus can be calculated concurrently. Naturally two sets
of butterfly units should be adopted to handle the even part and the odd part. Considering
both DIT and DIF strategies should be supported, the unified butterfly structure would
be more suitable than two separate operators that each supports one strategy [BUC19].
Details with regard to active operators during DIT NTT and DIF INTT is illustrated in
upper part of Figure 3.

In addition to conventional use where it is either working in DIF mode or in DIT mode,
several other operations are also adapted to functionality of the unified butterfly units, as

Yufei Xing and Shuguo Li 335

add0

add1

add2

add3

sub0

sub1

sub2

sub3

Figure 3: Active operators in two unified butterfly units during NTT (upper left), INTT
(upper right), PWM0 (lower left) and PWM1 (lower right)

Table 1: Control code of each procedure. Symbol ′+′ denotes corresponding operator is in
use, while ′−′ denotes it is idle at the moment.

function sel[9:0] add0 sub0 add1 sub1 add2 sub2 add3 sub3
NTT 110_000_0000 – – – – + + + +
INTT 000_111_0000 + + + + – – – –
PWM0 000_001_1010 + – + – – – – –
PWM1 100_011_1101 + + + – – + – +
INTTm 111_111_0000 + + + + + + + +
COMPs 000_110_1000 – + – + – – – –

DECOMP 000_000_0000 – – – – – – – –

listed in Table 1. Correspondence between 10-bit control code sel with all the operators
is depicted in Figure 10. The special point-wise multiplication in Kyber, corresponding
to Equation 5, is dispatched among operators in two butterfly units and implemented in
two cycles, namely PWM0 and PWM1. Active operators during each cycle are illustrated
in lower part of Figure 3 and details would be further demonstrated in Subsection 3.3.
Similarly, three other operations are also supported with some modifications made to
operators in unified butterfly units or expression form of procedures in Kyber protocol.
For the former one, INTTm function absorbs addition with Decompressq (Decode1(m), 1)
into the last stage of INTT(t̂T ◦ r̂), from an observation that add2,sub2,add3 and sub3 are
all idle during INTT. Obviously sub2 and sub3 should be modified in order to support
extra addition functionality. For the latter one, one example is u = NTT−1(ÂT ◦ r̂) + e′ in
encryption phase. Noticing u would be compressed before it forms ciphertext c1, addition
with noise samples can be delayed (thus u = NTT−1(ÂT ◦ r̂)) and handled in Compress
procedure by means of Compressq(u− e′, du), equaling to d 2du (u−e′)

q c mod 2du . The new
operation is conformed to basic functionality of DIF butterfly unit and thus supported by
our unified butterfly units, implying the addition with noise samples can be absorbed, sav-
ing both time and resources potentially. The same method also goes for Compressq(v, dv),
corresponding to COMPs in Table 1. The sign of noise samples should have no effect on

336 A Compact Hardware Implementation of CCA-Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA

butterfly
unit

RAM0

RAM1

RAM2

RAM3

RAM4
A,u,v

AT,t

q
,2

d
u,2

d
v

R
O
M
2

R
O
M
1

R
O
M
0

shiftreg

shiftreg

s
r

t,m

u ,v

t,m

u ,v

s,e
r,e1,e2

b
in
o
m
ial

sam
p
lin
g

acc

acc

Figure 4: NTT structure, with symbols of intermediate values located above/under data
path arrows correspond to data flow of server/client side.

security of the protocol, but to be compatible with software implementation, the centered
binomial distributed noise samples in polynomial e′ and e′′ need to be negated, corre-
sponding to position switch between two Hamming weights in subtraction. The DECOMP
function realizes Decompressq(Decodedu

(c1), du) and Decompressq(Decodedv
(c2), dv), in

which multiplication with q would be conducted.

3.2 RAM structure
The corresponding even and odd index coefficients, arranged as a pair, reside in the same
place within a RAM. During NTT process, two pairs of coefficients are fetched from RAM,
with the even index coefficient from each pair sent to one butterfly unit, and the odd index
coefficient from each pair sent to the other. In this way, the shared twiddle factors need to
be read only once. An overall schematic of NTT core is illustrated in Figure 4.

The noise polynomials are written into RAM in natural order as discussed in Subsec-
tion 2.4. Each cycle two pairs of points would be fetched and two pairs would be written
back concurrently in consideration that butterfly units function in a pipelined manner.
At the first sight, the two pairs can be stored in the same place within a certain RAM,
and output pairs between two consecutive cycles should be interleaved and stored back
[RVM+14][FSS20]. The strategy is not suitable in our case as points with increasing index
are stored continuously in RAM, thus not ready for application of the strategy unless an
extra bit-reverse process is conducted, which is time-consuming. In our design, RAMs are
arranged as two banks instead, each with the width of one pair of points. Strict in-place
strategy is adopted, with additional advantage relating with PWM between data stored in
RAMs and input points. Specifically, when two pairs of points are stored in the same place,
one of them needs to be registered as two butterfly units can only handle one PWM per
cycle. By each bank realized in separate RAM, granular data movement can be achieved.
Detailed RAM structure is illustrated in Figure 5.

3.3 Adopting Karatsuba algorithm in point-wise multiplication
Point-wise multiplication, or basecase multiplication referred in Kyber specification ĥ2i +
ĥ2i+1X = (f̂2i + f̂2i+1X) · (ĝ2i + ĝ2i+1X) mod (X2 − ζ2br(i)+1), can be conducted in a

Yufei Xing and Shuguo Li 337

Bank0Bank1

Bank0Bank1

Figure 5: Detailed RAM structure, the left exhibits specific content after samples are
written into the RAM and the right corresponds to results after NTT process.

straightforward way :

ĥ2i = f̂2iĝ2i + f̂2i+1ĝ2i+1 · ζ2br(i)+1 (6)
ĥ2i+1 = f̂2iĝ2i+1 + f̂2i+1ĝ2i (7)

Clearly there are five multiplications in Zq in total, and two consecutive ones, f̂2i+1ĝ2i+1 ·
ζ2br(i)+1 form the longest path. Despite the longest path can not be shortened, the total
number of multiplications can be decreased by means of Karatsuba algorithm, which is
originally used in integer multiplication a× b = (a0 + a12n)× (b0 + b12n) and depicted as
follows :

a× b = a0b0 + ((a0 + a1)(b0 + b1)− a0b0 − a1b1)2n + a1b122n (8)

The number of n-bit multiplications then decreases from four to three. On this basis,
Karatsuba algorithm can also be used in PWM in our case:

(f̂2i + f̂2i+1X)(ĝ2i + ĝ2i+1X) mod (X2 − ζ2br(i)+1)
= f̂2iĝ2i + ((f̂2i + f̂2i+1)(ĝ2i + ĝ2i+1)− f̂2iĝ2i − f̂2i+1ĝ2i+1)X + f̂2i+1ĝ2i+1X

2

= f̂2iĝ2i + f̂2i+1ĝ2i+1ζ
2br(i)+1 + ((f̂2i + f̂2i+1)(ĝ2i + ĝ2i+1)− f̂2iĝ2i − f̂2i+1ĝ2i+1)X

(9)

As can be seen, the number of multiplications decreases from five to four, and ĥ2i+ ĥ2i+1X
is now obtained by

ĥ2i = f̂2iĝ2i + f̂2i+1ĝ2i+1 · ζ2br(i)+1 (10)
ĥ2i+1 = (f̂2i + f̂2i+1)(ĝ2i + ĝ2i+1)− (f̂2iĝ2i + f̂2i+1ĝ2i+1) (11)

The calculation process is divided and allocated in two cycles in our design, according to
functionality of butterfly units. The way that each step is realized with a specific operator
in butterfly units has been shown in Figure 3 and Table 1.
PWM0 : s0 = f̂2i + f̂2i+1, s1 = ĝ2i + ĝ2i+1, m0 = f̂2i · ĝ2i, m1 = f̂2i+1 · ĝ2i+1
PWM1 : s2 = m0+m1, m2 = s0 ·s1, m3 = m1 ·ζ2br(i)+1, ĥ2i = m0+m3, ĥ2i+1 = m2−s2

3.4 Modular reduction
In Kyber a fixed modulus q = 3329 is used, and dedicated modular reduction method can
be implemented to accelerate corresponding operations, especially modular multiplication
in Zq. There exist two multiplications in generic Barrett or Montgomery reduction method,
demanding extra DSP resources or forcing the reduction unit to work in a time-multiplexed
way with other operations that involve multiplications. In fact, these two multiplications
can be replaced with shifts and additions by making use of property of q. We adapt
Barrett reduction method to modular multiplication in our design, for the sake of its
clarity. Another advantage is that approximate quotient is also generated along with the
remainder, which would be beneficial in Compress procedure during encryption phase.

338 A Compact Hardware Implementation of CCA-Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA

Algorithm 4 Modified Barrett Reduction
Input: Integer prod with maximum length 24 bits, and fixed modulo q being 332910
Output: res = prod mod q, quo = dprod/qc
1: µ← d224/qc = 212 + 210 − 26 − 24

2: q̂uo← prod[23:12] + prod[23:14] − prod[23:18] − prod[23:20] ≈
⌊
prod · µ/224⌋

3: diff ← prod[14:0] − (q̂uo+ q̂uo[3:0] << 11 + q̂uo[4:0] << 10 + q̂uo[6:0] << 8)
4: switch (diff[14:12])
5: case 0: qmux ← 0, quo← q̂uo
6: case 1: qmux ← −q, quo← q̂uo+ 1
7: case 5: qmux ← 3q, quo← q̂uo− 3
8: case 6: qmux ← 3q, quo← q̂uo− 3
9: case 7: qmux ← 2q, quo← q̂uo− 2
10: default: qmux ← 0, quo← q̂uo
11: end switch
12: res← diff + qmux
13: if res > q then
14: res← res− q, quo← quo+ 1
15: end if
16: if res > bq/2c then
17: quo← quo+ 1
18: end if
19: return res, quo

Detailed algorithm is given out in Algorithm 4, and q̂uo in line 2 is an approximation of
actual quotient

⌊
prod
q

⌋
. As q̂uo ∈

[⌊
prod
q

⌋
− 1,

⌊
prod
q

⌋
+ 3
]
from analysis, the difference

between input prod and q̂uo · q lies in [−3q, 2q). With follow-up steps presented in line 4
to 15, precise remainder can be obtained. Noticing in Algorithm 4 the intermediate value
diff is a signed 15-bit integer.

3.5 Encode and decode with shift register
Encode procedure packs polynomials into 32-bit block arrays. As the possible coefficient
length (12 in t̂, du in u, dv in v) does not always divide 32-bit data bandwidth, points in
polynomials need to be regularized before they are transmitted. Conversely, packed 32-bit
block arrays should be decoded into data points with proper length, before they participate
in calculation in subsequent procedure. Dedicated encoder and decoder are adopted in
our design, both implemented with shift register. Detailed working flow and content in
shift register during each cycle is clarified in Figure 6. For decoder, it requests 32-bit data
blocks from FIFO whenever left bits in shift register are not enough to form one pair of
data points with proper length. Decoded data points stream out continuously as long as
corresponding FIFO is not empty, as input data rate is greater than output data rate. The
encoder is working in a reversed way, receiving output data points continuously from two
sets of butterfly units, then generating regularized 32-bit data blocks discontinuously.

Encoder and decoder can also be implemented with long buffer in the same way as
[RB20] did to deal with length mismatch between coefficients in polynomial and data
blocks stored in FIFO. Initially a 352-bit (LCM(2 × du, 32)) buffer should be involved.
For decoder in server when k = 4 with du = 11, the buffer is filled after 11 cycles of data
loading, then 22-bit data pieces can be read out from the most significant part or the least
significant part, depending on shift direction in 16 cycles continuously. Dedicated cycles in
data load drag down the overall performance severely. To address this issue, the authors in
[RB20] proposed an improvement that data points can be fetched before the whole buffer

Yufei Xing and Shuguo Li 339

sftreg[31:10]

sftreg[41:20]

sftreg[51:30]

sftreg[29:08]

sftreg[39:18]

sftreg[49:28]

sftreg[27:06]

sftreg[37:16]

sftreg[47:26]

sftreg[25:04]

sftreg[35:14]

sftreg[45:24]

sftreg[23:02]

sftreg[33:12]

sftreg[43:22]

sftreg[21:00]

sftreg[43:12]

sftreg[33:02]

sftreg[45:14]

sftreg[35:04]

sftreg[47:16]

sftreg[37:06]

sftreg[49:18]

sftreg[39:08]

sftreg[51:20]

sftreg[41:10]

sftreg[31:00]

051 31 051 21

output bits
at current cycle

input bits yet not
outputted at current

cycle

leftover bits from last
cycle yet not outputted

at current cycle

cycle

0

output bits output bits

position of sftreg position of sftreg

request data from
FIFO/butterfly units

at current cycle

Figure 6: Detailed working flow and content in shift register during Decode(u) in decryption
phase (left) and Encode(u) in encryption phase (right) with parameter k = 4

is filled, reducing both the buffer size and cycle overhead. However, the improvement
comes at the cost of an extra large multiplexer, which would be a 11-to-1 22-bit-width
one in our use case. Noticing in Figure 6, the multiplexer is 16-to-1 with the same 22-bit
length, and the working flow is almost the same as long buffer in [RB20] whilst consuming
much less register bits (52 in our design), the decoder adopted in our design should be
advantageous. For v = Decode(c2) with different k, output bits are fetched from positions
included in u = Decode(c1) scenario. The longer output than needed (when k < 4 or
during v = Decode(c2)) would be truncated when fed into butterfly units for subsequent
calculation. Decoder in client is more succinct as it receives 32-bit data and outputs fixed
24-bit data, corresponding to t̂ = Decode(pk).

3.6 Hash module
The hash module accounts for a great portion of the total resource consumption, thus special
attention should be paid to reach an overall efficient design. It needs to support several
function modes specified in SHA3 standard [oST15], including SHAKE-128, SHAKE-256,
SHA3-256, SHA3-512. They share the same underlying function Keccak-f [1600], but
with different rate r and different message suffix appended for domain separation. The
constitution of r bits out of 1600-bit input is decided by the top module of either server
or client. Parts of register data, appended suffix and part of padding data are selected
through multiplexer under the control of a finite state machine, sent to ififo of hash module,
as illustrated in Figure 2. Keccak core is working in an autonomous way that whenever
ififo is not empty and it has done the last hash, data would be fetched from ififo until
enough data has been collected to begin the next hash process. Detailed data flow is shown
in Figure 7. It is especially useful in H(pk) and H(c) cases, where 32-bit data stream of pk
or c flows into ififo and Keccak core decides when to fetch data from ififo. Three control
signals are fed into ififo along with the 32-bit data, namely mode, absorb, last. mode
determines the number of capacity bits in Keccak-f [1600]. absorb indicates the input data
bits corresponding to rate part should be XORed with front r bits of the current 1600-bit
Keccak state, which would happen in H(pk) and H(c) cases that one 24-round Keccak-f
function can not fully absorb the input message bits. last signal, as its name implies,
indicates the current 32-bit data is the last block of message, and zeros corresponding to
capacity should be appended to form the 1600 bits input to Keccak core. We adapt Keccak
core from [OG17] to our design, which completes one round of Keccak-f function per cycle.
One full 24-round Keccak-f function consumes 79 cycles, of which 25 are consumed in
calculating hash value, the others mainly correspond to data input/output.

340 A Compact Hardware Implementation of CCA-Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA

ififo
36

control
logic

capacity
counter

ENA

last

mode

absorb

0
data

32

2

keccak
core

3'h7

equal
CE

dout

ready

XOF
PRF
KDF

H
G

2'h0
2'h1
2'h1
2'h1
2'h3

func mode

go

5
...

f f f f

0

0

truncr

c

padding
input

stream

hash
value

Figure 7: Detailed structure of hash module and sponge structure within Keccak core

The bandwidth of Keccak core is set to 32 bits, aiming to be compatible with software
implementations, thus the 1600-bit internal state would return to its initial value after 50
cycles of shift, which would be helpful in Hash(pk) and Hash(c). As elements of matrix
A/AT are sampled from 12-bit pseudo random integers, the Keccak core should naturally
generate 24-bit data per cycle in our design, which is not a divisor of 1600. Similarly,
noise samples in s, e, r in Kyber512 (η1 = 3) each consumes 6 pseudo random bits, then
the problem that 6(×4) is not a divisor of 1600 arises as well. In both cases there would
be samples split over two invocations of Keccak-f function, and updating internal state
with data pieces from different indices would cause an obvious increase in total resource
consumption. Considering these two kinds of samples are stored in separate places in our
design, namely ofifo0 and ofifo1 to ease elaborate manipulation when read out, a data
buffer is inserted between the Keccak core and ofifo0/ofifo1 in Figure 2, which receives
32-bit data pieces and generates 24-bit and 16-bit (η1, η2 = 2) output data. It consists
of a small FIFO (32× 32) and a small decoder, in a similar way with design rationale of
Decode in the protocol.

The uniform and binomial distributed samples correspond to different input from
register file (ρ/σ) as well as padding bits, as illustrated in Figure 2. Whether the samples
should be fed into ofifo0/ofifo1 or not is determined before they are generated by the
Keccak core. Considering the complexity in generating dedicated logic to control the
order of sampling process, a predefined order table would be more suitable. The sort of
samples that being generated is determined by the current bit fetched from order sequence,
which we depict in Table 2. In Table 2, bit 1 (and specially 2&3) corresponds to centered
binomial sampling, and bit 0 uniform random sampling. The underline beneath a certain
bit indicates the end of sampling process, and a dedicated endpoint table highlights the
endpoint position. The order sequence is fetched and stored in the 73-bit register patt upon
reset signal is valid. The endpoint sequence, similarly, would be stored in the 73-bit endp
concurrently. During sampling, the Keccak core would take register value and padding as
input according to the most significant bit of patt, and patt would shift left one bit upon
start signal go of the current Keccak process is valid. When the last bit corresponding
to endpoint is fetched, the sampling process would terminate after current generation of
samples and the top module moves to next procedure. The endpoint table is essential as
the number of Keccak invocations varies among different system parameter k.

According to the specification of Kyber, noise polynomials in centered binomial distri-
bution ψnη1

, ψnη2
are generated by PRF, which is instantiated with SHAKE-256 and outputs

Yufei Xing and Shuguo Li 341

Table 2: Predefined order sequence and endpoint during sampling

Enc k order sequence
0 2 32000032000032000032000
1 2 3200003200000000100001100
0 3 1000010000110000000010000000000001000000000000000000000000000000000000000
1 3 1000010000100000000100000000000010000000011000000000000000000000000000000
0 4 1000010000111000000000000100000000000000001000000000000000010000000000000
1 4 1000010000110000000000001000000000000000010000000000000000100000000000011

Enc k endpoint
0 2 00000000000000000001000
1 2 00000000000000000000100
0 3 00010000000000000000000000000000000
1 3 001000000000000000000000000000000
0 4 00010
1 4 001

1088 bits data after 24-round Keccak-f function. The parameter η1 equals to 3 in k = 2
case, otherwise η1 is set to 2, while η2 always takes 2. For one 256-term polynomial obeying
ψ256
η , the total number of pseudo random bits needed is 2× η × 256, which would be as

large as 1536, implying that the PRF in generating s, e, r corresponds to two consecutive
invocations of Keccak-f function in Kyber512 case, illustrated as ′32′ pairs in Table 2. In
practice, both ′3′ and ′2′ need two bits space, so an auxiliary table that highlights the cases
where η1 = 3 is added along with order sequence table. Similarly, public matrix Â/ÂT is
sampled from pseudo random bit stream with XOF, which is instantiated with SHAKE-128
and outputs 1344 bits after 24-round Keccak-f function. Elements in matrix Â/ÂT should
be uniform random distributed in Zq, thus some samples are rejected when they fall outside
the desired range. To be compatible with software implementation, the range is set to
be [0, q), corresponding to 12-bit pseudo random numbers, and the acceptance rate is
3329/212 = 81.3%. Therefore, the number of generated elements in Zq that one 24-round
XOF generates is 1344/12 × 81.3% = 91.0, implying with at least four XOFs can the
generation of one element polynomial of Â/ÂT in Rq be guaranteed, in consideration
that binocdf(255, 3× 112, 81.3%) = 8.33× 10−3, which is not negligible. Sampling of one
uniform polynomial in Rq corresponds to ′0000′ bit strings (ahead of endpoint) in Table 2.
Details would be further demonstrated in Subsection 4.2.

4 Minimizing the Memory Footprint
4.1 RAM dimension
In order to reduce memory footprint, only the points that will participate in later calculation
whilst other participants are not ready at the time would be stored in memory. For example,
polynomial ŝi for i ∈ {0, 1, 2, 3} must be preserved after key generation phase in server
side, as ŝi would multiply with ûi during decryption, thus dedicated memory block must
be allocated for storage of each ŝi and it is free to use only after decryption. The same
goes for r̂i in client side. In other words, data points should be preserved in RAM
during their lifecycle, and both ŝ and r̂ can be stored in a single large RAM block as
under no circumstances would different ŝi parts or r̂i parts be accessed concurrently. As
aforementioned in Subsection 3.2, memory block is divided into two banks, with one pair of

342 A Compact Hardware Implementation of CCA-Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA

ofifo1 RAM encoder OFIFO

ˆ ()t NTT e 00 0
ˆˆ ˆˆAt s t

01 1
ˆˆ ˆˆAt s t

02 2
ˆˆ ˆˆAt s t

Figure 8: Data flow duing accumulation of Â ◦ ŝ + t̂

points reside in the same place, corresponding to RAM0 and RAM1 in Figure 4. They are
both in 24-bit width, 256-piece depth, adequate in k = 4 case. On the contrary, polynomial
êi is only requested in t̂ = Â◦ ŝ+ ê. Noticing t̂i would be sent to encoder and then OFIFO
once it is newly formed, as illustrated in Figure 2, both êi and t̂i can be overwritten.
In fact, t̂i is obtained through accumulation, implemented in accumulator in Figure 4
(denoted as acc unit). The detailed procedures are depicted in Figure 8. Dedicated RAM
should be allocated that is adequate for storing only one t̂i. Similarly, one small RAM
should be allocated in order to preserve intermediate values during accumulation of ÂT ◦ r̂
and subsequent INTT procedure. This part of memory corresponds to RAM2 and RAM3
in Figure 4, with each bank in 24-bit width, 64-piece depth.

In addition, one wider RAM block, depicted as RAM4, is involved and dedicated
to PWM between two polynomials in NTT representation, including Â ◦ ŝ + ê in key
generation phase, ÂT ◦ r̂, t̂T ◦ r̂ in encryption phase as well as ŝ ◦ û in decryption phase.
Based on the observation that each PWM needs space as large as four intermediate points
from Subsection 3.3, RAM4 is arranged as 48-bit-width, 128-piece-depth memory block. It
is especially essential in Â ◦ ŝ + ê and ÂT ◦ r̂, where input Â and ÂT are fetched from
ofifo0, ŝ and r̂ fetched from RAM0/RAM1. The intermediate points can not be fully stored
in the same place in RAM where elements of ŝ and r̂ residue, as two points from RAM
would explode to four intermediate ones, and ofifo0 is busy in generating other parts of
public matrix Â or ÂT at the same time.

4.2 Specification of FIFOs
The depth of each FIFO depends on its functionality in our design. In Figure 2, the FIFOs
with lowercase name ififo, ofifo, ofifo0 and ofifo1 reside in hash module. They are related
with Keccak function and all serve as data buffer, thus their size should be adequate that
no data is lost during transmission resulting from mismatch between read and write rate.
The same goes for IFIFO in top module. Differently, DFIFO0, DFIFO1, and OFIFO in
top module serve as data storage, thus their size is determined by the largest data block
they would store.

IFIFO lies ahead of decoder and its size is determined by mismatch between input rate
from client and processing ability of decoder. Detailed working flow of decoder in decoding
polynomial u (with parameter k = 4) is illustrated in Figure 6. In 16 cycles, it outputs
22-bit data consecutively, and requests 32-bit data of c from IFIFO du times. Consequently,
it needs du×256×k

32 × 16
du

= 128k cycles to decode polynomial u from transmitted ciphertext
c, which is greater than du×256×k

32 + dv×256
32 = 8kdu+8dv in all cases when k, and correlated

du, dv take different values. As a result, the decoder is always decoding polynomial u when
IFIFO receives ciphertext c from client, and in total (8kdu + 8dv)× du

16 = 1
2kd

2
u + 1

2dudv
32-bit data is fetched from IFIFO, leaving behind 8kdu + 8dv − 1

2kd
2
u − 1

2dudv data, which
equals to 72/102/122.5 when k takes 2/3/4. Consequently, the depth of IFIFO can be as
small as 128, and the width is 32 bits, equaling to transmission bandwidth.

The size of DFIFO0, DFIFO1 is determined by the content that it stores, i.e. polynomial
u/t̂ and v respectively. Noticing u, t̂ are both vector of 256-term polynomials while the
width of u is smaller than t̂ in all cases when k takes different value, the DFIFO0 should

Yufei Xing and Shuguo Li 343

NTT(s0) NTT(s1) NTT(s2) NTT(e0) NTT(e1) NTT(e2)

512 512 512 512 256 256 256 512 256 256 256 512 256 256 256

s0 s1 s2 e0

NTT(r0) NTT(r1) NTT(r2) INTT(u2)INTT(u0) INTT(u1)

512 512 512 576256 256 256 576 256 256 256 576 256 256 256

316 3167979 7979 316

e1

316 31679316

e2

316 31679316

r0 r1 r2 e 0

316 3167979 7979 316

e 1

316 31679316

e 2

316 31679316 79

e

cycles

cycles

cycles

cycles

keccak

keccak

butterfly

butterfly 00 0
ˆ ˆA s 10 0

ˆ ˆA s 11 1
ˆ ˆA s 12 2

ˆ ˆA s 20 0
ˆ ˆA s 21 1

ˆ ˆA s 22 2
ˆ ˆA s

01 1
ˆ ˆA s 02 2

ˆ ˆA s

00ÂT

01ÂT

02ÂT

10ÂT

11ÂT

12ÂT

20ÂT

21ÂT

22ÂT

01 1
ˆ ˆAT r 02 2

ˆ ˆAT r 10 0
ˆ ˆAT r 11 1

ˆ ˆAT r 12 2
ˆ ˆAT r 20 0

ˆ ˆAT r 21 1
ˆ ˆAT r 22 2

ˆ ˆAT r00 0
ˆ ˆAT r

00Â 01Â 02Â 10Â 11Â 12Â 20Â 21Â 22Â

Figure 9: Elaborate scheduling during sampling and corresponding NTT procedures

be set as 24× 512 data storage, in order to fully save t̂ when k takes 4. Similarly, DFIFO1
should be set as 10× 128 data storage.

OFIFO of server needs to store t̂ and publicseed ρ, in total 96k+8 pieces of 32-bit data,
whose maximal value is 392, implying the depth should be set to 512 at least. The width of
OFIFO is 34. Besides 32-bit data transmitted to client, two flag bits are added in each piece,
indicating whether the current piece corresponds to publicseed ρ and whether it is the last
one that would be transmitted. The flag bits would not be sent to client, but rather are
helpers that determine when the transmission is done and which data pieces should be sent
back to the input port of OFIFO when they are requested and outputted in preparation for
later use in re-encryption process v = NTT−1 (t̂T ◦ r̂

)
+e′′+Decompressq (Decode1(m), 1).

More details would be given out in Subsection 4.3.
As for data buffer ififo in hash module, the worst case happens when server/client

requests c/pk data from OFIFO in client/server. At this time, continuous data stream
sent to server/client would also be stored in ififo, corresponding to procedure H(c)/H(pk).
From Kyber specification we know H function is instantiated as SHA3-256 from FIPS-202
standard, where 1088 = 32 × 34 bits are absorbed in one 24-round Keccak-f function.
In our design one 24-round Keccak-f would take 79 cycles. Consequently, the ratio
of speed between continuous data stream fed into ififo and discontinuous data request
from Keccak core is 79:34, thus the leftover 32-bit data in ififo during H(c) would be
(8kdu + 8dv)× (1− 34/79) = 109/155/223 when k takes 2/3/4. For H(pk), that would be
(96k + 8)× (1− 34/79) = 114/169/223. As a result, the lowest yet adequate depth of ififo
is 256, and the width should be 32 bits, determined by bandwidth of Keccak core.

Up to now, we obtain the size constraint of IFIFO, DFIFO0, DFIFO1, OFIFO and
ififo from two factors, namely the worst case of rate mismatch in data buffer and largest
data block that storage would preserve. In both cases, there would be data losses when
corresponding FIFO is not large enough. For ofifo0 and ofifo1, the constraint is looser
in terms of their size. When they are not enough for storing the whole newly-sampled
data pieces needed by following processing module, bubbles would be inserted into calcu-
lation procedure such that enough data can be collected and transmitted, implying the
performance would be dragged down. On the other hand, we can arrange the sampling
procedure elaborately to decrease the size of ofifo0 and ofifo1.

Now we demonstrate how the sampling procedures are arranged in cooperation with
NTT calculation, with details illustrated in Figure 9. Firstly, one NTT on a certain
polynomial inRq would take 128/2×log2 128 = 448 cycles. In NTT(si),NTT(ei),NTT(ri),
process that writing data into RAM takes another 64 cycles, and in Figure 9 they are
merged into the cycles relating with NTT for clarity, amounting to 512 cycles in total.
Similarly, cycles corresponding to INTT(ui) includes compression procedure in addition
to INTT, which takes 128 cycles. During one NTT or INTT, one noise polynomial and
one element polynomial of public matrix Â/ÂT are guaranteed to be generated. Secondly,

344 A Compact Hardware Implementation of CCA-Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA

one point-wise multiplication between Âij/ÂT
ij and ŝi/r̂i takes 256 cycles. As a result,

during two such multiplications, one element of public matrix and one noise polynomial
are guaranteed to be sampled when k = 2. For k = 3, during three such multiplications,
two elements of public matrix and one noise polynomial are guaranteed to be sampled.
Similarly, the number would be three and one respectively in k = 4 case. To this end,
we present a compact sampling procedure that cooperates with NTT-related calculation.
The complete sequences in both server and client are listed before in Table 2. Noticing
Figure 9 means to illustrate the margin between sampling and corresponding NTT. In
practice, the sampling procedures are continuous except when corresponding ofifo that data
should be sent to is full. At that moment, sampling would be halted until corresponding
ofifo is ready to receive new samples. Basically, it follows the so called just-in-time
principle [HOKG18][KMRV18][BUC19], which corresponds to minimal memory footprint.
The compactness comes from two aspects, of which the first refers to clock cycles, i.e. the
samples generated from Keccak core are always ready to be fetched from ofifo where they
are stored, thus no bubble needs to be inserted and performance would not be affected by
sampling. The other goes to the size of ofifo0 and ofifo1. ofifo0 is designed to store only
two elements of matrix Â or ÂT , and ofifo1 only one element of noise polynomial vector
s, e, r, e′, e′′. Thus the size of ofifo0 and ofifo1 is set to 24× 256 and 24× 64 respectively.
Noticing the bandwidth of ofifo1 is 24 bits, enough for 4 centered binomial distributed
samples when η1 = 3. They are transformed to samples in NTT module before written
into RAM, as illustrated in Figure 4.

4.3 Making full use of data storage FIFOs

In Kyber.CCAKEM.Dec, re-encryption process is required, which implements almost all
the procedures in client. Besides the increase of computational complexity, an important
problem arises that data stream of c1, c2, received from client during decryption phase
as well as data points of t̂ in key generation phase would be requested again in the
re-encryption phase. Message c1 and c2 would be requested and compared with the
newly formed c′1 and c′2 to validate correctness of decryption, influencing generation
of the final agreed key, and t̂ would be requested in restoring message v′ with v′ =
NTT−1(t̂T ◦ r̂′)+e′′+Decompressq (Decode1(m′), 1), implying these related message must
be stored properly in some place. Instead of initializing more memory blocks, we make full
use of the data storage FIFOs, in consideration that they are free to use in re-encryption
phase after occupation in corresponding process.

To implement the strategy, output data of DFIFO0/DFIFO1 and OFIFO are redirected
to its corresponding input port if they are not working in re-encryption phase. For
DFIFO0 and DFIFO1, the redirected data points actually belong to Compressq(u, du)
and Compressq(v, dv) respectively, and they are compared with Compressq(u′, du) and
Compressq(v′, dv) in re-encryption directly, without further resorting to Encode procedure.
The results of above comparisons are equivalent to comparison between c1, c2 and c′1, c′2,
with two encode procedures eliminated. Different from DFIFO0 and DFIFO1 where all
data points are needed in later comparison, register value ρ stored in OFIFO would not
be requested. To distinguish which part of data points would be redirected, two flag
bits are added, expanding the width of OFIFO from 32 bits to 34 bits, as depicted in
Subsection 4.2. Noticing the redirected message is actually Encode(t̂), a decode process
should be involved such that the message is unpacked into data points and ready for
participating in point-wise multiplication with r̂′ in re-encryption phase. The decoded data
points are fed into DFIFO0, just after Compressq(u, du) being read out for comparison.
Detailed data flow is depicted in Figure 2.

Yufei Xing and Shuguo Li 345

Table 3: Cycles counts/execution time (µs) of Kyber with different module dimension k
at different protocol phases. Execution time is calculated at maximum frequency

k key generation encapsulation decapsulation
2 3768/23.4 5079/30.5 6668/41.3
3 6316/39.2 7925/47.6 10049/62.3
4 9380/58.2 11321/67.9 13908/86.2

5 Results, Comparison and Discussion
The proposed design of CRYSTALS-KYBER has been simulated, synthesized and imple-
mented with Vivado 2017.3 design suite on Xilinx XC7A12TCPG238-1 device, with all
building blocks implemented in hardware. All module dimension k are supported and can
be selected through dedicated input port. Bandwidth of data transmission in both server
and client is set to be 32 bits, in order to be compatible with bandwidth of hash module.

5.1 Results
Cycle counts at different protocol phases with different parameter k are depicted in Table 3.
The critical path delay is 6.2/6.0 ns, corresponding to 161/167 MHz maximum frequency
respectively in server/client, and execution time of each phase is calculated accordingly.
Detailed cycle counts corresponding to each procedure in server side when k takes 3 is
listed in Table 8, where procedures conducted concurrently in NTT core and hash module
reside in the same line. The execution time of sampling, both noise polynomials and public
matrices, is basically hidden behind NTT and related PWM processes. The procedures
H(pk) and H(c) are conducted simultaneously along with transmission/reception of pk
and c. Overall, the execution time occupied by pure hash function accounts for rather
small portion of the total time, as a result of elaborate scheduling between sampling and
NTT procedures, as depicted in Figure 9. Consequently, timing performance is determined
by computational ability of NTT cores, or more specifically butterfly units to a great
extent. Key generation, encapsulation and decapsulation phase in CCA-secure Kyber
can be completed in 23.4/30.5/41.3 µs when k = 2, and 39.2/47.6/62.3 µs when k = 3,
corresponding figures would be 58.2/67.9/86.2 µs when k = 4.

Resource consumption of our proposed design is depicted in Table 4, where occupation
by major submodules are also listed out. As can be seen, Keccak core accounts for more
than 40% LUTs and 35% FFs of total consumption, resulting from that a high speed Keccak
design is involved to keep up with computational ability of butterfly units, generating
enough samples before they are required. The second most area-consuming module is
NTT core, where two sets of butterfly units are allocated, cooperating with each other
to realize several extra functionalities in addition to conventional use in NTT and INTT,
as depicted in Table 1. There are differences in input/output multiplexing relating to
inner adder/subtracter of each butterfly unit as well as intercommunication between two
sets of them, so they are implemented in a single butterfly module, where two reduction
units are adopted. In NTT core, RAM0 and RAM1, arranged as 24×256 memory block,
each consumes one 18k BRAM. Similarly, RAM2 and RAM3, arranged as 24×64 memory
block, each consumes one 18k BRAM, but only occupies 1

12 storage capacity. Differently,
RAM4 consumes one 36k BRAM because that its data width is 48 bits, exceeding 36-bit
boundary that one 18k BRAM can hold. In total, five RAM blocks occupy three 36k
BRAMs. Twiddle factors as well as scaling factors are stored in distributed RAM, in
consideration that each one of ROM0, ROM1, ROM2 contains only 12×128 data bits,
used in NTT, INTT, PWM respectively. Overall, our design consumes 7412/6785 LUTs,
4644/3981 FFs, 2126/1899 slices, 3/3 BRAMs and 2/2 DSPs in server/client side, and can

346 A Compact Hardware Implementation of CCA-Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA

Table 4: Resource consumption of server/client and major submodules involved

module LUT FF BRAM DSP
hash core 4014/3825 1980/1980 0/0 0/0
b Keccak 2966/2956 1610/1610 0/0 0/0
b ififo 263/263 72/72 0/0 0/0
b ofifo 45/45 56/56 0/ 0/
b ofifo0 187/187 60/60 0/0 0/0
b ofifo1 60/60 53/53 0/0 0/0
NTT core 1737/1579 1167/1058 3/3 2/2
b butterfly 708/647 574/501 0/0 2/2
×2 b reduction 135/135 96/96 0/0 0/0
IFIFO 132/131 64/64 0/0 0/0
DFIFO0 376/352 92/70 0/0 0/0
DFIFO1 60/– 42/– 0/– 0/–
OFIFO 484/463 80/78 0/0 0/0
decoder 239/57 99/86 0/0 0/0
encoder 70/144 53/59 0/0 0/0
total 7412/6785 4644/3981 3/3 2/2

fit in the smallest device in Xilinx Artix-7 series (XA7A12 series with different package
and speed, providing 8000 LUTs, 16000 FFs, 20 BRAMs and 40 DSPs).

5.2 Comparison with related works
Comparison with related works that concentrate on hardware implementation of contest
candidates, especially CRYSTALS-KYBER is demonstrated in Table 5. Both [DFA+20]
and [HHLW20] report performance and resource consumption of standalone hardware
implementation of Kyber. In [DFA+20], besides summarizing and analyzing massive
results reported by other groups, four CCA-secure KEM candidates of the second round
are implemented in pure hardware as the authors report, including Kyber. Compared with
[DFA+20], our proposed design is more than two times slower, resulting from 1.5 – 2×
more cycle counts and lower maximum frequency. It needs to be noted that key generation
is assumed to be performed in software in [DFA+20] and only one module dimension k
is supported at a time. As [DFA+20] does not give out any detail of either hardware
architecture or implementation procedures, we can only make some speculations from the
reported resource consumption. Speed grade of our device is -1, which is the slowest among
the device family. Beside, more than two times of FFs are utilized in [DFA+20] compared
with our design, facilitating shorter critical path, thus higher maximum frequency can
be obtained. 4× of DSPs, 5× of BRAMs as well as 1.5× LUTs are involved, implying
more computational cores participate in calculation and total cycle counts would decrease.
In [HHLW20], BRAMs are inserted between different modules for communication, and
bottom modules are reused in realizing related upper functionalities extensively. Through
elaborate scheduling with limited computational resources, cycle counts of our design is 10
times smaller than that of [HHLW20], and resource consumption corresponding to LUT
and FF are more than 10× and nearly 40× smaller as well.

[BUC19][FSS20][AEL+20] are all crypto-processors constructed upon a RISC-V core.
The RISC-V soft core is implemented in fabric, configured in pipeline structure with
different depth. Accelerators are inserted into the pipeline, and would be invoked in the
same way as arithmetic logical unit (ALU) by user defined instructions, which is extended
based on existing instruction set architecture (ISA). Procedures in the protocol would be
translated to supported instructions, and conducted in the RISC-V core. Total cycle counts

Yufei Xing and Shuguo Li 347

Table 5: Comparison with related works. Designs are deployed on Xilinx Artix-7 device
unless otherwise specified. Three rows correspond to cases when k takes 2,3,4 respec-
tively. The slashes denote separation of three phases: key generation, encapsulation and
decapsulation.

cycle counts (k) freq. execution time area1

MHz µs LUT FF slice BRAM DSP

This work
3.8/5.1/6.7

161
23.4/30.5/41.3

7412 4644 2126 3 26.3/7.9/10.0 39.2/47.6/62.3
9.4/11.3/13.9 58.2/67.9/86.2

[DFA+20]
–/3.0/4.4

210
–/14.3/20.9 11864 10348 3989 15 8

–/4.0/5.6 –/19.2/26.5 11884 10380 3984 15 8
–/5.7/7.4 –/27.4/35.2 12183 12441 4511 15 8

[HHLW20]2
–/49.0/68.8 155 –/316/444 88901 152875 202 354
–/77.5/102.1 –/500/659 110260 167293 – 202 292
–/107.1/135.6 192 –/558/706 132918 172489 202 548

[BUC19]3
74.5/131.7/142.3

25
2980/5268/5692

14975 2539 4173 14 11111.5/177.5/190.6 4461/7102/7623
148.5/223.5/241.0 5942/8939/9639

[FSS20]
150.1/193.1/204.8

– – 24306 10837 32 18273.4/325.9/340.4 –
349.7/405.5/424.7

[AEL+20]
710/971/870

59
12034/16458/14746

1842 1634 34 5– – –
2203/2619/2429 37339/44390/41169

[BSNK19]4 –/31669/43018 67 –/475/645 1977896 194126 – – –

[RB20]5
2.8/4.0/5.0

150
18.4/26.9/33.6

24950 10720 2 05.5/6.6/8.0 36.4/44.1/53.6 –
9.0/10.3/12.3 60.2/68.4/82.0

1 Figures correspond to server side when resource consumption of two sides are summarized separately.
2 Figures in last row corresponds to Vertex-7 device, as hardware resources are not sufficient to allocate the
whole design when module dimension k = 4. Speed grade of both devices is -2. Figures corresponding to
FFs are originally counted as slice consumption, which according to 7-series product selection guide exceed
the maximal available number of corresponding devices (33650 and 75900).
3 Resource consumption corresponds to Sapphire crypto-core, excluding the RISC-V micro processor.
4 HLS-based implementation of Kyber when k = 2.
5 Hardware implementation of Saber on Xilinx UltraScale+ XCZU9EG-2FFVB1156 device, which is
manufactured in 16 nm technology.

348 A Compact Hardware Implementation of CCA-Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA

would generally be much larger compared with dedicated, standalone design. Besides,
maximum frequency is subject to timing performance of the RISC-V core severely. It
can be seen from Table 5, our design is hundreds of times faster than RISC-V-based
designs, while their resource consumption varies in a large range. It can be as little as
1842 LUTs and 1634 FFs in [AEL+20], while it can also be as large as 24306 LUTs and
10837 FFs in [FSS20]. In summary, a general purpose computational platform is able
to implement cryptographic protocol, but it possesses no particular advantage except
flexibility in deploying different protocols.

[BSNK19] is based on HLS design methodology, aiming to overcome the long deployment
time problem. A widely accepted view is that results from HLS design are much worse, in
terms of both timing performance and resource utilization than designs obtained through
manual hardware description language (HDL) coding, which is also true in comparison
between [BSNK19] and our design.

In addition to related hardware implementation of Kyber on FPGA, [RB20] is a perfect
counterpart as comparison work, in which a similar module lattice-based KEM protocol
Saber [DKRV] is implemented. Saber is another finalist in the third round contest, basing
its security on module learning-with-rounding problem. Dimension of polynomial ring
n = 256 is the same with Kyber, as well as module dimension parameter k = 2, 3, 4.
Binomial distributed noise is also adopted with parameter η = 3, 4, 5, corresponding to
different k. As NTT is not directly applicable in Saber, NTT procedures are not involved in
its protocol, making it possible to take advantage of small norm of noise polynomials during
polynomial multiplications by simple schoolbook method. 256 multiply-and-accumulate
units are instantiated in parallel, being able to compute one polynomial multiplication in
only 256 cycles. Besides, as noise term is within a small range, such multiplication in field
Zq can be realized with simple shifts and additions, which means the whole design can be
implemented without DSP. Timing performance of our design is pretty close to that in
[RB20], while LUT, FF consumption is more than 3×,2× less than the design of Saber.

5.3 Discussions
5.3.1 Discussions about performance and resource utilization

Our presented design targets to explore intrinsic relation between two core modules, NTT
and Keccak to achieve decent performance with limited computational resources. The
second purpose is to give out a design method in implementing procedures involved in the
Fujisaki-Okamoto transform through reusing as much hardware structure and memory
as possible. In pursuit of higher performance design, more butterfly units should be
exploited, with other modules keeping up with data input/output requirement of them.
The butterfly cores can be organized as vector processor, with dedicated permutation
networks located in front of and behind them to arrange data points in desired order at
the current stage of NTT process [PNPM15][XHY+20]. Alternatively, constant geometry
NTT [Pea68] can be adopted to avoid complex and variable read/write pattern in different
stages [BUC19][XL20]. Noticing Kyber is based on MLWE construction, NTT process
is conducted on each element in Rq within a vector separately, implying only one extra
memory block for storing one element in Rq, resulting from the out-of-place property of
the strategy, would be adequate. With more butterfly cores, the number of reduction
units, located behind multiplier in butterfly units should also be increased accordingly.
Besides, RAM structure should be modified elaborately to ensure enough data bandwidth
[BUC19][XL20]. Similarly, bandwidth of Keccak core needs to be tuned accordingly, which
is relatively easy as data input/output and round function are conducted separately. In a
low area design contrarily, the first thing to do is adopting a low-cost Keccak core [Tea20]
where Keccak round function is conducted in multiple cycles, as many works have reported
hash module accounts for a great portion of the overall resource consumption.

Yufei Xing and Shuguo Li 349

5.3.2 Discussions about a constant-time design

Almost all the procedures in the CCA-secure Kyber are implemented in constant-time
in our design, except the generation of public matrices A/AT. As samples of A/AT are
obtained from pseudo random bits with abortion, the total cycles would be variable with
different publicseed ρ. However, this would not cause any trouble in a constant-time design
from two aspects. Firstly, the publicseed ρ and the generation algorithm Parse,XOF are
all public, which means the variation in time would not leak any information that should
be private. Secondly, the generation processes are conducted along with NTT-related
calculations, and the number of total cycles consumed in our design is irrelevant with these
processes. With these facts, our design should be resistant to timing attacks.

6 Conclusion
In this work, a pure hardware implementation of CRYSTALS-KYBER, one of the third
round finalists of PQC contest is presented. The whole implementation is manually
designed, without resort to either hard-wired processor such as ARM Cortex series or
soft core that can be implemented with reconfigurable logic such as popular RISC-V
processors. Achievable performance is explored with limited computational resources.
Through elaborate scheduling of NTT related procedures and noise sampling, our design
achieves decent performance and it can fit in the smallest device in Xilinx Artix-7 series
FPGA. The number of utilized butterfly units is two in our design on the basis of special
form of the NTT in Kyber, and we also discuss different solutions in cases where either
higher performance or lower cost design is demanded. Similar scheduling method can be
derived according to relation of speed between NTT core and hash module. In addition,
detailed design methods corresponding to data transmission, reception and the Fujisaki-
Okamoto transform are illustrated, through adoption of a set of FIFOs with different
specification. We further explore minimal memory footprint of each storage block, and
avoid involving more memory blocks in re-encryption phase through data redirection of
corresponding FIFOs.

Overall, our pure hardware implementation can execute key generation, encapsulation,
decapsulation in 23.4/30.5/41.3 µs when module dimension k takes 2, in 39.2/47.6/62.3 µs
when k takes 3, and in 58.2/67.9/86.2 µs when k takes 4, with 7412/6785 LUTs, 4644/3981
FFs, 2126/1899 slices, 2/2 DSPs and 3/3 BRAMs consumed in server/client side, shedding
light on achievable performance in a standalone hardware design. The results verify
computational efficiency of schemes based on structured lattice, and better performance
of manual hardware design compared with that implemented with hardware-software
co-design or HLS method.

Acknowledgments
This work is supported by the National Natural Science Foundation of China under Grant
NO.61974083.

References
[AASA+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh

Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, et al.
Status report on the second round of the nist post-quantum cryptography
standardization process. NIST, Tech. Rep., July, 2020.

350 A Compact Hardware Implementation of CCA-Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA

[AEL+20] Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen, and Richard
Petri. ISA Extensions for Finite Field Arithmetic: Accelerating Kyber and
NewHope on RISC-V. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2020, Issue 3:219–242, 2020.

[BSNK19] Kanad Basu, Deepraj Soni, Mohammed Nabeel, and Ramesh Karri. NIST
Post-Quantum Cryptography-A Hardware Evaluation Study. IACR Cryptol.
ePrint Arch., 2019:47, 2019.

[BUC19] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. Sapphire:
A Configurable Crypto-Processor for Post-Quantum Lattice-based Protocols
(Extended Version). Cryptology ePrint Archive, Report 2019/1140, 2019.
https://eprint.iacr.org/2019/1140.

[DFA+20] Viet Ba Dang, Farnoud Farahmand, Michal Andrzejczak, Kamyar Mohajerani,
Duc Tri Nguyen, and Kris Gaj. Implementation and Benchmarking of Round 2
Candidates in the NIST Post-Quantum Cryptography Standardization Process
Using Hardware and Software/Hardware Co-design Approaches. Cryptology
ePrint Archive: Report 2020/795, 2020.

[DKRV] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Fred-
erik Vercauteren. SABER: Mod-LWR based KEM (round 3 submission),
2020. https://csrc.nist.gov/Projects/post-quantum-cryptography/
round-3-submissions.

[FDAG19] Farnoud Farahmand, Viet Ba Dang, Michal Andrzejczak, and Kris Gaj.
Implementing and benchmarking seven round 2 lattice-based key encapsulation
mechanisms using a software/hardware codesign approach. In Second PQC
Standardization Conference, 2019.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In Annual International Cryptology
Conference, pages 537–554. Springer, 1999.

[FSS20] Tim Fritzmann, Georg Sigl, and Johanna Sepúlveda. RISQ-V: Tightly Coupled
RISC-V Accelerators for Post-Quantum Cryptography. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2020, Issue 4:239–280,
2020.

[HHLW20] Yiming Huang, Miaoqing Huang, Zhongkui Lei, and Jiaxuan Wu. A pure
hardware implementation of CRYSTALS-KYBER PQC algorithm through
resource reuse. IEICE Electronics Express, pages 17–20200234, 2020.

[HOKG18] James Howe, Tobias Oder, Markus Krausz, and Tim Güneysu. Standard
Lattice-Based Key Encapsulation on Embedded Devices. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2018, Issue 3:372–393,
2018.

[KMRV18] Angshuman Karmakar, Jose M. Bermudo Mera, Sujoy Sinha Roy, and In-
grid Verbauwhede. Saber on ARM CCA-secure module lattice-based key
encapsulation on ARM. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2018, Issue 3:243–266, 2018.

[LS12] Adeline Langlois and Damien Stehle. Worst-Case to Average-Case Reductions
for Module Lattices. Cryptology ePrint Archive, Report 2012/090, 2012.
https://eprint.iacr.org/2012/090.

https://eprint.iacr.org/2019/1140
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2012/090

Yufei Xing and Shuguo Li 351

[NCD19] Hamid Nejatollahi, Rosario Cammarota, and Nikil Dutt. Flexible ntt acceler-
ators for RLWE lattice-based cryptography. In 2019 IEEE 37th International
Conference on Computer Design (ICCD), pages 329–332. IEEE, 2019.

[NVB+20] Hamid Nejatollahi, Felipe Valencia, Subhadeep Banik, Francesco Regazzoni,
Rosario Cammarota, and Nikil Dutt. Synthesis of flexible accelerators for
early adoption of ring-LWE post-quantum cryptography. ACM Transactions
on Embedded Computing Systems (TECS), 19(2):1–17, 2020.

[OG17] Tobias Oder and Tim Güneysu. Implementing the NewHope-Simple key
exchange on low-cost FPGAs. In International Conference on Cryptology and
Information Security in Latin America, pages 128–142. Springer, 2017.

[oST15] National Institute of Standards and Technology. FIPS PUB 202 SHA-3
standard: Permutation-based hash and extendable-output functions. http:
//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf, 2015.

[Pea68] Marshall C Pease. An adaptation of the fast fourier transform for parallel
processing. Journal of the ACM (JACM), 15(2):252–264, 1968.

[PNPM15] Thomas Pöppelmann, Michael Naehrig, Andrew Putnam, and Adrian Macias.
Accelerating Homomorphic Evaluation on Reconfigurable Hardware. In CHES,
pages 143–163. Springer, 2015.

[POG15] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. High-performance
ideal lattice-based cryptography on 8-bit ATxmega microcontrollers. In
International Conference on Cryptology and Information Security in Latin
America, pages 346–365. Springer, 2015.

[RB20] Sujoy Sinha Roy and Andrea Basso. High-speed instruction-set coprocessor
for lattice-based key encapsulation mechanism: Saber in hardware. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020, Issue
4:443–466, 2020.

[Reg04] Oded Regev. New lattice-based cryptographic constructions. Journal of the
ACM (JACM), 51(6):899–942, 2004.

[RVM+14] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen,
and Ingrid Verbauwhede. Compact Ring-LWE Cryptoprocessor. In CHES,
pages 371–391. Springer, 2014.

[SAB+] P Schwabe, R Avanzi, J Bos, L Ducas, E Kiltz, T Lepoint, V Lyubashevsky,
JM Schanck, G Seiler, and D Stehle. CRYSTALS-Kyber–Algorithm Specifica-
tions And Supporting Documentation. https://csrc.nist.gov/Projects/
post-quantum-cryptography/round-3-submissions.

[Sho94] Peter W Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th annual symposium on foundations of computer
science, pages 124–134. Ieee, 1994.

[Tea20] Keccak Team. Keccak in VHDL. https://keccak.team/hardware.html,
accessed on October. 2020.

[XHY+20] G. Xin, J. Han, T. Yin, Y. Zhou, J. Yang, X. Cheng, and X. Zeng. VPQC: A
Domain-Specific Vector Processor for Post-Quantum Cryptography Based on
RISC-V Architecture. IEEE Transactions on Circuits and Systems I: Regular
Papers, 67(8):2672–2684, 2020.

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://keccak.team/hardware.html

352 A Compact Hardware Implementation of CCA-Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA

[XL20] Y. Xing and S. Li. An Efficient Implementation of the NewHope Key Exchange
on FPGAs. IEEE Transactions on Circuits and Systems I: Regular Papers,
67(3):866–878, 2020.

Appendix

Table 6: Parameter sets for Kyber

n k q η1 η2 du, dv
Kyber512 256 2 3329 3 2 10,4
Kyber768 256 3 3329 2 2 10,4
Kyber1024 256 4 3329 2 2 11,5

Table 7: Instantiation of different symmetric primitives from the FIPS-202 standard

XOF H G PRF(s, b) KDF
SHAKE-128 SHA3-256 SHA3-512 SHAKE-256(s||b) SHAKE-256

Compressq(x, d) = d(2d/q) · xc mod +2d (12)
Decompressq(x, d) = d(q/2d) · xc (13)

Algorithm 5 KYBER.CPAPKE.KeyGen(): key generation
Output: Secret key sk ∈ B12·k·n/8

Output: Public key pk ∈ B12·k·n/8+32

1: d← B32

2: (ρ, σ) := G(d)
3: N := 0
4: for i from 0 to k − 1 do . Generate matrix Â ∈ Rk×kq in NTT domain
5: for j from 0 to k − 1 do
6: Â[i][j] := Parse(XOF (ρ, j, i))
7: end for
8: end for
9: for i from 0 to k − 1 do . Sample s ∈ Rkq from Bη
10: s[i] := CBDη1(PRF(σ,N))
11: N := N + 1
12: end for
13: for i from 0 to k − 1 do . Sample e ∈ Rkq from Bη
14: e[i] := CBDη1(PRF(σ,N))
15: N := N + 1
16: end for
17: ŝ := NTT(s)
18: ê := NTT(e)
19: t̂ := Â ◦ ŝ + ê
20: pk :=

(
Encode12

(
t̂ mod +q

)
‖ρ
)

. pk := As + e
21: sk := Encode 12 (ŝ mod +q) . sk := s
22: return (pk, sk)

Yufei Xing and Shuguo Li 353

Algorithm 6 KYBER.CPAPKE.Enc (pk,m, r) : encryption
Input: Public key pk ∈ B12·k·n/8+32

Input: Message m ∈ B32

Input: Random coins r ∈ B32

Output: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

1: N := 0
2: t̂ := Decode12(pk)
3: ρ := pk + 12 · k · n/8
4: for i from 0 to k − 1 do . Generate matrix Â ∈ Rk×kq in NTT domain
5: for j from 0 to k − 1 do
6: ÂT [i][j] := Parse(XOF(ρ, i, j))
7: end for
8: end for
9: for i from 0 to k − 1 do . Sample r ∈ Rkq from Bη
10: r[i] := CBDη1(PRF(r,N))
11: N := N + 1
12: end for
13: for i from 0 to k − 1 do . Sample e′ ∈ Rkq from Bη
14: e′[i] := CBDη2(PRF(r,N))
15: N := N + 1
16: end for
17: e′′ := CBDη2(PRF(r,N)) . Sample e′′ ∈ Rq from Bη
18: r̂ := NTT(r)
19: u := NTT−1

(
ÂT ◦ r̂

)
+ e′ . u := AT r + e′

20: v := NTT−1 (t̂T ◦ r̂
)

+ e′′ + Decompressq (Decode1(m), 1)
21: . v := tT r + e′′ + Decompressq(m, 1)
22: c1 := Encodedu

(
Compressq (u, du)

)
23: c2 := Encodedv

(
Compressq (v, dv)

)
24: return c = (c1‖c2) . c :=

(
Compressq (u, du) ,Compressq (v, dv)

)
Algorithm 7 KYBER.CPAPKE.Dec (sk, c) : decryption
Input: Secret key sk ∈ B12·k·n/8

Input: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

Output: Message m ∈ B32

1: u := Decompressq (Decodedu
(c), du)

2: v := Decompressq (Decodedv
(c+ du · k · n/8), dv)

3: ŝ := Decode12(sk)
4: m = Encode1

(
Compress

(
v −NTT−1 (ŝT ◦NTT(u

))
, 1)
)

5: . m := Compressq
(
v − sTu, 1

)
6: return m

Table 8: Detailed procedures in server side and corresponding cycle counts in implementing
Kyber.CCAKEM protocol when k=3.

operation cycles

d
$←− B32

{ρ, σ} ← G(d) 79
s0 ← PRF(·) 79

354 A Compact Hardware Implementation of CCA-Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA

Table 8: Detailed procedures in server side and corresponding cycle counts in implementing
Kyber.CCAKEM protocol when k=3 (continued).

operation cycles
ŝ0 ← NTT(CBDη1

(s0)), A00 ← Parse(XOF(·)), s1 ← PRF(·) 512
ŝ1 ← NTT(CBDη1

(s1)), A01 ← Parse(XOF(·)), s2 ← PRF(·) 512
ŝ2 ← NTT(CBDη1

(s2)), e0 ← PRF(·) 512
ê0 ← NTT(CBDη1

(e0)) 512
acc← A00ŝ0 + ê0, A02 ← Parse(XOF(·)) 256

acc← A01ŝ1 + acc,A02 ← Parse(XOF(·)), A10 ← Parse(XOF(·)) 256
t̂0 ← A02ŝ2 + acc,A10 ← Parse(XOF(·)), e1 ← PRF(·) 256

ê1 ← NTT(CBDη1
(e1)), A11 ← Parse(XOF(·)) 512

acc← A10ŝ0 + ê1, A12 ← Parse(XOF(·)) 256
acc← A11ŝ1 + acc,A12 ← Parse(XOF(·)), A20 ← Parse(XOF(·)) 256

t̂1 ← A12ŝ2 + acc,A20 ← Parse(XOF(·)), e2 ← PRF(·) 256
ê2 ← NTT(CBDη1

(e2)), A21 ← Parse(XOF(·)) 512
acc← A20ŝ0 + ê2, A22 ← Parse(XOF(·)) 256
acc← A21ŝ1 + acc,A22 ← Parse(XOF(·)) 256

t̂2 ← A22ŝ2 + acc 256
transmit pk = t̂||ρ to client side, h=H(pk) 696

receive c = c1||c2 from client side, H(c) 713
u0 ← Decompress(c1), û0 ← NTT(u0) 576

acc← û0 · ŝ0 + 0 256
u1 ← Decompress(c1), û1 ← NTT(u1) 576

acc← û1 · ŝ1 + acc 256
u2 ← Decompress(c1), û2 ← NTT(u2) 576

ûs← û2 · ŝ2 + acc 256
us← INTT(ûs) 448

v ← Decompress(c2) 128
m′ ← Encode(Compress(v − us)) 128

{K, r′} ← G(m′||h) 79
r0 ← PRF(·) 79

r̂0 ← NTT(CBDη1
(r0)), AT00 ← Parse(XOF(·)), r1 ← PRF(·) 512

r̂1 ← NTT(CBDη1
(r1)), AT01 ← Parse(XOF(·)), r2 ← PRF(·) 512
r̂2 ← NTT(CBDη1

(r2)) 512
acc← AT00r̂0 + 0, AT02 ← Parse(XOF(·)) 256

acc← AT01r̂1 + acc,AT02 ← Parse(XOF(·)), AT10 ← Parse(XOF(·)) 256
û0 ← AT02r̂2 + acc,AT10 ← Parse(XOF(·)), e′0 ← PRF(·) 256

u0 ← INTT(û0) + e′0, c′1 = Encode(Compress(u0)), AT11 ← Parse(XOF(·)) 576
acc← AT10r̂0 + 0, AT12 ← Parse(XOF(·)) 256

acc← AT11r̂1 + acc,AT12 ← Parse(XOF(·)), AT20 ← Parse(XOF(·)) 256
û1 ← AT12r̂2 + acc,AT20 ← Parse(XOF(·)), e′1 ← PRF(·) 256

u1 ← INTT(û1) + e′1, c′1 = Encode(Compress(u1)), AT21 ← Parse(XOF(·)) 576
acc← AT20r̂0 + 0, AT22 ← Parse(XOF(·)) 256

acc← AT21r̂1 + acc,AT22 ← Parse(XOF(·)), e′2 ← PRF(·) 256
û2 ← AT22r̂2 + acc 256

u2 ← INTT(û2) + e′2, c′1 = Encode(Compress(u2)), e′′ ← PRF(·) 576
acc← t̂0 · r̂0 + 0 256
acc← t̂1 · r̂1 + acc 256

Yufei Xing and Shuguo Li 355

Table 8: Detailed procedures in server side and corresponding cycle counts in implementing
Kyber.CCAKEM protocol when k=3 (continued).

operation cycles
t̂r ← t̂2 · r̂2 + acc 256

v ← INTT(t̂r) + e′′ + Decompress(Decode(m)) 448
c′2 = Encode(Compress(v),Compare(c2, c

′
2) 128

K ← KDF(K ′||H(c)) or KDF(z||H(c)) 79

>>1

>>1

>>1

>>1

twl

twh

shiftreg

reduc

reduc

shiftreg

in2
in1

0

in1

in3

in2

in0

in1

0

in2

in0

red0
m0

sum_in0

red1

m2

sum_in0

red0

sum_in0
m1

sum_in1

sum_in1
red0
m3

sum_in1

in3
red1

out0

out1

out2

out3

sel0

sel1

sel2

sel3

sel2

sel2

sel2

sel2

sel4

sel5

sel4

sel6

sel7

sel7

sel2

sel2

sel7

2 {sel2,sel7}

sel8

sel8

sel9

sel9

Figure 10: Structure of two sets of butterfly units. Each path is illustrated separately,
with two input data pairs (in1, in0), (in3, in2) and corresponding output pairs (out1, out0),
(out3, out2). Control codes in different operations are presented in Table 1.

356 A Compact Hardware Implementation of CCA-Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA

Algorithm 8 KYBER.CCAKEM.KeyGen()
Output: Public key pk ∈ B12·k·n/8+32

Output: Secret key sk ∈ B24·k·n/8+96

1: z ← B32

2: (pk, sk′) := KYBER.CPAPKE.KeyGen ()
3: sk := (sk′‖pk‖H(pk)‖z)
4: return (pk, sk)

Algorithm 9 KYBER.CCAKEM.Enc (pk)
Input: Public key pk ∈ B12·k·n/8+32

Output: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

Output: Shared key K ∈ B∗
1: m← B32

2: m← H(m) . Do not send output of system RNG
3: (K̄, r) := G(m‖H(pk))
4: c := KYBER.CPAPKE.Enc (pk,m, r)
5: K := KDF(K̄‖H(c))
6: return (c,K)

Algorithm 10 KYBER.CCAKEM.Dec (c, sk)
Input: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

Input: Secret key sk ∈ B24·k·n/8+96

Output: Shared key K ∈ B∗
1: pk := sk + 12 · k · n/8
2: h := sk + 24 · k · n/8 + 32 ∈ B32

3: z := sk + 24 · k · n/8 + 64
4: m′ := KYBER.CPAPKE.Dec (s, (u, v))
5:
(
K̄ ′, r′

)
:= G (m′‖h)

6: c′ := KYBER.CPAPKE.Enc (pk,m′, r′)
7: if c = c′ then
8: K := KDF

(
K̄ ′‖H(c)

)
9: else
10: K := KDF (z‖H(c))
11: end if

	Introduction
	Preliminary
	Notation
	CRYSTALS-KYBER KEM
	NTT in Kyber
	Order-relating issues and rearranged iterative NTT algorithms
	Binomial sampling

	Design Rationale
	Butterfly unit
	RAM structure
	Adopting Karatsuba algorithm in point-wise multiplication
	Modular reduction
	Encode and decode with shift register
	Hash module

	Minimizing the Memory Footprint
	RAM dimension
	Specification of FIFOs
	Making full use of data storage FIFOs

	Results, Comparison and Discussion
	Results
	Comparison with related works
	Discussions

	Conclusion

