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Abstract. Being based on a sound theoretical basis, masking schemes are commonly
applied to protect cryptographic implementations against Side-Channel Analysis
(SCA) attacks. Constructing SCA-protected AES, as the most widely deployed
block cipher, has been naturally the focus of several research projects, with a direct
application in industry. The majority of SCA-secure AES implementations introduced
to the community opted for low area and latency overheads considering Application-
Specific Integrated Circuit (ASIC) platforms. Albeit a few, those which particularly
targeted Field Programmable Gate Arrays (FPGAs) as the implementation platform
yield either a low throughput or a not-highly secure design.
In this work, we fill this gap by introducing first-order glitch-extended probing
secure masked AES implementations highly optimized for FPGAs, which support
both encryption and decryption. Compared to the state of the art, our designs
efficiently map the critical non-linear parts of the masked S-box into the built-in
Block RAMs (BRAMs).
The most performant variant of our constructions accomplishes five first-order secure
AES encryptions/decryptions simultaneously in 50 clock cycles. Compared to the
equivalent state-of-the-art designs, this leads to at least 70% reduction in utilization
of FPGA resources (slices) at the cost of occupying BRAMs. Last but not least, we
provide a wide range of such secure and efficient implementations supporting a large
set of applications, ranging from low-area to high-throughput.
Keywords: Side-Channel Analysis · Masking · FPGA · Threshold Implementation
· AES

1 Introduction
Cryptographic implementations in embedded devices are prone to Side-Channel Analy-
sis (SCA) attacks, where the adversary tries to extract the secret by monitoring physical
parameters of the cryptographic device like power consumption or electromagnetic radiation.
After the introduction of the seminal work by Kocher et al. [KJJ99], an extensive body of
literature has been dedicated to SCA attacks targeting both software and hardware imple-
mentations. Examples include Correlation Power Analysis (CPA) attack [BCO04], Mutual
Information Analysis (MIA) [GBTP08], Moments-Correlating DPA (MC-DPA) [MS16],
and Differential Deep Learning Analysis (DDLA) [Tim19]. This naturally necessitates
employing proper countermeasures to achieve physical security in addition to analytical
security of the underlying cryptographic primitives. Identifying the source of leakage and
how to mitigate them have been deeply discussed by a great number of researchers in public
literature. Among various known protection mechanisms, due to their sound mathematical
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basis, masking countermeasures are considered as the most convincing approach to provide
security against SCA attacks. In a masking scheme, sensitive intermediate values of the
cipher are randomized during the execution of the cryptographic operation. In this context,
Boolean masking is known as the most popular scheme, in which the key-dependent
variables are split into several shares, drawn randomly from a uniform distribution. For
the sake of correctness, the sum of the shares should obviously yield the unshared value.

One of the first attempts to construct a masked circuit was presented in [Tri03], where
a first-order secure AND gate is introduced. Moreover, Ishai et al. [ISW03] proposed a
general algorithm for realizing the masked AND operation at the desired security order.
These constructions appear consistent with software implementations, where operations are
performed in a sequential manner. In contrast, these implementations exhibit exploitable
leakages in hardware due to the lack of atomic gates, i.e., the gates which issue the
output at a certain time independent of the given input. This leads to a phenomenon in
hardware circuits known as glitches turning theoretically-secure schemes into practically-
vulnerable designs [MPO05, MME10]. After many trial and error, the study in [NRR06]
addressed several further questions on how to mitigate the effect of glitches and provided
an implementation strategy with comprehensible properties, which – if fulfilled – makes
the circuit secure even in the presence of glitches. This methodology, called Threshold
Implementation (TI), was extended to higher orders in [BGN+14b], with some limitations
as addressed in [Rep15].

Evaluation of masked implementation is another challenge, which the community dealt
with. The most common approach is the probing security model, introduced in [ISW03],
where the number of wires that the attacker can simultaneously observe defines the order of
the conduced attack. Consequently, the security order of a circuit is defined as the maximum
number of probes that the adversary puts on the circuit without revealing any information
about the secrets. While this abstract model is suitable for software implementations, it
suffers from certain weaknesses when dealing with hardware implementations. To cope
with this issue, the authors of [FGP+18] have introduced the robust probing security
model, which extends the original model to cover the physical characteristics of the circuit,
including glitches and coupling. Obviously, by placing a probe on a circuit in a glitch-
extended probing model, the adversary gains more information compared to the original
probing model. In short, to cover the effect of glitches, any probe on a circuit is extended
to all gates and input signals which are involved in the computation of the probed signal.

Following such evaluation strategies, several secure masking methodologies have been
developed and introduced in order to realize the masked implementation of different crypto-
graphic ciphers. Unsurprisingly, the lion’s share of such designs focus on AES as the target
algorithm [MPL+11, BGN+14a, BGN+15, GMK16, CRB+16, UHA17, Sug19]. A closer
look at the literature on masked AES implementations reveals that most of the proposed
methods take either Application-Specific Integrated Circuit (ASIC) or microcontrollers
(software implementations) into account as the implementation platform. In contrast, a
few works focus on Field Programmable Gate Array (FPGA) designs. Undoubtedly, all
ASIC-based schemes can be employed on FPGA as well, but the FPGA resources (e.g.,
dedicated built-in hardware modules) are not necessarily utilized in an efficient manner.

As an FPGA-specific design, at the cost of extremely high latency, the authors
of [WMM20] have presented a tiny masked AES for Xilinx FPGAs. Albeit efficiently
utilizing FPGA resources, the design is absolutely not a choice when high throughput
is desired, which – to the best of our knowledge – is among the main motivations be-
hind employing an FPGA in various applications. Further, an FPGA-dedicated masked
round-based implementation of AES has been presented in [GM11]. Although being a
resource-efficient implementation in Xilinx FPGAs, it either reuses the same masks for
multiple encryptions to maintain a reasonable throughput or turns into a high-latency
design when no mask should be reused. The former might become vulnerable to certain
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SCA attacks, while the latter cannot be considered as a highly-performant design.
One of the applications of high-throughput AES (in order of Gigabits per second) is

in high-speed networks. To answer this demand, many AES IP cores are available in the
market. For example, “Helion” [Hel] offers different purchasable AES IP cores for various
FPGAs, ranging from tiny and low-area to large and fast cores. They provide a fast AES
encryption with up to 1.8Gb/s throughput in Spartan-6. We also should highlight that
most of the secure protocols in the context of network security rely on AES and many
companies employ FPGAs to support a high data rate. For instance, “Atmedia” [Atm]
offers FPGA-based “Atmedi Ethernet Encryptor”. As a matter of fact, none of these cases
provides SCA-secure designs.

1.1 Our Contributions
In this work, we introduce a technique allowing us to realize a 2-share masked version
of an 8-to-1 cubic function with an optimally-minimum number of component functions,
i.e., small functions generating the output shares. Then, by decomposing the AES S-
box and its inverse into two cubic permutations and applying our developed technique,
we construct an FPGA-specific 2-share first-order secure AES cipher supporting both
encryption and decryption with a low area footprint. Our design’s overhead lies in occupying
Block RAMs (BRAMs), which are building blocks existing in almost every Xilinx FPGA
available in the market. We would like to highlight that our design is the first which
1) is optimized for FPGAs, 2) offers round-based implementation for high-throughput
applications, 3) demands a little fresh randomness per cycle, 4) does not reuse the masks,
and 5) is glitch-extended probing secure. Compared to the state of the art, we demonstrate
that our only-encryption design reduces the number of utilized LookUp Tables (LUTs)
and registers at least 70% and 85%, respectively while maintaining the latency. We further
point out interesting trade-offs between different overheads like area, latency, and fresh
randomness. Further, we verified the security of our designs using the recently-introduced
verification tool SILVER [KSM20] under the glitch-extended probing model and provide
the result of FPGA-based SCA evaluation experiments for the sake of completeness. All
designs and HDL codes, including S-box, its inverse, round-based full cipher, and byte-serial
implementations are provided on GitHub.

2 Preliminaries
In this section, we introduce our notations and then provide primarily knowledge about
the fundamentals of masking. We also review requirements of masking in hardware and
various state-of-the-art techniques used to realize secure hardware implementations. Our
explanations also cover a basic introduction to FPGAs and their building blocks.

2.1 Notations and Definitions
We use lower-case and upper-case italic fonts to denote binary variables x ∈ F2 and vectors
X ∈ Fn>1

2 , respectively. We represent matrices with upper-case italic bold X, coordinate
Boolean functions with lower-case italic sans-serif f (.), vectorial Boolean functions with
upper-case italic sans-serif F (.), and sets with calligraphic font F . Further, we show i-th
share of a variable with subscripts xi, and j-th bit of a binary vector X with xj . Similarly,
f j(.) stands for a coordinate function generating j-th output bit of F (.).

Boolean masking is the most popular masking scheme in the literature in which the
secret x is split into at least s+ 1 shares (x0, . . . , xs) to provide s-order security against
SCA attacks. For the sake of correctness, the sum of the shares must be equal to the
original non-shared value, i.e., x =

⊕
∀i xi . A possible way to form the uniform sharing

https://github.com/Chair-for-Security-Engineering/AES_masked_BRAM
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of x is to draw (x0, . . . , xs−1) from a uniform distribution and derive the last share xs

as x ⊕
⊕
∀i<s xi. When secret data X is presented in a shared form (X0, . . . , Xs), the

corresponding functions of the cipher should also be adjusted to the underlying sharing
fashion. The masked realization of a linear Boolean function Y = L(X ) can be trivially
obtained by applying the same function on each set of shares individually Yi = L(Xi).
The crux of the matter, however, is how to achieve a masked realization of a given non-
linear function F (.). It becomes particularly complicated for target functions with a large
algebraic degree as well as for high desired security orders.

2.2 Threshold Implementations
Beyond the assumed-secure masked hardware implementations [Tri03, OMPR05] whose
insecurity has been shown [MPO05, MME10], TI [NRR06] is the first technique which could
show immunity in presence of glitches. Being based on Boolean masking, TI defines three
below given properties, which should be fulfilled to realize a first-order secure hardware
implementation. Let Y = F (X) be the target function with arbitrary input and output
sizes. For the sake of simplicity, suppose that input and output should be presented by s+1
shares, i.e., the masked realization of F (.) receives X0, . . . , Xs and provides Y0, . . . , Ys.

• Correctness guarantees that the masked function operates correctly for all possible
shared inputs. More precisely, ∀Xi, F (

⊕
∀i Xi) =

⊕
∀i Yi. Note that this property

does not deal with the security of the design.

• Non-completeness guarantees that the calculation of any output share does not reveal
any information about the secret even in the presence of glitches. For example,
F (.) can be split into a set of so-called component functions Fi(.), each of which
provides an output share Yi by processing a set of input shares where the i-th share is
missing, i.e., (X0, . . . , Xi−1, Xi+1, . . . , Xs). Hence, every output share is independent
of at least one input share, and SCA leakage of Fi(.) cannot reveal any information
about X.

• Uniformity implies that – given any uniformly-shared input X – the shared output of
the function should not be distinguishable from Y being uniformly shared. Otherwise,
the subsequent masked function receives non-uniform shared input, violating the
fundamental assumption of Boolean masking.

As proven in [NRR06], non-completeness together with uniformity, leads to first-order
secure designs. Classical TI introduced a strategy, called direct sharing, to realize a correct
and non-complete masked variant of any Boolean function with algebraic degree t with at
least td+ 1 input shares, where d stands for the desired security order. However, obtaining
uniform output sharing is challenging as no solid methodology, except remasking by means
of fresh randomness, is known. It seems that even the uniform sharing of some functions
without using fresh randomness does not exist. For example, a uniform TI of 2-input AND
gate with three input shares [NRR06] has not been reported yet. The same holds for χ
operation of Keccak with three input shares [BDN+13].

Daemen addressed this issue and introduced changing of the guards [Dae17] in which
achieving uniformity requires fresh randomness only at the initial clock cycles after the
device powers up. This technique uses the unrelated part of the shared cipher state as
a fresh mask to remask the non-uniform output of a shared non-linear function. The
application of this technique has been shown on Keccak χ function [Dae17] and AES
S-box [WM18, Sug19]. As a side note, this technique is just to achieve uniformity for a
shared function that fulfills non-completeness. In case the shared function violates the
non-completeness, changing of the guards cannot be beneficial.

Achieving a non-complete and uniform TI becomes even more challenging for a function
with a high algebraic degree due to the high number of necessary input and output shares
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leading to more area and latency overhead. Thus, the solution that the community came
up with is to try to decompose the target function into smaller functions – preferably
quadratic – and mask them individually [BNN+15]. However, to avoid the propagation of
glitches, this solution forces to add registers between each consecutive masked function,
usually leading to a higher latency.

2.3 Probing Security

To evaluate the security of masking schemes, Ishai et al. [ISW03] introduced a simple and
abstract model, called probing security model. In this model, the number of probes, that
the attacker can put on the given circuit with which to observe the intermediate values,
reflects the order of the attack. Hence, in a d-th order secure design, any combination
of at most d probes should not reveal any information about the secret. Ignoring micro-
architectural leakage, this model perfectly works for software implementations where
instructions are executed sequentially, and each operation can be seen as an atomic gate,
where the output changes only once per operation. The same, however, does not hold for
hardware implementations due to the well-known phenomenon in CMOS circuits called
glitches.

Glitches are unwanted signal transitions in the output of a combinatorial circuit, mostly
because of unbalanced path delays at the gate’s inputs. It is extremely difficult to model
the exact effect of the glitches in a given circuit since it is influenced by some factors on
which we, as designers, have no control, e.g., process variation. Consequently, there has
been a considerable body of work on how to adjust the probing security model in the
presence of glitches, where the most convincing one seems to be glitch-extended probing
model introduced in [FGP+18]. In this model, by probing the output of a gate, the
attacker has information about all intermediate values of the combinational circuit involved
in the calculation of the probed gate.

Due to its simplicity, this abstract model is widely employed to assess the security of
designs and improve them in terms of area overhead, latency, and randomness complex-
ity [BGR18, SM20]. It is also extensively adopted for formal verification [KSM20, BBC+19]
due to the fact that this abstraction allows reducing the complexity of security proofs for
implementation of masking schemes. We should highlight that in this work, we mainly focus
on first-order secure hardware implementations. Therefore, we consider the glitch-extended
probing model in our theoretical analyses and use SILVER [KSM20] to verify the security
of our constructions.

2.4 Masking with d + 1 Shares

While classical TI defines the number of input shares as td + 1, it has been shown
that less number of shares can be employed to achieve the same security in hardware
implementations [RBN+15, GMK16]. More precisely, d+ 1 input shares can be used to
construct a secure masked hardware implementation (under the glitch-extended probing
model), regardless of the algebraic degree of the target function. In this method, the given
function is split into two parts with a register stage in between to avoid propagation of
glitches. For example, the authors of [GMK16] provided a secure masked variant of a
2-input AND gate x = f (a, b) = ab with d+ 1 shares. An example for d = 1 is given in
Equation (1), where a0, a1, b0, b1 denote the input shares, x0 and x1 the output shares,
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and r a single-bit fresh mask.

f0(a0, b0) = a0b0 → x′0

f1(a0, b1, r) = a0b1 + r → x′1 x′0 + x′1 = x0

f2(a1, b0, r) = a1b0 + r → x′2 x′2 + x′3 = x1

f3(a1, b1) = a1b1 → x′3

, (1)

f0(.) to f3(.) are known as component functions, which are indeed the shared form of f (.).
The result of every component function, i.e., x′0 to x′3 should be stored in registers and
then fed into the compression layer, compressing them to d+ 1 output shares by means of
XORs.

The authors of [RBN+15] showed that it is not always necessary to use fresh randomness
to apply this method. For instance, the first-order security can be achieved for x =
f (a, b, c) = ab+ c by following the Equation (1) and replacing r with c0 and c1 in f1 and
f2, respectively. Further, it has been shown in [SM20] that the same concept can be used
to achieve a uniform and first-order secure 2-input AND without any fresh randomness by
replacing c with b in x = ab+ c.

2.5 Field Programmable Gate Array (FPGA)
An FPGA is an integrated circuit designed to be reprogrammable by a netlist as the
result of synthesizing a design expressed in a Hardware Description Language (HDL),
such as Verilog or VHDL. The reprogrammability of FPGAs distinguish them from ASICs
manufactured to do a specific task. An FPGA consists of thousands of Configurable Logic
Blocks (CLBs) that can be configured to perform complex combinatorial functions, and a
system of programmable interconnects to route signals between CLBs. Most of the recent
FPGAs host other features like Block Memories, Digital Signal Processing blocks, and
dedicated high-speed serial communication facilities mostly left unused for cryptographic
applications. In this work, we mainly focus on Xilinx FPGA families (from 6- and 7-Series),
and hence give some related preliminary information, helping to follow the rest of the
paper. Note that our designs are general and can be implemented (synthesized) on every
FPGA. However, we opted to develop our implementations for Xilinx FPGA families
currently available in the market.

Xilinx FPGAs Architecture

Each Xilinx FPGA from the 6- and 7-Series contains a matrix of CLBs, whose number
depends on the device size and model. Each CLB consists of two slices, each of which
contains four LUTs, eight flip-flops, and miscellaneous logic, regardless of their type. It
offers dual-register 6-input LUTs (with one-bit output) that can also be used as two 5-input
LUTs with common inputs. Synthesis tools utilize these logic blocks to implement the
desired functions if not particularly configured to use certain internal hardware blocks.

Such FPGAs additionally provide other sorts of built-in system-level blocks, including
18 kb BRAM, where each can be used as two independent 9 kb memory blocks. Large
amounts of data can be stored on these embedded block memories inside the FPGA,
offering fast access to the data. Interestingly, the size of the address and data ports can be
adjusted by the user based on their needs. For example, a 9 kb block (which is actually an
8 kb data memory and an additional 1 kb of space for parity) can be configured to have a
13-bit address and 1-bit data port or a 10-bit address and 8-bit data port.

Both read and write operations are fully synchronous, meaning that the input of a
BRAM is always registered. An optional output register can be configured to reduce the
latency of the circuit. BRAMs also feature True Dual-Port (TDP), implying that there
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exist two completely independent address and data ports, which can be simultaneously
used to access the content of a BRAM.

3 AES S-box
In this section, after reviewing state-of-the-art techniques used to realize secure hardware
implementation of the AES S-box, we introduce our methodology to achieve optimal
output shares for cubic functions. Afterward, we shortly discuss the decomposition of the
AES S-box and employ our methodology to achieve a first-order secure S-box as well as its
inverse.

3.1 Related Works
An AES S-box consists of an inversion over GF (28) and an affine transformation over
GF (2). The inversion is performed on a polynomial basis with the irreducible polynomial
x8 + x4 + x3 + x+ 1. The corresponding hardware implementations with a polynomial
basis lead to relatively large area and latency overheads. Canright addressed this issue and
provided a tower-field representation of the inversion in GF (28) [Can05]. He split the AES
S-box into some smaller functions and changed the representation and calculation from a
polynomial basis to a normal basis in each sub-field. This allowed him to design a compact
and efficient inversion circuit over GF (28). An interesting point of this technique is that
the sub-functions’ algebraic degree is at most three, which is the inversion over GF (24).
This initiated a vast number of research on how to take advantage of the tower-field
approach and make a masked AES S-box with limited overheads. This is mainly due to the
fact that – as stated in Section 2 – the number of input shares depends on the algebraic
degree of the target functions in classical td+ 1 TIs.

One of the first such works is [MPL+11] where, in order to mask the entire AES S-box
with three input shares, all operations in GF (24) are also split into GF (22) sub-field using
the same tower-field approach. This results in having multiplication in GF (22) as the
only non-linear (quadratic) operation for the entire inversion in GF (28), allowing to use
only three shares to realize the masked circuit. Consequently, the design has four-stage
pipeline architecture for the inversion and an extra stage for the affine transformation
combined with the normal-to-polynomial isomorphism. The design has been improved
later in [BGN+14a] in terms of area, latency, and randomness complexity, and by giving
some trade-offs between area and additional randomness [BGN+15]. In these works, the
inversion in GF (24) has been used without splitting into sub-field, allowing to remove
one register stage. However, the authors had to adapt the number of shares as such an
inversion is a cubic function.

Two more compact masked AES S-box designs using d+1 sharing have been introduced
in [GMK16] based on the same tower-field approach, one with five and the other one with
seven pipeline stages. The latter one has less randomness complexity while the former has
less area overhead. Two other d + 1 masked designs have been presented in [CRB+16]
and [UHA17] leading to less area overhead at the cost of more latency and more randomness
complexity. Further, a methodology has been presented in [SM20], which allows realizing
a 2-share masked variant of the inversion in GF (28) without using any fresh randomness
but with higher area demands. We should highlight that all the aforementioned designs
are based on the tower-field approach.

The changing of the guards [Dae17] which relaxes the demands for fresh randomness, has
also been applied on the masked AES S-box designs. The authors of [WM18] decomposed
the AES S-box into two cubic functions and by making use of this technique, introduced a
4-share masked AES without fresh randomness. Furthermore, the same has been applied
on a 3-share masked design presented in [Sug19] which follows the tower-field approach.



Aein Rezaei Shahmirzadi, Dušan Božilov and Amir Moradi 311

The former suffers from a high latency while the latter has considerable area overhead
showing a trade-off between the randomness and latency/area.

It is noteworthy that all aforesaid designs are optimized for an ASIC platform, and all
of them have been used in the serialized implementation of AES to show their performance.
Indeed, none of them has been designed to efficiently utilize FPGA resources, e.g., slices,
LUTs, and BRAMs. Instead, in [DMW18] (improved in [WMM20]) an FPGA-specific
masked AES has been presented. Following the same concept as in [WM18], the authors
decomposed the inversion in GF (28) into two cubic functions and reduced the area footprint
on FPGA by exploiting the rotational symmetry [RBF08]. To be able to take advantage of
the rotational symmetry, the authors had to construct a bit-serial architecture. As a result,
the latency of the design is extremely high and obviously inappropriate for applications
with high-throughput requirements.

To the best of our knowledge, the only FPGA-specific masked implementation of the
round-based AES with a reasonable latency has been presented in [GM11]. The underlying
so-called Block Memory Scrambling (BMS) technique efficiently makes use of BRAMs
available in Xilinx FPGAs. For the new randomly selected set of masks, the masked look-up
tables, which are stored in BRAMs, are recalculated on the fly parallel to the encryption.
Consequently, as long as the entire look-up tables are not recalculated (taking 512 clock
cycles), the same masked look-up tables are re-used for encryption. In other words, not
only all cipher rounds but also a couple of consecutive encryptions use the same masks,
which potentially can increase the risk of SCA collision attacks. In order to mitigate this
vulnerability, 512 clock cycles should be the minimum gap between consecutive encryptions,
which again lowers down the throughput. Even in such a case, all cipher rounds still share
the same masks.

3.2 Technique
In order to minimize the area of the implementation of the S-box (resp. S-box inverse),
we need to minimize the number of component functions in the nonlinear layer. Based
on [WM18], it is possible to decompose the AES S-box into cubic permutations. Hence,
we are interested in finding a minimal number of component functions to realize a 2-share
masked form of 8-to-1 cubic functions, i.e., an 8-bit coordinate function. To generalize
and to consider the worst-case scenario, we suppose that the target coordinate function
contains all cubic terms, namely

(8
3
)
cubic monomials. This way, the construction which we

build here can be used for any 8-bit cubic coordinate function, even if it does not contain
all cubic monomials.

The work presented in [WMM20] provides the masked form of such a function with 16
component functions, but with no guarantees of optimality, since the presented algorithm
always produces k × (d+ 1)t component functions, with k being an integer. Here, d = 1
and t = 3, i.e., 2 shares and a cubic coordinate function. In fact, the authors optimized k
and not the number of component functions in general. Additionally, another methodology
has been given in [BKN19], which is only suitable for sharing functions that have degree
t = n− 1, where n is the number of input bits. As we have t = 3 and n = 8, this method
obviously cannot be applied in our case. Consequently, following this approach leads to a
realization with 128 component functions for an 8-to-1 function, which is far more than
necessary for cubic functions.

In order to ease the notation, we utilize the same matrix/table representation of output
sharing used in [WMM20] and [BKN19]. While the table notation does not uniquely
determine the Algebraic Normal Form (ANF) of the sharing, it is sufficient to argue the
correctness and non-completeness properties. In the table notation, the number of columns
and rows represents the number of input bits and the number of component functions,
respectively. The i-th row contains the sharing indices of input variables that the i-th
component function receives, and the j-th column represents the sharing indices of the j-th
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input variable. A quick example of such a table is given in Equation (2), where function
ab+ c is shared using 4 component functions, with the sharing table on the left.

0 0 0
0 1 0
1 0 1
1 1 1


f0(a0, b0, c0) = a0b0 + c0
f1(a0, b1, c0) = a0b1
f2(a1, b0, c1) = a1b0
f3(a1, b1, c1) = a1b1 + c1

(2)

To verify the correctness of a sharing table for a given function, we need to make sure
that all shared monomials in the ANF representation are present in the corresponding
component functions an odd number of times. Equivalently, given all possible rows of an
n-bit input function with d+ 1 input shares, we need to find a subset of rows that jointly
contains all shared monomials. Let us refer to the set of all possible rows as R. Each
row of R contains a number of shared monomials of degree n or less. For example, in
an 8-bit input (a, b, c, d, e, f, g, h), row (0, 1, 0, 0, 1, 1, 1, 0) implies that the corresponding
component function receives (a0, b1, c0, d0, e1, f1, g1, h0). Hence, the component function
can have monomials like a0b1d0, and e1f1g1h0 among the others.

For a specific unshared ANF, we only need to observe its shared monomials. Since we
can enumerate each shared monomial as an element e ∈ E , we can naturally say that for
every row ∀S ∈ R, S ⊂ E . The problem of finding minimal sharing now turns into the
problem of finding a subset of R with a minimum size that contains all elements of E .

This is a well-known discrete optimization problem referred to as Set Covering Prob-
lem (SCP), and we can utilize discrete optimization methods to solve it. Written more
formally, given set E and a family of rows R, we associate variable xS ∈ {0, 1} to S
denoting if row S is chosen or not. Finding the correct minimal sharing can then be
formulated as:

minimize
∑
∀S∈R

xS (3)

subject to ∀e ∈ E ,∃S ∈ R s.t. e ∈ S, xS = 1 (4)

Expression (3) is referred to as objective cost or objective function, while the constraints
are given with inequalities in expression (4). In our concrete case, we are interested
in 8-to-1 cubic functions and their 2-share masked realization. Therefore, there are 28

different rows in the sharing table, i.e., |R| = 256, which is also the number of decision
variables. A 2-share form of a generic cubic coordinate function with all cubic terms
contains 23×

(8
3
)

= 448 cubic shared monomials. Note that we do not need to add elements
associated with monomials of degree less than 3, because if we have a valid sharing for such
a cubic coordinate function, we can systematically add quadratic and linear monomials
into the component functions.

While 256 decision variables are too large for an exhaustive search, we can utilize
discrete optimization method constraint programming [RBW06], by creating the model
based on SCP formulation given with objective cost 3 and constraints 4 using freely
available MiniZinc tool [NSB+07] with the Chuffed backend solver [CS14]. Constraint
Programming (CP) is a discrete optimization method used to find solutions to satisfiability
problems by exploring the search space while trying to satisfy all the given constraints. It
can also be adapted to solve optimization problems such as set covering by adding the
constraint that each new solution has better objective cost than the previous one, and
then repeatedly tries to satisfy new objective cost constraints until the problem becomes
infeasible.

Programming in MiniZinc is based on creating an optimization model with respect
to the given constraints and objective cost function. To employ SCP, we can model the
elements (shared monomials) from E and sets (component functions) with a cover matrix
C, where each row represents one element to be covered. Entries in a single row indicate
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all sets covering that particular element. If all elements are not covered by the same
number of sets, we need to pad to maximal possible length by adding entries at the end
with a dummy value. In the case of 8-bit-1 cubic functions, we can enumerate all possible
component functions, ranging from 0 to 255 while 256 indicates a dummy value that does
not represent any output share. The result will be given as an array of output shares out,
indicating a list of chosen indices for the input of corresponding component functions. To
reduce the search space for the solver, we should enforce the ordering in out in such a way
that the sharing indices are listed in increasing order. Furthermore, since MiniZinc cannot
deal with unknown-size arrays, we must allocate enough space to ensure that the solution
is always fitted. In our case, the total number of rows in the sharing table is 256. Note
that the order of constraints does not matter in MiniZinc, since they are evaluated jointly.
To reiterate, our model consists of the following steps:

1. Create element cover matrix C where each row represents a different element, and
entries in each row indicate which sets cover that particular element. If padding
with dummy values is needed, we should make sure that all rows have the same
cardinality.

2. Allocate output array out with enough elements covering the worst-case scenario.
This array will contain the chosen covering sets found by the solver.

3. Add a constraint that enforces the ordering in out, which helps break the symmetry.

4. Add a constraint that entries of an unused portion of out are equal to the dummy
value.

5. Add a constraint that enforces to have at least one valid value in each row of out to
ensure that all elements will be covered.

6. Add objective cost function that minimizes the number of non-dummy elements in
out. This minimizes the number of sets used for covering, effectively solving our
optimization problem.

The model is quite simple and is more or less a direct translation of the Expressions (3)
and (4). We had to add symmetry breaking constraints. The first one ensures the ordering
of the output, while the second one guarantees that unused indices in the out array are
all filled with the dummy value. While adding the ordering constraint has no impact
on the correctness of the model, it greatly reduces the solving time. After running the
model, MiniZinc provides increasingly better quality solutions until the underlying solver
determines that the optimal solution has been found or until a user-specified timeout is
reached. While we only demonstrate the usefulness of the aforementioned technique on
first-order d+ 1 = 2 sharing of cubic 8-to-1 coordinate functions, it can also be applied in
a more general manner for different algebraic degrees and security orders, given that the
cover matrix C is correctly initialized, the total number of rows in the sharing table is
correctly given, and the array out is allocated with enough entries to fit the solution. In
fact, this model can be used to solve any set covering problem.

Depending on the problem at hand, CP solver might take quite a while to prove
optimality, or in some cases, even to find a feasible solution. However, on a regular PC,
for our instance of set covering problem used to find minimal sharing of cubic coordinate
functions of 8 bits, the solver finds an optimal solution with 12 output shares within 3
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seconds as given below.

0 0 0 0 1 1 0 0
0 0 0 1 1 0 1 1
0 0 1 0 0 0 0 1
0 0 1 1 0 0 1 0
0 1 0 1 0 1 0 1
0 1 1 0 1 0 1 0
1 0 0 0 0 0 1 0
1 0 1 1 1 1 0 1
1 1 0 0 1 1 1 1
1 1 0 1 1 0 0 0
1 1 1 0 0 1 0 0
1 1 1 1 0 0 1 1



f0 (a0, b0, c0, d0, e1, f1, g0, h0)
f1 (a0, b0, c0, d1, e1, f0, g1, h1)
f2 (a0, b0, c1, d0, e0, f0, g0, h1)
f3 (a0, b0, c1, d1, e0, f0, g1, h0)
f4 (a0, b1, c0, d1, e0, f1, g0, h1)
f5 (a0, b1, c1, d0, e1, f0, g1, h0)
f6 (a1, b0, c0, d0, e0, f0, g1, h0)
f7 (a1, b0, c1, d1, e1, f1, g0, h1)
f8 (a1, b1, c0, d0, e1, f1, g1, h1)
f9 (a1, b1, c0, d1, e1, f0, g0, h0)
f10(a1, b1, c1, d0, e0, f1, g0, h0)
f11(a1, b1, c1, d1, e0, f0, g1, h1)

(5)

We would like to highlight that 12 component functions are not always the optimal solution
for an 8-to-1 cubic function. If the ANF is simple, better sharings can certainly be found.
For example, 8 component functions would be enough for f = abc+ def + g + h.

3.3 Our Masked AES S-box and its Inverse
Our goal is to represent the masked variant of the AES S-box using 2 shares while
minimizing the latency (number of register stages) and limiting the demand for the fresh
randomness. To this end, we followed the procedure given below.

An inversion X−1 over GF (28) can also be represented as X254. Since it has been shown
that the decomposition of an inversion over GF (2q) into quadratic permutations when q is
a multiple of 4 is not an option [NNR19], similar to [WM18] we focus on decomposition
into cubic permutations. In other words,

X254 = (Xn)m = (Xm)n, HW(n) = HW(m) = 3,

with HW(α) being Hamming weight, i.e., the number of 1s in the binary representation of
α. The authors of [WM18] provided all such tuples (n,m) as

(13, 98), (26, 49), (52, 152), (104, 76), (208, 38), (161, 19), (67, 137), (134, 196),

for each of which (m,n) is also a valid tuple. We denote such cubic functions as F (X) = Xn

and H(X) = Xm. Showing the affine transformation of the S-box by A(.), which follows
the inversion, the AES S-box and its inverse can be represented as

S(X) =A ◦ H ◦ F (X) = G ◦ F (X),
S−1(X) =F ◦ H ◦ A−1(X) = F ◦W (X).

We have observed that for all the above-listed tuples, the ANF of the vectorial Boolean
function X 7→ Xm contains all possible cubic monomials. Therefore, considering the
technique expressed in Section 3.2, none of the tuples has any advantage compared to the
others. Hence, without any specific reason, we have taken the tuple (n = 26,m = 49) for
the decomposition. As given in Section 3.2, each coordinate function of F (.), G(.), and
W (.) can be masked using 12 component functions, where the compression layer combines
(XOR) the output of 6 of them to form one output share.

In the following, we focus on explaining how our technique can be applied on F (.), which
is indeed the same procedure when targeting G(.) or W (.). Let f j(.) be the j-th coordinate
function of F (.), whose shared form is represented by a set of 12 component functions
F j =

{
f j
i (.), 0 ≤ ∀i ≤ 11

}
. Each f j

i (.) receives an 8-bit input X ′i formed by a mixture of
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input shares while maintaining non-completeness. As stated in Section 3.2 and based on
Equation (5), we can exemplary write X ′0 : 〈x7

0, x
6
0, x

5
0, x

4
0, x

3
1, x

2
1, x

1
0, x

0
0〉. As a matter of

fact, the same input X ′i is given to the i-th component function of all coordinate functions,
i.e., 0 ≤ ∀j ≤ 7, f j

i (X ′i). Hence, for each i ∈ {0, . . . , 11} these 8 component functions can
be aggregated and form an 8-bit to 8-bit vectorial Boolean function F ′i (.) receiving the
aforementioned X ′i as input.

In short we have 12 functions F ′0≤i≤11(.) as the sharing of F (.), which fulfill both
correctness and non-completeness. Next, we need to deal with two facts: glitch-extended
probing security, and uniformity which should be satisfied by remasking. As stated, the
sharing of each coordinate function is done by 12 component functions, while each 6
are combined in the compression layer to make one output share. Hence, trivially 5
fresh mask bits can be used to make the compression layer (of each coordinate function)
glitch-extended probing secure (see Section 2.4 and [RBN+15]). This further yields a
uniform output sharing of the underlying coordinate function. Therefore, 40 fresh mask
bits are required for each shared F (.). We follow the below-given procedure to decrease
this to 8 fresh mask bits, which is indeed the minimum to uniformly refresh the output
sharing of a 2-share vectorial Boolean function with 8-bit output, i.e., F (.).

For simplicity, let us denote the output of a component function f j
i (.) by yj

i , and
represent the output of all component functions by the matrix Y as

Y =



y7
0 y6

0 · · · y0
0

y7
1 y6

1 · · · y0
1

...
... . . . ...

y7
5 y6

5 · · · y0
5

y7
6 y6

6 · · · y0
6

y7
7 y6

7 · · · y0
7

...
... . . . ...

y7
11 y6

11 · · · y0
11


.

Without losing generality, we suppose that the output of the first six component functions
of each coordinate function (i.e., yj

0, . . . , y
j
5) are combined in the compression layer, of

course, after being stored in registers (see Section 2.4). Then, obviously, the next six
outputs yj

6, . . . , y
j
11 are combined to make the other output share. We also denote an 8-bit

fresh random mask by 〈r0, . . . , r7〉, and divide the remasking process into two steps. In
the first step, the matrix R is formed as follows.

R =



R0,...,5

R6

R7


=



R0

R1

R2

R3

R4

R5

R6

R7


=



r0 r0 r0 r0 r0 r0 r0 0
r1 r1 r1 r1 r1 r1 0 r1

r2 r2 r2 r2 r2 0 r2 r2

r3 r3 r3 r3 0 r3 r3 r3

r4 r4 r4 0 r4 r4 r4 r4

r5 r5 0 r5 r5 r5 r5 r5

r6 0 r6 r6 r6 r6 r6 r6

0 r7 r7 r7 r7 r7 r7 r7


(6)

By taking the first 6 rows of R, i.e., R0...5, we make the remasking matrix R′ =
(

R0,...,5

R0,...,5

)
,

with which the output of component functions are remasked and stored in registers as
Y ′ =

[
Y ⊕R′

]
. This is actually enough to satisfy glitch-extended probing security of the

compression layer since each column of the upper half of Y ′ are combined, whose at least
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5 values are refreshed. In other words, placing a glitch-extended probe on the XORs of the
compression layer does not lead to any set of probes involving both shares of an input bit.

However, this does not necessarily lead to a jointly uniform output sharing. For
example, the last two output shares (two left most columns in Y ′, respectively Y and R′)
are remasked by the same value r0 ⊕ r1 ⊕ r2 ⊕ r3 ⊕ r4 ⊕ r5, meaning no joint uniformity.
Therefore, we need to add more fresh masks, which we decided to apply in the compression
layer. The reason behind this decision is our implementation platform. As stated in
Section 2.5, our goal is to fit as many as possible functions into the BRAMs, with restricted
input/output size (address/data ports). As given, each F ′i (.) is an 8-bit to 8-bit function,
and its output is XORed with the corresponding Rj for remasking, with j = i mod 6, i.e.,
F ′0(.) ⊕ R0, . . . ,F ′5(.) ⊕ R5 and F ′6(.) ⊕ R0, . . . ,F ′11(.) ⊕ R5. Since each Rj depends only
on one fresh mask bit rj , each F ′i (.) ⊕ Ri mod 6 can be seen as a 9-bit to 8-bit function
perfectly fitting into the targeted BRAMs.

If we denote the rows of the matrix Y ′ by 8-bit vectors Y ′j , 0 ≤ j ≤ 11, applying the
fresh masks R6 and R7 (defined in Equation (6)) in the compression layer, the two 8-bit
output shares of F (.) are generated as

Y0 = R6 ⊕R7 ⊕
⊕

0≤j≤5
Y ′j , Y1 = R6 ⊕R7 ⊕

⊕
6≤j≤11

Y ′j .

If we denote
⊕

0≤j≤7
rj by r′, the 8-bit output shares of F (.) are actually refreshed by

〈
r′ ⊕ r0, r′ ⊕ r1, r′ ⊕ r2, r′ ⊕ r3, r′ ⊕ r4, r′ ⊕ r5, r′ ⊕ r6, r′ ⊕ r7

〉
leading to a jointly uniform sharing as long as 〈r0, . . . , r7〉 are independent of each other.
We should highlight that since in our scheme, some component functions of different
coordinate functions receive the same fresh masks, as stated in [SM20], the output shares
(Y0, Y1) should be stored in registers before being given to the subsequent functions.
Otherwise, the design would not be necessarily glitch-extended probing secure.

The same technique can be used to make a 2-share masked variant of G(.) and W (.) as
they are also 8-bit to 8-bit cubic functions. As a result, we can construct a 2-share masked
implementation of the AES S-box and its inverse. The general structure of such a design
is shown in Figure 1. Note that the “Indices Selector” module receives two input shares
X0 and X1, and based on our technique explained in Section 3.2 provides X ′0≤i≤11 as the
inputs for F ′i (.) (resp. G ′i(.)).

In order to analyze our construction, we made use of the open-source verification tool
SILVER [KSM20]. Since it just accepts ASIC net-lists, we implemented our masked S-box
(Figure 1) by an HDL code and synthesized it by Synopsys Design Compiler with the
NanGate 45 nm ASIC standard cell library, as dictated by SILVER. The net-list contains
4 690 gates and 8 825 signals. The verification tool running on a machine with 16 CPU
cores and 128GB of RAM required 42 minutes to report first-order security of our design
under the glitch-extended probing model as well as the uniformity of its output sharing.

As an important fact to highlight, remasking of the decomposed functions (here F (.)
and G(.)) are conducted with two clock cycles distance. Since it is supposed that fresh
mask bits r0, . . . , r7 are updated at each clock cycle, we can connect the same 8-bit signal
to the fresh mask input port of both decomposed functions. Considering a pipeline design
processing consecutive inputs X0, . . . , X5, the fresh masks used by G(.) on X0 are also
used by F (.) on X2 and so on (i.e., with a distance of two pipeline stages). However, when
X2 reaches G(.), i.e., after two clock cycles, the fresh masks are entirely updated. Hence,
this does not affect the security of the design, and we are in consequence able to just use 8
fresh masks per clock cycle in our constructed masked AES S-box (resp. its inverse).
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Figure 1: General structure of our 2-share masked AES S-box. Register stages are marked
by red dashed lines.

4 Design
In this section, we demonstrate how our masked S-box and its inverse can efficiently fit into
BRAMs as the FPGA building blocks. This achieves a secure and resource-efficient AES
implementation in a round-based fully pipeline fashion supporting both encryption and
decryption. We should highlight that, albeit focusing on Xilinx 6- and 7-Series FPGAs,
our designs are general and can be adapted to different FPGAs.

4.1 Our FPGA-Specific Masked AES
As mentioned in Section 3.3, both AES S-box and its inverse can be decomposed into
two cubic permutations. Each one can be uniformly shared by 12 combined component
functions, each seen as a 9-bit to 8-bit function, including the corresponding fresh mask.
The shared S-box and its inverse can be combined as depicted in Figure 2, where the
“Indices Selector” block, which is just the wiring, provides 8 bits out of the 16-bit input
shares for each component function. The “E/D” signal selects whether the S-box or its
inverse should be performed. We should stress that the sharing indices are independent of
the desired functionality, i.e., S-box or inverse. As shown by the graphics, the E/D signal
is only connected to the component functions.

Each block highlighted with the blue dashed line (Figure 2) can be seen as a function
with 10-bit input and 8-bit output, where the input is formed by the corresponding 8-bit
mixture of input shares (provided by the “Indices Selector” for F ′i (.), resp. G ′i(.) or W ′

i (.)),
a single fresh mask bit, and E/D signal. Hence, each such block can be perfectly realized
by a 9 kb BRAM, which can be configured as a memory block with 10-bit address and
8-bit data ports1. Due to the unknown internal architecture of BRAM, non-completeness
should be fulfilled at the address port of each BRAM, which is indeed the case in our

1Indeed with 9-bit data port when the redundant part parity is used.
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Figure 2: General structure of the combined masked AES S-box and its inverse. Red
dotted lines indicate register stages, and the blue dashed lines the BRAMs.

design. We assigned the E/D signal to the Most Significant Bit (MSB) of the address port,
and the rest is filled by the single-bit fresh mask and the 8-bit mixed input shares. As
shown in Figure 1 and stated in Section 3.3, the output of the compression function should
be stored in a register before being given to the next masked non-linear function. The
same holds for the input of the component functions if it is provided by a linear function,
otherwise violating the non-completeness. For example, it is the case in a round-based
implementation, where the S-box input (in encryption) is provided by the MixColumns of
the former round. Therefore, it is essential to place a register stage at the input of the
S-box (resp. S-box inverse). Since the registers are transparent to the “Indices Selector”
modules, we could efficiently use the BRAM’s internal registers for this purpose. Hence,
we configured the BRAMs to have the optional register at the output port as well (red
dashed lines). This way, both input and output ports of a BRAM are stored in the internal
registers, so there is no need to use any external registers, hence keeping the number of
utilized slices low. As a result, the entire design shown in Figure 2 fits into 24 BRAMs.

Another beneficial feature of BRAMs is its True Dual-Port (TDP), shortly introduced
in Section 2.5. In our case, it implies that we can perform two S-box (resp. S-box inverse)
operations with two independent inputs (including independent fresh masks) at the same
time using the aforementioned 24 BRAMs. Note that since each BRAM port receives
two independent sharings associated with two independent bytes (S-box inputs), the
non-completeness property still holds. This allows us to implement a round-based AES
cipher supporting both encryption and decryption using 10 instances of such a construction.
More precisely, 8 instances realize 16 S-boxes (or the inverse) for the data path, and 2
other instances implement 4 S-boxes required for the KeyExpansion, hence in total 240
BRAMs. As stated in Section 3.3, each S-box module (resp. its inverse) requires 8-bit
fresh randomness per clock cycle, translating to 160 bits per clock cycle for the entire
round-based encryption/decryption implementation.

Figure 3 shows a block diagram of our AES encryption/decryption design. Due to
its round-based architecture, the data path for encryption is straightforward. Sequen-
tially, AddRoundKey, SubBytes, ShiftRows, and MixColumns are performed, where the
MixColumns is ignored in the last round by the dedicated multiplexer. However, we have
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Figure 3: 2-share masked round-based AES-128 supporting encryption and decryption.

done some optimizations to realize decryption as well. We have added an extra instance
of InvMixColumns before the AddRoundKey. During the first decryption round, the given
key is regularly added to the ciphertext to be loaded into the InvSubBytes. Due to
the linearity of InvMixColumns, we can rearrange the order of operations for subsequent
decryption rounds, since MC−1(X ⊕K) = MC−1(X)⊕MC−1(K). Therefore, by apply-
ing InvMixColumns before AddRoundKey, we require to pass the round keys through an
additional InvMixColumns module. This allows us to efficiently use the resources essential
for the encryption. Overall, each encryption/decryption round needs 5 clock cycles. Since
the BRAM internal register stages form a pipeline, the design can process 5 independent
consecutive plaintext/ciphertext and provide the corresponding ciphertext/plaintext after
50 clock cycles. Note that since the KeyExpansion is not pipelined, the key used for all 5
consecutive inputs should be the same. We refer to this construction as the “fully-pipeline”
design. For only-encryption design, the blocks dedicated to decryption can be easily re-
moved, e.g., InvMixColumns, InvShiftRows, and corresponding multiplexers. It is worth
to mention that the only-encryption design makes use of the same number of BRAMs.

4.2 Comparison
In order to be able to truly compare our design with the state of the art, we have taken
our round-based encryption architecture and replaced the S-box with that of [GMK16],
[GMK16], [CRB+16], and [SM20]. Note that none of these works provided either a round-
based architecture or its performance results. For most of them, we could use the source
code of the implementations available on GitHub provided by the authors. We particularly
had to reform the encryption data path to be able to host the S-box design of [SM20], as its
output sharing is not jointly uniform, and it makes use of an adapted form of MixColumns
to achieve uniform sharing. Nevertheless, the corresponding comparative performance
results are shown in Table 1, clearly indicating low-resource utilization of our design at the
cost of occupying BRAMs. Interestingly, the overhead to turn our only-encryption design
to additionally cover decryption is limited to around 1.9 k LUTs. Note that in all such
designs, we kept the hierarchy of implementation; otherwise, the essential non-completeness
property might be violated. This, however, in FPGAs means that different modules cannot
share a slice, although they use different registers and LUTs. Since state-of-the-art designs
make use of several modules for the masked S-box, this naturally leads to higher overhead,
while in our design all such functions are realized by BRAMs.

Further, we would like to highlight the number of required fresh randomness of our
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Table 1: Comparison of high-performance implementations excluding PRNG (with key
masking, mapped on Xilinx Spartan-6)

Design Slice Reg LUT BRAM Lat. Rand. Clock Thr.put
[#] [#] [#] [#] 9 kb [cycles] [bits] [MHz] [Gbit/s]

[GMK16] 3726 4127 7315 0 50 560 131 1.676
[GMK16] 3296 4685 6757 0 80 360 137 1.753
[CRB+16] 3414 3407 7105 0 60 1080 134 1.715
[SM20] 4722 5328 7783 0 70 0 131 1.676
[GM11]a ? 1566 2888 16 512b 51.2c 100d 0.025
[new] full E/D 1708 527 3778 240 50 160 102 1.305
[new] full E 1033 527 2068 240 50 160 116 1.484
[new] half E 529 651 1152 96 70 64 116 0.636
[new] quar. E 297 588 663 48 90 32 119 0.338

a Based on Xilinx Virtex-II Pro, and without key masking.
b Without mask reuse.
c Averaged over 10 clock cycles. 512 fresh mask bits are required at the start of each scrambling phase.
d Nominal frequency, it is not mentioned in [GM11].

design, which is the lowest compared to the other designs with the same latency, i.e., 50
clock cycles per encryption. On the downside, the maximum clock frequency of our design
(resp. maximum throughput) is slightly less than the other designs. This is due to the
delay (maximum clock frequency) of BRAM, which is more than that of LUTs.

4.3 PRNG
One fact which has been commonly ignored in the relevant state of the art is the area
required to generate the fresh masks. Here, we try to include this factor in our comparison.
Round-based implementations need a high number of fresh masks per clock cycle, which is
hard to generate by means of True Random Number Generators (TRNGs), due to their
naturally low throughput, high cost, and dependency to physical properties [YRG+18].
Alternatively, Pseudo-Random Number Generators (PRNGs) can be used, which are
seeded by a TRNG at power-up. Therefore, we followed the concept applied in [DMW18]
to efficiently construct a PRNG using the FPGA building blocks. More precisely, for each
required fresh mask bit (updated every clock cycle), we implemented a Linear Feedback
Shift Register (LFSR) with feedback polynomial x31 + x28 + 1. Based on the instruction
given in [DMW18], each LFSR can be implemented by only 3 LUTs in Xilinx FPGAs:
two LUTs as Shift-Register LUT and another one for the feedback function. In Table 2
we report the same comparative performance figures including the PRNG. As shown, the
amount of demands for fresh randomness plays a crucial role in the area overhead, although
– to the best of our knowledge – such LFSRs are the most FPGA-efficient constructions.
We should emphasize that it is the first time such a comparison, including PRNGs, is
presented.

4.4 Area-Latency-Randomness Trade-off
As stated, our fully-pipeline design needs 240 instances of 9 kb BRAMs. Such a number
of BRAMs are available on mid-size Xilinx Spartan-6, Spartan-7, and Artix-7 FPGAs,
which are known as the cost-optimized solutions. For example, XC6SLX75, XC7S50, and
XC7A50T are the smallest devices of the aforementioned families, with enough BRAMs
for our fully-pipeline design [Xil]. In order to adapt our design to the smaller FPGAs, we
provided two other design variants so-called “half-pipeline” and “quarter-pipeline”. The
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Table 2: Comparison of high-performance implementations including PRNG (with key
masking, mapped on Xilinx Spartan-6)

Design Slice Reg LUT BRAM
[#] [#] [#] [#] 9 kb

[GMK16] 4989 4127 8995 0
[GMK16] 4072 4685 7837 0
[CRB+16] 5580 3407 10345 0
[SM20] 4722 5328 7783 0
[new] fully-pipeline E/D 2054 527 4258 240
[new] fully-pipeline E 1335 527 2548 240
[new] half-pipeline E 943 651 1344 96
[new] quarter-pipeline E 368 588 759 48

first one realizes a two-column serial architecture, i.e., 8 masked S-boxes are processed at
the same time, hence reducing the BRAM utilization to 96 instances. However, due to the
registers involved in the BRAMs, we could still make a pipeline design, which processes 3
plaintexts simultaneously in 70 clock cycles. Note that those 8 masked S-boxes are shared
with the KeyExpansion as well. Namely, in every cipher round, the first 2 clock cycles the
S-boxes receive the state associated to the first plaintext, one more clock cycle that of the
KeyExpansion, and the next 4 clock cycles the states of the second and third plaintexts,
i.e., 7 clock cycles per cipher round.

In our quarter-pipeline design, which forms a column-serial architecture, 4 masked
S-boxes (resp. 48 BRAMs) are instantiated. It also realizes a pipeline and performs
two encryptions at the same time in 90 clock cycles. Table 1 and Table 2 include the
performance figures of these two designs as well. Clearly, the resource utilization decreases
at the cost of lower throughput.

These designs can fit into smaller Xilinx FPGAs, including the smallest Artix-7
(XC7A12T). However, the smallest Spartan-6 (XC6SLX4) and smallest Spartan-7 (XC7S6)
have 24 and 20 instances of 9 kb BRAMs. This motivated us to build another area-
optimized encryption design making use of a single masked S-box, i.e., byte serial. Based
on the explanations given in Section 4.1, each masked S-box and its inverse need 24 BRAMs.
At first glance, it seems impossible to fit a masked S-box of our design into such smallest
FPGAs. However, looking at Figure 1 it can be seen that each F ′i (.) and G ′i(.) can fit into a
single BRAM, each of which makes use of a separate port (see our explanation about True
Dual-Port (TDP) in Section 2.5). As a result, we made an only-encryption version of our
masked S-box construction using 12 BRAMs. This allows us to fit our design into all Xilinx
FPGAs, even XC7S6, the smallest Spartan-7. Accordingly, we provided a performance
table listing the resource utilization and throughput of our design compared to the state of
the art in Table 3. Of course, the smallest design is the one presented in [WMM20], which
has 30 times lower throughput compared to almost every other known implementation.
Compared to the other designs with comparable throughput, our design outperforms the
others with respect to resource utilization (except for BRAM). We would like to highlight
that the smallest Spartan-6 (XC6SLX4) has only 600 slices. Hence, this device may not
be able to easily host other designs, particularly the one presented in [SM20]. However,
our design only occupies 41% of its available slices. As stated, the HDL sources of all our
designs are available on GitHub.

https://github.com/Chair-for-Security-Engineering/AES_masked_BRAM
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Table 3: Comparison of area-optimized (byte-serial) implementations including PRNG
(with key masking, mapped on Xilinx Spartan-6)

Design Slice Reg LUT BRAM Lat. Rand. Clock Thr.put
[#] [#] [#] [#] 9 kb [cycles] [bits] [MHz] [Mbit/s]

[GMK16] 433 726 894 0 216 28 110 65.1
[GMK16] 351 754 792 0 246 18 134 69.7
[CRB+16] 418 690 905 0 276 54 133 61.6
[SM20] 631 866 1021 0 246 0 136 70.7
[DMW18] 254 124 347 0 6852 18 103 1.9
[WMM20] 140 92 248 0 6852 6 120 2.2
[new] E 203 529 476 12 216 8 138 81.7

5 Analysis
As stated earlier, we verified the security of our constructions using SILVER [KSM20] under
the glitch-extended probing model. However, since SILVER is not able to handle designs
making use of FPGA-dedicated building blocks, e.g., BRAM, we provided an ASIC-based
representation of our masked S-box and performed the evaluations by SILVER on the
resulting netlist. As a side note, no verification tool (including SILVER) can analyze the
implementation of a full cipher. Instead, such tools can only handle a part of the circuit,
e.g., an S-box or small gadgets. Hence, we evaluated our constructions by experiments
conducted on an FPGA evaluation board and collecting power consumption traces.

5.1 Setup
We implemented our fully-pipeline round-based masked AES encryption on the target
Spartan-6 FPGA of the SAKURA-G board [SAK]. By means of a digital oscilloscope
monitoring the voltage drop over a 1 Ω resistor placed in the Vdd path of the target
Spartan-6 FPGA, we collected power consumption traces. The voltage drop is amplified
by a dedicated on-board AC amplifier and is captured at a sampling rate of 500MS/s,
while the FPGA is clocked at the frequency of 6MHz.

5.2 Evaluation and Results
Welch’s t-test is a well-known methodology in the area of SCA, commonly used both
as a distinguisher (for instance, in classical DPA attack [KJJ99]) and as an evaluation
method. In the Test Vector Leakage Assessment (TVLA) methodology [GJJR11], the
target device receives fixed or random plaintext in a non-deterministic fashion, and the
power consumption traces are captured for those two groups. Eventually, Welch’s t-test can
be applied independently on every single point of the traces of two groups, i.e., a univariate
analysis. This method, so-called the fixed-versus-random t-test, has been widely used
in the literature to evaluate the security of masked implementations [SM15, BGN+14b,
SMMG15, LMW14]. In fact, the t-test assesses the detectability of leakage of the design
implemented on the target device without performing the actual attack. Although it gives
a confidence level of the existence of leakage in the target device, it provides no information
about the hardness/easiness of the attack exploiting the leakage to recover the secret, if
there is a detectable leakage.

We collected 100 million power traces with randomly-selected fixed or random plaintexts,
where a sample trace can be seen in Figure 4(a), covering the entire encryption process.
Subsequently, we performed the univariate fixed-versus-random t-test at first and second
orders, and obtained the curves of the t-statistics, shown in Figure 4(b) and Figure 4(c),
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Figure 4: First- and second-order leakage assessment results of our fully-pipeline AES
encryption module, using 100 million power traces.

respectively. As expected, the design exhibits second-order leakage, while the first-order
leakage is not observed. Figure 4(d) and Figure 4(e) depict the maximum t-value over the
number of collected traces. It can be seen that the first-order t-value does not pass the
threshold by increasing the number of evaluated traces, while this is not the case for the
second-order scenario. Since the analysis results of our other designs (half-pipeline and
quarter-pipeline) are almost the same, we omit reporting the corresponding figures.

6 Conclusions
In this work, we have presented a methodology that allows us to form a first-order secure
realization of an 8-to-1 cubic function using two shares with at most 12 component
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functions. We have also demonstrated how we can take advantage of this technique and
FPGA building blocks to construct a resource-efficient implementation of the AES cipher
supporting both encryption and decryption, considering the effect of glitches in hardware
platforms. We realized different cipher implementation variants and compared their trade-
offs in terms of area footprint, latency, and randomness complexity. These designs are
suitable for any sort of FPGAs, ranging from low-resource ones to those optimized for the
highest performance. We compared our designs with the state of the art and showed that
the amount of required fresh randomness plays a non-negligible role in the area overhead.
In short, our FPGA-specific constructions outperform the implementations known through
public literature, particularly including the area required for the generation of fresh masks.
Our designs are indeed the only glitch-extended probing secure implementations that use
FPGA BRAMs.
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