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Abstract. Microarchitectural attacks on computing systems often stem from simple
artefacts in the underlying architecture. In this paper, we focus on the Return Address
Stack (RAS), a small hardware stack present in modern processors to reduce the
branch miss penalty by storing the return addresses of each function call. The RAS
is useful to handle specifically the branch predictions for the RET instructions which
are not accurately predicted by the typical branch prediction units. In particular,
we envisage a spy process who crafts an overflow condition in the RAS by filling it
with arbitrary return addresses, and wrestles with a concurrent process to establish a
timing side channel between them. We call this attack principle, RASSLE 1 (Return
Address Stack based Side-channel Leakage), which an adversary can launch on modern
processors by first reverse engineering the RAS using a generic methodology exploiting
the established timing channel. Subsequently, we show three concrete attack scenarios:
i) How a spy can establish a covert channel with another co-residing process? ii)
How RASSLE can be utilized to determine the secret key of the P-384 curves in
OpenSSL (v1.1.1 library)? iii) How an Elliptic Curve Digital Signature Algorithm
(ECDSA) secret key on P-256 curve of OpenSSL can be revealed using Lattice Attack
on partially leaked nonces with the aid of RASSLE? In this attack, we show that the
OpenSSL implementation of scalar multiplication on this curve has varying number of
add-and-sub function calls, which depends on the secret scalar bits. We demonstrate
through several experiments that the number of add-and-sub function calls can be
used to template the secret bit, which can be picked up by the spy using the principles
of RASSLE. Finally, we demonstrate a full end-to-end attack on OpenSSL ECDSA
using curve parameters of curve P-256. In this part of our experiments with RASSLE,
we abuse the deadline scheduler policy to attain perfect synchronization between the
spy and victim, without any aid of induced synchronization from the victim code.
This synchronization and timing leakage through RASSLE is sufficient to retrieve the
Most Significant Bits (MSB) of the ephemeral nonces used while signature generation,
from which we subsequently retrieve the secret signing key of the sender applying the
Hidden Number Problem.
Keywords: Return Address Stack · Microarchitectural Attack · Template Matching
· OpenSSL ECC scalar multiplication · ECDSA P-256 · Lattice Reduction.

1 Introduction
The evolution of computer architecture has taken place through several inventions of
sophisticated and ingenious techniques, like out-of-order execution, caching mechanism,

1RASSLE is a non-standard spelling for wrestle.
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branch-prediction, speculative execution, and a host of other optimizations to maximize
throughput and enhance performance. While it is imperative to imbibe and develop
these artifacts in our modern-day machines, it is equally necessary to understand the
security threats posed by these mechanisms, particularly on the execution of cryptographic
programs operating on sensitive data. As the foremost criteria of these architectural
optimizations have been performance, they need a closer investigation from the security
point of view. With the growing impetus for security in applications where modern
computing finds usages, a multitude of microarchitectural attacks have been unearthed
by security researchers that exploit information leakage due to the functioning of these
artifacts. These attacks have been shown to threaten the secret keys of cryptographic
algorithms when run on these platforms, a risk that puts to threat several critical operations
where these machines are expected to operate.

Some of the oldest attacks targeted the cache memories [Ber05,Per05,AKS07a,Aci07,
BM06] where they tried to exploit the timing side-channel [Koc96] produced due to the
presence of cache between very fast processor and a comparatively slow memory. More re-
cent cache-based attacks can be categorized into three generalized techniques - Evict+Time
[OST06], Prime+Probe [OST06], and Flush+Reload [YF14]. A number of variants of
these attacks have been proposed over the years, which include defeating countermeasures
like kernel address space-layout randomization (KASLR) [HWH13,CSH+20,DKPT17],
attacks on cryptographic protocols such as RSA [Per05, IGA+15], AES [AKS07a,GII+15,
IES15], ECDSA [YB14, BH09], ECDH [GVY17], setting up covert channels on the
cloud [RTSS09,ZJOR11], attacks exploiting performance degradation [ABF+16], reading
user inputs [GSM15,GMWM16,Hor16], etc. Another important microarchitectural com-
ponent that has been the target of a multitude of attacks is the branch prediction unit
(BPU). Ciphers like RSA, which contain conditional branches in their implementation,
have been targeted by exploiting the BPU [AKS07b,ERAGP18,BM15]. Similarly, breaking
KASLR [EPAG16] and setting up a covert channel have also been demonstrated using BPUs.
More recent attacks like Spectre [KHF+19] and Meltdown [LSG+18] exploit the speculative
execution subsystem and out-of-order engine present in the CPU. Another class of attacks
called Microarchitectural Data Sampling (MDS) (e.g. [VSMÖ+19,MML+19, SLM+19])
surfaced more recently, which leak data across protection boundaries.

The Spectre attack exploits the speculative behaviour of modern processors to expose
secret information that is otherwise inaccessible to the attacker. SpectreRSB [KKSAG18]
proposed a new variant of Spectre attack where the authors exploited the Return Address
Stack (RAS) to cause speculative execution of payload gadgets and expose sensitive
information. They showed multiple variants of their attack, where they manipulate the
RAS in order to create a mismatch of the return addresses. They further implemented their
attack on the Intel SGX [CD16] platform, where a malicious operating system corrupts the
RAS to expose data out of the enclave by forcing mis-speculation. Concurrently [MR18]
proposed another attack, named ret2spec, abusing the RAS similarly to read user-level
memory that should be inaccessible in the normal course. They proposed two variants
of their attack - one where the attacker program poisons the RAS to coerce a co-located
process to execute arbitrary code speculatively and another, where they leverage JIT
(just-in-time) environment to read arbitrary memory in modern browsers. In a more
general sense, both the papers [KKSAG18,MR18] try to leverage the fact that the RAS is
a part of the speculative execution process and manipulate or poison the RAS in order to
create mis-speculation.

In this paper, we propose a novel attack mechanism exploiting the Return Address
Stack (RAS) - a hardware entity in modern machines meant to improve the prediction for
RET instructions. We show how a spy can reverse-engineer the RAS to develop suitable
attack vectors. In particular, we show how a covert channel can be established by exploiting
the reverse-engineered knowledge of the RAS. Secondly, we show demonstrate one can
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perform a timing side-channel attack by targeting the scalar multiplication on the P-384
curve in OpenSSL(v1.1.1g library). Finally, we extract the secret key from ECDSA on
P-256 of OpenSSL using lattice reduction on partially leaked nonces. Collectively, we call
the idea of the RAS based attack, as RASSLE, where the spy wrestles with a target code
to launch effective timing attacks.

1.1 Motivation
RAS presents a side-channel artifact that has been comparatively less explored. It can fall
into a class of branch prediction attacks, which can be effective even when a code is devoid
of explicit loops. This is because it is related to function calls and returns from functions.
There has been no prior work that established timing channels exploiting the RAS, nor
has shown the effective covert channels utilizing its presence in the computing system.

Moreover, due to the now well-known mitigating techniques against Spectre attacks,
the reported mis-speculation attacks using RAS can be thwarted in modern processors
[Tur18,KKSAG18,MR18]. This fact motivated us to look for other avenues through which
the RAS can be exploited. As RAS has a fixed size, the number of return addresses of
functions that can be stored in it is limited by its capacity. Now, in case of overflow
or underflow conditions (explained later in Section 2), mispredictions can occur. These
mispredictions lead to a timing penalty, revealing information of various categories - covert
channels, secret keys, etc. It is worth mentioning that although SpectreRSB [KKSAG18]
proposes a similar attack setup where two colluding threads operate in synchronization;
the paper focuses on creating mispredictions and does not establish the evident covert
channel that exists due to sharing of the RAS.

Finally, despite the common wisdom of writing cryptographic codes ensuring the
independence of secret key, the paper mentions an exploit in the popular OpenSSL library
on a standard elliptic curve, where the number of function calls (add-and-sub) is dependent
on the secret key bits. The paper makes an effort to develop a template attack for
determining the secret key by timing observations by a spy exploiting the RAS.

1.2 Our Contribution
In this work, we propose a new side-channel leakage source through RAS called RASSLE
which, unlike existing works, does not mistrain the RAS or abuse the speculative execution
engine. Rather, we utilize the timing channel created due to overfilled RAS, which
eventually causes misprediction of the return address and leaks information about the
control flow of a co-located process. Our main contributions are as follows:
• We reverse engineer the depth of RAS using timing information and provide a generic

methodology that can be used for any processor.
• We particularly exploit the fact that overflowing RAS can trigger misprediction, ul-

timately creating a timing side-channel. Based on the timing channel identified, we
demonstrate how a covert channel can be established between a spy and a co-residing
program by exploiting the RAS.

• We show an exploit in the ECC scalar multiplication of P-384 in OpenSSL, wherein the
number of function calls is dependent on secret key bits. We show a template-based
attack which the RASSLE spy can launch to deduce the secret key bits.

• We show how RASSLE can be adapted to a completely asynchronous running spy and
victim, where the spy could manage to achieve one to one correspondence to the victim
execution by tweaking the deadline scheduler policy from the user level. We develop this
into a key-recovery attack on OpenSSL’s ECDSA signature scheme (P-256 curve-based).
In particular, we adopt well-known lattice-based techniques to recover the ECDSA
signing key from ephemeral nonces that are partially reconstructed using RASSLE.
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1.3 Responsible Disclosure
While we found this efficiently working covert channel and timing vulnerability of OpenSSL
P-384 and P-256 implementation in context to the shared Return Address Stacks, we have
taken this opportunity to contact the security team of Intel and OpenSSL regarding the
said vulnerability. We hope that by making this communication regarding this specific
architectural design vulnerability to the security designers of processor manufacturing
companies would lead to further collaborations in solving the problem together.

1.4 Organisation
The rest of the paper is organized as follows. Section 2 briefly discuses the working principle
of RAS. Section 3 shows how to reverse engineers the RAS and introduces a novel timing
side channel created thereof, based on which Section 4 proposes a proof-of-concept attack
scenario. Section 5 shows how RASSLE can be utilized to perform template attack on P-384
curve in OpenSSL. Section 6 shows how to get asynchronous spy and victim processes to
work using RASSLE, and subsequently demonstrates an attack on the ECDSA signature
generation algorithm. Section 7 discusses potential countermeasures against our proposed
attacks. Finally, Section 8 concludes the paper.

Additional material presented for completeness includes details of the scalar multiplica-
tion implementation in OpenSSL (Appendix A), background on ECDSA (Appendix B)
and cryptanalysis of ECDSA using lattice techniques (Appendix C).

2 Return Address Stack (RAS)
In this section, we start with a general understanding of return addresses and how frequently
used return addresses are stored in a specialized micro-architectural hardware component
called RAS. Return instructions are a special type of indirect branch instructions that
might get called from different program locations, but the target address will remain
the same. For example, the printf() function in GNU-C library can be called from
different functions of a program. Every time the same library subroutine will be invoked,
and the same set of instructions will be executed. However, since they are called from
different program locations, the return addresses for each corresponding function call will
be different.

Now considering a speculative execution environment, for each return statement, the
processor must predict the return address (usually the next instruction after the call
statement), which the program counter (PC) must contain. Generally, the Branch Target
Buffer (BTB) stores a mapping between the branch source and the target address for other
indirect branches. But in the case of return instructions, the BTB will often mispredict
since the same function can be called from different locations and thus have different return
addresses. Thus to improve the prediction rate, modern processors deploy hardware-based
stack call Return Address Stack, or equivalently, RAS.

Return addresses are generally stored in the software stack, which is maintained in the
main memory. In order to keep the return addresses closer to the processor, processor
engineers incorporated hardware-based RAS, which essentially alleviates the high latency
experienced when the return address is fetched from the main memory. The processor on
encountering a call statement pushes the return address (the address of the next instruction
in program order) to the RAS, and when a corresponding matching return statement is
encountered, the processor speculatively executes the instruction stored at the address
pointed by the top of RAS. At a later stage in the pipeline, the processor matches the
return address with the one stored in the software stack. If both the addresses match,
the execution is continued; else, discarded. Given that the return addresses are stored on
the stack, the processor refers to the RAS every time it encounters a return statement.
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Figure 1: Example of function call and its effect on RAS.
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Figure 2: Reverse Engineering Return Address Stack.

Without such a hardware stack, the processor would have to spend multiple clock cycles
to fetch the return address from main memory.

2.1 Working Principle

RAS is generally implemented as circular LIFO (Last In, First Out) stacks, which can
store a fixed number of entries of return addresses. When a function call is executed with
the stack already at its full capacity, the new entry (return address) is inserted at the
top of the stack, and the oldest entry (from the bottom of the stack) is discarded. This
is known as overflow condition. Similarly, if a series of overflow conditions drive out the
valid return addresses from the stack, it causes an underflow condition where there are no
entries available in the stack [SAMC98]. An example of the working principle of RAS is
shown in Fig. 1. Consider a program consisting of main function and two function calls
F1 and F2. Corresponding addresses of the instructions in memory are also depicted
beside the instructions in Fig. 1. When the function F1 is called, the address for its next
instruction is pushed onto the top of the stack. Inside F1, another function F2 is getting
called which again pushes its return address onto the top of the stack. Now, whenever a
return statement is encountered, the address from the top of the stack is popped and is
used as a reference for the next instruction to be fetched in the pipeline.
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3 Delving into processor specific RAS reverse engineering
In this section, we develop a generic methodology to reverse engineer the capacity of Return
Address Stack. The number of entries that RAS can accommodate varies for different
families of processors. In case of deeply nested calls (for example, recursions), the return
addresses are pushed onto the stack for each call statement. If the stack was already full,
the oldest entry is discarded from the bottom, and the newest entry is added to the top of
the stack. Therefore, during subsequent returns, the addresses present in the stack will be
fetched quickly from this specialized hardware, thereby aiding the performance. Whereas,
the return addresses, which were pushed off the stack due to overflow condition, becomes
unavailable. This situation forces the processor to stall for multiple clock cycles in order
to decode the actual return address from the software stack (stored in main memory and
subsequently in the cache memory hierarchy), which incurs a significant latency and results
in a considerable increase in the execution time. The fact that an overflow condition in
RAS leads to an increase in execution time helps in reverse-engineering the length of the
stack in different processors.

3.1 Observing Timing Differences over Recursive Function Calls

In our experimental setup, we show the results on Intel i7 7700 running Ubuntu 16.04;
however, the same experiment can also be conducted on other architectures. The typical
size of Return Address Stack in contemporary processors are 16, 32, and 64. Fig. 2 shows a
pictorial representation of the reverse engineering approach. The idea is to execute several
function calls in a nested fashion such that each function call pushes a return address onto
the stack and simultaneously checking the execution time after each function performs a
return. The steps may be summarized as follows:

• We start with an arbitrary number of nested function calls (without loss of generality,
say 18) and check the difference in execution time for 18 calls and 17 calls separately.
This provides us an estimate of the timing for the outermost function (function 18 in
this case). We run the experiment for 100, 000 times (in order to ensure consistency of
the measurements) and calculate the mean difference in execution time for 18th function
and 17th function. The difference turns out to be 40.52 clock cycles (Fig. 3a).

• We repeat the same experiment for 17 nested calls and check the mean difference at
depth 17th and 16th function call. The difference in execution time was close to the
earlier one, 44.26 clock cycles (Fig. 3a).

• Next, we reduce the function depth by 1 and repeat the experiment. The difference
in timing for depth 16th and 15th call was observed to be 21.43 clock cycles (Fig. 3a),
which is considerably less than the previous two values.

As shown in Fig. 2, the reason for the decrease in execution time is that when the
depth of nested function calls is 16 or less, the processor gets all the return address from
the RAS and therefore takes considerably less time to complete execution. This signifies
that on our target system, the RAS can hold up to 16 entries. However, if the depth of the
nested calls is more than 16, the oldest return address will be written off (removed) from
the stack. Therefore when a corresponding return statement is executed, the processor
will have to stall for multiple cycles to fetch the return address from the software stack
stored in the main memory.

3.2 Validating Results using Hardware Performance Counters
In the previous sub-section, we reverse-engineered the size of the RAS using timing
information. Although timing information is based on the number of CPU cycles elapsed
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Figure 3: Variation of (a) timing and (b) branch misses shows the capacity of RAS.

during the execution of a particular process, the values can sometimes be influenced or
disturbed by the interaction among other processes and components of micro-architecture.
Therefore, we validate the results obtained by timing information using information from
Hardware Performance Counters (HPCs).

HPCs are a set of special-purpose registers present in modern microprocessors. These
counters come in handy for monitoring and measuring various hardware and software
events during process execution. Although initially designed as a profiling tool to optimize
programs and applications, HPCs have been recently used for security purposes, both in
offensive and defensive ways. In this paper, we utilize the perf-event profiling tool to
verify the results obtained in the previous sub-section. It must be noted that perf-event
can only be accessed from administrative privilege. Therefore, we use HPC only for
validation purpose and not for the attack.

In a speculative execution environment, the target address for a return instruction
is predicted by referring to RAS and matched with the actual value stored in the main
memory much later in the pipeline. Therefore, any wrongly predicted address or an
underflow/overflow condition in the RAS will result in a branch miss event. Branch misses
can be pretty accurately measured for a process using the perf-event tool in Linux. The
event PERF_COUNT_HW_BRANCH_MISSES records the number of branch misses under the
PERF_TYPE_HARDWARE type event. We use ioctl calls to query the performance counters.
Incidentally, we found out that for the inner 16 functions, the number of branch misses is
2 while for the 17th function, the number of branch misses becomes 3 and further increases
by 1 for each unit increment in function depth. Fig 3b shows how the change in depth of
nested function calls affects the branch miss statistics due to the presence of RAS. This
verifies our claim that on our setup, RAS can hold up to 16 entries. Additionally, this
reverse engineering method can be easily scaled up and generalized for any target setup.

4 RASSLE: Establishing a covert channel through RAS

In this section, we exploit the fact that an overflowing RAS can result in an increase in
execution time, and this difference in timing can be observed by a co-located process to
establish a covert channel between two processes.
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4.1 Contention-based Timing Channel over RAS
Although RAS is designed to enhance the overall performance of the processor, the security
implication of such a capacity-bound hardware stack has not been explored in depth before.
We explore and analyze the timing channel created through RAS and its implication on
co-located processes for the first time. We present RASSLE - which literally means to
wrestle or scuffle - where an adversary wrestles with a co-located victim process to occupy
the RAS and, in the course, learns valuable information regarding the control flow of the
victim process. For example:

• Consider two processes - Process A and Process B - running simultaneously on the
same logical core on a system.

• Process A executes a series of N nested function calls (shown in the adjoining figure),
where function F1 calls F2, which in turn calls F3 and so on. Therefore, for each
function call, an entry is inserted to the top of the stack. Choose N such that the entire
stack gets filled with the return addresses of the corresponding function calls.

...

do something
ret

FN:

call FN
ret

FN-1:

call F3
ret

F2:

call F2
ret

F1:

call F1
ret

main:

Now, as the innermost function FN executes the return instruction,
the topmost entry gets popped out, and the stack will contain the
remaining (N − 1) entries. In order to avoid that and keep the stack
occupied, we voluntarily let the process A cede the control of the CPU
(yield) just before executing the return statement inside the innermost
function (FN ). The situation becomes interesting from the security
point of view when we consider process B running simultaneously
on the same CPU core. Consider the following sequence of events -
1 Once again, process A executes N (large enough to fill the RAS)
nested function calls. Inside the innermost function, it yields the CPU
before executing the return instruction. Therefore, the entire RAS is
filled with return addresses of process A with the return address for the innermost function
at the top of the stack. 2 In this scenario, if we allow process B to execute some function,
or in more general terms, it executes M (could be as small as 1) functions in a nested
fashion. As both processes A and B share the same RAS, the return address from process
B will be pushed onto the stack, whereas N −M number of return addresses for process
A will be pushed out from the end of the stack 2. This results in an underflow condition
where some valid return addresses have been pushed out of the stack. 3 As the control
of the CPU returns to process A, it executes all the return instructions and measures
the time elapsed for the execution of each function. Due to the introduction of M return
addresses by process B, process A will experience a considerable increase in execution time
between (N −M)th and (N −M + 1)th functions and also for all the subsequent functions.

Therefore, paired up with the timing observation experiment in the earlier section, RAS
can be exploited by Process A to understand the control flow of Process B. This timing
difference could also be converted to a very reliable covert channel between these two
processes. Moreover, this seemingly simple timing side-channel can have bigger security
implications in the context of security-critical applications. To better understand the
security threats posed by RAS, we develop a threat model and introduce our proof-of-
concept implementation in the following subsections.

4.2 Assumptions on the Threat Model
We consider a multi-user environment running on a Linux-based operating system, where
multiple concurrent processes are sharing the hardware. The adversary does not need any
special privileges. However, it does have a requirement to relinquish the CPU after filling

2As the RAS is implemented as a FIFO circular queue, the entry of new address will push the last
address out of the stack.
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the RAS to its full capacity. This could be achieved by executing system calls such as
sched_yield 3 and acquire CPU cycles using rdtscp 4 instruction. Both the instructions
can be executed from user-level privilege. This exploit requires that the victim and the
adversary to operate on the same logical core. This can be achieved using taskset, which
is a common assumption in similar attack settings [KGGY20].

4.3 Establishing the Covert Channel
We present our proof-of-concept (POC) implementation using RASSLE on a toy example.
Similar to the discussion in the earlier subsection, here we consider two processes and
name them as transmitter and receiver. Consider the sample program of the transmitter
process as given in Listing. 1. In this program, the transmitter reads from a string of
binary characters (‘0’ or ‘1’) in a loop and based on the value of the character processed,
either executes a function (func) or does nothing. Also it is worth mentioning that we
deliberately force the transmitter process to yield the CPU at the end of each loop such
that the adversary process can take control and run its exploits. This is done in order to
better synchronise the transmitter and the receiver.

char r[] = "11010101010000001110001111";
for (int i = 0; i < sizeof(r)/sizeof(r[0]); i++) {

char c = *(r + i);
if (c == '1')

call func()
sched_yield();

}

Listing 1: Sample transmitter program

In our POC, the covert channel is established as follows:

• Receiver process: calls N nested functions in a loop to fill up the entire RAS 5. Inside
the deepest function (i.e., 16th function in our case), the receiver yields the CPU to the
transmitter just before executing any return statement.

• Transmitter process: running on the same processor core as that of the receiver,
takes control of the CPU. Depending on the value of the bit processed, the transmitter
will either call another function, or does nothing.

– Suppose, the bit processed is ‘1’; the transmitter program will then call the function
func and as a result, the return address, i.e., the address of the subsequent instruction
after the call statement will be pushed onto the stack. Since the stack was already
full, the entry of new address will push the oldest entry out of the stack.

– While on processing a ‘0’, there is no impact on the RAS state. The RAS state
remains unaltered as the receiver has left it.

• Receiver process: At this point, the control of the CPU is moved to the receiver
which will start executing the un-finished return commands by referencing the addresses
stored in the stack. Starting from the deepest function (16th function), all the return
statements will be executed by referring to the addresses stored in the stack. Timing
latency in the outer-most function makes the covert channel complete.
3Note that sched_yield is a system function in Linux, which causes the calling thread to relinquish

the CPU.
4The rdtscp instruction reads the current value of the processor’s time-stamp counter.
5The machine we did our experiment on had RAS of capacity 16.
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Figure 4: Timing values observed through RASSLE reveals the information transmitted. The
values above the threshold indicate a ‘1’ and values below the threshold indicate ‘0’. Thus it reads
"00010101010000001110001111". Apart from the first two bits, the rest of the character stream
can be constructed without any error.

Table 1: Comparison of POC covert channel on various systems
Sl. No. CPU model CPU family RAS size Operating

System
Average

Bandwidth Comments

Machine 1 Intel i7 - 7700 Kaby Lake 16 Ubuntu 18.04 30 KBps Uses sched_yield()

Machine 2 Intel Xeon
E5-2609 v4 Broadwell 16 RHEL 7.7 12 KBps

No sched_yield()
or sleep. Relies on
deadline scheduler

(discussed in Section 6)
Machine 3 Intel i5-4570 Haswell 16 Ubuntu 18.04 25 KBps Uses nanosleep()
Machine 4 AMD Ryzen 3500U Zen+ 32 Mint OS 20 25 KBps Uses sched_yield()

Receiving a ‘1’: CPU while executing the final return statement will encounter a stack
underflow situation and thereby require comparatively more time to complete the process.
This difference in timing due to expulsion of return address from the stack will be the
basis to determine whether the transmitter processed a ‘0’ or a ‘1’.

Receiving a ‘0’: This is inferred when no extra latency can be observed.

Fig 4 shows the distribution of timing values observed by the receiver. The threshold is
empirically selected and the timing values above the threshold denote a bit ‘1’ and below
the threshold denote a bit ‘0’. In our experiments, the information transmitted through
the covert channel had an accuracy of 75% to 85%.

In the POC just described, we assumed that the transmitter yields the CPU at the
end of each iteration. However, this is a very restricted model because, in practice, it will
be highly unlikely that an unaware transmitter process will yield the CPU after every
iteration. Fortunately, in our experiments, we found out that using sleep has similar
effect as sched_yield. We replaced sched_yield with nanosleep and put some delay
(in nanoseconds) at the end of every iteration. Similar to the attack proposed earlier,
the transmitter processes a character stream of 0s and 1s in a loop and if the bit is ‘1’,
it calls the function func. However, at the end of each iteration it goes into sleep for a
short predefined duration. When the process goes into sleeping state, the control of the
CPU moves to the other waiting processes - the receiver process in this case. Table 1
quotes the RAS size and bandwidth achieved by the POC and also the constraints on a
few interesting setups where we made our POC to work.

5 Case Study on OpenSSL ECC Scalar Multiplication
In the previous section, we demonstrated how RASSLE can be utilized to leak information
about the control flow of another process. The POC we proposed is a generic attack
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technique which exploits the timing side channel to precisely extract the secret information
hidden within the victim program. However, such naïve implementations are rarely seen
in modern day security-critical cryptographic libraries. Therefore, to demonstrate RASSLE
on a real-world setting, we target the scalar multiplication operation in NIST P-384 curve
from OpenSSL. This curve has been specified by the NSA Suite B Cryptography as the
recommended elliptic curve to be used in ECDSA and ECDH algorithms [Nat15,X9.03].

5.1 Elliptic Curve Cryptography and OpenSSL
Elliptic Curve Cryptography (ECC) is one of the most widely used asymmetric key
algorithms based on the algebraic properties of elliptic curves over finite fields. Point
multiplication or scalar multiplication is the fundamental and security-critical operation
in ECC which computes Q = [k]P , where k is an n-bit secret scalar and Q and P are
points on the elliptic curve. The security of ECC is defined by the intractability of
determining the scalar k given both the points and the curve parameters. The scalar
multiplication in OpenSSL is implemented using Montgomery ladder with conditional swaps
and Non-Adjacent Form (wNAF) for scalar representation. The scalar k is transformed
to its corresponding wNAF representation and based on this representation, a series of
double and add operations are executed to perform the multiplication. These operations
are further implemented by a series of BN_add and BN_sub functions (more details in
Appendix A). The aggregate number of such calls are not constant, and are dependent on
both the value of secret scalar and the input basepoint. Therefore, the number of times
the BN_add and BN_sub functions are executed depend on the affine coordinates of the EC
point, as well as the value of the secret scalar. OpenSSL also provides a support for point
randomization, where the EC points are randomized in every call to the ECC function.
However, in this particular work, we have demonstrated a chosen plaintext attack with
the basic timing observations which demands full control on selecting the input points to
the ECC operation. Thus we assume that such countermeasures have been disabled.

5.2 Timing Variation Observed through RASSLE
Similar to the lines of our POC described in Section 4, we set up the spy process to
monitor the timing values. By using the reverse engineering methodology described in
Section 3, the spy determines the capacity (say, n) of the RAS in the target system. Next
the spy, attached to a specific CPU core, continuously executes n nested function calls in a
repeated manner. Inside the nth function, i.e., the innermost function, the spy deliberately
yields the CPU before executing the return statement. In other words, the spy fills up
the entire RAS with the return addresses of its n functions and cedes the control of the
CPU without executing any return statement. Simultaneously on the same CPU core,
a victim process is executing ECC scalar multiplication operation using the OpenSSL
library. It is worth mentioning in this context that the POC attack assumes that the
victim intentionally yields the CPU after every iteration and the attack on OpenSSL
ECC is presented as a use-case of the POC. Therefore, we assume the victim executes a
nanosleep or sched_yield 6 after each iteration of the scalar multiplication operation.

The objective of the spy program is to determine the number of calls made to BN_add
and BN_sub functions by the Montgomery ladder implementation for each bit of the secret
scalar. The spy program is running continuously and measuring its own execution time
to check whether any of its return addresses have been pushed out of the stack. As the
victim process executes the scalar multiplication in a bit by bit manner, it makes a number
of calls to BN_add and BN_sub functions depending on the value of the scalar bit and the
affine co-ordinates of the elliptic curve point. As usual, the function calls made by the

6In the later part, we will relax this requirement by abusing the deadline scheduler to perform the
synchronisation between victim and the spy.
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scalar multiplication operation pushes the return addresses of the corresponding functions
into the RAS. As the RAS is being shared by both victim and spy, the entry of new return
addresses removes equal number of entries of the spy. Therefore, the spy which is running
in parallel is able to precisely deduce the total number of BN_add and BN_sub functions,
being called for each bit of the scalar.

5.3 Template Attack on ECC Scalar Multiplication
Template Attacks are profiled side channel attacks where an attacker builds a profile
using different combinations of the secret key on a particular device and then matches the
template with the actual values gathered from the target application on a similar device.
We discussed how RASSLE can be used to determine the total number of additions and
subtractions performed per bit of the scalar. Using this information, we aim to perform a
template attack on the widely popular OpenSSL implementation of the NSA recommended
elliptic curve P-384.

In this part of the exploit, we follow an iterative linear attack procedure. The adversary
iteratively progresses through the bits of the secret scalar (key) starting from the most
significant bit (msb) to the least significant bit(lsb). At a particular instance, the adversary
targets the ith bit of the secret scalar, given the assumption that the adversary already
knows the first (i− 1) bits, and further aims to retrieve the subsequent bits one by one.
Therefore, the adversary needs to generate new set of templates for each bit position and
correctly deduce that particular bit in order to proceed with the following bits. We also
assume that the attacker is aware of the structure of the algorithm under attack, since the
OpenSSL implementation codes are publicly available, making template formation on EC
curve behavior used in the scalar multiplication reasonable.

During the template building phase, the attacker simulates the number of BN_add and
BN_sub function calls for each bit. As the number of BN_add and BN_sub function calls
depend on the particular bit being processed and the affine coordinates of the curve point,
the attacker builds the templates for each bit based on the total number of BN_add and
BN_sub functions executed for a fixed set of input plaintexts. This fixed set of plaintexts
will be used by the attacker for both template generation and matching phase. More
precisely, for any particular bit, say ith bit, 1 the attacker performs point multiplication
using a set of unique inputs (curve points) fixing the ith bit to be both ‘0’ and ‘1’, we
denote this as G0 and G1. 2 Next, for each input, the attacker estimates the total number
of addition (BN_add) and subtraction (BN_sub) function calls made by the ECC program
for ith bit assuming its value to be both 0 and 1. 3 Simultaneously, the spy process
measures the execution time using RASSLE. Therefore, the attacker gathers two sets of
information - total number of BN_add and BN_sub and timing information for each bit.

5.3.1 Template Building Phase

For simplicity, we introduce an encoding scheme to represent the total number of BN_add
and BN_sub function calls as unique classes. Suppose, for a particular input and ith

bit, the Montgomery ladder of the scalar multiplication operation executes X BN_sub()
and Y BN_add() function calls. We represent this class as (XY). Based on the classes,
we segregate the corresponding inputs and the associated timing values, i.e., we create
hypothetical BIN corresponding to each class which contains the corresponding plaintext
and the timing value observed from the spy. For example, fixing the ith bit to be 0 yields:

(XY)G0 : inputs which simulate to have X BN_sub() and Y BN_add() function calls.
BIN G0

(XY): timing values corresponding to inputs in (XY)G0

Similar classification can be applied for (XY)G1 and BIN G1
(XY) for G1. Further, we

calculate the first order moments for each BIN G0
(XY), BIN

G1
(XY) to form our set of candidate
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Figure 5: Template formation phase: Distribution of timing observed using RASSLE for (10m+n)
classes where m = no. of subtraction and n = no. of addition.

templates. Fig 5(a) shows an example of a candidate template with distribution for multiple
bins for a particular bit of the key. Depending on the set of plaintexts, the number of
unique classes can vary. In our experiments, we found that the classes belong in the range
81 to 85, 90 to 96 and 100 to 106. So typically number of BN_sub function calls varies
between 8 to 10 and number of BN_add function calls vary between 0 to 6.

As already mentioned, each class corresponds to a unique BIN which contains the
associated plaintexts and the mean and standard deviation values of all the corresponding
timing values. Out of these multiple BIN s, the attacker selects a pair which contains
a relatively high number of inputs, i.e., sets with high cardinality and non-overlapping
timing distributions. In our experiments, we performed the template building phase using
10, 000 plaintexts, which we found to be enough to derive a reliable consistent statistic.
We empirically selected two bins such that each one contains more than 150 plaintexts and
there is a visible difference in their mean statistic. An example of such a pair of BIN s is
shown in Fig 5(b). For each bit, the entire template building phase took approximately 2
hours in our experimental setup. It must be noted in this context that for each bit, the
template building phase will generate a whole lot of BIN s, among them selection of two
appropriate bins will qualify as good templates. Therefore, at the end of the template
generation phase, we will have four BIN s as our template - comprising of two fairly
separated distributions based on the timing templates from each of (XY)G0 and (XY)G1

from the simulation when the ith bit is 0 and 1.

5.3.2 Template Matching Phase

In template matching phase, we aim to predict the correct value of the ith bit using
the templates generated assuming the bit to be 0 and 1. While template generation is
considered to be an offline phase, where the attacker simulates the scalar multiplication
operation to build suitable templates, the matching phase is rather online where the
only available information to the attacker is the timing value observed through RASSLE
corresponding to each key bit. At the end of the template generation phase, the attacker
has four BIN s - two for corresponding bit assumed to be 0 and two for bit assumed as 1.

Now, the attacker observes the encryption process once again using only those inputs
that were associated with these four selected classes. The crux of template matching lies
in the fact that the timing values for correct ith bit matches with either of the two set
of templates, but not both. If the observed timing measurements over the correct bit
correlates with the template generated for G0, then the actual value of the secret bit is
revealed to be 0; else the matching works for the templates for G1.

Similar to the generation phase, the attacker encrypts the selected set of inputs and
records the timing values observed by spy process using RASSLE. Once the online data
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Table 2: No. of plaintexts and total time taken for the bit indices 348, 349 and 350 during
template matching phase.

Bit Index No. of plaintexts Time taken (secs)
1 348 698 76.913623
2 349 835 91.000569
3 350 752 82.466902

acquisition step is complete, the timing values are placed into one of the four BIN s based
on the plaintexts. Once the segregation of timing values into the appropriate BIN s is
complete, we take the mean and standard deviation for each of the four bins and plot the
distributions, similar to the generation phase. Out of the four bins, only two bins will
correspond to the actual template, thereby revealing the actual value of the bit.

5.4 Experimental Validation
We performed our experiments on Intel i7-7700 powered by Ubuntu 18.04 (kernel 4.15.0).
We assume that the attacker and the victim are co-located on the same core 7, therefore
sharing the same RAS for their operations. The RAS in our experimental setup has a
capacity of 16, i.e., it can hold upto 16 return addresses. The spy program continuously
fills up the RAS with 16 nested function calls and measures the execution time. The victim
process executes the Montgomery ladder implemented using conditional swaps for each bit
of the secret scalar.

Now, suppose for ith bit of the secret scalar, the ladder executes m BN_add functions
and n BN_sub functions. These (m+ n) function calls pushes their corresponding return
addresses which in turn forces the older entries out of the stack. This eventually results in
increased execution time for the return statements of the spy process. The spy process
observes the difference in execution times of all the 16 functions and observes a spike in
timing value due to underflowing of the RAS.

Assuming the attacker knows the first (i− 1) bits, in the template generation phase,
we run the scalar multiplication using a fixed set of 10, 000 plaintexts. These many inputs
were chosen for no particular reason, but to make sure we get a significant consistent
statistic for each of the template classes. As described earlier, the adversary uses the
simulated number of BN_add and BN_sub function calls executed for the ith bit to form
the BIN s from their observed timing values through RASSLE. Similar to the template
generation procedure, in the template matching phase we decide on the correct guess by
segregating the observed timing values into appropriate bins based on the plaintext. Fig 6
shows the results of the template generation and matching process for 350th bit. Fig 6(a)
shows the distribution of the selected template. The classes 95 and 83 provides a stark
difference in their distributions and thus we selected these two classes as our template.
Fig 6(b) and (c) shows the distributions of the aforementioned classes (or bins) for the
correct estimate (0) and wrong estimate (1) of the bit value respectively. As evident from
the figures, the distribution of the correct estimate matches with the actual template for
the same pair of classes. Similarly, Fig 7 shows the results of another instance of template
generation and matching process for 348th bit for selected classes, correct estimate and
the wrong estimate. Table 2 shows the number of plaintext used and total time taken in
template matching phase for three consecutive bits.

6 Synchronization in a Purely Asynchronous Setup
The attack on OpenSSL ECC scalar multiplication presented in Section 5 demonstrates how
RASSLE can be utilized to leak information about the control flow of another process. In

7This can be easily achieved from user-space using taskset command.
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(c) Wrong estimate - ‘1’

Figure 6: Template matching for bit index 350.
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Figure 7: Template matching for bit index 348.

this section, we present another use case of RASSLE in which a spy running simultaneously
with victim process on the same core can precisely achieve synchronization by abusing the
operating system’s scheduler policy, and collect timing information at fine granular steps
which is enough to retrieve ephemeral keys from ECDSA implementation of OpenSSL.

6.1 Assumptions on the Threat Model
We would continue with the earlier assumption that the spy and victim process start
their execution in the same logical core. However, unlike the victim code modification
requirement mentioned in Section 5, in this scenario, the victim code does not need
any extra synchronization aid, which makes the attack scenario realistic. A user only
needs CAP_SYS_NICE capability to launch the attack from userspace. This is a reasonable
assumption in a multi-user environment, since a user can optimize the parameters of the
deadline scheduler (discussed in next subsection) to achieve maximum performance benefit
for its “own task” 8. We execute both victim process and spy process simultaneously on a
server-environment built on Intel Xeon CPU E5-2609 v4 (Broadwell) running Red Hat
Enterprise Linux Server 7.7 (kernel 3.10.0-1062.9.1.el7.x86_64).

6.2 Getting Synchronization to work with the Deadline Scheduler
Most Linux-based operating systems offer a number of scheduling policies, which are
crucial artifacts for controlling two asynchronous processes’ execution. Among the available
policies, the deadline scheduler is particularly interesting because it imposes a “deadline”
on operations to prevent starvation of processes. In the deadline scheduler, each request by
a process to access a system resource has an expiration time. A process holding a system
resource does not need to be forcefully preempted, as the deadline scheduler automatically
preempts it from the CPU after its request expiration time.

8CAP_SYS_NICE seemingly assists performance-tuning in server-environments, and has no known security-
implications for the deadline-scheduler.
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The operation of deadline scheduler depends on three parameters, namely ‘runtime’,
‘period’, and ‘deadline’. These parameters can be adjusted using chrt command, which can
be executed from user-level privilege by acquiring CAP_SYS_NICE permission9. A normal
user who obtains the CAP_SYS_NICE permission, does not gain any elevated privilege apart
from adjusting the deadline scheduler parameters. Obtaining scheduling privilege for user-
level processes is practical in multiple real-life scenarios, where a normal user can use the
privilege to efficiently utilize system resources for better performance. We observed that
the covert channel described in Section 4.3 works in the presence of deadline scheduler 10

by choosing appropriate parameters instead of using sched_yield() or nanosleep(). The
command to run an <executable> using deadline scheduler is as follows:

chrt -d –sched-runtime t1 –sched-deadline t2 –sched-period t3 0 <executable>

where, t1, t2, and t3 are the parameter values for ‘runtime’, ‘deadline’, and ‘period’
respectively. The kernel only allows scheduling with t1 ≤ t2 ≤ t3. The usual practice is
to set sched-runtime to some value greater than the average execution time of a task.
We estimate the average execution time of each iteration of the target executable (ECC
Montgomery ladder in this case) in terms of CPU clock cycles and convert the values into
nanoseconds using CPU clock frequency. We set t1 with the obtained value in nanoseconds.
Further, we set the parameter sched-deadline to a value t2 = t1 + δ such that the ECC
process leaves the CPU after execution of a single Montgomery ladder iteration. We set
the parameter sched-period to a value t3 = 2× t1. The reason for such an assignment
is discussed later in this section. It should be noted that the procedure described here
considers no change in the victim code and requires no use of sched_yield() or nop or
nanosleep() in the victim executable to preempt it from CPU.

In the proposed approach, a spy works in two phases - 1 it fills up the Return Address
Stack (RAS) and cedes control of the CPU; 2 it probes the RAS by executing return
statements after the victim has finished its scheduled operation. The spy process also uses
multiple nop instructions such that operations in 1 takes approximately equivalent time
to that of one iteration of the ECC Montgomery ladder. The reason behind the use of nop
instructions in the spy process is that the victim and the spy can then be executed with a
single sched-runtime parameter of the deadline scheduler. We also use sched_yield()
at the end of 1 (i.e., in the spy process) to relinquish CPU control to the victim in order
to ensure that the RAS remains full with the return addresses of the spy. As both spy and
victim are running with the same ‘runtime’, the deadline scheduler preempts the victim
process after one iteration of the ECC Montgomery ladder and gives the control of the
CPU back to spy. The spy now probes the RAS by executing the return addresses, observes
the execution timing through RASSLE, and again fills up the RAS. The sched-period
signifies the periodicity of the task, which is set equal to 2× t1 to target each iteration
of the ECC Montgomery ladder. In our experiments, we used t1 = 3600, t2 = 3700, and
t3 = 7200 to validate our proposed approach in the setup discussed in Section 6.1. We
performed empirical parameter-optimizations to achieve a reasonable success-rate on the
target platform.

6.3 Case-study on ECDSA Signature Generation Algorithm
In this section, we present a case study to illustrate how our attack strategy may be deployed
to break the security of ECDSA [X9.03] - a widely used digital signature algorithm that
uses Elliptic Curve Cryptography (see Appendix B for details). Our aim is to recover the
secret signing key from an implementation of the ECDSA signing algorithm.

At a high level, the attack strategy against ECDSA can be divided into two steps:
9The permission can be provided to a user using setcap cap_sys_nice+ep /usr/bin/chrt.

10In order to inspect the underline scheduler in the working system one can use
cat /sys/block/sda/queue/scheduler.
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• Step-1 (online): In this online step, we use our RASSLE-based attack strategy to
perform a targeted recovery of a fraction of the most significant bits of the nonces
sampled by the ECDSA signing algorithm (details presented subsequently).

• Step-2 (offline): In the offline step, we combine the partial nonce information recovered
in the online step with lattice-based cryptanalytic techniques to recover the ECDSA
signing key (details presented subsequently).

6.3.1 Online Phase: Template building and matching for ECDSA on curve P-256

We first describe the online phase of our attack. We target an OpenSSL implementation of
the scalar multiplication algorithm over curve P-256 used by ECDSA for nonce-generation
during signing. Now, as mentioned in [ABuH+19], OpenSSL implemented a constant
time scalar multiplication for NIST P-256 curve which uses secure table lookups (through
masking) and fixed-window combing. Note that these security features were not present in
the scalar multiplication implementation over NIST curve P-384 in OpenSSL [ABuH+19].

Our template-based attack strategy on the scalar multiplication implementation builds
upon RASSLE and works despite all of the countermeasures enabled for P-256. We avoid
detailing the scalar multiplication implementation in OpenSSL; it suffices to state that it
is a Montgomery Ladder-based implementation that still uses BN_add and BN_sub function
calls. These are precisely the function calls that we are going to track down using RASSLE.

Trace Collection and Template Building. Note that fundamentally, the scalar multipli-
cation used by the ECDSA signing algorithm is the same as the one we targeted earlier
using RASSLE in Sections 5.3 and 5.3.2. However, we need to use a different template
building methodology here as compared to the one proposed earlier. This is because we
now consider retrieval of bits for the underlying ephemeral nonces.

In particular, as the nonces are generated randomly during ECDSA signature generation
and used only once, it is not feasible to simulate multiple BN_add and BN_sub function calls
for each bit position and build templates by fixing the bit values to ‘0’ and ‘1’. Therefore,
we now consider building templates of a window of unknown bits instead of a bit-by-bit
iterative approach. Dictated by the requirements of the offline lattice-based cryptanalysis
phase (see Section 6.3.2 and Appendix C for more details), we build templates for ` > 1
most significant bits of the nonce. For template formation, the adversary executes a
spy and a dummy victim process performing ECC scalar multiplications simultaneously
using deadline scheduler. The three parameters (i.e. sched-runtime, sched-deadline,
sched-period) of deadline scheduler are set as mentioned in Section 6.2.

The template building process proceeds as follows:

1. For ` bits from the MSB position of the nonces, there can be 2` combinations of bit
sequences possible. We build templates for bit sequences of each of these 2` combinations.

2. For each of the 2` bit sequences:

• The dummy victim process performs ECC scalar multiplications using 2` nonces by
changing the ` most significant bits while keeping the other bits same.

• The spy, running in parallel, continuously fills up the RAS and probes it to observe
the timing values through RASSLE. As the adversary requires to retrieve only ` MSBs
of the nonce, the spy considers only those ` timing observations that correspond to
the ` MSBs.

We refer to these ` timing values to constitute a trace and to the corresponding bit
positions as trace points; the overall process of creating the trace is referred to as the
trace collection step.
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Figure 8: Three different regions observed in the templates for bit 4, bit 5, and bit 6 for bit
combination ‘101001’.

3. In order to minimize the system noise, the trace collection step is executed m > 1
times (m = 10, 000 in our case) for each of the 2` bit sequences.

4. Thus after the trace collection step, the adversary now has m · ` · 2` timing samples for
` MSBs of each of the 2` bit sequences of the nonce.

5. Next, the adversary selects medians from each of these timing distributions as the
representative template for a particular bit position of a particular sequence. Therefore,
the adversary constitutes a set of templates [ml] = {mli,j : i ∈ [1, 2`], j ∈ [1, `]}, which
contains ` · 2` timing values (i being the sequence number and j being the bit position).

In our experiments, we build templates for a window of ` = 6 MSBs. Therefore, for
each of the 6 bit positions and 26 combinations of random nonces, the spy collects timing
samples through RASSLE. Fig 8 shows the timing distribution for a particular nonce
combination i (i ∈ 26) for three bit positions (j = 4, 5, 6 where j ∈ 6). It is apparent from
the figure that the distribution of timing samples for each bit position can be subdivided
into three regions. The most intuitive explanation of this observation is that the spy tries
to achieve synchronization with the aid of deadline scheduler without explicit handles
inside victim code (unlike the attack proposed in Section 5). Due to the absence of perfect
synchronization mechanism, we suspect there is a mutual overlap between the timing
samples of any two adjacent trace points (bit positions), which make us define three
separate regions in the timing distribution:
• lower region: where the timing value observed for a trace point overlapped with

the previous trace point and thus it quotes lesser time than the one with perfect
synchronization,

• middle region: where perfect synchronization was achieved and the timing sample for
the particular trace point remains unaffected by adjacent bits’ executions,

• upper region: where the timing value for the trace point also overlapped with the timing
observation from following trace point and thus quotes higher value than the one with
perfect synchronization.
From these timing distributions for each bit of the 2` nonces, we select the median

from each region as the candidate elements for template building, which leads to 3 possible
template values for each bit position i of a particular bit sequence j. Therefore, at the
end of the template building phase, the adversary will have 3` · 2l templates for ` MSB
positions of the 2` nonce candidates.

Template Matching on Ephemeral Nonces. In our experiments, we conduct an end-to-
end attack which can retrieve a randomly chosen ECDSA signing key with only a pair
of 500 random signatures and nonces (these numbers are chosen in general based on the
templating parameters for the target system; might vary on a different setup). According
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Table 3: Ordering of candidate nonce combinations (6 MSBs) by Least Square Error(LSQ)
method. The first element of each tuple represent the candidate nonce and the second element
represent the LSQ values(×106). The correct combination is marked in bold.
Sl. No. Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
nonce 1 (101110, 11.5) (100000, 12.7) (101101, 16.3) (100010, 16.5) (100001, 16.5)
nonce 2 (100110, 12.0) (100100, 12.2) (101000, 12.5) (100101, 12.9) (101010, 15.4)
nonce 3 (100011, 40.2) (100000, 42.7) (100010, 42.8) (100110, 50.1) (100100, 53.0)
nonce 4 (100000, 4.88) (100110, 8.95) (100100, 9.23) (100101, 9.27) (100011, 10.17)
nonce 5 (100001, 25.3) (100000, 35.1) (100010, 39.9) (100011, 41.2) (111101, 49.0)

Table 4: Time taken for ECDSA key retrieval from partially leaked nonces.
Sl. No. No. of signatures Nonces retreived Online Phase Offline Phase

1 500 219 5.55s 54m 46s
2 500 238 6.66s 55m 31s
3 500 202 5.78s 61m 09s
4 500 258 5.70s 51m 37s
5 500 246 8.35s 53m 50s
6 500 219 7.60s 71m 05s

to the ECDSA algorithm (discussed in the Section 6.3), the nonces are the secret random
integers that are used to perform scalar multiplication with the base point of the curve.

Similar to the template building phase, the spy craftily fills up the RAS and records the
timing observations using RASSLE. We term this phase as online phase where the spy runs
in synchronisation with the victim process by abusing the deadline scheduler and observes
the timing leakages for ephemeral nonces. While in the offline phase, the attacker (or spy)
tries to extract the 6 MSBs of each of these 500 nonces and eventually attempts to extract
the secret signing key using Lattice Reduction (for more details, refer to Appendix C). We
first segregate the timing observed by spy corresponding to the 6 MSB positions of the
nonce. The objective here is to perform template matching for 6 individual bit positions
of these random nonces with all the available templates. For a particular bit position, we
have 26 templates each having three regions. Next, we select the median which has least
difference with the actual observed timing value. Finally we perform a Least Square Error
(LSQ) to determine the top five templates that represent the possible combinations for the
6 MSBs. Therefore, for 500 nonces, we have (500 × 5) candidate combinations of the 6
MSBs. Table 3 presents a typical output after the template matching phase where first 6
bits of the candidate nonces are ordered based on their respective LSQ values.

6.3.2 Offline Phase: Key-Recovery using Lattice-based Cryptanalysis

Given the “noisy” leakage samples on the “partial nonces” 11 used by the ECDSA signing
algorithm, we recover the ECDSA signing key using a combination of lattice reduction
algorithms and statistical mixing-and-matching of leakage samples as described in a number
of previous works [Mic01,NS02,BvdPSY14,WSBS20,JSSS20]. A detailed description of
the lattice-based cryptanalytic techniques is presented in Appendix C.

For implementing the lattice-reduction algorithms, we resort to using the publicly
available fpylll library [fpy], which has in-built modules for solving the Closest Vector
Problem (CVP) over lattices with integral basis matrices. The mathematical details of the
reduction from recovering the ECDSA secret key from partial nonce-leakages to solving a
CVP instance is presented in Appendix C. We adopt a trial-and-error approach where we
randomly select 200 candidate partial nonces to: (a) create the hidden number problem
instances, (b) convert them into the lattice and the target vector for the CVP problem
instance, and (c) solve the CVP problem instance using the fpylll solver to arrive at a

11The “partial nonce” guess refers to the candidate msbs for the nonce corresponding to each signature.
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guess for the secret key. If the guess is correct, the attack outputs the recovered secret key;
otherwise, it repeats the same process for a different randomly selected set of instances.
Note that the attack can trivially identify when the correct secret key has been recovered
by checking if it yields the correct public key (which is available for verification). This
check involves a single deterministic scalar multiplication. So when the attack terminates
by outputting a secret key, we can be sure that the correct secret key has been recovered,
as opposed to merely “guessing” that the correct secret key has been recovered.

Based on our experiments, for l = 6 (l being the number of MSBs of the nonce leaked
via RASSLE), the attack requires approximately 4000 - 5000 trials, where each trial outputs
a candidate secret key in the range of 0.010 - 0.015 secs. Hence, the overall lattice-based
post-processing for secret key recovery takes close to an hour. Table 4 shows the detailed
results of ECDSA key retrieval from the 6 MSBs of nonces leaked through RASSLE. We
performed key retrieval of 6 unknown keys using 500 signatures and randomly generated
nonces. The number of nonces successfully identified during our template matching phase
is also shown along with the offline and online time taken for the entire operation.

7 Mitigation
As demonstrated so far, RASSLE exploits the RAS to establish a timing-based covert
channel. The illustration of the covert channel is a fundamental observation, which made
us explore other threat models. Thus, mitigation can be proposed at various levels.
If we revisit the example of OpenSSL implementation on an algorithmic level, point
randomization would have made this key recovery difficult but perhaps not impossible. It
becomes more difficult for the adversary to simulate the number of intermediate function
calls and build the classification as shown in this paper, but on the other hand, it might
open up other vulnerabilities that are particularly not affected due to the input basepoint
randomization. On the other hand, the shared hardware stack-based structure still stays
exploitable. It can be abused by processes at their own wish, leading to severe security
exploit across processes co-located on a cloud server or through the browser. This opens
up new avenues and research opportunities that could be explored in the coming years.

8 Conclusion
In this paper, we focused on the Return Address Stack - a core component of the speculative
execution subsystem in almost all modern processors. We proposed a generic methodology
to reverse engineer the RAS in modern-day processors. We demonstrated that due to the
underflow condition of the RAS, a subtle covert channel could be created between two
co-located processes. We christened it RASSLE and presented a proof of concept work
where two co-located processes communicate with each other using the shared RAS. As a
practical use-case of RASSLE, we demonstrated an exploit on ECC scalar multiplication
over the P-384 curve in the OpenSSL library. We showed how RASSLE can be used in a
completely asynchronous setting by adjusting deadline scheduling policy from user-level
privileges. We also showed an exploit on breaking the ECDSA signature generation
algorithm over curve P-256 using RASSLE.
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A Elliptic Curve Cryptography in OpenSSL
Well known and widely used crypto libraries, such as OpenSSL [Ope19], provide the
support for elliptic curve based algorithms. Although the most recent versions of these
libraries are equipped with some of the countermeasures for micro architectural attacks,
there are still inherent avenues which are exploited in leak secret information. A number
of attacks [ABG10, BT11, ABuH+19] have been proposed over the years which shows
the vulnerability of conditional branching implemented in various cryptographic open-
source libraries. Most of these attacks exploit the conditional branching mechanism of
Branch Prediction Unit. However, libraries sanitized with recent branch prediction attack
countermeasures are immune to these simple misprediction based attacks. Due to long
history of timing attacks on ECC, OpenSSL [Ope19] implemented several countermeasures
without scalar-dependent branches, specially to protect the scalar multiplication operation.
The scalar multiplication is implemented using Montgomery ladder with conditional swaps
and Non-Adjacent Form (wNAF) for scalar representation. The scalar k is transformed
to its corresponding wNAF representation and based on this representation, a series of
double and add operations are executed to perform the multiplication. Further, these
two operations are further subdivided into lower level field arithmetic, such as, shift, add,
subtract, multiply and square operations. OpenSSL also provides a support for point
randomization, where the input basepoint is randomized in every call to the ECC function.
However, in this particular work, we have demonstrated a Chosen Plaintext attack with
the basic timing observations, so we have discussed point randomization to be a valid
countermeasure of the existing attack.

Scalar Multiplication in OpenSSL. In OpenSSL, each elliptic curve has a unique method
structure which contains function pointers to fundamental ECC operations. Due to the
various timing based side channel attacks proposed over the years, OpenSSL implemented
a lot of countermeasures to thwart these attacks, specially for NIST curves over prime
fields. However, as pointed out in [ABuH+19], the P-384 curve does not have the popular
countermeasures like table look-ups, fixed-window combing, etc unlike other widely used
curves. The scalar multiplication operation is implemented using the function ec_wNAF_mul
which first transforms the scalar into wNAF representation and then executes a series of
double and add operations to perform the multiplication. To provide protection against side
channel attacks, OpenSSL use the Montgomery ladder algorithm with conditional swaps
for scalar multiplication. The algorithm is implemented without key-dependent branches
and performs the same number of addition and double operations irrespective of value of
the bit processed. The conditional swaps avoid any branches or memory accesses that
depend on the scalar. The Montgomery Ladder step operation is implemented using the
differential addition-and-doubling method [IT02] as shown in Fig 9. The field multiplication
(field_mul) is implemented by the function BN_mod_mul where the modular reduction
is performed by the BN_nnmod function. Further, looking closer into the BN_nnmod as in
Fig 10, the modular reduction executes either function BN_add or BN_sub, realised through
a ternary operator, which is realised by the compiler similar to a branch statement.

The interesting part of this code snippet is that, the for each bit of the secret scalar,
inspite of having no conditional statements which are directly dependent on the secret bit,
yet these BN_add and BN_sub functions are conditionally invoked. The aggregate number
of such calls are not constant, and are dependent on both the value of secret scalar and
the input basepoint. Therefore,the number of times the BN_add and BN_sub functions are
executed depend on the affine coordinates of the EC point, as well as the value of the secret
scalar. Fig 11a shows how the total number of add and sub function calls varies for each bit
for two different values of secret scalar denoted as key1 and key2. It is worth mentioning
here that instruction based attacks like the L1 instruction cache prime+probe [ABG10]
might be a suitable attack technique to exploit this implementation. However, since the
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Figure 9: Code snippets for Montgomery Ladder step with differential addition-and-
doubling in OpenSSL

Figure 10: Code snippets for the function BN_nnmod in OpenSSL.

focus of this work is to demonstrate the side channel leakage created by RAS, we aim
to determine the total number of BN_add and BN_sub function calls executed for each
iteration of the Montgomery Ladder using the attack technique proposed in the earlier
sections.

Timing Variations Observed through RASSLE. As shown in Fig 11b, the timing values
observed by the spy using RASSLE varies for different secret scalars denoted as key1 and
key2 which can be associated with the fact that total number of function calls per bit of
the scalar also varies (Fig 11a).

B Background on ECDSA
In this section, we present some background material. ECDSA typically uses an elliptic
curve (e.g., NIST P-256 or NIST P-384 [ABuH+19]) with a base point P of prime order q,
and consists of the following algorithms:

• KeyGen: Samples a secret signing key sk uniformly in the range [1, q − 1] and publishes
the corresponding verification key vk = [sk]P .
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Figure 11: Number of add-sub calls and timing values observed for keys key1 and key2
for bit index 0 to 50.

• Sign: Samples a nonce k uniformly from [1, q − 1] and outputs a signature (r, s) on a
message m as:

r = x-coord([k]P ) mod q , s = (h(m) + sk · r) · k−1 mod q,

where h is a suitably chosen collision-resistant hash function that maps the message m
to an integer in the range [0, q − 1].

• Verify: Given a signature (r, s) on a message m, computes

h = H(m) , u1 = s−1 · h mod q , u2 = s−1 · r mod q , Z = [u1]P + [u2]Q,

and outputs 1 if r = x-coord(Z) mod q. Otherwise, outputs 0.

The online phase of our attack strategy specifically targets the scalar multiplication
step for computing r in the EDCSA signing algorithm. The aim is to try and recover the
` most significant bits (MSBs) of the secret nonce k used by the signing algorithm.

C ECDSA Cryptanalysis from Partially Known Nonces
In this section we will briefly describe ECDSA cryptanalysis based on partially known
nonces using lattice algorithms. For the ease of implementation, we have broken up the
attack into a sequence of modular tasks.

C.1 A Single HNP Equation
The first sub-task is to implement a function that builds a single equation as part of a
larger overall hidden number problem (HNP) instance [BHH01]. The equation is to be built
from a single ECDSA signature and some partial information about the corresponding
nonce used by the ECDSA signing algorithm.

More concretely, assume that we obtain the L most significant bits of an N -bit nonce
used to generate a signature (r, s) on a hashed message h = h(m) (h denotes the output
of hashing the message m and mapping the hash value to an integer modulo q – in the
rest of the discussion, we will only use h instead of m). Letting x = sk, we have

s = k−1 · (h+ x · r) mod q,
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which after some simple re-arrangement yields:

(r · s−1) · x = k − h · s−1 mod q.

Setting t = (r · s−1) mod q and z = (h · s−1) mod q, we have:

tx = k − z mod q.

Now, let a be an integer represented by the L most significant bits of k. Then we can
write:

k = a · 2N−L + 2N−L−1 + e,

where e is some error term bounded as:

0 ≤ |e| ≤ 2N−L−1.

Setting u = a · 2N−L + 2N−L−1 − z, we have:

tx = u+ e mod q

Here t and u are known, x is the target unknown and e is small but unknown. We can
think of computing (t, u) as setting up a single equation as part of a larger overall HNP
instance.

C.2 Building the Overall HNP Instance
The second sub-task is to simply extend the aforementioned approach to build a larger
HNP instance consisting of several equations, built from several ECDSA signatures and
partial leakages from the corresponding nonces. In other words, given the following:

• N : the total number of bits in each nonce ki;

• L: the number of known most significant bits of each nonce ki;

• n: the number of equations to be built;

• {(ki,1, . . . , ki,L)}i∈[1,n]: a list of the L most significant bits of each nonce ki;

• {hi}i∈[1,n]: a list of the messages (post-hashing and mapping to an integer modulo q);

• {(ri, si)}i∈[1,n]: a list of the corresponding ECDSA signatures;

• q: the order of the base point P on the elliptic curve used by the ECDSA scheme;

one can create a list of values of the form {(ti, ui)}i∈[1,n], where we compute each (ti, ui)
pair as described above.

C.3 HNP to CVP and subsequently solving CVP
The next step is to transform the HNP instance into an instance of the closest vector
problem (CVP). Given the list

(
{(ti, ui)}i∈[n], q

)
, one can construct the following CVP

basis matrix:

BCVP =


q 0 0 . . . 0 0
0 q 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . q 0
t1 t2 t3 . . . tn 1/2L+1

 ,
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and the following CVP target vector:

~uCVP =
[
u1 u2 u3 . . . un 0

]
.

As was formally established in previous work [NS02,BvdPSY14,WSBS20,JSSS20], for
appropriate choices of parameters N , L, n and q, given BCVP and ~uCVP, a CVP solver
should produce a vector

~v =
[
v1 v2 v3 . . . vn vn+1

]
.

such that vn+1 is of the form:

v(n+1) = x/2L+1.

To solve the CVP instance, one can directly use the in-built CVP-solver from the
publicly available fpylll library [fpy], modulo some scaling adjustments to ensure that
the basis matrix has only integral entries.


	Introduction
	Motivation
	Our Contribution
	Responsible Disclosure
	Organisation

	Return Address Stack (RAS)
	Working Principle

	Delving into processor specific RAS reverse engineering
	Observing Timing Differences over Recursive Function Calls
	Validating Results using Hardware Performance Counters

	RASSLE: Establishing a covert channel through RAS
	Contention-based Timing Channel over RAS
	Assumptions on the Threat Model
	Establishing the Covert Channel

	Case Study on OpenSSL ECC Scalar Multiplication
	Elliptic Curve Cryptography and OpenSSL
	Timing Variation Observed through RASSLE
	Template Attack on ECC Scalar Multiplication
	Experimental Validation

	Synchronization in a Purely Asynchronous Setup
	Assumptions on the Threat Model
	Getting Synchronization to work with the Deadline Scheduler
	Case-study on ECDSA Signature Generation Algorithm

	Mitigation
	Conclusion
	Elliptic Curve Cryptography in OpenSSL
	Background on ECDSA
	ECDSA Cryptanalysis from Partially Known Nonces
	A Single HNP Equation
	Building the Overall HNP Instance
	HNP to CVP and subsequently solving CVP


