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Abstract. The FHEW cryptosystem introduced the idea that an arbitrary function
can be evaluated within the bootstrap procedure as a table lookup. The faster
bootstraps of TFHE strengthened this approach, which was later named Functional
Bootstrap (Boura et al., CSCML’19). From then on, little effort has been made
towards defining efficient ways of using it to implement functions with high precision.
In this paper, we introduce two methods to combine multiple functional bootstraps
to accelerate the evaluation of reasonably large look-up tables and highly precise
functions. We thoroughly analyze and experimentally validate the error propagation
in both methods, as well as in the functional bootstrap itself. We leverage the
multi-value bootstrap of Carpov et al. (CT-RSA’19) to accelerate (single) lookup
table evaluation, and we improve it by lowering the complexity of its error variance
growth from quadratic to linear in the value of the output base. Compared to previous
literature using TFHE’s functional bootstrap, our methods are up to 2.49 times faster
than the lookup table evaluation of Carpov et al. (CT-RSA’19) and up to 3.19 times
faster than the 32-bit integer comparison of Bourse et al. (CT-RSA’20). Compared to
works using logic gates, we achieved speedups of up to 6.98, 8.74, and 3.55 times over
8-bit implementations of the functions ReLU, Addition, and Maximum, respectively.
Keywords: Functional Bootstrap · TFHE · Lookup Table · Homomorphic Encryp-
tion.

1 Introduction
The efficient evaluation of non-linear functions with high precision is a challenge for
homomorphic encryption schemes and many of them rely on arithmetic approximations,
such as Taylor, Fourier, and Chebyshev series [BGGJ19, CCS19, KWN20]. They allow
them to work with packed messages in a SIMD1 manner [BGH13], which greatly reduces
the amortized cost of operations. However, the cost of implementing such approximations
grows exponentially with the desired precision [LJ19], which makes this approach unfit
for many applications. Other schemes implement circuits using binary gates [CGGI20],
which are a versatile and straightforward way of achieving good precision. Their main
disadvantage is the low throughput of operations, which leads to scalability problems.

All currently known fully homomorphic encryption (FHE) schemes rely on noisy
ciphertexts for security, i.e., the encryption process adds a small error (noise) to the
message. This error grows when performing arithmetic, and, eventually, it might affect
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significant bits of the message. To preserve the message, FHE schemes reset the error from
time to time during the circuit evaluation by using a bootstrap procedure. It is usually an
expensive process, but schemes implementing circuits using logic gates may enable very
fast bootstraps at the cost of performing one at every gate. In some of them, it is also
possible to implement the evaluation of arbitrary functions within the bootstrap, which
usually results in more efficient implementations [CJP20].

A bootstrap procedure that evaluates a function (other than an ordinary reset of
error) is called Functional Booststrap [BGGJ19]. In FHEW-like cryptosystems [DM15],
the bootstrap is just a rounding function evaluated using a lookup table (LUT). Thus,
to evaluate an arbitrary function, we only need to replace the bootstrap LUT with one
that encodes it. This idea was introduced with the FHEW cryptosystem [DM15, MP20]
and has been used by a few applications in the literature. We can refer, for example, to
FHE-DiNN [BMMP18] and the work of Izabachène et al. [ISZ19], which both implement
the sign function using the functional bootstrap of the TFHE cryptosystem [CGGI20].
These applications can perform a functional bootstrap in just tens of milliseconds thanks
to the low precision (1 bit) required by the sign function. Applications requiring higher
precision, on the other hand, need to increase the parameters of the cryptosystem to
keep the evaluation correct, which leads to deteriorated performance. For example, a
6-bit-to-6-bit LUT takes 1.5 seconds to be evaluated using TFHE’s functional bootstrap,
as implemented by Carpov et al. [CIM19].

Contributions. We show how to evaluate functions with high precision using multiple
functional bootstraps, but without increasing (too much) the parameters of the cryptosys-
tem. This approach results in a much smaller impact on performance. The following
contributions are presented in this work.

• We introduce two new methods to combine multiple functional bootstraps in TFHE:

– A tree-based one that allows the easy implementation of arbitrary functions, as
well as a tree optimization based on particular properties of each function. We
leverage the multi-value bootstrap of Carpov et al. [CIM19] to lower the number
of bootstraps in this method (asymptotically) from exponential to linear in the
size of the input.

– A chaining one that presents a better error rate growth behavior, but which is
more intricate to implement depending on the target function.

• We perform an error variance analysis, including experimental validation, and a
comparison between the aforementioned methods.

• We present optimizations to the building blocks used in our methods, which are also
contributions of independent interest.

– We introduce a multi-value extract procedure that produces multiple LWE
samples encrypting the same value with independent errors. It enables improving
the error growth on ciphertext scaling from quadratic to linear with little
performance overhead. It also improves the error variance growth in the multi-
value bootstrap [CIM19] from quadratic to linear in the output base.

– We introduce a “base-aware” Key Switching to pack B < N LWE samples in
an RLWE sample, where N is the polynomial size. In this work, B is the base
of our integer encoding (thus, “base-aware”), but the technique enables gains of
up to bNB c times for any B < N .

• We present implementations2 of several relevant functions and compare their perfor-
mance with state-of-the-art implementations from the literature.

2The source code is available at https://github.com/antoniocgj/FBT-TFHE.

https://github.com/antoniocgj/FBT-TFHE
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Lookup tables are an important tool in the implementation of arbitrary functions in
homomorphic circuits. They are as versatile as logic gates while capable of providing better
throughput of operations. Our methods speed up their evaluation in up to 2.49 times,
and, for specific functions, we also show possibilities of optimizations over the generic LUT
evaluation. Compared to implementations using logic gates, we achieve speedups of up to
8.74 times in simple and useful functions, such as integer addition.

This paper is organized as follows: Section 2 reviews the basics of the TFHE cryptosys-
tem with a focus on its functional bootstrap; Section 3 introduces the methods to combine
functional bootstraps, analyzes their error variance behavior, and presents optimizations in
their building blocks; Section 4 presents a performance analysis of our methods, including
comparison with the literature; Section 5 summarizes the related work; Section 6 concludes
the paper.

2 The TFHE Cryptosystem

TFHE is a fully homomorphic cryptosystem with security based on the (Ring) Learning
With Errors problem [Reg09]. It is based on the FHEW cryptosystem [DM15], but it
features much faster bootstraps thanks to the use of binary secrets [MP20]. In this section,
we review the concepts of TFHE necessary for the understanding of this paper.

Let A be a set, we denote by Anq the set of vectors with n elements in A modulo q
and by AN [X]n the set of vectors of n polynomials modulo (XN + 1). If omitted, n = 1
and q = ∞. The Real Torus T = R/Z is the set of real numbers modulo 1 and B = Z2
is the set of binary numbers {0, 1}. TFHE defines three types of ciphertexts, which we
summarize below as samples of zero.

• TLWE Sample: A pair (a, b) ∈ Tn+1, where b = 〈a, s〉 + e. The vector a is
uniformly sampled from Tn, the secret key s is uniformly sampled from Bn, the error
e ∈ T is sampled from a Gaussian distribution with mean 0 and standard deviation
σ, and 〈 , 〉 denotes the inner product.

• TRLWE Sample: A pair (a, b) ∈ TN [X]k+1, where b = a · S + e. The vector a is
uniformly sampled from TN [X]k, the secret key S is uniformly sampled from BN [X]k,
and the error e ∈ TN [X] is a polynomial with random coefficients sampled from a
Gaussian distribution with mean 0 and standard deviation σ.

• TRGSW Sample: A vector of ` TRLWE samples.

Encryption To encrypt a message m ∈ T (TLWE) or m ∈ TN[X] (TRLWE), we simply
add (0,m) to a fresh sample of zero. We denote by c ∈ T(R)LWEs(m) the T(R)LWE
sample c that encrypts m with key s. To ease the notation, we consider each key has
its attached set of parameters. A message m ∈ TN[X] can also be encrypted in TRGSW
samples by adding m ·H to a TRGSW sample of zero, where H is a gadget decomposition
matrix. We do not use TRGSW samples in our algorithms and, therefore, we will get into
further details about it only when necessary.

Decryption To decrypt a sample, we first calculate its phase (message + error): φ(c) =
b − 〈a, s〉. Considering approximate computing, the phase might be a good enough
approximation for the message (depending on the error variance). For exact computing, we
need to remove the error, and we do so by rounding the phase to the nearest valid value for
messages. This requires us to define a set of valid messages over the Torus. The rounding
procedure fails if the error is greater than half the distance (in the Torus) between two
consecutive messages.
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Arithmetic We add two ciphertext (TLWE or TRLWE) samples c1 = (a1, b1) and
c2 = (a2, b2) by simply adding their terms: c1 + c2 = (a1 + a2, b1 + b2). The multiplication
between a ciphertext c1 = (a1, b1) and a scalar cleartext z ∈ Z (or z ∈ ZN [X] for TRLWE)
is a direct result from the addition: c1 · z = (a1 · z, b1 · z). TFHE does not support
multiplications between T(R)LWE samples. To be fully homomorphic, it relies on external
products between TRGSW and TRLWE samples. In this case, we first decompose the
TRLWE sample in ` TRLWE samples using a Gadget decomposition algorithm [GMP19].
Then, we perform an inner product between the decomposed TRLWE and the TRGSW
sample (which already is a vector of ` TRLWE samples).

2.1 Building Blocks of TFHE
TFHE has three algorithms as its main building blocks, which we briefly review in this
section. Following the notation defined by Chillotti et al. [CGGI20], we use underbars and
overbars to indicate input and output variables, respectively. The first building block is
the Public Functional Key Switching, shown in Algorithm 1. It allows the switching of
keys and parameters from TLWE to T(R)LWE samples, such as the packing of TLWE
samples in a TRLWE sample. It also evaluates a linear function f over the input TLWEs.
Chillotti et al. [CGGI20] define this algorithm with binary decomposition, as Algorithm 1
shows, but TFHE supports other power of 2 bases. We analyze the impact of changing
the decomposition base on the error growth in Section 3.3.

Algorithm 1: TFHE’s TLWE-to-T(R)LWE Public Functional Key Switch-
ing [CGGI20]

Input : p TLWE samples c(z) = (a(z), b(z)) ∈ TLWEs(µz), z ∈ [[1, p]]
Input : a public R-Lipschitz linear function f : TT 7→ TN [X]
Input : a precision parameter t ∈ Z
Input : a Key Switching key KSi,j ∈ T(R)LWEs(

si

2j ), for i ∈ [[1, n]] and j ∈ [[1, t]].
Output : a T(R)LWE sample c ∈ T(R)LWEs(f(µz)), for z ∈ [[1, p]].

1 for i ∈ [[1, n]] do
2 ai ← f(a(1)

i , a
(2)
i , ..., a

(p)
i )

3 Let ãi = daic 1
2t

be the closest multiple of 1
2t to ai.

4 Decompose each ãi =
∑t

j=1 ãi,j · 2
−j , where ãi,j ∈ BN [X].

5 Return (0, f(b(1)
i , b

(2)
i , ..., b

(p)
i ))−

∑n

i=1

∑t

j=1 ãi,j · KSi,j

The second building block is the SampleExtractp(c) algorithm, which receives a TRLWE
sample c ∈ TRLWES(m) and a position p ∈ [[0, N − 1]]. It returns a LWE sample
c ∈ TLWES(mp), where mp ∈ T is the p-th coefficient of m ∈ TN [X], and S ∈ BN is a
vector (TLWE) interpretation of S ∈ BN [X].

The last building block is the BlindRotate algorithm, shown in Algorithm 2. It rotates
the polynomial encrypted in a TRLWE sample by an encrypted number. This is the
core procedure for the evaluation of look-up tables (LUTs) in TFHE, introduced in the
vertical packing by Chillotti et al. [CGGI20]. Suppose we want to look up the number
s ∈ Z in the LUT A, both encrypted. To use BlindRotate directly, s needs to be binary
decomposed (s =

∑n−1
i=0 si · 2i) and encrypted in Ci ∈ TRGSWS(si), for i ∈ [[1, n]]. Each

position of A is packed in a coefficient of a Torus polynomial in TN [X] and encrypted in
a TRLWE sample. By calling BlindRotate(A, (20, 21, ..., 2n, 0), (C0, C1, Cn)), the position
we want to look up in A is moved to the constant term of the TRLWE sample, and we
can use SampleExtract0(c) to obtain its LWE encryption. It is important to note that the
multiplication Xai ·ACC occurs modulo the cyclotomic polynomial Φ2N = (XN + 1) and,
hence, presents a negacyclic property, e.g. XN ·ACC mod Φ2N = −ACC.
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Algorithm 2: TFHE’s BlindRotate Algorithm [CGGI20]
Input : a sample c ∈ TRLWES(m)
Input : a list of integers (a1, ..., an, b) ∈ Zn+1

2N
Input : a list of samples Ci ∈ TRGSWS(si), for i ∈ [[1, n]]
Output : a TRLWE sample of c ∈ TRLWES(X−ρ ·m), where ρ = b−

∑n

i=1 si × ai mod 2N

1 ACC← X−b · c
2 for i = 1 to p do
3 ACC← CMUX(Ci, Xai · ACC,ACC)
4 return ACC
1 Procedure CMUX(C, A, B)
2 return C · (B −A) +B

2.2 Bootstrap
There are two bootstraps algorithm in TFHE. Algorithm 3 shows the Gate Bootstrap,
which was introduced for the implementation of logic gates and is supposed to be used
on samples representing binary numbers. Torus values are in the interval (−0.5, 0.5] in
the signed representation. Zero is usually represented by − 1

4 while one is represented by
+ 1

4 . The arithmetic of each logic gate implementation change these values, but it keeps
their signal. Then, TFHE uses the Gate Bootstrap with µ = 1

4 to set the value back to
+ 1

4 or − 1
4 (plus a small bootstrap error), depending on the bit value. For example, the

NAND gate between TLWE samples c1 ∈ {− 1
4 ,+

1
4} and c2 ∈ {− 1

4 ,+
1
4} is implemented as

Bootstrap((0, 5
8 )− c1 − c2).

Algorithm 3: TFHE’s Gate Bootstrap algorithm [CGGI20]
Input : a TLWE sample c = (a, b) ∈ TLWEs(m)
Input : a constant µ ∈ T
Input : a bootstrapping key BKi ∈ TRGSWS(si), for i ∈ [[1, n]].
Output : c ∈ TLWES(m · µ), where S ∈ BN is a vector (TLWE) interpretation of

S ∈ BN [X] and m =
{

1, if m < 0.5.
−1, otherwise.

1 b← b2Nbe and ai ← b2Naie ∈ Z2N for each i ∈ [[1, n]]
2 v ← (1, X,X2, ..., XN−1) · µ ∈ TN [X]
3 ACC← BlindRotate((0, v), (a1, ..., an, b), (BK1, ...,BKn))
4 return SampleExtract0(ACC)

The second bootstrap algorithm in TFHE is the Circuit Bootstrap, which converts
TLWE samples to TRGSW samples. This bootstrap is 10 times more expensive than the
Gate Bootstrap, but it enables the possibility of fully composable CMUX circuits. Since it
requires a 64-bit Torus precision, it is implemented only in the experimental branch of
TFHE, which we do not use in this work.

2.3 Functional Bootstrap in TFHE
Similarly to the Functional Key Switching, the bootstrap can be said to be “Functional" if
it maps a set of inputs to a codomain in a programmatical manner, i. e. it can evaluate
functions. In TFHE, the bootstrap uses the BlindRotate algorithm to perform a lookup
table (LUT) evaluation. LUTs are a very simple yet efficient way of evaluating discretized
functions. They encode functions by storing discretized elements of their images, and the
evaluation is performed by selecting a table position based on the function parameter,
which is the lookup Selector. The gate bootstrap of TFHE is the evaluation of a 1-bit
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lookup table (LUT) encoding the rounding function. The test vector (0, v) (line 2 of
Algorithm 3) encodes the LUT with the value of µ and −µ (thanks to the negacyclic
property), and c is the selector. We can evaluate some other functions by just adjusting
the value of µ. For example, the sign function, as used in FHE-DiNN [BMMP18] and by
Izabachène et al. [ISZ19]. To evaluate an arbitrary LUT (with more than one value and
its negative), we need to increase the size of the LUT, to discretize the function according
to this size, and to work only with the positive half of the Torus, since the negacyclic
property can only be explored by anti-symmetric functions.

We represent integers in the Torus by partitioning its positive half in slices. We define the
Torus base, B, as the number of integers mapped, and the Torus slice as the distance between
two consecutive integers in the Torus. For example, with B = 4, the size of each Torus slice
is 0.125 and the map of integers is (0, 1, 2, 3) 7→ (0, 0.125, 0.25, 0.375). This approach has
been extensively used to represent bounded integers in the Torus [BMMP18, CIM19, ISZ19].
To represent unbounded integers, we decompose them in digits of the base B and encrypt
each digit in a TLWE sample. This approach is more common for applications using binary
digits, but it has also been used with arbitrary bases [BST20].

2.3.1 Encoding a LUT in a TRLWE sample

A single TRLWE sample c ∈ TN [X]k+1 can encode at most N entries of a lookup
table (LUT). However, when using the bootstrap to evaluate the LUT, only a small
fraction of N will actually be available if the goal is perfect computation. The first
step of the bootstrap is to scale each element of the ciphertext to 2N and round it
to an integer. This process introduces a significant error variance, which is additive
with the variance of the Gaussian error. To prevent these lookup errors, we map each
position of a LUT to a sequence of many consecutive coefficients of the test vector and
we adjust the selector to lookup positions in the middle of these sequences. For example,
with B = 4 and N = 1024, an integer LUT L = [l1, l2, l3, l4] ∈ Z4

B is mapped to∑255
i=0

l1
2BX

i +
∑511
i=256

l2
2BX

i +
∑767
i=512

l3
2BX

i +
∑1023
i=768

l4
2BX

i and we add a precision offset
of 1

4B = 1
16 to the selector c. Algorithm 4 shows the functional bootstrap in TFHE already

considering the integer and LUT encoding we defined.

Algorithm 4: Functional Bootstrap in TFHE
Input : a TLWE sample c = (a, b) ∈ TLWEs( m2B ), for m ∈ ZB
Input : an integer LUT L = [l0, l1, ..., lB−1] ∈ ZBB
Input : a bootstrapping key BKi ∈ TRGSWS(si), for i ∈ [[1, n]].
Output : c ∈ TLWES(L[m]

2B ), where S ∈ BN is a vector (TLWE) interpretation of
S ∈ BN [X]

1 b← b2Nbe and ai ← b2Naie ∈ Z2N for each i ∈ [[1, n]]
2 v ←

∑N−1
i=0

1
2B · lb iB

N
cX

i ∈ TN [X]
3 ACC← BlindRotate((0, v), (a1, ..., an, b+ 1

4B ), (BK1, ...,BKn))
4 return SampleExtract0(ACC)

2.3.2 Multi Value Bootstrap

The most expensive procedure in the LUT evaluation using the functional bootstrap
of TFHE is the BlindRotate. The multi-value bootstrap is a technique that allows the
evaluation of multiple LUTs with the same selector using just one BlindRotate. Suppose
we want to evaluate q LUTs (L0, L1, ..., Lq) with the same selector c ∈ TLWEs(m) and
we want to minimize the number of blind rotations. A simple way of doing so is to
perform a (single-value) functional bootstrap with test vector (0, v) = (0, 1) ∈ TN [X]k+1
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and selector c. Its output would be c = TLWEs(X−2N ·φ(c) mod 2N ). Then, to evaluate
each LUT, we represent it as an integer polynomial in ZN [X], multiply by c, and extract
the constant term. This approach requires just one BlindRotate, but the error variance
grows quadratically with the square norm of each LUT.

Carpov et al. [CIM19] introduced a multi-value bootstrap scheme that allows for a much
smaller error growth. As Algorithm 5 shows, the test vector is set to (0, τ · 1

2
∑N−1
i=0 Xi),

where τ is a scaling factor usually set as the gcd among the coefficients of all LUTs. After
the blind rotation, each LUT (represented as a polynomial in TVFi

∈ ZN [X]) is divided
by v, before being multiplied by the accumulator (ACC). This division greatly reduces the
square norm of the LUTs and, hence, the error growth. Carpov et al. also introduced a
very efficient way of calculating TVFi

v that only requires a subtraction between each pair of
consecutive coefficients of each LUT.

Algorithm 5: Carpov et al. multi-value bootstrapping algorithm [CIM19]
Input : a TLWE sample c = (a, b) ∈ TLWEs( m2N ), m ∈ Z2N
Input : a scale factor τ
Input : q LUTs encoded in polynomials TVFi ∈ ZN [X], for i ∈ [[1, q]]
Input : a bootstrapping key BKi ∈ TRGSWS(si), for i ∈ [[1, n]].
Output : An array of TLWE samples ci ∈ TLWES(Fi(m)

2N ) for i = 1, ..., q, where S ∈ BN is a
vector interpretation of S ∈ BN [X].

1 b← b2Nbe, ai ← b2Naie ∈ Z2N for each i ∈ [[1, n]]
2 v ← 1

2
∑N−1

i=0 Xi · 1
2N · τ ∈ TN [X]

3 ACC← BlindRotate((0, v), (a1, ..., an, b), (BK1, ...,BKn))
4 ci = SampleExtract0(TVFi

v
· ACC), for each i ∈ [[1, q]]

5 Return c

3 Combining Functional Bootstraps
To evaluate large LUTs considering the limitations we describe in Section 2.3.1, we either
need to increase N (which increases the bootstrap time superlinearly [BST20]) or to lookup
in multiple TRLWE samples. In this section, we follow this latter approach and introduce
two methods to combine multiple functional bootstraps to evaluate a single large LUT.
Figure 1 illustrates the evaluation of an 8-bit parity function using them. In both methods,
we use the encoding for unbounded integers we described in Section 2.3 and represent
them in base B with d digits.

3.1 Tree-based method
Our first method to evaluate functions using multiple functional bootstraps is structured as
a (convergence) tree and uses the output of a lookup to construct a new LUT. Algorithm 6
shows its final version. Let L be the Bd-sized LUT encoded in Bd−1 TRLWE samples
(following the encoding we described in Section 2.3.1) and ci ∈ TLWEs(mi

2B ) for i ∈ [[0, d)
be the selector, such that

∑d−1
i=0 miB

i = m encodes the integer m in base B with d digits.
Our first step is to perform a functional bootstrap using the same selector c0 on each
of the Bd−1 TRLWE samples. This process results in Bd−1 TLWE samples. If d = 1,
the evaluation is finished. Otherwise, we use a TLWE-to-TRLWE key switching to pack
them in Bd−2 TRLWE samples. With that, we reduced our problem to the evaluation of
a Bd−1-sized LUT encoded in Bd−2 TRLWE samples with selector ci ∈ TLWEs(mi

2B ) for
i ∈ [[1, d) and we can recursively repeat this process until we have a single TRLWE sample
(as in d = 1). Figure 2a illustrates it for B = 4 and a LUT encoding the sigmoid function
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Figure 1: Evaluation of an 8-bit parity function using the tree-based and the chaining
methods using base B = 4.

with 8 bits of precision (thus, d = 4). Each rectangle represents a LUT, the arrows indicate
the flow of data and ci for i ∈ [[0, 3]] is the selector.

Algorithm 6: Tree-based method for combining functional bootstraps
Input : a set of TLWE samples ci ∈ TLWEs(mi

2B ), such that
∑d−1

i=0 miB
i = m encodes the

integer m in base B with d digits.
Input : a set L of Bd polynomials ∈ ZN [X] encoding the lookup table of an arbitrary

function F.
Input : a bootstrapping key BKi ∈ TRGSWS(si), for i ∈ [[1, n]].
Input : a Key Switching key KSi,j ∈ T(R)LWEs(

s
i

2j ), for i ∈ [[1, n]] and j ∈ [[1, t]].
Output : A TLWE sample c ∈ TLWES(F (m)

2B ), where S ∈ BN is a vector (TLWE)
interpretation of S ∈ BN [X].

1 TV← L
2 f : TB 7→ TN [X] = (a1, ..., aB) 7→ a1X

N−1 + ... + aB
3 for i← 0 to d− 1 do
4 c← MultiValueBoostrap(ci,TV,BK)
5 for j ← 1 to Bd−i−2 do
6 TVj−1 ← PublicKeySwitch((c(j−1)×B , ..., cj×B), f,KS)
7 return c0

Without the multi-value bootstrap, the complexity of this process (measured in the
number of functional bootstraps) would be exponential in the number of digits d. However,
each level of the tree performs Bd−1−i bootstraps using the same selector ci, thus allowing
us to replace them with a single multi-value bootstrap, which reduces the complexity to
linear in the number of digits. This complexity improvement results in similar performance
gain asymptotically, but it faces practical problems for not so large LUTs. As we described
in Section 2.3.2, the multi-value bootstrap relies on multiplications between the accumulator
(ACC in line 4 of Algorithm 5) and the LUTs encoded as polynomials in ZN [X]. In the



A. Guimarães et al. 237

c1

c2

c3

Output

c0

(a) Full-tree

c1

c2

c3

Output

c0 0

0

Ø(x) 1

1

(b) Optimized tree

Figure 2: Evaluation of an 8-bit sigmoid function using the tree-based with base B = 4.

first level of our tree, this is not a problem since the LUTs are cleartext and can be encoded
as polynomials in ZN [X]. Starting from level 1, the LUTs are now encrypted as TRLWE
samples. Arithmetically, this is not an obstacle, but the multiplication between ACC
and the LUT is now a multiplication between two TRLWE samples, which is not directly
performed in TFHE. We would need to convert ACC from TRLWE to TRGSW using a
Circuit Bootstrap, which would only be worth it if the number of Functional Bootstraps
we are replacing is very large. In this work, most of our examples are 8-bit functions, and,
therefore, we only use the multi-value bootstrap in the first level of the tree.

TFHE presents an experimental version of a TLWE-to-TRGSW circuit bootstrap
implemented with 64-bit precision that costs around 130 ms (or 10 times a gate bootstrap).
It does not present a TRLWE-to-TRGSW bootstrap. Naively, we could adapt TFHE’s
algorithm to implement a TRLWE-to-TRGSW circuit bootstrap, which would be N
times more expensive. However, we cannot consider such implementation a representative
of TRLWE-to-TRGSW conversion performance. Practical implementations on this are
mostly an open problem and there are many recent developments in the literature [MS18,
BMMP18, CDKS20] that can be used to achieve much more efficient conversions. The
original (32-bit) implementation of TFHE does not support the circuit bootstrap, and,
if we worked on another implementation of TFHE, it would be hard to compare with
results from the literature. We instead prefer to leave the implementation of a TRLWE-to-
TRGSW conversion as future work, especially considering that this paper is focused more
on algorithmic than implementation aspects.

3.1.1 Optimizing the Tree

One of the main advantages of this method is the versatility. We can not only evaluate
any function but also optimize the tree considering the particular characteristics of each
function. The sigmoid function, for example, has three intervals in its domain that could be
linearly evaluated or approximated: [[−∞,−6]] ≈ 0, [[6,∞]] ≈ 1, and [[−1,+1]] ≈ 0.24x+0.5.
Figure 2b illustrates this optimization. ∅(x) is the linear combination to calculate
f(x) = 0.24x + 0.5 using integers (fixed-point representation). The output error of
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the optimized tree is not increased by approximations using cleartext literals (intervals
[[−∞,−6]] ≈ 0, [[6,∞]] ≈ 1). The linear combination ∅(x) increases the error if its results
are not bootstrapped, which is something to consider when composing functions to make
an application. Considering security, the implications of optimizing the tree are limited
to secondary aspects that are not on our scope. For example, the full-tree design enables
us to easily achieve circuit privacy by simply encrypting the initial LUT, whereas tree
optimizations could give partial information about the function.

3.2 Chaining Method
This second method is a generalized version of the integer comparison algorithm of Bourse et
al. [BST20]. It is much more functionally restricted than the first method, but it usually
presents a smaller error growth. Its main characteristic is that the output of a lookup is
used to construct the selector of the next lookup, whereas, in the tree-based approach,
the output is used to construct the next LUT. This difference has deep implications on
the error propagation and overall functionality. Consider a selector ci ∈ TLWEs(mi

2B ) for
i ∈ [[0, d) with d digits. The first functional bootstrap uses c0 as the selector and outputs
c0. From then on, each evaluation uses the selector �(ci, ci−1) for i ∈ [[1, d), where � is a
linear combination. We can define this method as being functionally capable of evaluating
any function that can be encoded in LUTs such that, for each digit, either the output of
�(ci, ci−1) is smaller than the size of the LUT, B, or the function being encoded follows a
B-anti-cyclic [BGGJ19] logic. Although it is hard to generically define functions with such
restrictions, this method seems to be especially good for functions that require carry-like
logics, such as additions and multiplications.

3.3 Error analysis
In this section, we analyze the error variance growth of each algorithm used to perform a
functional bootstrap and we calculate the overall probability of error based on the final
error variance. We start by reproducing two equations from Chillotti et al. [CGGI20].
Equation 1 and 2 show the variance resultant of the key switching and the gate bootstrap
procedures, respectively. The underbar indicates input variables, ϑKS and ϑBK are,
respectively, the variance of the bootstrap and key switching keys, and ε = 1

2B`
g
and Bg

are the gadget decomposition quality and base, also respectively. All other variables were
introduced at the beginning of Section 2.

V ar(Err(c)) ≤ R2V ar(Err(c)) + ntNϑKS + n2−2(t+1) (1)

V ar(Err(c)) ≤ n(k + 1)`N(Bg2 )2ϑBK + n(1 + kN)ε2 (2)

In the chaining method, functional bootstraps have the same output error variance as
the gate bootstrap (Equation 2) since both use noiseless test vectors. In the tree-based
method, the test vector is a TRLWE sample that might be encrypting the result of previous
table lookups and, hence, we need to consider its error variance, which is additive with
the one introduced by the bootstrap, giving us Equation 3. Considering the multi-value
bootstrap, Carpov et al. presents Equation 4. Up to line 3 of algorithm 5 the variance
is the same as the single value bootstrap, but the multiplication TVFi

v · ACC in line 4
multiples the variance of the bootstrap by ‖TVf‖2

2 ≤ s(q − 1)2, where s and q are the
input and output bases, respectively.

V ar(Err(c)) ≤ V ar(Err(TV )) + n(k + 1)`N(Bg2 )2ϑBK + n(1 + kN)ε2 (3)
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V ar(Err(c)) ≤ ‖TVf‖2
2(n(k + 1)`N(Bg2 )2ϑBK + n(1 + kN)ε2) (4)

As for the key switching algorithm, Chillotti et al. [CGGI20] only analyzes it using binary
decomposition and TFHE only implements the TLWE-to-TLWE key switching. In this
work, we use both the TLWE-to-TLWE key switching of TFHE and a TLWE-to-TRLWE
key switching to pack TLWE samples in a TRLWE sample. This TLWE-to-TRLWE key
switching is a core algorithm of our tree-based approach and, to improve efficiency, we
need to use greater bases for decomposition. Considering that, we reanalyzed the key
switching error variance introduction. Equation 1 presents three terms. The first term,
R2V ar(Err(c)), comes from possible scalings performed by the linear function f (we only
use 1-Lipschitz functions, therefore R2 = 1). The second term, ntNϑKS , comes from the
addition of (ntN) T(R)LWE samples (the summation in line 5 of Algorithm 1), each of
them with variance ϑKS . The third term, n2−2(t+1), is the variance introduced by the
rounding of the binary decomposition. Chillotti et al. defines the error variance starting
from the error amplitude: Each of the n elements of the vector a of the TLWE input c are
rounded to the closest multiple of 2−t, which introduces an error of at most | 2

−t

2 | = 2−(t+1).
The variance is then calculated by squaring this amplitude and multiplying it by n, i.e.,
| 2

−t

2 |
2 · n = n2−2(t+1). To change the decomposition base, we can replace 2, which gives us

1
4nbase

−2t. Albeit correct, this arithmetic approach is not as tight as desirable.
The vector a of the input TLWE sample is generated from a uniform distribution. Hence,

the error inserted by rounding each of its elements to 2−t is also uniform and varies from
− base

−t

2 to + base−t

2 . The variance of an uniform distribution varying from a to b is 1
12 (a−b)2

and the sum of n uniformly distributed variables are a (scaled) Irwin-Hall distribution
with variance n · 1

12 (a − b)2. Applying these equations to our case, we have that the
error variance introduced by the decomposition is n · 1

12 (− base
−t

2 − base−t

2 )2 = 1
12nbase

−2t.
Irwin-Hall distributions are very good approximations for Gaussian distributions and we
can just replace the third term of the Equation 1, which results in Equation 5.

V ar(Err(c)) ≤ R2V ar(Err(c)) + ntNϑKS + 1
12nbase

−2t (5)

3.3.1 Error Rate

Knowing the error variance is useful for approximate computation, but, for perfect execution,
we need to calculate the probability of such error affecting significant bits of the message.
In the decryption, a failure occurs if the rounding procedure rounds to the wrong integer,
which will happen if the absolute value of the error is greater than half of the least significant
bit of the message in the Torus representation. Equation 6 gives us the probability of this
error occurring for a TLWE sample x, with standard deviation σx and the least significant
bit encoded in the torus with value (2 · interval). erf is the Gaussian error function.

P (|err(x)| > interval) = 1− erf( interval
σx
√

2
) (6)

The bootstrap may also fail since the error affects the accumulator blind rotation
amount. The failure occurs if the accumulator is rotated to a polynomial in which the
coefficient of the constant term is different from the desired one. In this way, we need
the error to be within the interval of half the Torus slice size we are working with, which
is 1

2 ·
0.5
B . Scaling by 232, we have interval = 231

2B . Besides the TLWE error variance, we
also need to consider the rounding error introduced when selecting the log2(2N) most
significant bits of each position of a scaled to 2N . The discarded bits of each position are
uniformly distributed with value ranging from − 231

2N to + 231

2N . The variance of a uniform
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distribution is 1
12 times the square of its amplitude, thus σ2

ai
= 1

12 ·
232

2N
2
, for each ai ∈ a.

In the worst case, n positions will be added to calculate the phase, leading to variance
σ2∑n

i
ai

= n · σ2
ai
. This variance is additive with the one of the Gaussian error, and we can

obtain the error rate using Equation 6.
The bootstrap is much more susceptible to failures than the decryption. Therefore, the

error variance of TLWE samples that are input for bootstraps ends up being the main
component to control the error rate. Given a function that can be evaluated by both of
our methods, we can define which one presents the better error rate in function of such
variance. Let � be the linear operation of the chaining method and s be its error variance
scaling, i.e. how many times the error variance of the output of � is greater than the
one of the inputs. Figure 3 shows the error rate in function of the TLWE input error
variance for 8-bit functions in base 4 for s ∈ {2, 4, 6, 10}. We found few practical cases
with s > 2, but, in all of them, the tree-based approach required more bootstraps, and s
could be lowered to 2 by increasing the number of bootstraps of the chaining one. In this
way, we conclude that the chaining method is usually the better choice for the functions
it can evaluate. However, as we noted before, its functionality is very restricted. Table 1
summarizes the main characteristics of our two methods.
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Figure 3: Comparison between the error rates of the tree-based and chaining methods.

3.4 Improving building blocks
3.4.1 Base-aware TLWE-to-TRLWE Key Switching

A regular TLWE-to-TRLWE Key Switching packs N TLWE samples in one TRLWE
sample in TN [X]k+1. However, as we described in Section 2.3.1, we want to pack B
TLWE samples with each one being mapped to a sequence of consecutive coefficients in the
TRLWE sample. In Algorithm 7, we exploit the fact that B < N to both accelerate the
key switching and to reduce the error variance growth in N

B times compared to the regular
TLWE-to-TRLWE Key Switching. Comparing with Algorithm 1, we obtain speedups by
replacing multiplications between N -sized polynomials (line 5 of Algorithm 1) by inner
products between a B-sized vector of binary digits and a B-sized vector of TRLWE samples
(line 6 of Algorithm 7). The Key Switching key, however, is B times bigger.

3.4.2 Multi-Value Extract

The error variance growth of adding two variables x and y is defined as σ2
x+y = σ2

x + σ2
y +

2ρσxσy, where σ2 is the variance and ρ is the correlation between the normally distributed
variables. When this correlation is linear, ρ may be defined as its degree. If the variables
are completely independent, then ρ = 0 and σ2

x+y = σ2
x + σ2

y. If they are the same variable,
then ρ = 1 and σ2

x+x = σ2
x + σ2

x + 2σxσx = 4σ2
x. Defining the multiplication as a sequence

of additions of the same variable, we have that σ2
n×x = n2 × σ2

x, for n ∈ Z.
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Table 1: Comparison between the chaining and tree-based methods. We use overbars to
indicate output variables, � to represent linear transforms, and “:” to denote digit slicing.
The function prob is given by Equation 6, d is the number of digits, s is the scaling factor
of the error variance in a linear transform (i.e. how much the linear transform increases
the error variance), and σ2 represents error variances (specifically, σ2

BT and σ2
KS are the

output error variance of the bootstrap and TRLWE Key switching, respectively).
Chaining Tree-Based

Supported
Functions

(recursive definition) Let f be a function
over an operand x with d digits. For each
digit xi for i ∈ [0, d), there shall exist a lin-
ear combination �i and a LUT Li, s. t.:
if i = 0, x0 = Li(x0) = �f (f(x0)),
if i ≥ 1, xi = Li(�i−1(xi − 1, xi))
= �f (f(xi : x0)).

Any.

Suitable
Functions

Most functions following carry-like (e.g.
addition) or test (e.g. sign) logics. All other functions.

Error var. σ2
out s�f · σ

2
BT (d− 1) · σ2

KS + d · σ2
BT

Success Rate
∏d−1
i=0 prob(σ

2
in · s�i ) prob(σ2

out) · prob(σ2
in)d

Possible
improvements
and tradeoffs

The scaling factors, s, can be low-
ered by bootstrapping intermediate
results of the linear combinations.

Optimizations in intervals of
the function domain which
are mapped to constant val-
ues or linear combinations.

Complexity in
number
of bootstraps

Linear in d. Linear in d
(Assymtoptically).

To avoid the quadratic variance growth at multiplications, we could implement them
as sequences of additions of independent TLWE samples encrypting the same number.
We obtain these independent encryptions by extracting multiple coefficients from the
accumulator (ACC) at the end of a bootstrap procedure. We call this process Multi-Value
Extract. Recall that, in our LUT encoding (Section 2.3.1), each LUT position is mapped to
a sequence of NB coefficients. Therefore, after the bootstrap, we should have N

B independent
encryptions of each number, which we can use to perform the multiplication as shown in
Algorithm 8. The additional extracts on the ACC reduce the interval used to calculate the
error rate in Equation 6 from 1

4B to ( 1
4B −

b
4N ). However, we find this reduction to have a

negligible impact on the error rate for the values we tested. We sustain the independence
between coefficients of the ACC on the Independence Heuristic [CGGI20] (Definition 1).

Definition 1 (Independence Heuristic,[CGGI20]). The error of the coefficients of TRLWE
samples (including TRGSW samples) and all linear combinations of them considered in
TFHE are independent and concentrated.

We tried to experimentally validate the error variance of the multiplication using
the multi-value extract, and we obtained the results in Figure 4a. We noticed that
the error variance is still growing quadratically, which indicates that the coefficients are
not independent. To obtain formal guarantees of independence (instead of a heuristic),
Chillotti et al. [CGGI20] points out that we could perform the gadget decomposition in a
probabilistic way. We implemented the probabilistic gadget decomposition proposed by
Genise et al. [GMP19], but we obtained no improvements over the deterministic algorithm.
We were only able to obtain the linear growth by lowering the error variance introduced
by the gadget decomposition. We increased the size of the decomposition base log2(Bg)
from 4 to 5, which improves its precision `log2(Bg) from 20 to 25 bits, a reasonably high
value for a 32-bit implementation. Figure 4b shows the results.

From this experiment, we can conclude that, although the independence heuristic holds
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Algorithm 7: Base-aware TLWE-to-TRLWE Public Functional Key Switching
Input : B TLWE samples c(z) = (a(z), b(z)) ∈ TLWEs(µz), z ∈ [[1, B]]
Input : a precision parameter t ∈ Z
Input : a Key Switching key KSi,j,b ∈ TRLWES( si

basej ·
∑(b+1)N/B−1

q=bN/B Xq), for i ∈ [[1, n]],
j ∈ [[1, t]], and b ∈ [[0, B).

Output : a TRLWE sample c ∈ TRLWEs(f(µz)), for z ∈ [[1, p]].
1 f : TB 7→ TN [X] = (a1, ..., aB) 7→ a1X

N−1 + ... + aB
2 for i ∈ [[1, n]] do
3 for b ∈ [[1, B]] do
4 ãi,b ← da(b)

i c 1
2t

, i.e., the closest multiple of 1
2t to a(b)

i .
5 Decompose each ãi,b =

∑t

j=1 ãi,j,b · 2
−j , where ãi,j,b ∈ BB .

6 Return (0, f(b(1)
i , b

(2)
i , ..., b

(p)
i ))−

∑n

i=1

∑t

j=1〈ãi,j ,KSi,j〉

Algorithm 8: Multiplication (scaling) using the multi-value extract
Input : a TRLWE sample c ∈ TRLWES(p), which is the accumulator (ACC) of a previous

functional bootstrap, and a cleartext scalar b ∈ Z.
Output : a TLWE sample c ∈ TLWES(b · p0), where p0 is the constant term of p, and

S ∈ BN is a vector interpretation of S ∈ BN [X].
1 c← TLWES(0)
2 c← c+ SampleExtracti(p), for each i ∈ [[0, d b2e − 1]]
3 c← c− SampleExtracti(p), for each i ∈ [[N − b b2c, N − 1]]
4 Return c

for the Gaussian error, the same cannot be said about the error introduced by the gadget
decomposition. We also measured that the error variance introduced by the decomposition
is bigger than the estimations using the right term of Equation 2, n(1+kN)ε2. We consider
it as an indication that this dependency between coefficients might affect not only our
multi-value extract but also the bootstrap itself (although further research is certainly
necessary to support that). The use of a probabilistic gadget decomposition with higher
entropy might be an alternative solution to the increase of ` or Bg. However, in our case,
it would require us to increase other parameters, which would impact performance.

Impact on the multi-value bootstrap The multi-value bootstrap of Carpov et al. [CIM19]
increases the bootstrap error variance in ‖TVf‖2

2 ≤ s(q − 1)2 times, where s and q are the
input and output bases, respectively. Carpov et al. uses q = 2 (the binary base) to lower
the error, but it needs to convert from base q to s to use the output in another function. It
does so by using a key switching at the beginning of each functional bootstrap to perform
a base composition, which is s-Lipschitz, and, therefore, introduces the previously avoided
quadratic error. In summary, composable circuits often need the input and output bases to
be the same, and, in these cases, solely outputting in the binary base would just transfer
the complexity to the base composition. However, with the introduction of the multi-value
extract, we can perform the scaling required by the base composition linearly and, thus,
reduce the complexity of error variance from s(q − 1)2 to s(q − 1).

3.5 Practical parameters and experimental error variance measument
Our first step to define practical parameters was to survey the literature on non-linear
functions that are usually implemented using perfect computation with TFHE. Then,
based on the required precision, we manually searched for parameters aiming at an error
rate of at least 2−30. Table 2 shows two of the most promising sets we found. A more
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Figure 4: Comparison between the variance of scaling using the multi-value extract and
direct multiplication.

methodological search could likely yield parameters with a better error rate or efficiency.
The security level is defined by the (R)LWE dimensions (n and kN) and the standard
deviations of the errors. The LWE Estimator [APS15] reports a cost of 2127.1 on the primal
attack via uSVP and 2139.6 on the dual-lattice attack, both using the BKZ.sieve cost
model. Although we could increase the security level by increasing the parameters, we use
these values since they are the same used by TFHE and most of the previous literature.

Table 2: Sets of parameters used to evaluate the performance of our implementations.
Name Security

Level B LWE RLWE Bootstrap Key Switch
n σ N k σ ` log2(Bg) Base t

5_5_6_2 127 4 630 2−15 1024 1 2−25 5 5 64 2
6_4_6_3 6 4 3

We estimated the error rate for parameters using the equations of Section 3.3, and
we experimented to validate their results. We find this validation to be necessary mainly
because we based our error analysis on equations designed for TFHE to work with binary
digits and logic gates. Once we introduced larger bases with arbitrary LUT evaluation and
tightened some of the variance estimations, we could no longer support our statistics on the
experimental validation provided by Chillotti et al. [CGGI20]. Table 3 shows the results of
our experiments. We measure the variance of 214 samples and calculated a 95%-confidence
interval using the Chi-square distribution. Due to computational limits, we could only
validate the error rate for higher variances. We performed 15,438,720 bootstraps over LWE
samples with σ2 = 1.70E-04. The output was wrong in only 39 of them. In both cases, the
experiments showed that our estimations are reasonably close upper bounds for the actual
values. Although we cannot extrapolate the results for different variances, the experiments
provide some evidence of correctness for our equations on the considered parameters.

Table 3: Experimental validation for the variance and error rate for two sets of parameters.
Params. Measurement Estimative Experiment

Measured 95% Conf. Interval

5_5_6_2 Variance Bootstrap 1.47E-06 4.94E-07 4.84E-07 5.05E-07
TRLWE KeySwitch 5.09E-06 2.53E-06 2.47E-06 2.58E-06

Error rate (log2) σ2 = 1.70E-04 -18.001 -18.595

6_4_6_3 Variance Bootstrap 4.41E-07 1.70E-07 1.67E-07 1.74E-07
TRLWE KeySwitch 1.25E-09 6.38E-10 6.25E-10 6.52E-10
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4 Performance Results
We benchmarked our methods by using them to implement a set of relevant functions from
the literature. We selected two functions from previous literature on the functional boot-
strap of TFHE and three functions that are building blocks for neural network algorithms.
We set the precision of our implementations to match the ones we are comparing to. We ex-
ecuted our experiments using an Intel i7-7700 processor at 4.20 GHz running Ubuntu 18.04.
We compiled our code using GCC 7.3.0 with flags -O3 -std=c++11 -funroll-all-loops
-march=native -ltfhe-spqlios-fma -lm, and we used the “optim” build of TFHE. Each
result is the average of 100 executions. We tried to compile and execute previous im-
plementations on the same environment. When we could not reproduce them (either
because the authors did not provide the source code or because their source code did not
compile in our environment), we report the results presented by the authors and add an
observation about the differences between machines. Fortunately, most authors report the
execution time for the default gate bootstrap of TFHE, which we can use as a “TFHE
benchmark score” and adjust the speedup values accordingly. In our machine, the default
gate bootstrap of TFHE runs in 9ms and 13ms using the old (80-bit security) and the new
(127-bit security) set of parameters, respectively.

4.1 Lookup Table evaluation
Lookup tables are very commonly used in homomorphic circuits, and the implementation
of Carpov et al. [CIM19] is one of the most recent and efficient of them. It introduces
the multi-value bootstrap of TFHE, which we explore in our tree-based method. Table 4
compares their implementation for a 6-bit-to-6-bit LUT with one using our tree-based
method (Algorithm 6). Both implementations are based on the functional bootstrap of
TFHE. The difference is that the implementation of Carpov et al. [CIM19] performs a
single functional bootstrap with base B = 26, whereas our implementations perform several
functional bootstraps with base B = 22 and combine them using the tree-based method.

Table 4: Comparison between implementations of a 6-bit-to-6-bit LUT.
Security Key Size Error Rate (log2) Time (ms) Speedup

[CIM19] ≥128 ≈ 8 GB -26.94 1570a 1.00
5_5_6_2 127 ≈ 4.3 GB -59.59 378.2 2.49
6_4_6_3 127 ≈ 6.5 GB -134.84 457.9 2.06

a Result provided by the authors, who executed experiments on a machine 1.67 times slower
than ours. The speedup was adjusted accordingly.

4.2 32-bit Integer Comparison
Integer comparison is an extremely useful function in computing, but it presents some
challenges to be implemented in homomorphic circuits, especially for unbounded integers.
Bourse et al. [BST20] presented a very efficient implementation using the functional
bootstrap of TFHE. The chaining method we presented in Section 3.2 is a generalization
of their technique. To compare with them, we implemented a unary tree to evaluate the
integer comparison. Algorithm 9 describes our implementation. Table 5 compares them
with the integer comparison implemented by Zhou et al. [ZLPL20] using logic gates.

We calculated the speedups using as reference the slowest implementation, which, in
this case, is the second implementation of Bourse et al. [BST20]. However, adjusting
the speedups to consider the difference in speed between machines, we can see that the
implementation of Zhou et al. [ZLPL20] using logic gates is up to 1.75 times slower than
the one of Bourse et al. [BST20] and up to 5.6 times slower than ours. The chaining and
tree-based methods perform the same number of bootstraps and should present a very
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Table 5: Comparison between implementations of a 32-bit integer comparison.
Security Key Size Error Rate (log2) Time (ms) Speedup

[BST20]
90 ≈ 1.2 GB -50b 2232a 1.75
109 ≈ 3.4 GB -47b 3902a 1.00
211 ≈ 4.6 GB -89b 3840a 1.02

[ZLPL20] 80 ≈ 0.3 GB Negligible 1143.2 0.93
127 ≈ 0.3 GB Negligible 1867.2 0.57

5_5_6_2 127 ≈ 4.3 GB -26.51 334.1 3.19
6_4_6_3 127 ≈ 6.5 GB -129.58 396.4 2.68

a Execution time provided by the authors, who executed experiments on a machine 3.67 times
slower than ours. The speedup was adjusted accordingly.
b Error Rate provided by the authors. We speculatively estimate it to be much lower, but we do
not have sufficient data to calculate.

similar performance. Nonetheless, we were able to achieve significant speedups thanks to
our tighter variance and error rate estimations, which enabled a better choice of parameters.

4.3 Neural Network Functions
Neural network inference algorithms are currently one of the major use cases for homo-
morphic encryption [BGGJ19, LJ19, ZLPL20]. They achieve great performance levels
with approximate computation in some cryptosystems [CKKS17], but perfect computation
still seems to be necessary to achieve state-of-the-art inference accuracy for deep neural
networks [BGGJ19, LJ19]. We implemented three functions that are building blocks for
them and that are provided by SHE [LJ19], an implementation of secure neural network
inference based on TFHE that achieves state-of-the-art inference accuracy. SHE presents
very fast arithmetic (thanks to the use of Lognet), but it relies on logic gates to imple-
ment non-linearities. We also compare our results with the implementations of Zhou et
al. [ZLPL20], which are generally faster than SHE but present worse inference accuracy.

4.3.1 ReLU

The Rectified Linear Unit (ReLU) is a neural network activation function broadly used
due to its simple implementation and non-linear properties. Algorithm 10 shows our
implementation using the Functional Bootstrap. The logic is similar to a multiplexer.
Table 6 compares it with implementations using logic gates. For the 127-bit security level,
our implementations are up to 6.98 times faster than the one of Lou and Jiang [LJ19] and
1.19 times faster than the one of Zhou et al. [ZLPL20]. Although the logic gates of TFHE
generally introduce error rates much smaller than the functional bootstrap, the error rate
of our implementation is 2−137, which is also negligible compared to the security level.

Table 6: Comparison between implementations of an 8-bit ReLU function.
Security Key Size Error Rate (log2) Time (ms) Speedup

[LJ19] 80 ≈ 0.3 GB Negligible 380 1.59
127 ≈ 0.3 GB Negligible 603.1 1.00

[ZLPL20] 80 ≈ 0.3 GB Negligible 64.8 9.31
127 ≈ 0.3 GB Negligible 103.1 5.85

5_5_6_2 127 ≈ 4.3 GB -137.092 86.4 6.98
6_4_6_3 127 ≈ 6.5 GB -180.973 103.6 5.82

4.3.2 Maximum

Our implementation of the maximum function is, at first, similar to the integer comparison
followed by a multiplexer. However, in this context, we have to also consider signed
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numbers, which leads us to Algorithm 11. Table 7 shows performance results.

Table 7: Comparison between implementations of an 8-bit max function.
Security Key Size Error Rate (log2) Time (ms) Speedup

[LJ19] 80 ≈ 0.3 GB Negligible 379.3 2.14
127 ≈ 0.3 GB Negligible 593.1 1.37

[ZLPL20] 80 ≈ 0.3 GB Negligible 483.1 1.68
127 ≈ 0.3 GB Negligible 810.6 1.00

5_5_6_2 127 ≈ 4.3 GB -50.0874 228.3 3.55
6_4_6_3 127 ≈ 6.5 GB -156.744 276.8 2.93

4.3.3 Addition

We implemented this function using the chaining method since it presents a carry-like logic.
Our implementations using the tree-based approach were more expensive since, although
we can produce a linear combination for which the carry follows a B-anti-cyclic logic, we
could not do the same for the addition itself. Algorithm 12 describes our implementation
and Table 8 compares it with implementations using logic gates. We used the multi-value
extract to perform the scaling in line 6 of Algorithm 12.

Table 8: Comparison between implementations of an 8-bit addition function.
Security Key Size Error Rate (log2) Time (ms) Speedup

[LJ19] 80 ≈ 0.3 GB Negligible 585 1.21
127 ≈ 0.3 GB Negligible 708.9 1.00

[ZLPL20] 80 ≈ 0.3 GB Negligible 338 2.10
127 ≈ 0.3 GB Negligible 548.7 1.29

5_5_6_2 127 ≈ 4.3 GB -124.7 81.1 8.74
6_4_6_3 127 ≈ 6.5 GB -176.139 94.8 7.48

4.4 Additional estimations
Using the results of Section 4.3, we can estimate the performance gains our methods could
bring to full applications. Let us take, for example, the binarized convolutional neural
network (CNN) of Zhou et al. [ZLPL20], which can be implemented using the functions
of Section 4.3. This CNN classifies images in the MNIST dataset and is composed of 3
binarized convolutional layers, 3 max-pooling layers, and two fully connected layers. We
counted the number of operations on each one of them and estimated their execution
time using the results of Section 4.3. Table 9 shows the results. Although this is a basic
estimation, our execution times are reasonably close to the ones reported by Zhou et
al. [ZLPL20], especially considering the differences in execution environments. A real
implementation would likely present better performance for our methods since they allow for
further optimizations, such as using the multi-value bootstrap to batch multiple operations.
Nonetheless, the current estimation indicates a speedup of up to 4.9 times, which is within
the expected considering the results of Section 4.3, where the speedup over basic operations
for this same implementation ranged from 1.19 (ReLU) to 6.77 (Addition) times.

We can also estimate the performance impact of changing the size of the keys. The
main reason we use large keys (compared to implementations using logic gates) is the use
of decomposition bases greater than 2 in the TLWE-to-TRLWE key switching. Using base
64, the Key Switching keys take 4.0 GiB and 6.0 GiB for the parameters 5_5_6_2 and
6_4_6_3, respectively. Decreasing the base would also linearly decrease the size of these
keys, but, to avoid increasing the error, we would need to logarithmically increase the
value of t and, consequently, the key-switching execution time. For example, using base 16
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Table 9: Estimation of an inference on the Binarized CNN of Zhou et al. [ZLPL20].
Security
Level

Execution time per layer (h) Total
(h) SpeedupBin. Conv. Max-Pool. Fully Conn.

[ZLPL20]
(reported) 80 19.20 0.67 21.35 41.22 1.88

[ZLPL20] 80 20.18 0.96 26.87 48.01 1.62
127 32.46 1.56 43.62 77.64 1.00

5_5_6_2 127 7.39 0.53 7.91 15.83 4.90
6_4_6_3 127 8.19 0.61 9.20 18.00 4.31

instead of 64, the parameter 5_5_6_2 would need a 1 GiB key, but t would need to be
increased from 2 to 3, which would increase the execution time of the key switching from 6
ms to 9 ms. At first, this tradeoff seems promising for many functions, especially the ones
which make little use of the TLWE-to-TRLWE key switching. However, increasing the
value of t also increases the second term of Equation 5 and, hence, might affect the output
error variance negatively. For simplicity, in this paper, we chose two sets of parameters
that fit all functions we implemented. A more targeted search for parameters would likely
yield better results, and the methods we introduced allow for easily changing parameters
even within a single function evaluation.

5 Related Work
The literature on using lookup tables (LUT) in homomorphic circuits dates back to the
first fully homomorphic encryption schemes presented and has been used with most of
the modern FHE schemes [CGH+18, LFFJ19, NRPH19]. LUTs are a simple and powerful
technique to represent arbitrary functions, but problems with latency and precision had
also been reported [LFFJ19, NRPH19]. The introduction of LUT evaluations within
the bootstrap by FHEW [DM15] started a new line of work on this topic. Bonnoron et
al. [BDF18] introduced techniques to evaluate gates with a large number of input bits
using a single bootstrap of FHEW and implemented a 6-bit-to-6-bit LUT that runs in less
than 10 seconds. Based on their work, Carpov et al. [CIM19] presented the multi-value
bootstrap of TFHE and lowered the execution time of the 6-bit-to-6-bit LUT to only
1.5 seconds. Our work makes extensive use of the multi-value bootstrap, but we focus
more on accelerating the evaluation of non-linear functions than improving the multi-value
bootstrap itself. Nonetheless, we did present some contributions towards it, such as the
reduction of the complexity of its error growth. Moreover, our combination methods also
introduce two new ideas to this line of work: how to use the multi-value bootstrap to
accelerate single (instead of multiple) LUT evaluations; and how to improve the LUT
evaluation based on particular properties of the encoded function.

Tree-based approach The most similar strategy to our tree-based evaluation is the
vertical packing of Chillotti et al. [CGGI20], which suggests the use of a CMUX tree to
choose among multiple TRLWE samples and, then, uses a single BlindRotate to perform a
final lookup. Similarly to ours, their method also allows some optimizations based on the
encoded function (although they did not present nor explore this idea itself). On the other
hand, our method constructs LUTs on-the-fly using results of previous lookups, which allows
optimizations even within a single LUT. The main difference between them, however, is in
their use of TFHE’s building blocks. The vertical packing is directly based on CMUX gates
and, hence, requires the selector to be encrypted in the binary base in TRGSW samples.
This makes it a very good choice in the leveled setting, but it requires one circuit bootstrap
per bit in the fully homomorphic one. Chillotti et al. [CGGI20] reports an execution time
of around 800ms to evaluate a 6-bit-to-6-bit LUT in the fully homomorphic setting with
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80 bits of security. Correcting for the security level and difference between machines,
the implementation of Carpov et al. is already slightly faster. Bouse et al. [BST20] also
presents a “tree-based” technique for integer comparison using the functional bootstrap,
but, besides the name, by our definitions, it is equivalent to the chaining method. More
specifically, it rearranges the chaining evaluation in a tree-like fashion (specific to the
integer comparison logic) so that it can be parallelized in multiple threads. The output of
each LUT is still used to construct the selector of the next one (which defines the chaining)
and the technique has no further similarities with our “tree-based” approach.

Evaluation of neural network inference using the Functional Bootstrap Using the
functional bootstrap of TFHE in neural network inference seems to be a recent (and
promising) trend. As previously cited, FHE-DiNN [BMMP18] and Izabachène et al. [ISZ19]
implemented the sign activation function using it. Boura et al. [BGGJ19] simulated the error
propagation of several activation functions and introduced the term Functional bootstrap,
which we adopt in this paper. Klemsa et al. [KN20] presented a Ruby version of TFHE,
which includes the functional bootstrap, targeted at neural network implementations. From
all previous literature, the only one we found to combine multiple functional bootstraps to
evaluate a single function is the integer comparison of Bourse et al. [BST20].

6 Conclusion
In this paper, we presented two methods to combine multiple functional bootstraps in
TFHE; we performed a thorough error variance and error rate analysis on our methods and
on the functional bootstrap itself, including experimental validation; we introduced a multi-
value extract procedure to improve the error behavior on scalings and, especially, on the
multi-value bootstrap; we introduced a “base-aware” TLWE-to-TRLWE Key Switching to
speedup the LWE packing; and, finally, we selected practical parameters and benchmarked
our methods using relevant functions from the literature. We achieved speedups of up to
3.19 times compared to previous literature on the functional bootstrap of TFHE, and of
up to 8.7 times compared to implementations using logic gates.

Arbitrary LUTs are inherently exponential to evaluate, which gives more importance to
the possibility of optimizing them based on the function particularities, a feature that our
methods introduce. In our practical experiments, we limited ourselves to work with the
original implementation of TFHE and with precision levels that were previously defined
in the literature. Our results demonstrate efficient evaluations with the precision of up
to 6 bits for completely arbitrary functions, and up to 32 bits for functions with enough
opportunities for optimizations. The techniques themselves can be easily extended to work
with higher parameters and are already defined to efficiently exploit the circuit bootstrap.
To test it in practice, however, we would need to move to more optimized versions of
TFHE (with at least 64-bit Torus precision) and to implement an efficient version of the
circuit bootstrap, which is mostly a practical open problem. This process would bring
contributions of its own and, thus, we leave it as future work. Nonetheless, the speedups
we achieved are certainly a good measurement of improvement over previous literature,
and some of our contributions, such as the multi-value extract, go beyond the context of
functional bootstrap implementations and are useful even for pure arithmetic.

As future work, we also intend: to implement our algorithms for the functional bootstrap
using more optimized versions of TFHE; to pursue implementation optimizations for our
techniques themselves; the research on efficient ways of implementing the TRLWE-to-
TRGSW circuit bootstrap; and to accelerate the Functional Bootstrap and TRLWE Key
Switching exploiting techniques such as proposed by Bourse et al. [BMMP18], Chen et
al.[CDKS20], and Micciancio and Sorrell [MS18]. Ultimately, we intend to create a library
for the functional bootstrap and to test it in frameworks of automatic code generation.
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A Algorithms of functions presented in Section 4
For simplicity, we define two functions to use in the algorithms presented in this section:

• FunctionalBoostrap: It receives a selector c encrypted in a TLWE sample, a LUT
encrypted in a TRLWE sample, and the bootstrap key BK. If necessary, it performs
a TLWE key switching in the sample c to switch from the key S (with n = 1024) to
s (with n = 630). Then, it executes the functional bootstrap and returns a TLWE
sample with the result.

• TRLWEKeySwitch: It receives a vector of B = 4 TLWE samples and a Key
Switching key. It performs a base-aware TLWE-to-TRLWE key switching using our
default packing technique.

Algorithm 9: Integer comparison algorithm using the tree-based method.
Input : two sets of TLWE samples cj,i ∈ TLWEs(mj,i

2B ), such that
∑d−1

i=0 mj,iB
i = mj

encodes each number mj for j ∈ {0, 1} and base B = 4 with d digits.
Input : a bootstrapping key BK and a TRLWE Key Switching key KS
Output : A TLWE sample c ∈ TLWES( m2B ), where S ∈ BN is a vector (TLWE)

interpretation of S ∈ BN [X] and m =


1, if m0 > m1,

0, if m0 = m1,

−1, otherwise.
1 TV← [0, 1, 1, 1]
2 for i← 0 to d− 1 do
3 ci ← c0,i − c1,i
4 c← FunctionalBoostrap(ci,TV,BK)
5 TV← TRLWEKeySwitch((c, 1, 1, 1),KS)
6 return c
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Algorithm 10: ReLU implementation using the tree-based method.
Input : a set of TLWE samples ci ∈ TLWEs(mi

2B ), such that
∑d−1

i=0 miB
i = m encodes the

integer m in base B = 4 with d digits.
Input : a bootstrapping key BK and a TRLWE Key Switching key KS
Output : A set of TLWE sample ci ∈ TLWES(mi

2B ), where S ∈ BN is a vector (TLWE)
interpretation of S ∈ BN [X] and

∑d−1
i=0 miB

i = m encodes the integer

m =
{
m, if m > 0,
0, otherwise.

1 for i← 0 to d− 1 do
2 TV← TRLWEKeySwitch((ci, ci, 0, 0),KS)
3 ci ← FunctionalBoostrap(cd−1,TV,BK)
4 return c

Algorithm 11: Maximum algorithm using the tree-based method.
Input : two sets of TLWE samples cj,i ∈ TLWEs(mj,i

2B ), such that
∑d−1

i=0 mj,iB
i = mj

encodes each number mj for j ∈ {0, 1} and base B = 4 with d digits.
Input : a bootstrapping key BK and a TRLWE Key Switching key KS
Output : A TLWE sample c ∈ TLWES( m2B ), where S ∈ BN is a vector (TLWE)

interpretation of S ∈ BN [X] and
∑d−1

i=0 miB
i = m encodes the integer

m =
{
m0, if m0 > m1,

m1, otherwise.
1 TV← [0, 1, 1, 1]
2 for i← 0 to d− 1 do
3 ci ← c0,i − c1,i
4 c̃← FunctionalBoostrap(ci,TV,BK)
5 TV← TRLWEKeySwitch((c̃, 1, 1, 1),KS)
6 TV← TRLWEKeySwitch((c̃, c̃,−c̃,−c̃),KS)
7 c̃← FunctionalBoostrap(c0,d−1,TV,BK)
8 TV← TRLWEKeySwitch((c̃, c̃,−c̃,−c̃),KS)
9 c̃← FunctionalBoostrap(c1,d−1,TV,BK)

10 c̃← c̃+ (0, 1
2B )

11 for i← 0 to d− 1 do
12 TV← TRLWEKeySwitch((c1,i, c1,i, c0,i, 0),KS)
13 ci ← FunctionalBoostrap(c̃,TV,BK)
14 return c
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Algorithm 12: Addition algorithm using the chaining method.
Input : two sets of TLWE samples cj,i ∈ TLWEs(mj,i

2B ), such that
∑d−1

i=0 mj,iB
i = mj

encodes each number mj for j ∈ {0, 1} and base B = 4 with d digits.
Input : a bootstrapping key BK and a TRLWE Key Switching key KS
Output : A TLWE sample c ∈ TLWES( m2B ), where S ∈ BN is a vector (TLWE)

interpretation of S ∈ BN [X] and
∑d−1

i=0 miB
i = m encodes the integer

m = m0 +m1 mod Bd
1 TV← [ 1

2 ,
1
2 ,

1
2 ,

1
2 ]

2 c0 ← 0
3 for i← 0 to d− 1 do
4 ci ← c0,i + c1,i
5 c̃← FunctionalBoostrap(ci,TV,BK)
6 ci ← ci −B · c̃
7 ci ← ci − (0, 2

2B )
8 if i < d− 1 then
9 ci+1 ← (0, 1

4B )
10 ci+1 ← ci+1 + c̃

11 return c
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