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Abstract. There exists many masking schemes to protect implementations of crypto-
graphic operations against side-channel attacks. It is common practice to analyze
the security of these schemes in the probing model, or its variant which takes into
account physical effects such as glitches and transitions. Although both effects exist
in practice and cause leakage, masking schemes implemented in hardware are often
only analyzed for security against glitches. In this work, we fill this gap by proving
sufficient conditions for the security of hardware masking schemes against transitions,
leading to the design of new masking schemes and a proof of security for an existing
masking scheme in presence of transitions. Furthermore, we give similar results in
the stronger model where the effects of glitches and transitions are combined.
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1 Introduction
Masking is a well-known countermeasure against side-channel attacks. A common form of
masking is Boolean masking: during computations, a sensitive value x ∈ Fq is replaced
with a sharing (x0, . . . , xd−1) ∈ Fd

q such that
∑

i xi = x. Moreover, each operation in the
computation (viewed as an arithmetic circuit gate) is implemented by a so-called gadget
that operates on sharings. The probing model [ISW03] is often used to evaluate the security
of masking schemes: a computation is t-probing secure if any set of t intermediate variables
(leaked “probes”) is independent of any sensitive value. Being high-level, it is relatively
easy to study complex schemes with this model, and furthermore probing security is a solid
starting point to prove security in more realistic, low-level leakage models [DDF19]. In this
work, we use d = t + 1 shares, since it helps minimizing the cost of the implementation.

Faust et al. [FGP+18] formalized an extension of the probing model: the robust probing
model, where probes are extended. Whereas probes in the probing model give access to a
single value, extended probes leak multiple intermediate variables. This model, while still
being high-level, takes into account physical phenomenons such as glitches, transitions or
couplings that may break the practical security of masking schemes [MPG05, CGP+12,
CBG+17] that are secure in the probing model.1

Glitches are transient “incorrect” computations occurring in combinatorial logic that
can be modeled with glitch-extended probes, which leak all the inputs of the probed
combinatorial circuit. Glitches have drawn a lot of attention over the last years and

1We note that there are other physical defaults (e.g. couplings) or practical concerns (e.g. not analyzing
the full circuit or the EDA transformations) that can affect the security of masking [CBG+17, CGLS20].
Whether they can be captured with abstract models is an interesting open problem.
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many hardware masking schemes are designed to mitigate them (see [NRS11, MPL+11,
RBN+15, GMK16]). In particular, the “non-completeness” requirement of “Threshold
Implementations” (TIs) [NRS11] (no combinatorial logic should manipulate all the shares),
can be seen as a design principle counterpart to the glitch-robust probing model.

Transitions (changes in value of a wire, whose leakage depends on both the current
and previous value of the wire) have been shown to be very damaging to software imple-
mentations [CGP+12], leading to countermeasures of various efficiency and formalization
levels [BGG+14]. They can also be modeled using extended probes: a transition-extended
probe leaks the values carried by a wire at two consecutive execution cycles. Despite
evidence that transitions are the source of significant leakage in hardware implementa-
tions [HSS12], security against transition-based leakages has been devoted little attention
in the hardware masking design literature.

We now give a simple example of an implementation strategy that would lead to security-
damaging transition leakage: let L : Fm

q → Fn
q : (x0, . . . , xm−1) 7→ (y0, . . . , yn−1) be a linear

function that we want to mask. Since the Boolean masking is linearly homomorphic, this
can be implemented share-by-share: let (xi,0, . . . , xi,d−1) be a sharing of xi, the masked L
can be implemented by evaluating L for each share: (y0,j , . . . , yn−1,j) = L(x0,j , . . . , xn−1,j).
In hardware, it is common to implement this gadget using d independent instances of
the circuit computing L, which increases significantly the area over the non-masked
implementation. Another simple strategy is to trade area for execution time by serializing
the implementation: only one instance of L is implemented, and it is used sequentially for
each of the shares (as shown in Figure 2a). If no care is taken, and a new set of shares is
input in the circuit at each cycle, then transitions can occur, and leak two shares at once.
This effectively halves the security order of the implementation.

In this paper, we study the problem of transitions in hardware masked implementations,
aiming mainly to prove that some schemes are secure in the transition-robust probing
model. Our motivations for this purpose are threefold.

First, we want to provide formal security guarantees that scale with any number of
shares and can prevent possibly undiscovered attacks that would exploit transitions. We
believe this threat should not be neglected, since popular masking schemes have already
been broken in the past (see [MMSS19] for a recent example).

Second, we want to give insights explaining why many published designs do not seem
to suffer from transitions, even if there is no proof of their security in that context. From
that point of view, the main takeaway message is that some of the conditions for security
in our proofs are either satisfied by informal “good practices” used in hardware masking
design, or by designs that best fulfill other (e.g. performance) objectives.

Third, we want to enable automation of the security analyses of hardware implementa-
tions. Resting on solid theoretical background, automated security verification tools may
enable designers to experiment with new designs without putting the security at risk, or
having to perform extensive security analysis by hand, which requires both specialized
skills and a significant amount of time.

We also analyze the security in a stronger model with glitches and transitions combined.
Security in both glitch- and transition-robust probing models considers leakage coming
from transition between stable values, or from glitches depending on the combination
of the inputs of a combinational circuit. The combined glitch- and transition-robust
probing model (denoted glitch+transition-robust probing model) can be interpreted as
having glitches that depend on the transitions. That is, on both the current inputs of a
combinational circuit and on the previous inputs. This combined model seems to be more
realistic than the one considering glitches and transition in isolation [MS06].

Overall, our results extend the applicability of the probing model to a wider range of
realistic threats and their combination. They can be used to confirm existing intuitions
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and to guide new designs. It turns out analyzing transitions is non-trivial and requires
additional refinements of the standard circuit models used in probing security proofs.
But proofs show that efficient design strategies can be used to rule out these physical
defaults and that some state-of-the-art gadgets already lead to implementations that are
glitch+transition-probing secure [CGLS20].

Contributions The two main contributions of this work are:

• A formal model for hardware circuits suited to robust probing model analyses that
includes the notion of execution cycles and the relationship between operations that
are executed by the same gate, and

• Provably secure hardware masking schemes in the transition-robust and
glitch+transition-robust probing models, both simple (based on a trivial composition
strategy [CS20]) and more optimized/specialized.

Structure The paper is structured as follows: we first introduce necessary background
in Section 2. Next, in Section 3, we explain informally the main conditions required for
a hardware masked circuit to be transition-robust. Our formal hardware circuit model
and the various probing models are described in Section 4. Section 5 covers the security
proofs, recalling previous results in the probing model and its glitch-robust variant, then
introduces our result for the transition-robust and glitch+transition-robust models. We
provide preliminary performance evaluations in Section 6 and conclude in Section 7.

2 Background
In this section, we introduce the main theoretical concepts on which our work is based.
We give an intuitive description of those concepts, and give their formalization within our
structural circuit model (see Section 4.1) in Section 5. We first recall the framework of
simulatability-based definitions for gadgets and the accompanying proof technique (the
probe propagation technique) that enables secure composition of gadgets. Next, we cover
the Probe-Isolating Non-Interference (PINI) definition and its compositional properties.

Composition of masked gadgets refers to the idea of building complex circuits by
connecting together gadgets that implement elementary field operations. The observation
that the composition of t-probing secure gadgets is not always t-probing secure [CPRR13]
led to the introduction of stronger security definitions that enables proving the probing
security of composite circuits using the properties of the gadgets. Simulatability is a
building block for this purpose: if the probes on a gadget can be perfectly simulated (i.e.
produced with the same distribution as the actual circuit) using only some of its input
shares, the security analysis of a composition of gadgets can analyze the sets of input
shares only.

The probe propagation technique [BBP+16] proves the security of composite circuits
by iteratively using the simulation of gadgets: a gadget made of the composition of two
gadgets can be simulated if the probes in a gadget can be simulated using some shares
that are the outputs of another gadget and if, for this gadget, the required output shares
(so-called propagated probes) and the (internal) probes can be simulated using some of
its inputs. This process can be generalized to composition of a larger number of gadgets,
and results in a set of shares that suffices to simulate all the probes in the circuit. If those
input shares are independent of any sensitive value, so are the probes.

Simulatability-based definitions are properties of gadgets that further simplify the
analysis of composite circuits. They describe how probes propagate from the outputs
and from the inside to the inputs of a gadget, that is, which input shares are needed to
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Figure 1: Example of (a) share-isolating and (b) non share-isolating gadgets. Gadget (b)
is not share-isolating since its output z0 depends on y1.

simulate which output and internal probes. A (simulatability-based) compositional strategy
is a policy that assigns a property (in the form of a simulatability-based definition) to
each of the gadgets in a composite circuits [CGLS20]. It guarantees that if the circuit is
instantiated with gadgets that satisfy those definitions, then the circuit is probing secure.
Out of the many compositional strategies that exist (see [BBD+16, CS20, BBD+]), we
focus on the ones based on the PINI simulatability-based definition.

The PINI composition strategy [CS20] was originally introduced for the standard
probing model (no glitches nor transitions): a circuit composed of PINI gadgets can be
analyzed as if it was split into d shares, and an adversary putting a probe in a circuit share
gets only information about the inputs to that circuit share, while learning nothing about
the other shares. This property is trivially satisfied by gadgets that can be implemented
in a share-wise manner such as linear gadgets (we call them share-isolating, see example
in Figure 1). Other gadgets (e.g. multiplications) cannot be implemented in this way,
but if they are PINI, they somehow simulate this isolation from an input-output point of
view: a probe on an output share depends only on the input shares that are in the same
circuit share, and a probe inside the gadget depends on the inputs contained in at most
one circuit share. The PINI composition strategy is a trivial composition strategy: if a
gadget is composed of only PINI gadgets, then it is itself PINI (hence probing secure).

The security based on isolated circuit shares is well suited to withstand glitches: since
glitches propagate through wires, a probe that observes glitches in a circuit share gets
information only about that circuit share. This observation is the basis for the glitch-robust
composition strategy of [CGLS20], which states that composing glitch-robust PINI gadgets
guarantees probing security in the presence of glitches. The glitch-robust PINI definition
cares for glitches that happen inside a gadget, imposing that, when looking “from outside”,
they seem to touch only one circuit share. The propagation of glitches outside of gadgets
causes no security issue thanks to the circuit shares principle.

3 Transitions: problems and solutions
In this section, we first give an overview of the issues that can arise when there are
transition leakages in a composite masked hardware circuit. We then provide the intuition
for the solutions proposed in this paper.

At first, it may seem that the transitions can be handled in a similar way as glitches in
the PINI composition strategy. Indeed, since we model a transition-leaking probe as giving
knowledge of the value carried on a wire at two consecutive cycles, a transition-leaking
probe in a share-isolating gadget gives only knowledge about one circuit share. Similarly
to glitch-robust PINI, we can define transition-robust PINI gadgets as gadgets that can be
simulated like PINI gadgets even when there are transition probes in the gadget, leaving
the transitions that span multiple gadgets to be handled by the composition theorem.
Transition-robust PINI gadgets are however not trivially composable for two reasons that
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Figure 2: Serial implementation of a 2-input linear gadget: the same gates are used
sequentially for all the shares. Each double arrow indicates a transition-extended probe
and red inputs are required for simulation. Gadget (2a) is not transition-robust PINI,
hence broken in one execution due to transition leakage across shares. Gadget (2b) has
interspersed non-sensitive cycles, hence it is transition-robust PINI (p0 does not break the
security), but it is not iterated transition-robust: a transition-extended probe p1 covers
two distinct circuit shares in the two executions. Gadget (2c) is iterated transition-robust
PINI thanks to the non-sensitive cycle interspersed between executions.

we explain next.
The first reason comes from the difference between the structural (i.e. physical)

gates/wires in a gadget, and their algorithmic (i.e. logical) position in the computations
performed by the gadget. Indeed, the same physical gadget (a set of physical gates and
wires) can be executed multiple times with different inputs. Let us assume that a single
physical gate appears in different logical positions for two executions of a gadget and there
is a transition probe that touches this gate over the two executions. If this can happen
without restriction, the two probes are at somewhat independent positions, leading to an
effective doubling of the number of probes. An example for this (illustrated in Figure 2)
would be an implementation of a linear gadget that intends to minimize area, by applying
the operation iteratively for each share. If the processing of each share takes one cycle
(Figure 2a), the gadget is not transition-robust: a transition on an input wire leaks two
shares from the same input sharing, reducing the security order.2 However, if a cycle with
a non-sensitive (e.g. constant) input is interspersed between the two cycles processing
those shares (Figure 2b), then the gadget is transition-robust PINI. Under this property,
it is however still allowed to start a second execution immediately after the first one, even
when this leads to transition leakage (Figure 2c). This transition leakage (across two
different shares) may break the security if the input sharings for the two executions of the
gadget are not independent.3

A solution to this issue is the iterated transition-robust property, which cares about
multiple executions of a gadget and requires that when a transition across two executions
exists, it appears to probe twice the same logical gate (from an external simulation point
of view). This constraint is satisfied by many gadgets, such as the ones built as a pipeline,

2We focus our constructions on masking with d = t + 1 shares (where t is the security order) to reach
good performance at higher orders. The models and proofs are however valid for other kinds of masking.

3In order to achieve generic composition, we cannot assume that the input sharings are independent.
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Figure 3: Gadgets implementing the same function in two clock cycles. Rounded boxes
represent combinational logic, separated by registers. Gadget (a) is pipeline gadget while
gadget (b) is not pipeline (b = 0 at the first execution cycle and b = 1 at the second cycle).
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Figure 4: Composition of iterated transition-robust PINI and O-PINI gadget executions
with d = 3 shares and one transition-extended probe (inputs required for simulations in
red). Composition 4a is insecure, while 4b and 4c are secure.

that is, when each structural gate is used once per execution, as shown in Figure 3.

The second reason is an issue that appears when there is a transition between two
executions of an iterated transition-robust PINI gadget and additionally an output of
the first execution is an input of the second one (Figure 4a). Assuming that such a
transition-extended probe is the only probe, simulating the second execution requires one
share of each of its input sharings. For the first execution, an output share has thus to be
simulated in addition to the internal probe. Hence, the simulator may require two shares
of each input sharing. This shows that such a composition is not transition-robust PINI
(which could then be exploited to break its probing security).

The intuition to fix this problem comes again from share-isolating gadgets, for which
the previous example does not have a problem: we have the guarantee that for the first
execution, the internal probe and the output shares to simulate are in the same circuit
share. Only one share of each input is therefore required for simulation. The PINI property
mimics the share isolation property at the input and output levels, which is why it composes
smoothly. However, transitions do not only touch the inputs and outputs, but also the
internals of the gadget. In the internals, PINI is counting probes, and not circuit shares,
which is insufficient to capture all transitions. We therefore need a property that is even
closer to share isolation than PINI, while still allowing to mix circuit shares internally
(otherwise some gadgets are impossible to implement). A key observation is that for share
isolating gadgets, if the simulator knows the inputs in a given circuit share, then it is able
to simulate all outputs in that circuit share in addition to the probes (see Figure 5 for
illustration). This property is not necessarily satisfied by PINI gadgets, and we name
O-PINI (output-probe isolating non-interferent) the PINI gadgets that, given a set of
probes, and knowing a set of input shares that satisfies the PINI constraints, can simulate
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Figure 5: O-PINI gadget. There is one output probe on z0 and one internal probe p (in
red). The simulator has thus access to input shares with two distinct indexes, one of them
being index 0 (in blue). Since the simulator has access to input shares with index 1, it
must simulate the output share with index 1 (in dashed red).

jointly both the probes and their output shares for which they know the input shares
with the same index. An (iterated transition-robust) O-PINI gadget solves our example
(Figure 4b): the simulator is asked to simulate the internal probes in both executions,
hence requires the inputs with the same share index for both executions. Since it also
simulates the outputs with that share index for the first execution, the second gadget can
be simulated, and all of this requires only knowledge of inputs in one circuit share.

Another solution, that allows using more efficient gadgets, is to prevent cases similar to
the example from happening by constraining how gadgets are composed. The constraint is
that adjacent gadgets (i.e. gadgets that a transition-extended probe may cover) must be
parallel: none of their inputs may depend of one of their outputs. (Gadget in Figure 4c is
a parallel composition while gadget in Figure 4a is not.) This strategy is more efficient
as it allows using PINI gadgets instead of O-PINI ones, at the cost of not being a
trivial composition strategy. The parallelism requirements results in a more complex
security analysis (it must be verified), and restricts the structure of the circuit. However,
we will show that a common way of implementing substitution-permutation networks
(SPNs), which are arguably the most commonly masked algorithms, satisfies the parallelism
assumption.

4 Circuit & security models
4.1 Circuit model
We use a circuit model based on the one of [ISW03]: a circuit is a directed acyclic graph
whose vertices are gates and edges are wires carrying elements from a finite field. In the
robust probing model, transition-extended probes leak pairs of wires [FGP+18]. The exact
specification of such pairs is not determined in the ISW circuit model as it lacks the notion
of cycles and does not encode the fact that two logical gates may be implemented by the
same physical gates.Therefore, we introduce a more specific circuit model which takes
these into account. We first define physical circuits as sets of gates and wires.

Definition 1 (Structural gate). A structural gate is a tuple (I, P, f, lat), where

• I is the set of inputs of the gate,

• P is the set of parameters, it is the disjoint union of P P (public parameters) and
P S (secret parameters),

• f : (I → Fq)× (P → S) → Fq (where S is any set: the parameters may belong to
any set) is the evaluation function,

• lat : I → N is the latency of the inputs (a latency of one means the input is required
one cycle before the output is produced).
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Any structural gate has one output whose value is given by the evaluation function.

We note that the latency is defined “backwards” by taking the output as reference
(while it is usually defined forwards as the number of cycles needed to produce the output
after the input is available) . The reason for this choice is that our gates always have
a single output while they may have any number of inputs. This convention makes our
following technical treatments lighter.

We next give a few examples of gates:

• 2-input XOR: XOR = ({0, 1}, ∅, (fi, fp) 7→ fi(0)⊕ fi(1), x 7→ 0) (and similarly for
any arithmetic gate).

• Register: Reg = ({0}, ∅, (fi, fp) 7→ fi(0), x 7→ 1).

• 2-input MUX with select bit being a public value:

MUX2 = ({0, 1}{0}, (fi, fp) 7→ fi(0) · fp(0)⊕ fi(1) · (1− fp(0)), x 7→ 0),

where the public parameter 0 is either 0 or 1.

• Randomness generating gate (random gate): Rnd = (∅, {0}, (fi, fp) 7→ fp(0), ∅). Ran-
domness is encoded as a random tape in the fp function, for the secret parameter 0.

• An input gate is encoded similarly to the random gate.

We also define wires that connect the output of a gate to the input(s) of a gate:

Definition 2 (Structural wire). A structural wire is a pair (g, (g′, i)) where g and g′ are
gates and i is an input of g′. We say that the wire connects its source g to the input i of
g′ (its destination).

Based on these definitions, we define structural circuits as follows.

Definition 3 (Structural circuit). A structural circuit is a directed graph whose nodes
are structural gates and whose edges are structural wires. A wire connects its source to its
destination. In a structural circuit, there must be no combinational loop, that is, no cycle
for which all the wires have a destination with latency 0.

Remark The notion of outputs of the circuit is not needed in this work. However for
completeness, they may be defined as a map from an output set to the gates of the circuit.

Next, we consider the execution of a circuit over time (cycles).

Definition 4 (Circuit execution). An execution of a structural circuit C = (G, W ) for
the set of cycles T = {t0, . . . , t∗} is a directed graph whose set of nodes is G × T (the
gates) and whose set of edges is W × T (the wires). Wires connect gates according to their
latency: let l be the latency of the destination of the structural wire w = (g, (g′, i)), then
the wire (w, t) connects its source (g, t − l) to its destination (g′, t). If the source does
not exist, then the wire is connected to a fresh “initial state” source gate (no-input gate
having as output a public parameter). Each gate may be annotated with a parametrization
function, mapping the set of all (resp. public) parameters of the underlying structural gate
to values, in which case the execution is full (resp. partial).

Definition 5 (Circuit evaluation). The evaluation of a full circuit execution is a function
that maps every gate and wire to an element Fq or ⊥. The values are computed recursively
by applying the evaluation function for the gates, lazily evaluating the parametrization
function for the parameters and the evaluation function of the circuit for the inputs. The
result is ⊥ if the recursion does not terminate.

An evaluation of a partial circuit execution is the evaluation of the full execution
obtained using random functions as the evaluation functions of private parameters.
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In the following, we work with partial circuit executions. This concept matches the
model of circuit from [ISW03, CGLS20] since time ordering and absence of combinational
loop guarantee that a circuit execution is a directed acyclic graph (DAG). The addition
we bring to these models correspond to the structural information needed to identify the
possible transition-extended probes.

We now clarify the notion of gadget in our new framework. First, we define the gadget
execution, which is similar to the gadget in the ISW circuit model.

Definition 6 (Gadget execution). A gadget execution with d shares in a circuit execution
C is a subset of gates G and wires W of C, such that W is the set of wires in C whose
destination is in G. The inputs (also named input shares) of the gadget are the set of
its wires whose source is not in G, and its outputs (or output shares) are a subset of the
gates of the gadget. The inputs (resp. outputs) are partitioned in ni (resp. no) tuples of d
elements designated as input (resp. output) sharings.

The composition of gadgets forms a new gadget, with the constraint that no input a of
gadget depends on one of its outputs.

Definition 7 (Gadget execution composition). A gadget execution G is a composition of
a set of disjoint gadget executions (Gi)i=0,...,n if G is the union of all Gi’s. Connections
between gadgets must connect the input sharings to the output sharings of the gadgets,
respecting the order of shares. Input sharings of the composite gadget G are the input
sharings of the composing gadgets Gi which are not connected to any output sharing of
a Gi, and output sharings of G are a sub-set of the output sharings of the composing
gadgets. The composing gadgets graph (directed graph where the nodes are the gadgets
and the edges are the wires connecting them) must be a DAG.

In the “structural” world, defining a gadget as a set of structural gates and wires would
lead to a loss of information on the behavior of the gadget (e.g. whether some gadget is a
straight pipeline, or it has a serial implementation that uses multiple times the same gate).
We therefore define structural gadgets by the fact that all its executions are identical
gadget executions, except for a translation in time.

Definition 8 (Translation). Let t be an integer and C a circuit execution. The translation
by t of a set of gates {(gi, ti)}i and wires {(wi, ti)}i of C are the sets of gates {(gi, ti + t)}i

and wires {(wi, ti + t)}i. Two sub-sets C1 and C2 of C are translation-equivalent if there
exists an integer t such that the translation of C1 by t is equal to C2.

Definition 9 (Structural gadget). A structural gadget is a non-empty set of gadget
executions that are all disjoint and translation-equivalent to each other. For each structural
gadget we choose a canonical execution and then each gadget execution is associated to
a canonicalization translation t such that the translation by t of the execution is the
canonical execution.

We need a final definition to cover the intuitive idea that a structural gadget is an
algorithm implemented by a set of wires and gates: when considering a set of structural
gadgets, two gadgets should not share any gate or wire.

Definition 10 (Structural gadget composition). The structural gadget S is a composition
of structural gadgets {Si} if each of its executions is the union of some Si executions
(possibly multiple executions of each Si). The composing gadgets Si cannot intersect (i.e.
share any structural gate of wire).
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4.2 Probing model
In this section, we formalize the probing model and the robust probing model. Our
definitions are adaptations of the definitions of [ISW03, FGP+18] to our circuit model of
Section 4.1.

Definition 11 (Probing security). A set of probes P in a gadget execution G is a subset
of its gates and input wires. In an evaluation of G with input values x, the values of the
probes are denoted as GP (x). In an evaluation of G, the sensitive values are defined as
the sums of the values on the wires of each input sharing. A gadget execution G is secure
against a set of probes P if GP (x) is independent of the sensitive values when the inputs
x are uniformly distributed. G is t-probing secure if it is secure against any P such that
|P | ≤ t.

The robust probing model is a generic model where there is a pre-determined set of
possible extended probes for each gadget, which are sets of probes.

Definition 12 (Robust probing security). A probe expansion scheme is a function that
maps a gadget execution to a set of extended probes, which are sets of probes in the gadget
execution. The probes in those sets are named expanded probes. A gadget execution is
t-robust probing secure with respect to a probe expansion scheme if it is secure against all
the expanded probes from any set of t extended probes.

We are interested in three particular cases of the robust probing model: glitches,
transitions and finally the combination of glitches and transitions. Those are defined by
their probe expansion scheme that we describe next.

In the glitch-robust probing model, there is an extended probe for each gate and each
wire. For input wires, the extended probe contains only the (non-extended) probe on
this wire, while for the other wires, it is equal to the extended probe on the gate whose
output is connected to the wire. For gates, the extended probe is made of the union of
the extended probes on the gates that produce its input wires that have latency 0, or the
extended probe on the wire itself if it is an input wire.

The transition-extended probes in a gadget are all the non-extended probes in it, and
additionally the sets {(w, t − 1), (w, t), } for all w (wires or gate) and t such that both
(w, t− 1) and (w, t) belong to the gadget execution.

Finally, in the transitions and glitches combined robust (transition+glitch-robust)
probing model, the set of extended probes is obtained by first computing the set of
transition-extended probes, then, replacing every expanded probe in a transition-extended
probe with all the expanded probes contained in the glitch-extended probe that correspond
to it. Physically, this models the fact that the propagation of a glitch (e.g. its timing)
depends on both the new and the previous values on the wire.

5 Composition results
In this section, we present the formalization of the definitions and prove the security
properties. In Sections 5.1 and 5.2, we cover the background presented in Section 2,
adapting the notations to our circuit model. Next, in Section 5.3, we formalize the
intuitions of Section 3, and we finally handle the transition+glitch case in Section 5.4,
using similar techniques as for the transition-only case.

5.1 Composition in the probing model
In this section, we give the formal definitions of simulatability and PINI in the probing
model, as well as the definition of a share-isolating gadget. See Section 2 for an intuitive
introduction of those concepts.
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Definition 13 (Simulatability [BBP+16]). A set of probes P in a gadget execution G can
be simulated by a set of input shares I = {(i1, j1), . . . , (ik, jk)} if there exists a randomized
simulator algorithm S such that the distributions GP (x∗,∗) (the values of the probes) and
S(xi1,j1 , . . . , xik,jk

) are equal for any value of the inputs x∗,∗.

Notation. For a gadget execution G, we denote by xi,j the j-th share of its i-th input
sharing. The share index of xi,j is j. We denote by x∗,∗ the set of all its inputs sharings.

Definition 14 (Probe-Isolating Non-Interference [CS20]). Given a gadget execution G,
let I be a set of at most t1 probes on its internal wires and O a set of probes on its output
shares. Let A be the set of the share indexes of the shares in O, and t2 = |A|. Let I and
O be chosen such that t1 + t2 ≤ t. The gadget G is t-PINI iff for all I and O there exist a
set of at most t1 share indexes B such that observations corresponding to I and O can be
simulated using only the shares with indexes A ∪B of each input sharing.

Definition 15 (Share-isolating gadget). A structural gadget S with d shares is share-
isolating if its set of structural gates, inputs and outputs can be partitioned in d components
(Si)i=0,...,d−1 such that any input or output share with share index i belongs to component
Si, and the source and destination of every structural wire belong to the same component.

5.2 Composition with glitches
The construction of a glitch-robust and composable masking scheme in [CGLS20] is based
on the adaptation of simulatability to the glitch-robust probing model.

Definition 16 (Glitch-robust simulatability [CGLS20]). A set of extended adversarial
probes P in a gadget execution G can be glitch-robustly simulated by a set of input shares
I = {(i1, j1), . . . , (ik, jk)} if there exists a randomized simulator algorithm S such that the
distributions Grob,P (x∗,∗) and S(xi1,j1 , . . . , xik,jk

) are equal for any value of the inputs
x∗,∗ when there are no glitches on the inputs.

Extended probes may cover multiple gadgets, therefore it might seem complex to adopt
a composable approach where each gadget is analyzed independently. The solution to this
problem comes from a separation of responsibilities. Glitches inside a gadget are handled
by the simulatability definition, while glitches outside the gadget (i.e. on its inputs) are
ignored in the definition and are instead handled at the composition theorem level. We
will use a similar approach to handle transitions.

This observation is the basis for a lemma that maps all simulation-based security
properties and composition strategies to the glitch-robust probing model if the gadget
satisfy the glitch-robust version of the simulatability properties.

Lemma 1 (Glitch-robust composability lemma [CGLS20]). For a gadget execution G
made of the composition of gadgets Gi, let Srob

i be a glitch-robust probing simulator for
each gadget Gi, and let Sstd

i be its restriction to a standard probing simulator (by discarding
the simulation outputs that are not needed). Let P be a set of standard probes that can be
simulated using some inputs I of G using the simulators Sstd

i according to a simulatability-
based compositional strategy (i.e. each simulator is asked to simulate some probes Pi using
inputs Ii of Gi where wires in Ii are either in I or in some Pi′ and P ⊂

⋂
i Pi).

In the glitch-robust probing model, the set of extended probes P can be simulated using
inputs I (on which there are no glitches by the definition of simulatability).

5.3 Composition with transitions
We now define simulatability for transitions, following the pattern of simulatability for
glitches: transitions that happen inside a gadget must be simulated, but those that happen
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outside of the gadget (i.e. in other executions) are not considered: they will be taken into
account in the composition theorems.

Definition 17 (Transition-robust simulatability.). A set of extended adversarial probes
P in a gadget G can be transition-robustly simulated by a set of input shares I =
{(i1, j1), . . . , (ik, jk)} if there exists a randomized simulator algorithm S such that the
distributions Gtr,P (x∗,∗) and S(xi1,j1 , . . . , xik,jk

) are equal for any value of the inputs x∗,∗,
where Gtr,P is the set of transition-expanded probes that are inside the gadget G (i.e. the
probes outside G are discarded).

This definition extends any NI-based security property such as NI, SNI, PINI, . . . into a
transition-robust variant. The next step towards a composition theorem with transitions is
analyzing the behavior of transitions that cross gadgets. However, as discussed in Section 3,
the composition of transition-robust PINI gadgets is not necessarily transition-robust itself:
to achieve that result, we need iterated transition-robust gadgets and either O-PINI or
parallel executions for adjacent gadgets. We next formalize those notions and prove the
composition theorems.

Definition 18 (Iterated transition-robust simulatability.). Let G be a structural gadget
whose executions are (Gi)i. Let P be a set of transition-extended probes in G. Let P ′j be
the set of probes obtained by taking each probe in the expansion of P that is in a gadget
Gi and translating it to the execution Gj (through the translation from Gi to Gj). Let I
be a set of inputs of the canonical execution of G and Ii be its translation to Gi. If P ′i can
be simulated by the set of inputs Ii in Gi for all i, then P is iterated transition-robust
simulatable in G by the set I.

In the particular case of gadgets that are a simple pipeline, iterated transition-robust
simulatability reduces to simulatability since there are no transitions inside a gadget and
probes are always “at the same position” across gadgets.

Definition 19 (Pipeline). A structural gadget is pipeline if its canonical execution G uses
each of its structural wires and gates only once: for a gate g (resp. wire w), there exists
no t1 6= t2 such that (g, t1), (g, t2) ∈ G (resp. (w, t1), (w, t2) ∈ G).

Lemma 2. Let G be a pipeline structural gadget whose executions are (Gi)i and G0 be its
canonical execution. Let P (resp. I) be a set of probes on (resp. inputs of) G0, and Pi

(resp. Ii) be its translation to Gi. If Pi in Gi can be simulated using the set of inputs Ii

for all i, then P ∗ =
⋃

i Pi is transition-robust simulatable in G by I.

Proof. We first observe that the transition-expansion of P ∗ (restricted to G) is P ∗ itself:
for any (w, t) in a Gi, if (w, t− 1) belongs to some Gj , then it is the translation of (w, t)
from Gi to Gj , hence it belongs to P ∗. Thus, for each gadget Gi, the set of probes to be
simulated is Pi, which is simulatable using Ii by hypothesis.

This lemma implies that if all executions of a pipeline structural gadget satisfy a
simulation-based property (such as NI, SNI, PINI) in its transition-robust variant, then
the structural gadget satisfies the iterated transition-robust variant. Iterated transition-
robustness is however not sufficient since it does not solve the previously discussed problem
of the serial composition of executions of the same structural gadgets.

5.3.1 Trivial composition approach

The following O-PINI property captures the requirement explained in Section 3 to compose
circuits with transitions trivially: when the simulator has access to an input share index,
it should simulate the outputs with the same share index. O-PINI implies PINI, but not
the other way around, as shown next (on page 149).
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Definition 20 (Output Probe-Isolating Non-Interference). Given a gadget G, let I be a
set of at most t1 probes on its internal wires and O a set of probes on its output shares.
Let A be the set of the share indexes of the shares in O, and t2 = |A|. Let I and O be
chosen such that t1 + t2 ≤ t. The gadget G is t-O-PINI iff for all I and O there exist a set
of at most t1 share indexes B such that observations corresponding to I, O and output
shares with index in B can be simulated using only the shares with indexes A ∪B of each
input sharing. We say a gadget is O-PINI if it is t-O-PINI for any t.4

First, we observe that share-isolating gadgets are O-PINI.

Proposition 1. Share-isolating structural gadgets are iterated transition-robust O-PINI.

Proof. Let G be a share-isolating structural gadget. Let I and O be sets of probes as in
the O-PINI definition. Let (Ii)i=0,...,n be a partition of I according to the circuit share
they are in. At most |I| sets in the partition are non-empty, let B be the set of indexes of
these sets. All probes in I and O can then be simulated using all the inputs with share
index in A ∪B (where A is the set of share indexes of the probes in O) since there is no
path between the other inputs and the probes.

We next prove that any composite gadget made of iterated transition-robust t-O-PINI
gadgets is iterated transition-robust t-O-PINI.

Theorem 1 (O-PINI composability). Let {Si} be a set of iterated transition-robust t-O-
PINI structural gadgets, and let {Gi} be their executions. If the structural gadget S is a
composition of {Si}, then it is iterated transition robust t-O-PINI.

Proof. We build an iterated transition-robust t-O-PINI simulator that takes as input a
set of internal probes P , and a set of share indices of probed output shares A. Wlog, we
assume that there is no probe on wires connecting gadgets: these can be considered as
part of a gadget connected to the wire.

Let (Pi)i be a partition of P according the structural gadget Si to which they belong.
Let A0

i = A and B0
i = ∅ for each gadget Si. Then, the following algorithm is run for

k = 1, 2, . . . , k∗, until it converges (i.e. Ak∗

i = Ak∗−1
i for all i): using the iterated transition-

robust O-PINI simulator for each Si (for output shares Ak−1
i and internal probes Pi), the set

of input shares Bk
i is computed, and each Ak+1

i is computed as follows: Ak
i ← A∪

⋃
j 6=i Bk

j .
Let A∗ = A ∪

⋃
i Bk∗

i .
Let us observe that at the final iteration, each simulator takes input shares with index

in A∗ as input, simulates its internal probes that are in P , and simulates all its output
shares with index in A∗ for every gadget execution. The set of input shares required
for simulation is A and B =

⋃
i Bk∗

i ⊃ A∗ \A. The simulator proceeds to simulation by
feeding each gadget (from input to output, i.e. respecting a topological ordering on the
gadgets composition graph) with the inputs with share index in A∗ to simulate probes in
that gadget and outputs with share index in A∗.

Let us first prove that the algorithm converges: if for all i Ak
i ⊂ Ak+1

i , then Bk+1
i ⊂

Bk+2
i (if the simulator of Si requires the minimal input set, which can be assumed wlog),

which implies that Ak+1
i ⊂ Ak+2

i for all i. Since by construction A = A0
i ⊂ A1

i , it follows
by induction that for all i and k, Ak

i ⊂ Ak+1
i . Since all Ak

i have cardinality at most d, the
algorithm converges.

Next, we prove that the simulation algorithm is correct, that is, all the values it
generates have the same distribution as in the true circuit. This is guaranteed by using a
correct simulator for each sub-gadget, and feeding it with correct inputs: by induction
(starting with the inputs it receives), the simulator knows for each gadget the input shares

4As proven in [CGZ20], if a gadget with d shares is d − 1-PINI, then it is t-PINI for any t, which is
denoted as “PINI”. The same argument applies to O-PINI.
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with index in A∗ before simulating the gadget. Therefore, the simulator for the gadget can
simulate correctly the probes inside the gadget and the output shares with index in A∗.

Finally, we observe that the simulator simulates all required values: it simulates the
translation of P to any execution of S thanks to the iterated transition-robust simulators
that can simulate the translation of Pi (and of the outputs with index in Ak∗

i ) to any
execution of Gi with the input shares with index A∗. Furthermore, the simulator respects
the cardinality constraint |B| ≤ |P |: B =

⋃
i Bk∗

i and P =
⋃

i Pi, while
∣∣B∗i ∣∣ ≤ |Pi| for all

i (thanks to each gadget O-PINI simulator).

Multiplication gadget. To instantiate the previous general construction, we build an
iterated transition-robust O-PINI multiplication gadget in Fq. We build the O-PINI1 mul-
tiplication gadget (Algorithm 2) from the HPC2 multiplication gadget and the observation
that the ISW multiplication gadget (on which it is based) is SNI (in the probing model).
Intuitively, the SNI property is relevant since it guarantees that outputs are somewhat
“easy” to simulate, however it is not sufficient and we have to add a sharing of zero to the
output.

As an example of why HPC2 (Algorithm 1) is not O-PINI, we take d = 3 and consider
probes ā1 ⊗ r01 and ā2 ⊗ r21, the simulator has to know a1, a2, r01 and r21 (at least
sometimes). Hence, it needs the input shares with index 1 and 2. It can however not
simulate the output c1, whose value is a1 ⊗ (b0 + b1 + b2) + r01 + r12: it does not know b0,
and it outputs r01 and r12, thus those are known by the distinguisher.
Remark. We describe the gadget in an algorithmic way for the sake of readability, whereas
formally we describe patterns for structural gadgets: a set of gates and wires, and a way
to generate gadget executions out of them. The algorithmic description can be mapped to
the structural gates and wires by unrolling the loops in the algorithm and adding a gate for
each operation (and connecting the wires accordingly). Then, since the gadgets described
in this way are all pipeline, there is only one way (up to a translation) of executing them
such that the set of inputs matches the algorithmic description.

Algorithm 1 HPC2 multiplication.
Require: shares (ai)0≤i≤d−1 and (bi)0≤i≤d−1, such that

⊕
i ai = a and

⊕
i bi = b.

Ensure: shares (ci)0≤i≤d−1, such that
⊕

i ci = a⊗ b.
for i = 0 to d− 1 do
for j = i + 1 to d− 1 do

rij = rji
$←− Fq

end for
end for
for i = 0 to d− 1 do
for j = 0 to d− 1, j 6= i do

uij ← āi ⊗ Reg [rij ]
vij ← bj ⊕ rij

end for
end for
for i = 0 to d− 1 do

ci ← Reg [ai ⊗ Reg [bi]]⊕
⊕d−1

j=0,j 6=i (Reg [uij ]⊕ Reg [ai ⊗ Reg [vij ]])
end for

We first prove that the gadget O-PINI1 is still glitch-robust PINI, relying on the fact
that HPC2 is glitch-robust PINI.

Proposition 2. The gadget O-PINI1 (Algorithm 2) instantiated in F2 is glitch-robust PINI.
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Algorithm 2 O-PINI1 multiplication gadget.
Input: shares (ai)0≤i≤d−1 and (bi)0≤i≤d−1, such that

⊕
i ai = a and

⊕
i bi = b.

Output: shares (ci)0≤i≤d−1, such that
⊕

i ci = a⊗ b.
(di)i ← HPC2 ((ai)i, (bi)i));
for i = 0 to d− 2 do

si
$←− Fq;

end for
sd−1 ←

⊕d−2
i=0 si;

for i = 0 to d− 1 do
ci ← di ⊕ si;

end for

Proof. Any probe on an output ci can be simulated by knowing di and probes on si can be
simulated by taking fresh randomness. Hence, given a set of probes, a PINI simulator for
O-PINI1 can map ci probes to di probes and remove the si probes, then require simulation
of all the probes by the HPC2 simulator and finally simulate the required ci and si.

Furthermore, O-PINI1 is iterated transition-robust O-PINI.

Proposition 3. The gadget O-PINI1 is iterated transition-robust t-O-PINI for t < d.

Proof. For the sake of brevity, we base this proof on the glitch+transition-robust O-PINI
property of gadget O-PINI2, proven in Proposition 6.

We observe that the O-PINI2 gadget is equivalent to O-PINI1 regarding probing security
and simulatability without glitches, since their only difference is a register layer. Indeed, in
a pipeline gadget, a register layer does not change the set of possible transition-extended
probes: the inputs of the registers are identical to the wires of the gadget without the
registers, and probes on the outputs of the registers have the same leakage as probes their
inputs (in the transition-robust probing model).

5.3.2 Optimized composition approach

In this section, we analyze the particular case of the composition of parallel gadget
executions (forming a parallel gadget), that is, disjoint executions such that none of them
is reachable from another one in the gadget composition graph (i.e. there is no path
between two executions). We show that when all the executions of an instance across
which there are transitions are parallel executions, O-PINI gadgets are not required and
PINI is actually enough. This particular case is of interest in practical implementations
of block ciphers, when the same structural gadget is used multiple times, for example to
compute sequentially multiple parallel S-boxes. Such an architecture is known as “S-box
serial”, where serial refers to sequential executions, and should not be confused with the
distinct notion of serial composition.

Proposition 4 (Parallel PINI executions). Let S be a structural gadget whose executions
are all parallel. If S is iterated transition-robust t-PINI, then the structural gadget whose
only execution is the parallel gadget is iterated transition-robust t-PINI.

Proof. First of all, since there is only one execution, iterated transition-robustness is
equivalent to transition-robustness, that we prove next. Let A be the set of shares indexes
for which simulation outputs are required and let P be the set of internal probes. There
exists a set of share indexes B of size at most |P | such that, for each execution of S, the
iterated transition-robust t-PINI simulator can simulate a set made of those output shares
with index in A and the transition-expanded probes of P that are in that execution.
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We are interested in a full block cipher, meaning that there are multiple rounds, and
therefore not all the S-boxes are parallel executions. We solve this by observing that if we
leave one “empty” cycle between two rounds, no transition-extended probe in the S-boxes
can touch more than one. The empty cycle condition is formalized by introducing the
notion of adjacent executions: two gadget executions are adjacent to each other if there
exists a wire w and a cycle t such that (w, t) belongs to one gadget and (w, t− 1) belongs
to the other one.

This leads to the next composition theorem which allows PINI gadgets to ensure
transition-robust composition, provided their executions are non-adjacent.

Theorem 2. Let S be a structural gadget composition of iterated transition-robust t-O-
PINI gadgets and transition-robust t-PINI gadgets. If every PINI gadget in S has no
adjacent executions, then S is transition-robust t-PINI.

Proof. We build a transition-robust t-PINI simulator for a set of internal probes P and a
set of share indices of probed output shares A.

Let (Gi)i=0,...,n−1 be the gadgets executions is S, in reverse topological order in the
gadget composition graph (i.e. from output to input). Let (Sj)j be the multi-set of
structural composing gadgets, where each O-PINI gadget appears once and each PINI
gadget appears once for each of its executions. Let s(i) = j if Gi is an execution of Sj

and be surjective: two PINI gadgets Gi and Gi′ are never mapped to the same value.
Let us partition the set of probes according to (Sj)j : Pj is the set of probes in Sj for
O-PINI gadgets, and it is the set of probes in Gi for PINI gadgets, where i is the only
index satisfying s(i) = j.

Let A0 = A, and initialize Cj = C ′jC ′′j = A′j = ∅ for all Sj . For all i, first update
C ′′s(i) ← C ′s(i), C ′s(i) ← Cs(i) and A′s(i) ← Ai. Then, let Bi be the set of shares required by
the O-PINI (resp. PINI) simulator for Gi when asked to simulate all transition-expanded
probes from Pj Gi and all output shares with index in Ai\C ′s(i). Finally, set Ai+1 = Ai∪Bi

and Cs(i) ← C ′s(i) ∪Bi.
We next prove the following invariants by induction: after each i iteration, C ′s(i) ⊂ Bi,

and Ai+1 = A ∪
⋃

j Cj . The base case i = 0 is trivial since Cs(0) = ∅. Let us now assume
the invariants hold for i− 1. If Cs(i) = ∅ (before being updated), then both invariants are
trivially satisfied. Otherwise, assuming wlog that the simulators require a minimal input set,
we know that (A′i \C ′′s(i))∩C ′s(i) = ∅ and by induction A′i ⊂ Ai, hence A′i \C ′′s(i) ⊂ Ai \C ′s(i).
The minimality of the simulator implies then that C ′s(i) ⊂ Bi (between the two calls to the
simulator, the set of internal probes is the same, and set of the output share indices grows).
Since Cs(i) = Bi, this implies that Ai+1 = Ai ∪ Cs(i) = (Ai \ C ′s(i)) ∪ Cs(i) = A ∪

⋃
j Cj .

We observe that all transition-expanded probes from P are simulated and each simulator
produces a correct simulation (provided it receives correct inputs): this follows directly
from the iterated transition-robustness for O-PINI gadgets, while for PINI gadgets Gi,
non-adjacency implies that all the expanded probes from Ps(i) that belong to S also belong
to Gi. We have |Cj | ≤ |Pj | (by the PINI/O-PINI definition), therefore, the simulator can
ask a set of input share indexes B =

⋃
j Cj that satisfies |B| ≤ |Pj |. This set of input share

indexes (along with A) enables the generation of all the inputs required for the simulators,
using simulators sequentially from Gn−1 to G0, since the simulator for each Gi generates
its outputs with share index in Ai (either the gadget is O-PINI and it generates outputs
(Ai \ C ′s(i)) ∪ Cs(i) ⊃ Ai, or C ′s(i) = ∅).

5.3.3 SPN implementation

We can now prove transition-robustness of the common round-based and S-box serial
substitution-permutation network (SPN) implementation. This architecture iterates the
executions of a round, where one round is made of some hardware implementing the
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Figure 6: 2-cycle pipeline S-box in a dummy SPN with 2 S-boxes per round (assuming the
linear layer takes zero cycles). At the first three cycles, the computations for round 0 (R0)
are executed: the first S-box (R0–S0) goes through the pipeline, followed by the second
S-box (R0–S1). At the beginning and at the end, a pipeline stage is not used (i.e. does
not contain sensitive data). The same goes on for the three next clock cycles computing
the second round (R1). The computation of the S-box R1–S0 cannot start at cycle T = 2
since the output of the first round is not yet computed. No transition can touch S-boxes
of two different rounds thanks to this “bubble” (colored in gray) in the pipeline, hence
transitions only touch parallel S-boxes.

permutation/linear layer, and some S-boxes (which may be used sequentially multiple
times per round). If the S-box is pipeline and PINI, Proposition 4 implies that the gadget
made of all its usages for one round is iterated transition-robust PINI. If furthermore all
the other gadgets are share-isolating, and there is one cycle where no sensitive data is input
to the S-boxes (i.e. they are not part of the cipher gadget for that cycle, see Figure 6),
then Theorem 2 implies that the whole SPN implementation is transition-robust PINI
(hence probing secure in the transition-robust probing model).

The block cipher implementations of [CGLS20] are based on a trivial glitch-robust
PINI composition (using HPC1 or HPC2 multiplications and share-isolating gadgets), have
pipeline S-boxes and correspond to the above architecture description. These implementa-
tions are thus both transition-robust and glitch-robust probing secure.

5.4 Composition with glitches and transitions
Unlike [FGP+18], we also consider the joint impact of both glitches and transitions. This
choice is motivated by the goal of avoiding to rely on physical assumptions as much as
possible. At the hardware level, this implies considering a worst-case modeling of glitch
propagation, where the logic delay of the gates depends on their current input but also
on their state (i.e. the past value of their inputs and output). We model this as the
transition+glitch robust probing model, where probes are first transition-extended, then
the resulting probes are glitch-expanded to get the set of standard probes.5

Security proofs in the transition+glitch robust probing model can be obtained by using
Lemma 1. The first step is to have a simulatability-based compositional strategy for the
transition-robust probing model, giving a composition of gadget executions that is secure
against transitions. Given a set of transition-extended probes P , the circuit is thus secure
in the probing model for Pt, the transition-expansion of P . Next, Lemma 1 applies: if all
the gadgets are glitch-robust, then the composition is secure against Pt in the glitch-robust
model, which means it is secure against P in the glitch+transition probing model.

We first formally define glitch+transition simulatability, then give the composition
results, adapting to the glitch+transition setting to both the trivial and optimized compo-
sition approaches of the previous section.

5Expanding first the glitches, then the transitions gives the same set of standard probes.
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Definition 21 (Glitch+transition-robust simulatability.). A set of extended adversarial
probes P in a gadget G can be glitch+transition-robustly simulated by a set of input
shares I = {(i1, j1), . . . , (ik, jk)} if there exists a randomized simulator algorithm S such
that the distributions Ggl+tr,P (x∗,∗) and S(xi1,j1 , . . . , xik,jk

) are equal for any value of
the inputs x∗,∗ assuming there are no glitches on the inputs, where Ggl+tr,P is the set of
glitch+transition-expanded probes inside G (the probes outside G are discarded).

The iterated glitch+transition-robust simulatability follows the same pattern.

Definition 22 (Iterated glitch+transition-robust simulatability.). Let G be a structural
gadget whose executions are (Gi)i. Let P be a set of transition-extended probes in G. Let
P ′j be the set of probes obtained by taking each probe in the extension of P that is in a
gadget Gi and translating it to the execution Gj (through the translation from Gi to Gj).
Let I be a set of inputs of the canonical execution of G and Ii be its translation to Gi. If P ′i
can be glitch-robustly simulated by the set of inputs Ii in Gi for all i (assuming no glitches
on inputs), then P is iterated glitch+transition-robust simulatable in G by the set I.

Corollary 1. Let {Si} be a set of iterated glitch+transition-robust t-O-PINI structural
gadgets, and let {Gi} be their executions. If the structural gadget S is a composition of the
gadgets {Si}, then it is iterated glitch+transition-robust t-O-PINI.

Proof. Theorem 1 is a simulatability-based composition strategy, hence Lemma 1 applies.

Corollary 2. Let S be a structural gadget composition of iterated glitch+transition-robust
t-O-PINI gadgets and glitch+transition-robust t-PINI gadgets. If every PINI gadget in S
has no adjacent executions, then S is glitch+transition-robust t-PINI.

Proof. Theorem 2 is a simulatability-based composition strategy, hence Lemma 1 applies.

Gadgets. We exhibit glitch+transition-robust gadgets, starting with share-isolating gad-
gets and following with a multiplication gadget.

Proposition 5. Share-isolating structural gadgets are iterated glitch+transition-robust
O-PINI.

Proof. The proof is identical to the proof of Proposition 1, since the glitches cannot
propagate if there is no connection between circuit shares.

Algorithm 3 O-PINI2 multiplication gadget.
Input: shares (ai)0≤i≤d−1 and (bi)0≤i≤d−1, such that

⊕
i ai = a and

⊕
i bi = b.

Output: shares (ci)0≤i≤d−1, such that
⊕

i ci = a⊗ b.
(di)i ← HPC2 ((ai)i, (bi)i));
for i = 0 to d− 2 do

si
$←− F2;

end for
sd−1 ←

⊕d−2
i=0 si;

for i = 0 to d− 1 do
ci ← Reg [di ⊕ Reg [si]];

end for

Let us now prove that O-PINI2 is iterated glitch+transition-robust O-PINI.
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Table 1: Cost of multiplication gadgets in boolean gates, randomness usage and number
of cycles of latency of the output with respect to each input.

⊗ ⊕ NOT Reg [·] Randomness Lat. a Lat. b

DOM d2 2d2 − 2d 0 d2 d(d−1)
2 1 1

HPC2 2d2 − 2d 3d2 − 3d d 4d2 − 2d d(d−1)
2 1 2

O-PINI1 2d2 − 2d 3d2 − d− 2 d 4d2 − 2d d(d−1)
2 + d− 1 1 2

O-PINI2 2d2 − 2d 3d2 − d− 2 d 4d2 d(d−1)
2 + d− 1 2 3

Proposition 6. The gadget O-PINI2 (Algorithm 3) is iterated glitch+transition-robust
t-O-PINI for t < d when instantiated on F2.

Proof. First of all, we observe that O-PINI2 is pipeline, and it has no public parameter,
hence by Lemma 2 (actually its mapping to the glitch-robust case, which is trivial by
Lemma 1), we only have to prove that one execution of it is glitch-robust O-PINI.

We build a simulator based on the glitch-robust PINI simulator of HPC2. The simulation
of probes is delegated to the HPC2 simulator, except for ci and di ⊕ Reg [si] probes which
are given as di probes to the HPC2 simulator, and the sd−1 probe which is generated
as specified by the gadget. Other probes are strictly less powerful and are thus ignored
wlog. Simulation of ci probes is then done by generating the si randomness and using
the ci from the HPC2 simulator. Finally, simulation of outputs ci where i belongs to the
set I of input share indexes required is done as follows: if all intermediate variables in ci

have already been simulated by the HPC2 simulator, perform as specified by the gadget.
Otherwise, generate a fresh random variable.

We now discuss correctness of the simulation of ci’s (correctness for si’s is trivial and
for other variables it is a direct consequence of the correctness of the HPC2 simulator).

If there is a probe on sd−1, then there are at most d− 2 other probes. In that case,
in the sum computing di, either di or di ⊕ Reg [si] is probed (and simulation of ci is
trivially correct), or at most d− 2 random rij are observed, since no probe except di and
di ⊕ Reg [si] can observe more than one rij at once. Therefore, at least one rij appearing
as a term in the ci expression is fresh (i.e. not observed except through ci), thus simulation
is correct. Otherwise, if di nor di ⊕ Reg [si] is probed, si is fresh and therefore simulation
is correct.

Constructions. Similarly to the transitions-only case, we have two approaches. One uses
trivial composition (which increases the latency of the multiplication by one cycle and
increases the randomness requirements) based on the HPC1 gadget and Corollary 1. The
other one is based on an optimized composition (Corollary 2) which proves that the HPC
implementations [CGLS20] are glitch+transition-robust probing secure, since, in addition
to the discussion of Section 5.3.3, the multiplication gadgets are glitch+transition-robust
PINI (they are pipeline and glitch-robust PINI).

6 Performance
As a preliminary performance evaluation, we compare the strategies introduced in this work
with a naive implementation based on the DOM-indep [GMK16] multiplication gadget.
First, we give in Table 1 the amount of gates, the randomness usage and the latency for
each of the multiplication gadgets. We can see the overhead in the number of gates of
O-PINI1/O-PINI2 over HPC2 is limited while O-PINI2 significantly increases the latency
over HPC2. All the gadgets have a throughput of 1 multiplication per cycle when the
pipeline is full.
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Table 2: Masked PRESENT implementation in 65 nm technology with various AND
gadgets. The same data is presented in Figure 7 (Appendix A).

Area (kGE) Randomness usage (bits)
DOM HPC2 O-PINI1 O-PINI2 DOM/HPC2 O-PINI1/O-PINI2

d = 2 27.9 31.1 31.6 33.2 2304 4608
d = 4 63.4 78.9 80.3 83.5 13 824 20 736
d = 6 107 142 145 150 34 560 46 080
d = 8 159 224 227 234 64 512 80 640

Next, we consider the example of an implementation of the PRESENT [BKL+07]
block cipher, implemented with 18 parallel S-boxes (16 for the datapath and 2 for the key
schedule), which maximizes the cost (in area and latency) differences between the imple-
mentations. The architecture of the implementation is the one of Cassiers et al. [CGLS20],
where the multiplication gadget is changed (along with necessary control signals and
randomness buses). The analyzed metrics are the area and the randomness requirements
(Table 2), as well as the latency: 64 cycles for DOM, 96 cycles for HPC2/O-PINI1 and
160 cycles for O-PINI2.

We observe first that the HPC2 strategy has significant advantages in randomness
and latency over OPINI1/2, hence it is best for cases where the security proof applies
(such as an SPN implementation). Second, in cases the HPC2 cannot be used, OPINI1
and OPINI2 have similar performance, except for latency (OPINI2 is 67 % worse than
OPINI1). This latency cost can however be amortized if the implementations manage
to better fill the gadget’s pipeline. Third, as already observed in [CGLS20], the HPC2
strategy has a 10–40 % increase in area and up to 50 % increase in latency over DOM.
DOM can be seen as a lower bound for any ISW-based multiplication gadget, even though
it has no composability guarantees, and thus the full implementation is not proven to be
secure in the robust probing model.

Remark The O-PINI1 and O-PINI2 gadgets only work in F2 (otherwise they are not glitch-
robust), since they are based on HPC2. It is possible to build a variant of these gadgets,
replacing HPC2 by HPC1 in the constructions, while keeping the same security properties
and proofs. These variants work in larger fields Fq, and they have a lower gate count than
O-PINI1/O-PINI2, while increasing slightly the randomness requirement.

7 Conclusion and open problems
We have shown that some state-of-the-art trivial composition strategies for hardware
masking that are secure in the glitch-robust probing model (i.e. the ones based on the
HPC1 and HPC2 multiplication gadgets [CGLS20]) are also secure against glitches and
transitions combined when all adjacent executions of those multiplication gadgets are in
parallel. In this common case, security against transitions (and their interactions with
glitches) has zero cost in performance for the masked implementation. With such low
overheads, a security proof in a practically-relevant model can only be an asset.

More generally, we observe that the implementation guidelines to prevent transition-
based leakages that our formal analysis provides are in line with standard strategies
to implement (masked) SPNs. In such ciphers, non-share-isolating gadgets (e.g. the
S-boxes) are typically found in parallel inside a round. Furthermore, S-boxes are usually
implemented as pipelines, meaning that the iterated transition-robustness is not an issue.
As a result, if a full cycle is devoted to the permutation layer, or if the S-box has a latency
of more than one cycle, S-box executions across rounds are not adjacent, meaning that the
construction satisfies some of the requirements for our composition theorems. Formalizing
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this security guarantee for S-boxes that might not be PINI is an interesting open problem.
Analyzing the possible vulnerabilities that may appear when S-box executions across
rounds are adjacent would be an interesting direction as well.

A natural extension of our work would be to apply the proposed techniques to software
implementations. While recent works on masked software implementations started to
take into account the impact of glitches and/or transitions [BDM+20, BGG+20], they use
rather high-level abstractions and the lower level modeling of physical defaults we propose
could lead to improving both the soundness of these high-level analyses and the efficiency
of masked designs with security against glitches and/or transitions. Leveraging an open
source (e.g. RISC-V) MCU would be particularly relevant for this purpose. Whether some
design ideas used in our hardware gadgets could lead to solutions for software masking is
another interesting scope for further research.
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Figure 7: PRESENT implementation with various AND masked gadgets.
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