
CacheQuote: Efficiently Recovering Long-
term Secrets of SGX EPID via Cache Attacks

September 11th 2018

CHES, Amsterdam, The Netherlands

Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth,
Daniel Genkin, Nadia Heninger, Ahmad Moghimi,

and Yuval Yarom

1

https://tches.iacr.org/index.php/TCHES/article/view/879/831

Intel Software Guard Extensions

2

Mail

Data …

1. Set of instructions aiming to guarantee confidentiality and integrity of
applications that run inside untrusted environments.

2. Protects enclaves of code and data.

Enclaves

• Enclaves are isolated from the software
running on the computer.

• SGX controls the entry to and exit from
enclaves.

3

A Enclave
code data

Application

OS

Remote attestation: EPID

4

Client

Intel Attestation
Service

quote

Verification by
Intel

Shared secret

Trust me !Intel
SGX

EPID key

Trust is based on the EPID key!
Why need IAS ? Revocation !
All quotes are encrypted by SGX.

Unlinkability

impossible to identify the platform that
produced a signature on some message 𝑚.

5

Unforgeability

impossible for an attacker to forge a valid
signature on some previously-unsigned
message, without knowing a non-revoked secret
key.

6

σm

NO!

Our results

• First cache attacks on Intel’s EPID protocol
implemented inside SGX.

• Recover part of the enclave’s long term secret
key.

• Malicious attestation server (Intel) can break
the unlinkability guarantees of SGX’s remote
attestation protocol.

7

EPID: setup

• An issuer:

• A revocation manager:

• A platform:

• A verifier:

8

EPID: algorithms

9

m, sk

Yes/No

Setup

Join

Sign

Verify

σ

(𝑔𝑝𝑘, 𝑖𝑠𝑘)

(𝑔𝑝𝑘, 𝑖𝑠𝑘)
𝑠𝑘

1𝑘

issuer

platform

platform Client

Verifier

Verifier

platform

σ

The signing algorithm

• Secret key: 𝑓 + Intel’s signature on 𝑓

• Randomly choose: 𝐵 ∈ 𝐺 and compute
𝐾 ≔ 𝐵𝑓

• How to sign ?

Non-interactive zero knowledge proof of knowledge:

“I know an unrevoked f such that 𝐾 ≔ 𝐵𝑓”

• Requires computing 𝐴𝑟 , where 𝐴 is some value.

• Signature 𝜎 has the values K, B and s ← 𝑟 + 𝐻𝑓

10

Attack idea

• Recover side-channel information about the
length of the nonce 𝑟 from 𝐴𝑟 .

• After many observations, use length data to
mount a lattice attack to recover the value of 𝑓.

• Break unlinkability.

11

How unlinkability is broken?

• 𝑓 is unique per platform and private.

• The attacker knowns a signature 𝜎 =
𝐾, 𝐵, … on some message 𝑚 and 𝑓.

• He can check if 𝐾 = 𝐵𝑓.

• If yes, then the signature was issued by the
platform whose key is 𝑓.

12

CPU vs memory

Caches are used to bridge the
gap.

• Divides memory into lines

• Stores recently used lines

• In a cache hit, data is
retrieved from the cache

• In a cache miss, data is
retrieved from memory and
inserted to the cache

Processor

Memory

Cache

13

The Prime+Probe Attack

• Allocate a cache-sized
memory buffer

• Prime: fills the cache with
the contents of the buffer

• Probe: measure the time
to access each cache set

– Slow access indicates
victim access to the set

Memory
14

In our attack

• The signing algorithm requires computing 𝐴𝑟 .

• Exponentiation uses some variant of square
and multiply with fixed windows of bits.

• Quoting enclave recodes the nonce 𝑟 to have
fewer non-zero bits.

15

Scalar multiplication algorithm
MultPoint(point 𝑃, window size 𝑤 , scalar r):
Initialize 𝑃 ∶ 𝑃0 ← 𝑂
For 𝑖 ← 1 to 2𝑤−1 do:

𝑃𝑖 ← 𝑃 ⋅ 𝑃𝑖−1
𝑖 ← max(𝑗 ∶ 𝑟𝑗 ≠ 0)

𝑠 ← 𝑃𝑟𝑖
𝑖 ← 𝑖 − 1
While 𝑖 ≥ 0 do:

s ← 𝑟2
𝑤

s ← 𝑠 ⋅ 𝑃𝑟𝑖
𝑖 ← 𝑖 − 1

End while
Output: 𝑠

16

Main loop

𝑤 squaring operations

Start with MSB ≠ 0

Multiplication with
precomputed value 𝑃𝑟𝑖
(selected in constant-time)

• Scalar of length 256 bits recoded scalar of length 52 51
loop iterations.

• Bits 256 and 255 are 0 recoded scalar of length 51 50 loop
iterations.

Counting loops

17

• One period corresponds to one loop iteration.
• Number of periods gives us information on the number of

iterations.

• Monitor cache access patterns during the computation of the main
loop.

A lattice attack

Side channel information about the length of 𝑟.

Goal: Solve for 𝑓.

• Many samples 𝑠, 𝐻 𝑖 such that:

𝑠 ≡ 𝑟 + 𝐻𝑓 mod 𝑝

• Information about the number 𝑙𝑖 of most significant
zero bits in 𝑟𝑖.

• We learn 𝑠𝑖 −𝐻𝑖𝑓 = |𝑟𝑖| <
𝑝

2𝑙𝑖

hidden number problem and obtain f.
18

Recovering f

19

10 600 signatures required if only using 49-loop samples to get 37 error-free samples.

• Use samples of different loop lengths

• Reduce the number of signatures with manual inspection: less than 7 500 observed
signatures to obtain enough 49-loop observations for a full key recovery.

Conclusion

• We finally have f.

• Limitations: we can’t run the attack ourselves as
all the EPID signatures are encrypted with Intel’s
public key !

• A malicious Intel could break the unlinkability
guarantee.

• Thank you !

20

21

Thank you !

Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia Heninger,
Ahmad Moghimi, and Yuval Yarom

CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache Attacks

Key recovery with the hidden number problem

22

In our experiments, 8000 signatures necessary to enough error-free samples
for key recovery.

Recoding the nonces
• Non-adjacent form (NAF) encoding:

a. no two sequential non-zero digits.
b. signed digits

• Example:
a. binary: (0,1,1,1) = 22 + 21 + 20 = 7
b. 2-NAF: (1,0,0,−1) = 23 − 20 = 7

• Generalization to w-NAF: work in base 2𝑤 .
• The quoting enclave recodes the scalar 𝑟𝑓 using some variant of w-

NAF.
𝑟𝑓 = 𝑟1,⋯ 𝑟𝑛 s.t.:

1. 𝑟𝑓 = σ𝑖 2
𝑤 ⋅𝑖 𝑟𝑖

2. −2𝑤 − 1 ≤ 𝑟𝑖 ≤ 2𝑤 − 1.

• Example: 0, 0, 1, −25 = 25⋅1 ⋅ 1 + 25⋅0 ⋅ −25 = 7

23

