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Intel Software Guard Extensions
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Mail

Data …

1. Set of instructions aiming to guarantee confidentiality and integrity of 
applications that run inside untrusted environments.

2. Protects enclaves of code and data.



Enclaves

• Enclaves are isolated from the software 
running on the computer.

• SGX controls the entry to and exit from 
enclaves.

3

A Enclave
code data

Application

OS



Remote attestation: EPID
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SGX
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Trust is based on the EPID key!
Why need IAS ? Revocation !
All quotes are encrypted by SGX.



Unlinkability

impossible to identify the platform that 
produced a signature on some message 𝑚.
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Unforgeability

impossible for an attacker to forge a valid 
signature on some previously-unsigned 
message, without knowing a non-revoked secret 
key.
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Our results

• First cache attacks on Intel’s EPID protocol 
implemented inside SGX.

• Recover part of the enclave’s long term secret 
key.

• Malicious attestation server (Intel) can break 
the unlinkability guarantees of SGX’s remote 
attestation protocol.
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EPID: setup 

• An issuer: 

• A revocation manager:

• A platform:

• A verifier:
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EPID: algorithms
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The signing algorithm

• Secret key: 𝑓 + Intel’s signature on 𝑓

• Randomly choose: 𝐵 ∈ 𝐺 and compute
𝐾 ≔ 𝐵𝑓

• How to sign ? 

Non-interactive zero knowledge proof of knowledge: 

“I know an unrevoked f such that 𝐾 ≔ 𝐵𝑓” 

• Requires computing 𝐴𝑟 , where 𝐴 is some value.

• Signature 𝜎 has the values K, B and s ← 𝑟 + 𝐻𝑓
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Attack idea

• Recover side-channel information about the 
length of the nonce 𝑟 from 𝐴𝑟 .

• After many observations, use length data to 
mount a lattice attack to recover the value of 𝑓.

• Break unlinkability.
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How unlinkability is broken?

• 𝑓 is unique per platform and private.

• The attacker knowns a signature 𝜎 =
𝐾, 𝐵, … on some message 𝑚 and 𝑓.

• He can check if 𝐾 = 𝐵𝑓.

• If yes, then the signature was issued by the 
platform whose key is 𝑓.
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CPU vs memory

Caches are used to bridge the 
gap.

• Divides memory into lines

• Stores recently used lines

• In a cache hit, data is 
retrieved from the cache

• In a cache miss, data is 
retrieved from memory and 
inserted to the cache

Processor

Memory

Cache
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The Prime+Probe Attack

• Allocate a cache-sized 
memory buffer

• Prime: fills the cache with 
the contents of the buffer

• Probe: measure the time 
to access each cache set

– Slow access indicates 
victim access to the set

Memory
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In our attack

• The signing algorithm requires computing 𝐴𝑟 .

• Exponentiation uses some variant of square 
and multiply with fixed windows of bits.

• Quoting enclave recodes the nonce 𝑟 to have 
fewer non-zero bits. 
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Scalar multiplication algorithm
MultPoint(point 𝑃, window size 𝑤 , scalar r):
Initialize 𝑃 ∶ 𝑃0 ← 𝑂
For 𝑖 ← 1 to 2𝑤−1 do:

𝑃𝑖 ← 𝑃 ⋅ 𝑃𝑖−1
𝑖 ← max(𝑗 ∶ 𝑟𝑗 ≠ 0)

𝑠 ← 𝑃𝑟𝑖
𝑖 ← 𝑖 − 1
While 𝑖 ≥ 0 do:

s ← 𝑟2
𝑤

s ← 𝑠 ⋅ 𝑃𝑟𝑖
𝑖 ← 𝑖 − 1

End while
Output: 𝑠
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Main loop

𝑤 squaring operations

Start with MSB ≠ 0

Multiplication with 
precomputed value 𝑃𝑟𝑖
(selected in constant-time)

• Scalar of length 256 bits          recoded scalar of length 52           51 
loop iterations.

• Bits 256 and 255 are 0          recoded scalar of length 51            50 loop 
iterations.



Counting loops
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• One period corresponds to one loop iteration.
• Number of periods gives us information on the number of 

iterations.

• Monitor cache access patterns during the computation of the main
loop.



A lattice attack

Side channel            information about the length of 𝑟.

Goal: Solve for 𝑓.

• Many samples 𝑠, 𝐻 𝑖 such that:

𝑠 ≡ 𝑟 + 𝐻𝑓 mod 𝑝

• Information about the number 𝑙𝑖 of most significant 
zero bits in 𝑟𝑖.

• We learn 𝑠𝑖 −𝐻𝑖𝑓 = |𝑟𝑖| <
𝑝

2𝑙𝑖

hidden number problem and obtain f.
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Recovering f
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10 600 signatures required if only using 49-loop samples to get 37 error-free samples.

• Use samples of different loop lengths

• Reduce the number of signatures with manual inspection: less than 7 500 observed 
signatures to obtain enough 49-loop observations for a full key recovery.



Conclusion

• We finally have f.

• Limitations: we can’t run the attack ourselves as 
all the EPID signatures are encrypted with Intel’s 
public key !

• A malicious Intel could break the unlinkability
guarantee.

• Thank you !
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Thank you !

Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia Heninger, 
Ahmad Moghimi, and Yuval Yarom
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Key recovery with the hidden number problem
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In our experiments, 8000 signatures necessary to enough error-free samples 
for key recovery.



Recoding the nonces
• Non-adjacent form (NAF) encoding: 

a. no two sequential non-zero digits.
b. signed digits

• Example:
a. binary: (0,1,1,1) = 22 + 21 + 20 = 7
b. 2-NAF: (1,0,0,−1) = 23 − 20 = 7

• Generalization to w-NAF: work in base 2𝑤 .
• The quoting enclave recodes the scalar 𝑟𝑓 using some variant of w-

NAF.
𝑟𝑓 = 𝑟1,⋯ 𝑟𝑛 s.t.:

1. 𝑟𝑓 = σ𝑖 2
𝑤 ⋅𝑖 𝑟𝑖

2. −2𝑤 − 1 ≤ 𝑟𝑖 ≤ 2𝑤 − 1.

• Example: 0, 0, 1, −25 = 25⋅1 ⋅ 1 + 25⋅0 ⋅ −25 = 7
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