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Abstract. White-box cryptography attempts to protect cryptographic secrets in
pure software implementations. Due to their high utility, white-box cryptosystems
(WBC) are deployed by the industry even though the security of these constructions
is not well defined. A major breakthrough in generic cryptanalysis of WBC was
Differential Computation Analysis (DCA), which requires minimal knowledge of the
underlying white-box protection and also thwarts many obfuscation methods. To
avert DCA, classic masking countermeasures originally intended to protect against
highly related side-channel attacks have been proposed for use in WBC. However,
due to the controlled environment of WBCs, new algebraic attacks against classic
masking schemes have quickly been found. These algebraic DCA attacks break all
classic masking countermeasures efficiently, as they are independent of the masking
order.
In this work, we propose a novel generic masking scheme that can resist both DCA
and algebraic DCA attacks. The proposed scheme extends the seminal work by Ishai
et al. which is probing secure and thus resists DCA, to also resist algebraic attacks.
To prove the security of our scheme, we demonstrate the connection between two
main security notions in white-box cryptography: probing security and prediction
security. Resistance of our masking scheme to DCA is proven for an arbitrary order of
protection, using the well-known strong non-interference notion by Barthe et al. Our
masking scheme also resists algebraic attacks, which we show concretely for first and
second-order algebraic protection. Moreover, we present an extensive performance
analysis and quantify the overhead of our scheme, for a proof-of-concept protection
of an AES implementation.
Keywords: White-box Cryptography · Boolean Masking · Non-linear Masking
· Probing Security · Prediction Security · Differential Computation Analysis ·
Algebraic Attacks

1 Introduction
Protecting secrets purely in software is a great challenge, especially if a full system compro-
mise is not simply declared out-of-scope of the security model. With fully homomorphic
encryption still complex and computationally expensive [MOO+14] and secure enclaves
being notoriously buggy at this time [VBPS17,MIE17,BMW+18], industry may opt for
white-box cryptosystems (WBC) or even be required to do so by industry standards
like EMVCo [Pay,BBF+19]. White-box cryptography promises implementation security
of cryptographic services in pure software solutions, mainly by protecting keys and in-
termediate cipher states through layers of obfuscation. While white-box cryptography
is successfully sold by several companies as one ingredient of secure software solutions
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(e.g. [Gem]), analysis of deployed solutions is lacking, as is a sound framework to analyze
white-box implementations. The white-box model assumes the cryptographic primitive
to run in an untrusted environment where the white-box adversary has complete control
over the implementation. The adversary can read and modify every memory access or
intermediate state and can interrupt the implementation at will. White-box cryptography
was introduced in 2002 by Chow et al. [CEJVO03b,CEJvO03a]. The main idea of their
scheme is to represent a cryptographic algorithm as a network of look-up tables and
key-dependent tables. In order to protect the key dependent tables, Chow et al. proposed
to use input and output encodings. Although the method provides security guarantees for
individual tables, the combinations of protected tables still leaks information [BGEC05].
In fact, all published academic proposals for WBC [Kar10,BCD06,LN05,XL09] have been
practically broken [BGEC05,DMWP10,LRDM+14,WMGP07].

Cryptanalysis of WBCs usually requires a time-consuming reverse engineering step to
surpass included obfuscation layers [GPRW19]. To overcome this, computational analysis of
white-box cryptosystems has been proposed. Computational analysis is inspired by physical
grey box attacks, mainly side-channel attacks (SCA). Computational analysis attacks, like
side-channel attacks, perform a statistical analysis of observable intermediate states of a
cryptographic implementation, e.g. via a physical side-channel [KJJ99,GST14,GMO01];
if the implementation is not protected against this kind of attack, the side-channel may
reveal critical information, usually the secret key material used. At CHES 2016, Bos et
al. [BHMT16] proposed Differential Computation Analysis (DCA) and showed that DCA
can extract keys from a wide range of different white-box implementations very efficiently,
without requiring a detailed reverse engineering of the implementation. Following this
work, further generic computational analysis techniques have been proposed for white-
box implementations, such as Zero Difference Enumeration [BBIJ17], Collision Attacks,
and Mutual Information Analysis [RW19]. Alpirez Bock et al. [BBMT18] analyzed the
ineffectiveness of internal encodings and explained why DCA works so well in the white-box
setting. Even fault attacks [BDL97,BECN+06] have been shown to be an effective method
for state and key recovery attacks on white-box implementations [BHMT16,BBB+19].
Biryukov et al. [BU18] introduced two new types of fault attacks to reveal the structure of
a white-box implementation, an important step of overcoming obfuscation in WBC.

To meet the threat of DCA and other computational analysis, masking schemes provide
a natural protection mechanism. Masking splits a sensitive variable x into n shares,
such that x can be recovered from d + 1 (n ≥ d + 1) shares, while no information can
be recovered from fewer than d + 1 shares [CJRR99b]. It is a popular and effective
countermeasure in the SCA literature. Most important examples are Boolean masking
introduced by Ishai et al. [ISW03] which has been generalized by Rivain and Prouff [RP10],
Threshold Implementations defined by Nikova et al. [NRS09], and polynomial masking as
defined in [RP12] based on Shamir’s secret sharing [Sha79]. Recently the idea of combined
countermeasures to resist both side-channel and fault attacks were introduced in the
literature [SMG16,RMB+17,SFRES18].

As an example for this methodology, we can consider the dedicated masked white-
box implementation introduced in [LKK18]. However, the implementation was broken
in [RW19]. In addition, for secure WBC, other countermeasures such as fault protection
and obfuscation layers need to be added [BU18] and additional randomness should be
included in the input [BRVW19], as internal randomness generators could be disabled by
the white-box adversary. Furthermore, higher order variants of DCA have been shown to be
effective when applied to masked white-box implementations due to the adversary’s ability
to observe shares without noise [BRVW19]. Although the noise-free environment makes
the attack easier, techniques like control flow obfuscation, input/output encodings and
shuffling [VCMKS12] create artificial noise in white-box environments [BBIJ17,BRVW19],
effectively increasing the complexity of higher order DCA significantly. More devastatingly,
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a new class of generic algebraic DCA (or in short algebraic attacks) has been proposed
recently [BU18,GPRW19]. Algebraic attacks are able to break masked WBC independently
of the masking orders if the masking is linear. Thus, all current masking proposals resisting
DCA (or in more general sense computational attacks) are vulnerable to algebraic attacks.
Only the scheme defined by [BU18] resists first-order algebraic attacks due to its non-linear
structure, but as we will show, does not resist computational attacks.

To sum up, although there exist informal ideas on how to create a secure white-box
design that can resist both computational and algebraic attacks, formal and generic
constructions with a security analysis are missing.

Our contribution: In this paper, we provide the first generic and combined masking
scheme that resists state-of-the-art white-box attacks: computational and algebraic attacks.
Classic masking schemes can be applied to WBC, however none of them can individually
achieve security against both attacks. To fill this gap, we examine the ISW transformation
introduced by Ishai et al. [ISW03] and extend it to the white-box context.

We improve the ISW transformation by adding a multiplicatively shared nonlinear share.
This additional nonlinear share provides security against algebraic attacks. The secret
sharing of our masking scheme then consists of two components: linear and non-linear
shares: Linear shares to resist computational attacks and non-linear shares to increase the
degree of the decoding function and therefore to prevent algebraic attacks. We present
the structure of generic masking that resists an arbitrary order computational and first or
second-order algebraic attacks in Section 3. To analyze the security of our construction in
Section 4, we focus on two security notions in cryptography: probing security addresses
security against computational attacks, while prediction security addresses security against
algebraic attacks. The probing model was introduced by Ishai et al. [ISW03]. Later it
was revised by Rivain et al. [RP10] to a new model called SCA security. The model
states that every tuple of n or less intermediate variables must be independent of any
sensitive variable. It was shown that an nth-order Boolean masking scheme provides
security against nth-order SCA. The complexity of computational attacks grows with the
masking order. However, the notion is not sufficient to secure a complete block cipher,
as stated in [CPRR14], thus a new and stronger notion called t-strong non-interference
(t-SNI) was defined in [BBD+16]. The stronger t-SNI notion enables the composability of
small secure gadgets to generate complex secure constructions. As stated in [BRVW19],
an nth-order masking provides security against nth-order probing attacks and nth-order
computational attacks with additional obfuscation layers.

To cover algebraic attacks, a new security notion called Prediction Security was defined
in [BU18]. The prediction security of a circuit C (with an encoding function E), is based
on the probability of an adversary (A) to accurately predict values of any single function
(of dth order) over intermediate values computed in the circuit C (composed with encoding
E). The aim of such a prediction is to distinguish two sequences of plaintexts (chosen by
the adversary) by analyzing the corresponding software trace. For example, an nth-order
Boolean masking that is inherently protected against computational attacks is vulnerable
against first-order algebraic attacks, since the adversary can utilize a linear function (i.e. a
first-order function) and combine a subset of intermediate variables to recover the secret
value.

In this work, we further show that the probing security and prediction security notions
are incomparable. First, we prove that our masking scheme is indeed secure against
computational attacks by showing that it is secure in the probing model with the given
order using the non-interference notions by Barthe et al. [BBD+16]. We give a concrete
construction for first and second-order prediction security and prove their security. We
extend the security definitions given in [BU18] and give a novel composability proof for
the second-order prediction secure constructions. Besides the formal proofs, we verify the
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probing security of our masking scheme using the tool MaskVerif [BBC+19] for specific
orders. Furthermore, we update and use the tool produced by [BU18] to experimentally
verify the first-order prediction security of our scheme. The implementation that can be
used with MaskVerif and the updated version of the tool produced by [BU18] is available
as open source 1.

In Section 5 we introduce a proof-of-concept AES implementation to analyze the
overhead and experimentally verify the security properties of our scheme using a simple
leakage test. The analysis includes the number of needed gates and number of required
randomness for different orders of protection. We show that our combined approach
outperforms the previous approaches which required to combine two different masking
schemes to resist both attacks.

2 Preliminaries
In this section, we provide the notation and definitions used throughout this paper. We
also identify the challenges that need to be addressed for secure white-box designs.

First, we summarize the notation used throughout the paper. In the following, we use
some finite ring (K,⊕,⊗) with an addition operation ⊕ and a multiplication operation ⊗.
We often omit the multiplication symbol ⊗ and thus write xy instead of x⊗ y. Although
we introduce the notations using K, we fix K = GF(2) throughout the paper. A vector
space over K of dimension ` is denoted by K`. For a, b ∈ Z with a < b, we define
[a, b] := {a, a + 1, . . . , b − 1, b}. The letters x, y, z, . . . represent the sensitive variables.
Random variables are represented by the letter r, with an index as ri or ri. To denote a
random selection of a variable r from the field K, we use r ∈R K.

A sensitive variable x is split into n+ 1 linear shares x0, . . . , xn such that x =
⊕n

i=0 xi
and a single share (e.g. x0) split into d + 1 non-linear shares x̃0, . . . , x̃d such that x0 =∏d
j=0 x̃j . A vector of elements (x1, . . . , xn) is denoted by x. For a subset I ⊆ [0, n] of

indices, we denote by x|I = (xi)i∈I the sub-vector of shares indexed by I.
A gadget G for a function f : Ka → Kb (with regard to a masking order) is an arithmetic

circuit with a · (n + d + 1) inputs and b · (n + d + 1) outputs grouped into a vectors of
shares x(1), . . . , x(a), resp. b vectors of shares y(1), . . . , y(b). The gadget needs to be correct,
i. e. G(x(1), . . . , x(a)) = (y(1), . . . , y(b)) iff f(x(1), . . . , x(a)) = (y(1), . . . , y(b)) for all possible
inputs and for all values generated by the random gates. The values assigned to wires that
are not output wires are called intermediate variables.

As usual, we model the white-box implementations as Boolean circuits (C) represented
by directed acyclic graphs. Each node in a circuit C, with k > 0 inputs, corresponds to a
k-ary Boolean function. Nodes with the indegree equal to zero are called inputs of C and
nodes with the outdegree equal to zero are called outputs of C.

Let z be an input of C : FN2 → FM2 and x = (x1, . . . , xN ) be a vector of input nodes
in some fixed order. For each node v in C, we say that it computes a Boolean function
fv : FN2 → F2 defined as follows:

• for all 1 ≤ i ≤ N set fxi
(z) = zi,

• for all non-input nodes v in C set fv(z) = gv(fc1(z), . . . , fck
(z)), where c1, . . . , ck are

nodes having an outgoing edge to v and gv : Fk2 → F2.

The set of fv for all nodes v in C is denoted F(C), the set of fxi
for all input nodes xi

is denoted X (C), and the set of fv for all non-input nodes v in C is denoted F(C \ X ).
Recall, that any Boolean function f : Fn2 → F2 has a unique representation of the form

f(x) =
⊕

b∈Fn ab x
b1
1 . . . xbn

n , with ab ∈ F2. The (algebraic) degree of f , denoted deg(f),
1https://github.com/UzL-ITS/white-box-masking

https://github.com/UzL-ITS/white-box-masking
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is the maximum degree of a monomial xb1
1 . . . xbn

n , with ab = 1. The bias of a Boolean
function g : F`2 → F2 is represented by E(·) i.e., E(g) = |1/2− wt(g)/2`| and wt(g) is the
weight of g, i.e., the number of nonzero entries of its truth table. Bold numbers 0 and 1
are used to denote constant functions.

If V = {g1, . . . , g|V|} is a set of Boolean functions with the same domain Fn2 then
the d-th order closure of V (denoted V(d)) we call the vector space of all functions
obtained by composing any function of degree at most d with functions from V, i.e.,
V(d) contains functions of the form f ◦ (g1(x), . . . , g|V|(x)) for all f : F|V|2 → F2, with
deg(f) ≤ d. For example, F (1)(C) is spanned by {1} ∪ F(C) and F (2)(C) is spanned by
{1} ∪ {gigj | gi, gj ∈ F(C)}.

Differential Computational Analysis (DCA): The idea of using side-channel attacks to
recover critical secrets in WBC has been introduced by Bos et al. [BHMT16]. Differential
computational analysis utilizes internal states of the software execution (such as memory
accesses) to generate software traces. DCA is regarded as one of the most efficient attacks
against white-box implementations, since it does not require full knowledge of the white-box
design and thus avoids the time-consuming reverse engineering process. The first step of
DCA consists of collecting software traces consisting of memory addresses, intermediate
values, or values written/read by the implementation. The second step consists of a
statistical analysis of the software traces collected during the first step.

As before we use the term computational attacks to indicate DCA and higher order
variants of DCA. To resist computational attacks, a natural approach is to use the well-
known side-channel analysis countermeasure masking [CJRR99b]. Masking is carried out
in two steps as defined in the seminal work by Ishai, Sahai, and Wagner in 2003 [ISW03].
First, input data is transformed by representing each input x by n+ 1 shares in such a
way that

x = x0 ⊕ · · · ⊕ xn,

where x ∈ F2 and n of the shares are distributed uniformly and independently. Additionally,
the circuit is adapted by replacing all AND and XOR gates with gadgets processing the
shares of the inputs. Throughout the paper, the data and gate transformation will be
defined as ISW transformation.

Masking schemes rely on the availability of good randomness, which is usually pro-
vided by secure RNGs, e.g. in the form of a secure and efficient Pseudorandom Genera-
tor [IKL+13,CGZ19]. Similarly, randomness generation for white-box implementations has
been analyzed in the literature. Due to the adversarial ability to control the execution envi-
ronment in the white-box model, the attacker can simply disable any external randomness
sources. Therefore, white-box implementations have to rely on internal randomness sources
in combination with additional obfuscation countermeasures [BBIJ17,BU18,BRVW19].

The effectiveness of computational attacks comes from its universality and its ability
to avoid reverse-engineering, which can be extremely costly [GPRW19]. By combining
masking with an obfuscation layer, the adversary is thus again forced to do a time-
consuming reverse engineering step to bypass the obfuscation, while the masking prevents
obfuscation-oblivious attacks such as DCA.

Algebraic Attacks: Algebraic attacks have been introduced during the WhibOx contest
of CHES2017 [Con]. Although the majority of the implementations in the contest were
broken in less than one day, even the strongest design (by means of the surviving time:
28 days) was broken by algebraic analysis [BU18,GPRW19]. Algebraic attacks try to
find a set of circuit nodes whose dth-order of combination equals to a predictable vector.
Observe that if an implementation is protected by a linear masking, there exists a set of
circuit nodes (corresponding to the secret shares) such that a linear combination (i.e. the
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first-order combination) is always equal to a predictable secret value. This means that
linear masking is inherently vulnerable to first-order algebraic attacks independently of
the masking order [BU18,GPRW19]. Like computational attacks, algebraic attacks do
not require complex reverse engineering and are thus a generic threat that any white-box
implementation needs to address.

Another challenge for secure white-box implementation is the adversaries’ ability to col-
lect noise-free measurements. The security of masking schemes against side-channel attacks
or computational attacks requires noisy observations [CJRR99a]. To deal with this problem,
artificial noise sources such as control flow obfuscation [BBIJ17], shuffling [BRVW19], and
input and output encodings [BBMT18] have been analyzed in the literature. The artificial
noise introduced by these methods increases the complexity of computational attacks
dramatically. It has been shown in [BRVW19] that the complexity of attacks increases
with the order of the masking and the order of the obfuscation layers. Therefore, the
probing model is a valid approach to analyze the security of masking schemes of white-box
implementations against computational attacks. Due to the artificial noise sources, it
becomes infeasible for an attacker to combine the required number of shares to recover
the sensitive information. Throughout the paper we assume a reliable randomness source
is provided as part of the implementation, in other words, randomness can be provided
via pseudorandom values derived from the input and protected by obfuscation layers,
as done in [BBIJ17, BU18,RW19]. Therefore, the attacks on randomness sources and
the adversaries’ ability to disable randomness are out-of-scope in this work. For a full
white-box implementation, other techniques (fault protection, randomness generation,
obscurity layers) need to be added [BU18, BRVW19] in addition to a secure masking
scheme, which we introduce throughout this work.

In the next section, we introduce our masking scheme, which resists both computational
and algebraic attacks by using an adapted version of the ISW transformation.

3 Secure Masking Construction
The proposed masking scheme is based on two ideas: an ISW-like masking to increase the
number of shares required to eliminate computation attacks and using a multiplicative
sharing to increase the degree of the decoding function. We call the first part linear sharing
of order n and the second part non-linear sharing of degree d. The resulting construction
is named (n, d)-masking. We start with the data transformation and define our masking
function as:

Encode(x, x̃0, . . . , x̃d, x1, . . . , xn−1) = (x̃0, . . . , x̃d, x1, . . . , xn) ,

where x̃0, . . . , x̃d, x1, . . . , xn−1 ∈R F2 are chosen randomly and independently from F2, and

xn = x⊕
∏d
j=0 x̃j ⊕

⊕n−1
i=1 xi .

Observe that our masking scheme is obtained from the ISW transformation by replacing
the first share x0 in ISW by a non-linear sharing x0 =

∏d
j=0 x̃j . The unmasking function is

defined as follows:

Decode(x̃0, . . . , x̃d, x1, . . . , xn) =
∏d
j=0 x̃j ⊕

⊕n
i=1 xi.

The data transformation is followed by the transformations of each AND and XOR
gate. Throughout the paper, we define the transformed gates as And and Xor (or And[n, d]
and Xor[n, d]) gadgets respectively.
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3.1 Gate Transformations
In this section the generic constructions for the Xor and And gadgets are presented.
Additionally, we provide definition of the RefreshMask gadget, which is needed to protect
against algebraic attacks. The scheme can be used for an arbitrary order n of linear
masking and any degree d of the non-linear component. Though the constructions are
general, the algebraic security depends on the variable structure (details can be found in
Section 4). Depending on the non-linear degree d, the following intermediate variables
need a special structure:

• The intermediate variable U used in Xor and specified in Equation (1),

• The intermediate variables rj,0 in Equation (2), used in And,

• The intermediate variables W and R used in RefreshMask, Equation (3).

In the following descriptions we first introduce the functionalities of these variables
which can be defined for arbitrary orders of n and d. Afterwards, we will show the
computational structure of these variables for d = 1 and d = 2.

Let x and y be two bits and consider an (n, d)-masking scheme, i.e. x and y have been
split into (n+ d+ 1) shares such that

∏d
j=0 x̃j ⊕

⊕n
i=1 xi = x and

∏d
j=0 ỹj ⊕

⊕n
i=1 yi = y.

Xor[n, d] Gadget: A masked representation of z = x⊕ y with n+ d+ 1 shares such that∏d
j=0 z̃j ⊕

⊕n
i=1 zi = z can be calculated as follows:

Step 0: The input shares are processed by RefreshMask gadgets;

x← RefreshMask(x) and y ← RefreshMask(y).

Step 1: The values of the non-linear shares are processed:

z̃i = x̃i ⊕ ỹi for 0 ≤ i ≤ d.

Step 2: Computation of linear shares:

zi =
{
xi ⊕ yi, for 1 ≤ i < n

xi ⊕ yi ⊕ U , for i = n.

where the functionality of U is defined as follows:

U =
⊕

I({0,...,d}
I 6=∅

∏
i∈I x̃i

∏
j 6∈I ỹj (1)

Moreover, we can introduce the computational structure of U for a secure masking
scheme as follows:

• Xor[n, 1]: U = x̃0ỹ1 ⊕ x̃1ỹ0

• Xor[n, 2]: U = x̃1(x̃2ỹ0 ⊕ ỹ2(x̃0 ⊕ ỹ0))⊕ ỹ1(x̃2ỹ0 ⊕ x̃0(x̃2 ⊕ ỹ2))
• Xor[n, d] for d ≥ 3, the functionality of U can be defined as in Equation (1).

However the computational structure should be described carefully in order not
to create vulnerabilities in algebraic security.
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Algorithm 1 Xor(x, y)
Input: The shares x = ((x̃j)j∈[0,d], (xi)i∈[1,n]) and y = ((ỹj)j∈[0,d], (yi)i∈[1,n]).
Output: The shares of x⊕ y as z = ((z̃j)j∈[0,d], (zi)i∈[1,n]).
1: x← RefreshMask(x)
2: y ← RefreshMask(y)
3: for 0 ≤ j ≤ d do
4: z̃j ← x̃j ⊕ ỹj
5: for 1 ≤ i < n do
6: zi ← xi ⊕ yi
7: zn ← xn ⊕ yn ⊕ U
8: return z̄ = ((z̃j)j∈[0,d], (zi)i∈[1,n])

And[n, d] Gadget: A masked representation of z = xy with n+ d+ 1 shares such that∏d
j=0 z̃j ⊕

⊕n
i=1 zi = z can be calculated as follows:

Step 0: The input shares are processed by RefreshMask gadgets;

x← RefreshMask(x) and y ← RefreshMask(y).

Step 1: The calculations of the values with multiplicative representation are processed.
Additional random bits ri,j are generated in order to attain algebraic security in the
second step.

z̃i = x̃iỹi′ ⊕ ri,1 ⊕ · · · ⊕ ri,n for 0 ≤ i ≤ d where i′ = i+ 1 mod(d+ 1).

Step 2: The variables rj,i for 0 ≤ i < j ≤ n are generated as follows:

rj,i =
{

(ri,j ⊕ (x̃0 · · · x̃d)yj)⊕ xj(ỹ0 · · · ỹd), for i = 0 (a)
(ri,j ⊕ xiyj)⊕ xjyi, for 1 ≤ i ≤ n where ri,j ∈R F2 (b) ,

The calculations for 1 ≤ i ≤ n are processed as identical to the ISW-And gadget.
However, for i = 0 the calculations require a special computational structure:

rj,0 = [r0,j ⊕ (x̃0 · · · x̃d)yj ]⊕ xj(ỹ0 · · · ỹd) for 1 ≤ j ≤ n. (2)

Observe that ri,j for 1 ≤ i < j ≤ n is assigned a uniformly random value. However,
r0,j cannot be assigned as random. Instead, r0,j should be defined in such a way
that the following equation holds:

n⊕
j=1

r0,j =
⊕

I⊂{0,...,d}
I 6=∅

∏
i∈I x̃iỹi′

∏
j 6∈I(rj,1 ⊕ · · · ⊕ rj,n) where i′ = i+ 1 mod(d+ 1).

Throughout the paper we denote the right-hand side of the above equation as V . Note
that the above functionality for rj,0 (given on the right-hand side of Equation (2)) is
not secure against an algebraic attack, even if it is only a first-order one. Below we
provide a secure computational structure for the case of an (n, 1) and (n, 2)-masking.

• And[n, 1] : rj,0 = x̃1(x̃0yj ⊕ r0,j ỹ0)⊕ ỹ1(ỹ0xj ⊕ r1,j x̃0)⊕ r1,j(r0,1 ⊕ . . .⊕ r0,n).
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Algorithm 2 And(x, y)
Input: The shares x = ((x̃j)j∈[0,d], (xi)i∈[1,n]) and y = ((ỹj)j∈[0,d], (yi)i∈[1,n]).
Output: The vector of shares of xy as z = ((z̃j)j∈[0,d], (zi)i∈[1,n]).
1: x← RefreshMask(x)
2: y ← RefreshMask(y)
3: for 0 ≤ i ≤ d do
4: z̃i = x̃iỹi′ . i′ = i+ 1 mod(d+ 1)
5: for 1 ≤ j ≤ n do
6: ri,j ← rand(0, 1)
7: z̃i = z̃i ⊕ ri,j

8: for 0 ≤ i ≤ n do
9: for i < j ≤ n do
10: if i = 0 then
11: rj,0 ← as described in the text.
12: else
13: ri,j ← rand(0, 1)
14: rj,i ← (ri,j ⊕ xiyj)⊕ xjyi
15: for 1 ≤ i ≤ n do
16: zi ← xiyi
17: for 0 ≤ j ≤ n and j 6= i do
18: zi ← zi ⊕ ri,j . Denoted by zi,j
19: return z = ((z̃j)j∈[0,d], (zi)i∈[1,n])

• And[n, 2] : rj,0 = x̃0
[
x̃2(x̃1yj ⊕ r0,j ỹ0)⊕ r1,jvỹ1

]
⊕

ỹ0
[
ỹ1(ỹ2xj ⊕ r1,j x̃2)⊕ r0,jux̃2

]
⊕

x̃0ỹ1(r1,j x̃2ỹ0 ⊕ r2,j x̃1ỹ2)⊕ r0,j x̃1ỹ2(v ⊕ x̃2ỹ0)⊕
x̃2ỹ0(r0,j x̃0 ⊕ r1,j ỹ1)⊕ uvr0,j .

where u = r1,1 ⊕ · · · ⊕ r1,n and v = r2,1 ⊕ · · · ⊕ r2,n.
• And[n, d] for d ≥ 3 the circuit nodes that calculates rj,0 should be structured in

such a way that algebraic security properties are satisfied.

Step 3: The final step can be performed identical to an ISW-And gadget: For every
1 ≤ i ≤ n, compute zi = xiyi ⊕

⊕
i6=j ri,j .

RefreshMask[n, d] Gadget: This operation has a crucial importance for generating an
algebraically secure implementation. In fact, it has to be combined with each Xor and And
gadget in order to obtain a fully secure masking scheme. The security details can be found
in Section 4.

Step 1: For 0 ≤ i ≤ d, calculate x̃′i = x̃i ⊕ r̃i where r̃i ∈R F2.

Step 2: First initialize x′i ← xi for all i ∈ [1, n] and for 1 ≤ i < j ≤ n, calculate
x′i = x′i ⊕ ri,j and x′j = x′j ⊕ ri,j where ri,j ∈R F2.

Step 3: In the last step we sample r0 ∈R F2 and define two intermediate variables as
follows:

W ′ =
⊕

I({0,...,d}

∏
i∈I x̃i

∏
j 6∈I r̃j and W =

⊕
I({0,...,d}

I 6=∅

∏
i∈I(x̃i ⊕ r0)

∏
j 6∈I r̃j ,
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Algorithm 3 RefreshMask(x)
Input: The shares x = ((x̃j)j∈[0,d], (xi)i∈[1,n])
Output: The shares x = ((x̃′j)j∈[0,d], (x′i)i∈[1,n])
1: for 0 ≤ j ≤ d do
2: r̃j ← rand(0, 1)
3: x̃′j ← x̃j ⊕ r̃j
4: for 1 ≤ i ≤ n do x′i ← xi

5: for 1 ≤ i ≤ n do
6: for i+ 1 ≤ j ≤ n do
7: ri,j ← rand(0, 1)
8: x′i ← x′i ⊕ ri,j . Denoted by ai,j
9: x′j ← x′j ⊕ ri,j . Denoted by bj,i
10: r0 ← rand(0, 1) . r0 is used to compute W and R
11: x′n ← x′n ⊕W ⊕R
12: return (((x̃′j)j∈[0,d], (x′i)i∈[1,n])

Here, as usual, a product over the empty set I is evaluated as 1. Using the above
equations we define the variable R =W ⊕W ′. Now, we can introduce the variables
that need to be added to the final share xn as:

x′n ← x′n ⊕W ⊕R where R =W ′ ⊕W. (3)

Remark that we cannot directly add W ′ to the final share xn due to algebraic security
properties. Therefore, the variables W and R should be added to the final share in order
to define an algebraically secure mask refreshing gadget. The computational structure of
the circuit nodes to calculate W and R for RefreshMask[n, 1] and RefreshMask[n, 2] can
be found below.

• RefreshMask[n, 1] :W = r̃0(x̃1 ⊕ r0)⊕ r̃1(x̃0 ⊕ r0) and R = (r̃0 ⊕ r0)(r̃1 ⊕ r0)⊕ r0.

• RefreshMask[n, 2] :W = [r̃2(x̃0 ⊕ r0)][r̃1 ⊕ (x̃1 ⊕ r0)]⊕ [r̃1(x̃2 ⊕ r0)][r̃0 ⊕ (x̃0 ⊕ r0)]⊕
[r̃0(x̃1 ⊕ r0)][r̃2 ⊕ (x̃2 ⊕ r0)]

R = (r̃0 ⊕ r0)(r̃1 ⊕ r0)(r̃2 ⊕ r0)⊕
r0 [r̃2(x̃0 ⊕ r0)⊕ r̃1(x̃0 ⊕ r0)⊕ r̃0(x̃1 ⊕ r0)]⊕
r0 [r̃2(x̃1 ⊕ r0)⊕ r̃1(x̃2 ⊕ r0)⊕ r̃0(x̃2 ⊕ r0)] .

• RefreshMask[n, d] for d ≥ 3 the circuit nodes that calculate W and R should be
constructed in such a way that algebraic security properties are satisfied.

3.2 Correctness and Performance Analysis
Next, we introduce the transformation T(n,d) to generate a Boolean circuit that is protected
by an (n, d)-masking scheme by using the gadgets described in Section 3.1. The following
lemma summarizes the correctness of the transformation T(n,d).

Lemma 1. Let us denote the Boolean circuit C initialized with data D by C[D]. The
transformation T(n,d) : C[D] 7→ C ′[D′] where C ′ uses And, Xor, RefreshMask gadgets
and Encoding, Decoding functions described in Section 3 with randomness gates is a
functionality preserving transformation, i.e. C[D] and C ′[D′] have the same input-output
behavior.
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Table 1: The number of bitwise operations in a masked Xor, And and RefreshMask (or
RefM in short) gadget. Remark that (n, 0)-masking scheme corresponds to ISW gadgets.
The last part of the table corresponds to the overhead of (n, d)-masking scheme compared
to the ISW transformation.

Xor And Randomness
Xor[n, 0] n+ 1 - -
And[n, 0] 2n(n+ 1) (n+ 1)2 n(n+ 1)/2
RefM[n, 0] n(n− 1) - n(n− 1)/2
Xor[n, 1] n+ 4 2 -
And[n, 1] 2n2 + 5n− 1 n2 + 7n+ 2 n(n+ 3)/2
RefM[n, 1] n(n− 1) + 8 3 (n(n− 1)/2) + 2
Xor[n, 2] n+ 9 6 -
And[n, 2] 2n2 + 15n− 2 n2 + 27n+ 3 n(n+ 5)/2
RefM[n, 2] n(n− 1) + 26 16 (n(n− 1)/2) + 3
Xor[n, d] n+ d+ 2 + Ux Ua -
And[n, d] n(2n+ d− 1) + Vx n2 + d+ 1 + Va n(n+ 2d+ 1)/2
RefM[n, d] n(n− 1) + d+ 1 +Wx +Rx Wa +Ra (n(n− 1)/2) + d+ 1

Overhead
Xor[n, d] d+ 1 + Ux Ua -
And[n, d] n(2n+ d− 3) + Vx − 1 d+ Va − n nd

RefM[n, d] d+ 1 +Wx +Rx Wa +Ra d+ 1

The proof for this lemma can be found in Appendix A. In conclusion, the transformation
T(n,d) can be used to transform any circuit to an (n, d)-masked circuit in a functionality
preserving manner. Although we are using an nth order linear masking, the scheme only
provides an (n− 1)th probing security. Due to the non-linear sharing, the masking loses
one share to increase the decoding order. The algebraic security depends on the structure
of Equations (1), (2), and (3) in each gadget as discussed above. Further details can be
found in Section 4.2.

Performance Analysis: In order to compare our construction with the previous schemes,
we analyze the performance of our scheme in terms of bitwise operations and randomness
requirements. An analytical comparison of different orders and a comparison between the
ISW transformation and (n, d)-masking scheme can be found in Table 1.

In the following analysis, for simplicity, we use the symbol vertical bar (|) to separate
the number of Xor, And operations respectively. We exclude the RefreshMask gadgets
inside the Xor and And gadgets to analyze the constructions straightforwardly. Since the
structure of the special variables depends on the non-linear degree d, we use a symbolic
approach to analyze the performance numbers for the higher orders (i.e. for d ≥ 3). We
use subscripts to denote the number of operations within U , V , W , and R, e.g., Ux and Ua
represent the number of bitwise Xor, And operations within U respectively.

As seen in Table 1, the Xor gadget can be transformed efficiently. The cost of the gadget
in the ISW transformation is n+ 1 bitwise Xor operations while an (n, d)-masking requires
n+ d+ 2 bitwise Xor operations and the additional cost of the variables U . Therefore, the
cost of the Xor gadget can be calculated as; (n+ d+ 2 + Ux)|Ua.

The cost of an And gadget can be analyzed easily by comparing it step-by-step with the
ISW transformation. As seen in the construction in Section 3, the gadget can be divided
into three stages.
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• Step 1 requires n(d + 1) random bits; the cost of processing these values can be
calculated as n(d+ 1)|d+ 1.

• Step 2(a) includes the calculations of rj,0 for 1 ≤ j ≤ n. For the (n, 1) masking,
Vx = 4n and Va = 7n. Additionally, the calculations of r0,1 ⊕ . . .⊕ r0,n require n− 1
Xor operations. Similarly, for the (n, 2) masking, we get Vx = 12n and Va = 27n.
The intermediate variables u, v, and uv are calculated only once and they require
2(n− 1)|1 gates.

• Step 2(b) & Step 3 involve the calculations of rj,i for 1 ≤ i < j ≤ n, i 6= 0 and
Step 3. These parts can be processed identical to the ISW transformation and cost
2n(n− 1)|n2 gates, while the required number of random bits is n(n− 1)/2. Observe
that the cost of these parts are exactly the cost of an ISW-AND gadget with n shares.

To sum up, we express the cost of And[n, d] gadget as (n(2n+d−1)+Vx)|(n2+d+1+Va)
gates, and the required randomness as n(n+ 2d+ 1)/2.

We analyze the performance of the RefreshMask gadget using a similar methodology.
The total amount of required randomness and the number of required bitwise Xor operations
can be calculated as (n(n − 1)/2) + d + 1 and n(n − 1) + d + 1 respectively. As in the
previous gadgets, the calculations of W and R add more calculations to the structure.
The numbers for RefreshMask[n, 1] and RefreshMask[n, 2] are given in Table 1.

Using the performance analysis, we show the exact overhead of our scheme. The
numbers in the overhead section of Table 1 can be calculated by comparing the cost of
the nth-order ISW transformation with an (n, d)-masking scheme. As seen in the table,
the cost principally depends on the calculation of the values U , V, W, and R, while the
randomness is affected by the masking degrees n and d.

4 Security Against Computational and Algebraic Attacks
In this section, we prove that our proposed [n, d] masking scheme resists both computational
and algebraic attacks, up to (n−1)th order and dth order, respectively. We use the definition
of non-interference as defined in [BBD+16], which guarantees security against t probes for
t ≤ n as proposed by Ishai et al. [ISW03], and the definition of security against algebraic
attacks of order d as proposed in [BU18]. First, we recall briefly both security notions
and then we prove that our (n, d) construction is secure against probing up to order n− 1
and against algebraic attacks for d = 1 and d = 2. Remark that probing security implies
security against computational attacks of the same order, since computational attacks
correspond to side-channel attacks of the same order [BRVW19].

4.1 Security Notions
We first cover the security notions that we used to prove our security properties, starting
with probing security. Roughly speaking, in the setting of the probing model, an adversary
may invoke the (randomized) construction multiple times and adaptively choose the inputs.
Prior to each invocation, the adversary may fix an arbitrary set of t ≤ n wires of the circuit
values which can be observed during that invocation.

The security against t probes requires the existence of a simulator [ISW03]. The
simulator attempts to simulate the view of the adversary using only black-box access
(i.e., without having access to any internal wires) to the transformed circuit C ′. The
presence of a simulator (or simulatability) implies that t probes are indeed independent
of the processed data and therefore t probes will not provide any information to the
adversary. In this paper we use a more refined security model, t-non-interference (t-NI)
and t-strong non-interference (t-SNI), as defined in [BBD+16]. We use the restatements of
the definitions by Coron et al. [CGPZ16].
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Definition 1 (t-NI Security). Let G be a gadget which takes as input n + 1 shares
(xi)0≤i≤n and outputs n+ 1 shares (yi)0≤i≤n. The gadget G is said to be t-NI secure if
for any set of t1 probed intermediate variables and any subset O ⊂ [0, n] of output indices,
such that t1 + |O| ≤ t, there exists a subset I ⊂ [0, n] of input indices which satisfies
|I| ≤ t1 + |O|, such that the t1 intermediate variables and the output variables y|O can be
perfectly simulated from x|I .

Definition 2 (t-SNI Security). Let G be a gadget which takes as input n + 1 shares
(xi)0≤i≤n and outputs n + 1 shares (yi)0≤i≤n. The gadget G is said to be t-SNI secure
if for any set of t1 probed intermediate variables and any subset O ⊂ [0, n] of output
indices, such that t1 + |O| ≤ t, there exists a subset I ⊂ [0, n] of input indices which
satisfies |I| ≤ t1, such that the t1 intermediate variables and the output variables y|O can
be perfectly simulated from x|I .

The main difference between the t-NI and t-SNI security notions is that in the latter
notion the size of the input subsets I does not depend on the size of the set of probed
output shares O. Thus, the t-SNI security notion ensures input-output separation, which
is an essential component for composability of the gadgets.

Note that security in the probing model is a necessary but not a sufficient condition
for a secure white-box implementation, as probing secure implementations may still be
vulnerable to algebraic attacks. To prevent algebraic attacks, prediction security is also
necessary.

Definition 3 (Prediction Security (d-PS), [BU18]). Let C : FN ′2 × FRC
2 → FM2 be a

Boolean circuit that takes N ′-bit inputs, uses RC random bits, and produces an M -bit
output. Let E : FN2 ×FRE

2 → FN ′2 be an arbitrary function that takes N -bit input, uses RE
random bits, and produces an N ′-bit output. Consider the following security experiment
with an adversary A, an integer d ≥ 1, and a predetermined variable b ∈ {0, 1}:

Algorithm 4 PSC,E,d(A, b)
1: (f̃ , x[0], x[1], ỹ, b)← A(C,E, d) where

f̃ ∈ F (d)(C), (x[l] = (x[l]
1 , . . . , x

[l]
Q ))l∈{0,1}, x[l]

i ∈ FN2 , ỹ ∈ FQ2 and l ∈ {0, 1}
2: (r1, . . . , rQ) ∈R (FRE

2 )Q
3: (r̃1, . . . , r̃Q) ∈R (FRC

2 )Q
4: for f ∈ F (d)(C) do
5: y(f) = (f(E(x[b]

1 , r1), r̃1), . . . , f(E(x[b]
Q , rQ), r̃Q))

6: F ← {f ∈ F (d)(C) | y(f) = ỹ}
7: if F = {f̃} then return 1 else return 0

Finally, we define the advantage of an adversary A as

AdvPS
C,E,d[A] =

∣∣∣Pr[PSC,E,d(A, 0) = 1]− Pr[PSC,E,d(A, 1) = 1]
∣∣∣ .

The pair (C,E) is said to be dth order prediction-secure (d-PS) if for any adversary A the
advantage is negligible.

In summary, prediction security analyzes the behavior of functions from F (d)(C)
composed with an encoding function E. Consider two elements x, x′ ∈ FN2 , if an adversary
is able to find a function f ∈ F (d)(C) \ {0,1} such that f(E(x, ·), ·) is constant (or high-
bias) but f(E(x′, ·), ·) is non-constant (or low-bias) then the adversary can distinguish
these inputs and therefore the pair (C,E) is considered insecure. Thus, prediction security
requires every function from the set F (d)(C) to have low-bias.
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The outline of the security analysis can be summarized as follows. First our gadgets and
encoding function have been proven to satisfy ε-1-AS, i.e. Definition 6 and Definition 7 (resp.
ε-2-AS Definition 8 and Definition 9). To show that a gadget (or an encoding function)
satisfies the corresponding definition, we analyze the bias of functions f ∈ F (d)(C) \ {0,1}
where d = 1 or 2. The ε-1-AS definition implies that f is either an affine function of inputs
or f has low bias when the input is fixed, i.e. when f is a function of random values with
a constant input. Similarly, ε-2-AS implies that f is either a second-order combination of
affine functions of input and circuit nodes or f has low bias when the input is fixed, i.e.
when f is a function of random values with a constant input.

The proofs of individual gadgets and encoding functions are followed by the composabil-
ity results. The composability of 1-AS gadgets is proven as in [BU18]. On the other hand
the composability of 2-AS gadgets are extended in a non-trivial way and the composability
of 2-AS gadgets are given in two fold; an arbitrary combination of two gadgets operated in
parallel order (Proposition 10) and in sequential order (Proposition 11). Since the former
analysis includes the linear combination of the nodes, a straightforward approach is enough
to prove the composability. In our approach, we need to check the non-linear combinations
of circuit nodes within the different gadgets.

Using the above steps, an arbitrary circuit, generated by And[n, d], Xor[n, d] and
RefreshMask[n, d] gadgets for d = 1 and d = 2 are shown to satisfy algebraic security
definitions respectively.

Next we prove the composability of an arbitrary circuit C with an encoding function
E in Propositions 7 and 12 and show that C(E(·)) satisfies algebraic security definitions
respectively. This implies that every function from the set Fd(C(E(·))) has bias ≤ ε.

However to achieve prediction security we need a better security bound than ε. To prove
that a circuit is prediction secure we need to show that AdvPS

C,E,d[A] ≤ 2−κ depending on
a security parameter κ and this can be achieved by adding dummy random nodes to the
circuit. Using the maximum bias bound ε, the required number dummy random bits to
achieve a security bound κ is restated in Proposition 1.

In [BU18], it is shown that a circuit C achieves d-PS, if there are enough random
bits used in the circuit depending on the bias bound. Before giving the relation between
random bits and d-PS, we first remark the set of functions that is needed for the analysis.

Definition 4 ( [BU18]). Let C(x′, rc) : FN ′2 × FRC
2 → FM2 be a Boolean circuit, E(x, re) :

FN2 ×F
RE
2 → FN ′2 an arbitrary function and d ≥ 1 an integer. For any function f ∈ F (d)(C)\

{0,1} and for any x ∈ FN2 define fx : FRE
2 × FRC

2 → F2 given by fx(re, rc) = f(E(x, ·), ·)
and denote the set of all such functions as Rd:

Rd = {fx(re, rc) | f ∈ F (d)(C) \ {0,1}, x ∈ FN2 }.

Using the above definition, a bound for the d-PS is given as in the following proposition
which indicates the required number of random bits.

Proposition 1 (Corollary 1 in [BU18]). Let ε be the maximum bias among all functions
from Rd, i.e., ε = maxfx∈Rd

E(fx). Let e = − log2(1/2 + ε) and κ be a security parameter.
Then for any adversary A choosing vector size of Q:

AdvPS
C,E,d[A] ≤ 2−κ

if e > 0 and RC ≥ κ · (1 + 1/e).

Although it may seem that prediction security covers probing security (or vice versa),
both notions are in fact incomparable. Therefore, both notions are needed to analyze a
secure white-box implementation. To illustrate the incomparability of the two notions,
let us consider two examples; a white-box implementation protected with an nth-order
Boolean masking and minimalist quadratic masking defined in [BU18].
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Figure 1: A first-order leakage detection on a circuit that simulates AES-128 with the
masking defined in [BU18]. Clearly, the t-test value exceeds the threshold values shown by
red lines.

Example 1 (Probing Secure Masking Vulnerable to Algebraic Attacks). Applying an
ISW transformation to the circuit and the data results in an nth-order probing secure
implementation. However, a first-order algebraic attack can exploit a first-order (linear)
combination of intermediate values which is equal to a predictable value. Therefore, an
nth-order Boolean masking is secure in the probing model, but not secure in prediction
security, as shown in [BU18].

Example 2 (Algebraically secure masking vulnerable to probing). As the second example,
we use the encoding function Encode(x, x0, x1) = (x0, x1, x0x1 ⊕ x). As given in [BU18],
the masking scheme satisfies first-order algebraic security. However, it is not probing secure,
not even first-order probing secure. A leakage is caused by the unbalanced sharing where
the third share x0x1 ⊕ x statistically depends on the sensitive variable x. For any value x
we have Prx0,x1∈RF2 [(x0x1 ⊕ x) = x] = 3/4. Thus, there exists no first-order function that
is equal to a predictable vector, but there exists one node (the last share) that is highly
correlated with a predictable vector.

To practically verify this leakage, we implement a basic bitwise AES-128 circuit using
the Sbox designed by Boyar and Peralta [BP09] and implement a basic leakage detection
test using 500 traces with 45000 nodes (N = 500 and M = 45000). As seen in Figure 1,
the test shows intense leakage. The details of the experimental setup regarding the leakage
detection, trace collection and the variable selection can be found Section 5.1.

As illustrated in Example 1, prediction security is based on finding a degree-d function
whose output equals to a predictable value. However, in probing we only need to find a
set of variables which depends on a predictable value, as shown in Example 2. Thus, we
need to prove the security of our scheme in two steps:

1. Prove probing security using Definitions 1 and 2 for an arbitrary (n, d) scheme,

2. Prove prediction security using Definition 3 for (n, 1) and (n, 2) schemes.

4.2 Security Against Computational Attacks in the Probing Model
We first provide some auxiliary definitions that form the basis of our security proofs.

Definition 5 ((n, d)-family of shares). A vector x = (x̃0, . . . , x̃d, x1, . . . , xn) of n+ d+ 1
intermediate variables is called an (n, d)-family of shares if every tuple of the form
((x̃i)i∈Ĩ , (xi)i∈I) such that |Ĩ| ≤ d+ 1 and |I| ≤ n− 1 of x̃0, . . . , x̃d, x1, . . . , xn is uniformly
distributed and independent of any sensitive variable where x =

∏d
j=0 x̃j ⊕

⊕n
i=1 xi is a

sensitive variable.
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We can extend the definition as: two (n, d)-families of shares x = (x̃0 . . . , x̃d, x1, . . . , xn)
and y = (ỹ0 . . . , ỹd, y1, . . . , yn) are called to be (n − 1)-independent of one another if
every tuple composed of ((x̃i)i∈Ĩ , (xi)i∈I) and ((ỹj)j∈J̃ , (yj)j∈J) with |Ĩ|, |J̃ | ≤ d+ 1 and
|I|, |J | ≤ n− 1 is uniformly distributed and independent of any sensitive variable. Two
(n, d)-families are (n− 1)-dependent of one another if they are not (n− 1)-independent.

To prove security of our scheme in the t-SNI notion, we decompose C into basic
components, which we call randomized elementary transformations (or gadgets). Such
a component gets as input two (n − 1)-independent (n, d)-families of shares, resp. one
(n, d)-family of shares, and it returns a (n, d)-family of shares.

In this section, we first prove that the randomized elementary transformations specified
as in Algorithms 1, 2, and 3 satisfy non-interference notions. One challenge for proving
t-SNI security results from the fact that in the proposed sharing only a subset of shares is
uniformly distributed. The product of non-linear shares x0 (as expressed by x0 =

∏d
j=0 x̃j)

is non-uniformly distributed or biased. Hence, x0 can be predicted correctly by an adversary
with high probability. Thus, the non-linear shares do not contribute to probing security.
To address this fact, we consider the non-linear shares as public values accessible by the
adversary or as free probes, due to the bias of their product. We use the following fact in
our proofs.

Fact 1. Let G be a masked operation that operates on an (n, d)-family of shares x =
(x̃0, . . . , x̃d, x1, . . . , xn) (or two (n, d)-families of shares x = (x̃0, . . . , x̃d, x1, . . . , xn) and
y = (ỹ0, . . . , ỹd, y1, . . . , yn)) as defined in Definition 5. A simulator can access non-linear
shares (x̃0, . . . , x̃d) (or (x̃0, . . . , x̃d) and (ỹ0, . . . , ỹd)) as free probes or public inputs to the
gadgets.

Now we are ready to prove the security of our basic constructions. We start with the
t-SNI property of the RefreshMask and And gadgets. Then, we continue with the t-NI
property of the Xor gadget. The proofs can be found in Appendix A.

Proposition 2. (t-SNI of RefreshMask) Let x = (x̃0, . . . , x̃d, x1, . . . , xn) be an (n, d)-
family of shares, with n ≥ 2, as input of Algorithm 3 to refresh masking. Then every tuple
of t1 intermediate variables and t2 output variables in Algorithm 3 such that t1 + t2 ≤ t
can be simulated by at most t1 linear shares taken from x .

Proposition 3. (t-SNI of And) Let x = (x̃0, . . . , x̃d, x1, . . . , xn) and y = (ỹ0, . . . , ỹd,
y1, . . . , yn) be two (n − 1)-independent (n, d)-families of shares, with n ≥ 2, inputs of
Algorithm 2 for And. Then every tuple of t1 intermediate variables and t2 output variables
such that t1 + t2 ≤ t can be simulated by at most t1 linear shares taken from x and y.

Proposition 4. (t-NI of Xor) Let x = (x̃0, . . . , x̃d, x1, . . . , xn) and y = (ỹ0, . . . , ỹd,
y1, . . . , yn) be two (n − 1)-independent (n, d)-families of shares, with n ≥ 2, as input
of Algorithm 1 to compute Xor. Then every tuple of t1 intermediate variables and t2 output
variables such that t1 + t2 ≤ t can be simulated by at most t1 + t2 linear shares taken from
x and y.

In conclusion, we prove the security against t probes of our individual gadgets such that
t < n. Next, we analyze an arbitrary circuit C as a combination of our gadgets. As stated
in [BBD+16], an algorithm is said to be t-NI if all gadgets are t-NI and every non-linear
usage of a secret state is guarded by t-SNI refreshing gadgets. Moreover, it is sufficient to
make the algorithm t-SNI, if every input or the output of a t-NI gadget is processed by a
t-SNI gadget. Since the RefreshMask operation is proven to be secure in the t-SNI notion,
we can use the operation defined in Section 3.1 to generate an arbitrary circuit that is
secure against (n− 1)th-order probing attacks and therefore secure against (n− 1)th-order
computational attacks.
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Table 2: A summary of SNI/NI/Probing security verification of our gadgets. The inputs
of an (n, d) gadget are two (n − 1)-independent families of shares x̄ and ȳ (resp. one
(n−1)-independent families of shares x̄ for RefreshMask or RefM in short). The number of
observations (#Obs.) represents the total number of (intermediate and output) variables
within the specified gadget. The timing corresponds to the total time for MaskVerif to
verify the SNI, NI and probing security notions, respectively.

Free Probes # Obs. SNI NI Probing
RefM[2, 1] [x̃0, x̃1] 23 0.01s 0.01s 0.01s
Xor[2, 1] [x̃0, x̃1], [ỹ0, ỹ1] 16 - 0.01s 0.05s
And[2, 1] [x̃0, x̃1], [ỹ0, ỹ1] 52 0.01s 0.01s <0.01s
RefM[3, 1] [x̃0, x̃1] 30 0.01s 0.01s 0.01s
Xor[3, 1] [x̃0, x̃1], [ỹ0, ỹ1] 19 - 0.01s 0.01s
And[3, 1] [x̃0, x̃1], [ỹ0, ỹ1] 86 0.02s 0.02s 0.02s
RefM[4, 1] [x̃0, x̃1] 40 0.02s 0.01s <0.01s
Xor[4, 1] [x̃0, x̃1], [ỹ0, ỹ1] 22 - 0.01s 0.01s
And[4, 1] [x̃0, x̃1], [ỹ0, ỹ1] 123 0.06s 0.05s 0.05s
RefM[5, 1] [x̃0, x̃1] 53 0.05s 0.01s 0.01s
Xor[5, 1] [x̃0, x̃1], [ỹ0, ỹ1] 48 - 0.01s 0.01s
And[5, 1] [x̃0, x̃1], [ỹ0, ỹ1] 170 2.25s 0.59s 0.45s
RefM[2, 2] [x̃0, x̃1, x̃2] 49 0.01s 0.01s 0.01s
Xor[2, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 24 - <0.01s 0.01s
And[2, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 98 0.02s 0.01s 0.01s
RefM[3, 2] [x̃0, x̃1, x̃2] 56 0.01s 0.01s 0.01s
Xor[3, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 27 - 0.01s 0.01s
And[3, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 154 0.03s 0.01s 0.02s
RefM[4, 2] [x̃0, x̃1, x̃2] 66 0.02s 0.01s 0.01s
Xor[4, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 30 - 0.01s 0.01s
And[4, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 215 0.61s 0.08s 0.07s
RefM[5, 2] [x̃0, x̃1, x̃2] 79 0.04s 0.01s 0.01s
Xor[5, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 33 - 0.01s 0.01s
And[5, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 284 10.47s 1.06s 1.11s

Experimental Verification: To support the results, we provide an experimental verifi-
cation of the gadgets And[n, d], Xor[n, d] and RefreshMask[n, d] for d = 1 and 2 and for
n = 1, 2, 3, 4 and 5 using MaskVerif [BBC+19]. We implement our masking scheme (with
the given orders n and d) inside the tool and experimentally verify the security features
of our gadgets. The implementation of our scheme that can be used with MaskVerif is
available as open source 2. The experiments are run on an Intel Core i5-6400 CPU@
2.70GHz. A summary of the experimental results is given in Table 2.

4.3 Algebraic Security of the (n, 1)-Masking Scheme
In this section, we analyze the first order prediction security (Def. 3) of our (n, 1)-
masking scheme using the gadgets from Section 3.1. We proceed as follows. For our
encoding function E and any Boolean circuit C constructed from our gadgets, we estimate
ε = maxfx∈R1 E(fx) – the maximum bias over all functions in the set R1 specified in
Definition 4, with d = 1. We show that ε is small. The bound on the prediction security of
the (n, 1)-masking, we get combining this bias with the upper bound on 1-PS shown in
Proposition 1: AdvPS

C,E,d[A] ≤ 2−κ, assuming e = − log2(1/2 + ε) > 0 and the number of
random bits of the circuit C is ≥ κ · (1 + 1/e).

2https://github.com/UzL-ITS/white-box-masking

https://github.com/UzL-ITS/white-box-masking
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To estimate the maximum bias ε we use two auxiliary notions: algebraic encoding
security which addresses the security of the encoding function E and algebraic circuit
security which addresses the security of any Boolean function C:

Definition 6 (Algebraic Encoding Security (ε-1-AS)). Let E(x, r) : FN2 × FRE
2 → FN ′2 be

an arbitrary encoding function. Let Y be the set of functions given by the output bits of E.
The function E is called 1st-order algebraically ε-secure (ε-1-AS) if for any f ∈ Y(1) \{0,1}
and for any x ∈ FN2 the bias of the function f(x, ·) : FRE

2 → F2 is not greater than ε:

max
f∈Y(1)\{0,1},x∈FN

2

E(f(x, ·)) ≤ ε

Definition 7 (Algebraic Circuit Security (ε-1-AS)). Let C(x, r) : FN ′2 × FRC
2 → FM2 be a

Boolean circuit and let ε be a real number, with 0 ≤ ε < 1/2. Then C is called first-order
algebraically ε-secure (ε-1-AS) if for any f ∈ F (1)(C)\{0,1} one of the following conditions
holds:

(a) f is an affine function of x,

(b) for any x ∈ FN2 , E(f(x, ·)) ≤ ε where f(x, ·) : FRC
2 → F2.

In the rest of this section we show that our basic gadgets are ε-1-AS, for some ε < 1/2
(Sec. 4.3.1). Using the fact that composition of two ε-1-AS circuits remains ε-1-AS [BU18]
we get that the whole circuit C is ε-1-AS. In Section 4.3.2 we show that our encoding
function E is ε-1-AS, for some ε < 1/2, and finally we conclude that maxfx∈Rd

E(fx) ≤ ε.

4.3.1 ε-1-AS of the Gadgets

Using the above definitions, we employ the following methodology to prove the 1-PS of our
scheme. We first divide the circuit into smaller circuits (namely And, Xor and RefreshMask
gadgets as defined in Section 3.1) and show that the gadgets satisfy Definition 6. This
gives us a bias bound for the individual gadgets. Using the 1-AS composability result
in [BU18] we make sure that any composition of our gadgets (C) is also 1-AS. Finally,
we combine C with the encoding function E and complete the 1-PS security proof of our
scheme by using Proposition 1 .

While proving algebraic encoding security is quite straightforward, proving algebraic
circuit security needs significant attention. The methodology to prove algebraic circuit
security in [BU18] can be divided into two steps. The first step consists of showing
E(f(x, r)) 6= 1/2 for all f ∈ F (1)(C) and for all x ∈ FN2 except for constant functions
and affine functions of x. A verification algorithm is provided in [BU18]. The algorithm
generates a truth table by evaluating the circuit on all possible inputs and records each
node in the circuit. Another truth table is formed by selecting the values where the input
is fixed x = c. That is, the second truth table corresponds to the values of the circuit
nodes where the input x is fixed to a value c while r takes all possible values. Observe
that the latter truth table is a subset of the former one. Finally, the algorithm compares
the dimensions of the basis of the truth tables for each restriction, to check if there is a
constant function f when the input is fixed to a value c.

The second step is to find the maximum degree term (i.e. node in the circuit) and
calculate the corresponding bias bound. As proven in [MS77], the degree of any nonzero
Boolean function g : FN2 → F2 gives us the following lower bound for the weight of
the function: wt(g) ≥ 2N−deg(g), where N is the number of inputs of the function g.
Symmetrically3, we get that for any function g 6= 1 it is true that wt(g) ≤ 2N − 2N−deg(g).

3Consider the function g′ = g ⊕ 1 which implies wt(g′) = 2N − wt(g). The lower bound for wt(g) implies
the upper bound for wt(g′).
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Thus, for any non-constant function g we have:

2N−deg(g) ≤ wt(g) ≤ 2N − 2N−deg(g).

Using these inequalities we can analyze the bias bound of any non-constant function
f ∈ F (1)(C) as follows. First, we bound ε as:

ε =
∣∣∣∣12 − wt(f)

2N

∣∣∣∣ ≤ 1
2 −

2N−deg(f)

2N = 1
2 −

1
2deg(f) . (4)

Next, observe that the maximum degree of f is equal to the maximum degree node in
C, since f contains only linear combinations of the nodes. That is, for all f ∈ F (1)(C),
deg(f) ≤ max(deg(ci)ci∈C). Thus, the linear-bias bound of the gadget can be estimated
as:

ε ≤ 1
2 − 1/2max(deg(ci)ci∈C).

Due to the first part of the proof, we know that there are no constant functions and
therefore the bias cannot grow. Using the discussion above, we will prove the security
of our gadgets by showing that there exists no constant function f(x, ·) ∈ F (1)(C) for
all x ∈ FN2 and by calculating the corresponding bias bound of the gadgets. We start
with the first-order algebraic security proof for a RefreshMask[n, 1] gadget that uses the
construction given in Section 3.1.

Proposition 5. Let C(x, r) : Fn+2
2 × FRC

2 → Fn+2
2 be the circuit representation of the

RefreshMask gadget using a masking scheme with an arbitrary order n and a fixed degree
d = 1. C takes as input n + 2 shares (x̃0, x̃1, (xi)1≤i≤n) and outputs n + 2 shares
(x̃0, x̃1, (xi)1≤i≤n). The gadget RefreshMask[n, 1] is ε-1-AS with ε := 1/4.

Proof. In the first part of the proof, we show that, except of affine functions of inputs,
there exists no function f ∈ F (1)(C) \ {0,1} such that f is constant when inputs are fixed.
Assume (x̃0, x̃1, (xi)1≤i≤n) are some fixed but arbitrary inputs and let f ∈ F (1)(C)\{0,1}
be a function of random bits for the fixed input. As seen in Algorithm 3, all nodes used in
RefreshMask gadget, behind the nodes for computing the values W and R in line 11, are
xor-gates. Thus, if f involves only those nodes it is either an affine function of inputs or it
is non-constant.

Next, by the definition of W each input bit x̃0 and x̃1 in W is accompanied additively
by a random value. And R contains only random values. To compute the expressions,
behind xor-gates, there are used three and-gates which output the values:

• r̃0x̃1 ⊕ r̃0r0,

• r̃1x̃0 ⊕ r̃1r0, resp.

• r̃0r̃1 ⊕ r̃0r0 ⊕ r0r̃1 ⊕ r0r̃0.

Thus, the only way to obtain a constant function f which involves the nodes used to
compute the expression in line 11, is to xor the first or the second value above with r̃0r0,
resp. with r̃1r0. But, as one can easily check, no node used in Algorithm 3, computes
the corresponding values. Hence we can conclude that there exists no constant function
f ∈ F (1)(C) such that inputs are fixed expect of affine functions of inputs.

In the second part, we examine the highest degree term in the gadget. The maximum
degree term can be found in R with degree 2. Therefore the corresponding bias and the
bias bound of the gadget can be calculated as ε ≤ 1/2−1/22 = 1/4. Thus the RefreshMask
gadget is ε-1-AS with ε := 1/4.



80 A White-Box Masking Scheme Resisting Computational and Algebraic Attacks

Table 3: First-order algebraic security verification of individual gadgets. Input corresponds
to the number of shares for both inputs (i.e. 2(n + 2)). Random states the number of
random values (RC) within the circuit and it is calculated by the randomness requirement
of two RefreshMask gadgets and additional randomness in the gadget. The number of
intermediate variables represents the number of nodes in the gadget.

Max degree Bias Bound Input Random Intermediate Time
Xor[1, 1] 2 1/4 6 6 8 3.5s
And[1, 1] 4 7/16 6 6 12 4s.
Xor[2, 1] 2 1/4 8 8 8 45.7s
And[2, 1] 4 7/16 8 13 24 ≈ 114min
Xor[3, 1] 2 1/4 10 10 8 ≈ 17min
And[3, 1] 4 7/16 10 19 36 ≈ 5 days

We proceed with the first-order algebraic security proof for an And[n, 1] gadget that
uses the construction given in Section 3.1.

Proposition 6. Let C((x, y), r) : Fn+2
2 × FRC

2 → Fn+2
2 be the circuit representation of the

And gadget using a masking scheme with an arbitrary order n and a fixed degree d = 1.
C takes as input n+ 2 shares (x̃0, x̃1, (xi)1≤i≤n) and (ỹ0, ỹ1, (yi)1≤i≤n) and outputs n+ 2
shares (z̃0, z̃1, (zi)1≤i≤n). The gadget And[n, 1] is ε-1-AS with ε := 7/16.

The proof of Proposition 6 can be found in Appendix A. Although we are not giving a
proof for the Xor gadget, the same discussion can be carried out and it can be shown that
the Xor[n, 1] gadget is ε-1-AS with ε := 1/4. We provide experimental verification of the
first-order gadgets, including the Xor gadget next.

Experimental Verification: To support the results, we provide experimental verification
of the first-order gadgets And[n, 1] and Xor[n, 1] (and inherently RefreshMask[n, 1]) for
n = 1, 2 and 3 using the tool given in [BU18]4. First we adapt our scheme to work with
the tool, i.e. we implement our masking scheme (with the given orders n and d ) as a class
inside the tool. We then run the verification algorithm as explained above. The updated
version of the tool including our scheme is available as open source 5.

We confirm the first-order algebraic security of our scheme for different orders of probing
security. Details are shown in Table 3. The algorithm is run on an Intel Xeon Silver
4114 CPU@2.20GHz and, as shown in the table, the time that algorithm takes increases
exponentially with the increasing number of nodes within the gadgets. The bias bound
does not depend on the linear degree n, since the maximum degree term is found within
the terms that depend on the non-linear degree d.

4.3.2 Encoding-Circuit Composability

In the last part of the security analysis, we use the composability result of ε-1-AS given
in [BU18]. Since the gadgets (Xor[n, 1], And[n, 1], RefreshMask[n, 1], as defined in Sec-
tion 3.1) are ε-1-AS, an arbitrary combination of these gadgets is also ε-1-AS by Propo-
sition 4 in [BU18]. Moreover, we observe that Encode[n, 1] is ε-1-AS with ε := 1/22

according to Definition 6. Recall that for an (n, 1) scheme, the highest degree term is
found in the last share: xn = x ⊕ x̃0x̃1 ⊕

⊕n−1
i=1 xi and clearly no linear combination of

(x̃0, x̃1, x1, . . . , xn) is constant. Thus, for Encode[n, 1] ∀f ∈ Y(1) \ {0,1} and ∀x ∈ FN2 the

4https://github.com/cryptolu/whitebox
5https://github.com/UzL-ITS/white-box-masking

https://github.com/cryptolu/whitebox
https://github.com/UzL-ITS/white-box-masking
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bias of f(x, ·) : FRE
2 → F2 is not greater than ε:

max
f∈Y(1)\{0,1},x∈FN

2

E(f(x, ·)) ≤ 1/4.

Finally, we can combine our construction with the encoding-circuit linear-composability
result from [BU18].

Proposition 7. Let C(x′, rc) : FN ′2 × FRC
2 → FM2 be a Boolean circuit, and let E(x, re) :

FN2 × FRE
2 → FN ′2 be a function. If E is encoding ε-1-AS and C is circuit ε-1-AS then, for

d = 1, it is true:
max
fx∈Rd

E(fx) ≤ ε,

where Rd is defined in Definition 4.

4.4 Algebraic Security of the (n, 2)-Masking Scheme
To prove the second-order prediction security (2-PS) of the (n, 2)-masking scheme we
proceed, similarly as in Section 4.3, as follows. For our encoding function E and any
Boolean circuit C constructed from gadgets as defined in Section 3.1 we will analyze
ε = maxfx∈R2 E(fx) – the maximum bias over all functions in the set R2 defined in
Definition 4, for d = 2. The main result of this section is that the maximum bias
over all such functions is small. To obtain a bound on the prediction security of the
(n, 2)-masking, we combine this bias with the upper bound on 2-PS from Proposition 1:
AdvPS

C,E,d[A] ≤ 2−κ, assuming e = − log2(1/2 + ε) > 0 and the number of random bits of
the circuit C is ≥ κ · (1 + 1/e). To prove that for all fx in R2 the bias E(fx) is small,
we use auxiliary definitions which extend the notion of the first-order algebraic security
defined in [BU18] in a non-trivial way.

Definition 8 (Algebraic Encoding Security (ε-2-AS)). Let E(x, r) : FN2 × FRE
2 → FN ′2 be

an arbitrary encoding function. Let Y be the set of functions given by the output bits of
E and let ε be a real number, with 1/4 ≤ ε < 1/2. The function E is called second-order
algebraically ε-secure (ε-2-AS) if, for ε′ = 1

2 −
√

1
2 − ε, it is true that:

1. ∀f ∈ Y(1) \ {0,1} and ∀x ∈ FN2 the bias of f(x, ·) : FRE
2 → F2 is not greater than ε′:

max
f∈Y(1)\{0,1},x∈FN

2

E(f(x, ·)) ≤ ε′.

2. ∀f ∈ Y(2) \ {0,1} and ∀x ∈ FN2 the bias of f(x, ·) : FRE
2 → F2 is not greater than ε:

max
f∈Y(2)\{0,1},x∈FN

2

E(f(x, ·)) ≤ ε.

Definition 9 (Algebraic Circuit Security (ε-2-AS)). Let C(x, r) : FN ′2 × FRC
2 → FM2 be

a Boolean circuit and let ε be a real number, with 1/4 ≤ ε < 1/2. Then C is called
second-order algebraically ε-secure (ε-2-AS) if

1. C is ε′-1-AS, with ε′ = 1
2 −

√
1
2 − ε, and

2. for any function f ∈ F (2)(C) \ {0,1} one of the following conditions holds:

(a) f has a form f = g0⊕
∑t
i=1 gihi, where g0, g1, . . . gt are affine functions of x and

h1, . . . , ht ∈ F (1)(C) \ {0,1},
(b) for all x ∈ FN2 it holds: E(f(x, ·)) ≤ ε, where f(x, ·) : FRC

2 → F2.
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The idea behind Definition 8 is quite intuitive: similarly as in Definition 6 we require
that the bias for all functions of degree 2 over the output nodes of the encoding E, is
bounded by ε. However, since a function fx in R2 can be, e.g., a product of two functions
g and h of degree one, such that g is over the output nodes of E and h is over the nodes
of the circuit C, we need to require additionally that the bias of the 1st order functions
is much smaller than ε to guarantee that the bias E(gh) ≤ ε. As we will see, the value
ε′ as defined above, is chosen appropriately. Similarly, to guarantee that a composition
of two ε-2-AS circuits remains ε-2-AS, we require in condition 1 in Definition 9 that the
circuits are ε′-1-AS since, e.g., f can be a product of a function over the nodes of the first
circuit and a function over the second circuits, both functions of degree one. From similar
composability reasons, the condition 2.(a) in Definition 9 is needed.

The rest of this section is organised as follows. First, we estimate the values ε for
ε-2-AS of the basic gadgets RefreshMask, And, and Xor (Sec. 4.4.1). Then we prove the
composability result, i.e., that combining ε-2-AS circuits leads to the ε-2-AS composed
circuit (Sec. 4.4.2). Finally, we show that our encoding scheme E is ε-2-AS, with ε := 31/64,
and that from the ε-2-AS property of C we get an estimation on maxfx∈Rd

E(fx), for
d = 2 (Sec. 4.4.3).

4.4.1 ε-2-AS of the Gadgets

Using the new definition we will prove the second-order prediction security of our (n, 2)
basic gadgets. We first show that there exists no constant function f(c, ·) ∈ F (2)(C) for all
c ∈ FN2 . In the second step, we calculate the corresponding first-order and second-order
bias bounds. We start with the ε-2-AS of the RefreshMask[n, 2] gadget.

Proposition 8. Let C(x, r) : Fn+3
2 × FRC

2 → Fn+3
2 be the circuit representation of the

RefreshMask gadget using a masking scheme with an arbitrary order n and a fixed degree
d = 2. C takes as input n + 3 shares (x̃0, x̃1, x̃2, (xi)1≤i≤n) and outputs n + 3 shares
(x̃0, x̃1, x̃2, (xi)1≤i≤n). The gadget RefreshMask[n, 2] is ε-2-AS with ε := 31/64.

Proof. First let us consider a function f ∈ F (2)(C) \ {0,1}. As before we denote the
function f with a constant input c ∈ Fn+3

2 as fc(r1). If fc can be written of the form fc =
g0⊕

∑t
i=1 gihi, where g0, g1, . . . , gt are affine functions of c and h1, . . . ht ∈ F (1)(C)\{0,1}

then there exists c ∈ Fn+3
2 such that fc is constant. However, in this case fc satisfies

condition 2.(a).
Assume fc does not reside in condition 2.(a). As seen in Algorithm 3, all nodes, except

of those used to compute the values W and R in line 11, are xor-gates and all of them
contain as input a random variable (i.e. not fixed). Next, due to the computational
structure of W and R given in RefreshMask[n, 2], the input nodes x̃0, x̃1, and x̃2 used in
the expressions are accompanied by a random value. Note that over the nodes used to
compute the expression xn ⊕W ⊕R in line 11, one can construct a constant function f of
degree 2, but this yields a function satisfying condition 2.(a). In particular, to compute
the term [r̃2(x̃0 ⊕ r0)][r̃1 ⊕ (x̃1 ⊕ r0)] in W we use five nodes:

• u1 = x̃0 ⊕ r0,

• u2 = u1r̃2 = r̃2x̃0 ⊕ r̃2r0,

• u3 = x̃1 ⊕ r0,

• u4 = u3 ⊕ r̃1 = (x̃1 ⊕ r0 ⊕ r̃1),

• u5 = u4u2 = x̃0r̃2r0 ⊕ x̃1r̃2r0 ⊕ x̃0x̃1r̃2 ⊕ x̃0r̃1r̃2 ⊕ r̃2r̃0 ⊕ r̃1r̃2r0.

Then, the function f over the nodes u1, . . . , u5 is either non-constant, an affine function
of inputs, or has the form as in condition 2.(a). For example, f = u2 ⊕ r̃2r0 = r̃2x̃0 ⊕
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r̃2r0 ⊕ r̃2r0 = r̃2x̃0 is constant, if x̃0 = 0, but it satisfies the condition 2.(a). Moreover,
observe that one cannot obtain a constant function using u5 due to the term r̃1r̃2r0 which
cannot be removed by a third-order combination of the nodes. The same arguments
can be used for functions over the nodes for computing the remaining terms of W, i.e.,
[r̃1(x̃2 ⊕ r0)][r̃0 ⊕ (x̃0 ⊕ r0)] and [r̃0(x̃1 ⊕ r0)][r̃2 ⊕ (x̃2 ⊕ r0)].

Finally, each node contains only one non-linear share, thus any first or second-order
combination cannot contain all three non-linear shares such that the variable x̃0x̃1x̃2 is
formed without a random value accompanying it. For example, a second order combination
of the nodes u5 = [r̃2(x̃0 ⊕ r0)][r̃1 ⊕ (x̃1 ⊕ r0)] and u′5 = [r̃1(x̃2 ⊕ r0)][r̃0 ⊕ (x̃0 ⊕ r0)] equals
to: u5u

′
5 = · · · ⊕ r̃0r̃1r̃2r0 and we cannot remove r̃0r̃1r̃2r0, thus the combination cannot be

constant. Hence fc cannot be a constant for all c ∈ Fn+3
2 .

In the second part of the proof we analyze value m such that m = max(deg(ci)ci∈C).
Observe that the highest degree term in the gadget can be found in R with degree 3. Thus
the linear bias bound of the gadget can be seen as follows:

ε′ = E(f ′) ≤ 1
2 −

1
23 where f ′ ∈ F (1)(C) \ {0,1}.

This result implies that RefreshMask[n, 2] is ε′-1-AS gadget. Moreover, the highest
degree term of f ∈ F (2)(C) is less than or equal to 6 which implies:

ε = E(f) ≤ 1
2 −

1
26 where f ∈ F (2)(C) \ {0,1}.

Observe that, in the first part of the proof we showed that there exists no function
f ∈ F (2)(C) such that f(c, ·) is constant (expect of functions of the form condition 2.(a)),
which implies both linear and second-order biases cannot grow. Thus the RefreshMask
gadget is ε-2-AS with ε := 31/64.

Next, we prove the second-order algebraic security of the And[n, 2] gadget.

Proposition 9. Let C((x, y), r) : Fn+3
2 × FRC

2 → Fn+3
2 be the circuit representation of the

And gadget using a masking scheme with an arbitrary order n and a fixed degree d = 2. C
takes as input n+ 3 shares (x̃0, x̃1, x̃2, (xi)1≤i≤n) , (ỹ0, ỹ1, ỹ2, (yi)1≤i≤n) and outputs n+ 3
shares (z̃0, z̃1, z̃2, (zi)1≤i≤n). The gadget And[n, 2] is ε-2-AS with ε := (1/2− 1/212).

The proof of Proposition 9 can be found in Appendix A. Using the same idea we can
prove that the Xor[n, 2] gadget is a ε-2-AS circuit with ε := 1/2− 1/26.

4.4.2 Circuit Composability

In the previous subsection, we have shown that our basic gadgets RefreshMask, And, and
Xor are ε-2-AS, for some specific values ε. Now, we prove that any circuit obtained by the
composition of such gadgets remains ε-2-AS. To cover all cases, we consider separately
the parallel (Proposition 10) and the sequential (Proposition 11) composability of two
circuits. In particular, from Proposition 10 we can deduce, that if one applies, e.g., And(x, y)
for inputs x = And(x1, y1) and y = Xor(x2, y2) then, from Proposition 10, the parallel
composition:

And(x1, y1); Xor(x2, y2)

with input x1, y1, x2, y2 and output x, y is an ε-2-AS circuit. Moreover, due to Proposi-
tion 11, we get that

And(And(x1, y1), Xor(x2, y2))

remains ε-2-AS.
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Proposition 10 (ε-2-AS-Circuit-Parallel-Composability). Assume C1(x1, r1) and C2(x2, r2)
are two (disjoint 6 ) ε-2-AS circuits. Let C be the circuit obtained by parallel composition
of C1 and C2, i.e. by considering the input of C1 and the input of C2 as the input of C
and, analogously, the output of C1 and the output of C2 as the output of C. Moreover let
r1 and r2 be the extra random input of C:

C(x1, x2, (r1, r2)) = (C1(x1, r1), C(x2, r2)).

Then C(x1, x2, (r1, r2)) is also an ε-2-AS circuit.

Proof. Assume C1 and C2 are ε-2-AS and let ε′ = 1
2 −

√
1
2 − ε. From [BU18] we know that

the composition C is ε′-1-AS. Thus, C satisfies the condition 1 in Definition 9.
To see that the condition 2 is true as well, let us consider a function f(x1, x2, (r1, r2)) ∈

F (2)(C) \ {0,1}. If f has a form as defined in condition 2.(a), i.e., f = g0 ⊕
∑t
i=1 gihi,

where g0, g1, . . . gt are affine functions of x1 and x2 and h1, . . . ht ∈ F (1)(C) \ {0,1}, then
we are done. So, let as assume this is not the case. We will show that for any x1, x2, the
bias is bounded as follows

E(f(x1, x2, ·, ·)) ≤ ε.
Assume x1 and x2 are arbitrary, but fixed inputs. To simplify the notation, let f̃ denote
the function f̃(r1, r2) = f(x1, x2, (r1, r2)).

For example, if x denotes the first element of the input vector x1, x′ – the first element
of x2, bits r, r′ – the first two elements of random vector r1, and w is an internal node
in C2 then, for f̃(r1, r2) = xr ⊕ x′fw ⊕ rr′ we have f̃(r1, r2) = rr′, if x = x′ = 0,
f̃(r1, r2) = fw ⊕ rr′, if x = 0 and x′ = 1, etc.

In the most general case, f̃ has the form

f̃(r1, r2) = c ⊕ u2(r1) ⊕ v2(r2) ⊕
τ∑
i=1

ui1(r1) vi1(r2), (5)

where c ∈ {0,1} is a constant and u2, v2, u
i
1, and vi1 are functions such that:

u2 ∈ F (2)(C1) \ {0,1}, v2 ∈ F (2)(C2) \ {0,1}, and
ui1 ∈ F (1)(C1) \ {0,1}, vi1 ∈ F (1)(C2) \ {0,1} for i = 1, . . . τ .

To prove that the bias of f̃ is bounded by ε, we consider two cases.
Case 1: Function u2 or v2 in Eq. (5) is non-trivial, i.e., that u2 or v2 contains at
least one term. Let, w.l.o.g., v2 be non-trivial. For every fixed (but arbitrary) r1, function
(5) can be represented as a function in F (2)(C2) as follows:

f̃r1(r2) = c ⊕ c0 ⊕ v2(r2) ⊕
τ∑
i=1

ci v
i
1(r2),

where c0 = v2(r1) and, in case τ ≥ 1, ci = vi1(r1), for i = 1, . . . , τ . By assumption that C2
is ε-2-AS, from condition 2.(b) of Definition 9, we get that E(f̃r1(r2)) ≤ ε and since this
bound is true for every r1, we can conclude that the function f̃ , as defined in (5), has the
bias bounded by ε, too.
Case 2: Function f̃ in Eq. (5) has the form f̃(r1, r2) = c ⊕

∑τ
i=1 u

i
1(r1) vi1(r2),

with τ ≥ 1. Now, for every fixed r1, function (5) can be represented as a function in
F (1)(C2) as follows:

f̃r1(r2) = c ⊕
τ∑
i=1

ci v
i
1(r2),

6Remark that, the two disjoint circuits implies that the random nodes of the circuits C1 and C2 are
disjoint. Particularly, C1 and C2 can have the same input.
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where ci = ui1(r1), for i = 1, . . . , τ . If for every r1 it would be true that some ci 6= 0, then
we could deduce immediately that the bias of f̃ is bounded by ε′ ≤ ε. Unfortunately, it
can happen that for some vectors r1, all coefficients ci vanish implying that f̃r1(·) has bias
1/2. Below, we argue that there are sufficiently many values for r1 such that at least one
coefficient ci is nonzero. In consequence we will be able to bound the bias of f̃ in this case.

Consider the coefficient c1. Recall that it is defined as a function c1 = u1
1(r1) in

F (1)(C1). From the assumption, the bias of u1
1(·) is bounded as follows

E(u1
1(r1)) = |1/2− wt(u1

1)/2|r1|| ≤ ε′.

From this inequality, one can deduce that the number wt(u1
1) of values for r1, for which

c1 = u1
1(r1) = 1, is at least wt(u1

1) ≥ 2|r1| (1/2− ε′) . Let, for short, R1 := {r1 | c1 =
u1

1(r1) = 1} denote the set of all such vectors r1. Its cardinality is

|R1| ≥ 2|r1| (1/2− ε′) .

Now, we consider the functions f̃r1(·) restricting r1 to random strings from R1, i.e. we
consider

f̃r1(r2) = c ⊕
τ∑
i=1

ci v
i
1(r2), with r1 ∈ R1.

From the assumptions we know that every such f̃r1 has bias bounded by ε′:

E(f̃r1) = |1/2− wt(f̃r1)/2|r2|| ≤ ε′, for all r1 ∈ R1.

This means that for every r1 ∈ R1 it is true:

2|r2| (1/2− ε′) ≤ wt(f̃r1) ≤ 2|r2| (1/2 + ε′) .

Combining this inequality with the bound on |R1|, one can conclude that

2|r1|+|r2| (1/2− ε′)2 ≤ |{(r1, r2) | f̃(r1, r2) = 1}| ≤ 2|r1|+|r2| (1/2 + ε′) .

Now, using our definition for ε′ = 1
2 −

√
1
2 − ε, the left-hand side can be written as

2|r1|+|r2| (1/2− ε) and (1/2 + ε′) on the right-hand side can be bounded by (1/2 + ε). Thus
we get

2|r1|+|r2| (1/2− ε) ≤ |{(r1, r2) | f̃(r1, r2) = 1}| ≤ 2|r1|+|r2| (1/2 + ε) .

This completes the proof that in Case 2 the bias bound E(f̃) ≤ ε holds.

Proposition 11 (ε-2-AS-Circuit-Sequential-Composability). Consider ε-2-AS circuits
C1(x1, r1) and C2(x2, r2). Let C be the circuit obtained by connecting the output of C1 to
the input x2 of C2 and letting the input r2 of C2 be the extra input of C:

C(x1, (r1, r2)) = C2(C1(x1, r1), r2).

Then C(x1, (r1, r2)) is also an ε-2-AS circuit.

Proof. We will proceed analogously to the proof of Proposition 10. Assume C1 and C2 are
ε-2-AS and let ε′ = 1

2 −
√

1
2 − ε. Due to [BU18] the composition C is ε′-1-AS and thus,

the first condition in Definition 9 is satisfied.
To see that also the second condition is true, let us consider a function f(x1, r1, r2) ∈

F (2)(C) \ {0,1}. If f has a form as defined in condition 2.(a), i.e., f = g0 ⊕
∑t
i=1 gihi,
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where g0, g1, . . . gt are affine functions of x1 and h1, . . . ht ∈ F (1)(C) \ {0,1}, then we are
done. If this is not the case, we need to show that for any x1 the bias

E(f(x1, ·, ·)) ≤ ε.

Before we start our analysis, note that in our construction, the input nodes of C2 coincide
with the output nodes of C1. Now assume x1 is an arbitrary, but fixed input vector and
let f̃ denote the function f̃(r1, r2) = f(x1, r1, r2). In the most general case it has the form

f̃(r1, r2) = c ⊕ u2(r1) ⊕ v2(y(r1), r2) ⊕
τ∑
i=1

ui1(r1) vi1(y(r1), r2), (6)

where c ∈ {0,1} is a constant, y(r1) = C1(x1, r1) denotes the output of C1 on (x1, r1),
and u2, v2, u

i
1, and vi1 are functions such that:

u2 ∈ F (2)(C1) \ {0,1}, v2 ∈ F (2)(C2) \ {0,1}, and
ui1 ∈ F (1)(C1) \ {0,1}, vi1 ∈ F (1)(C2) \ {0,1}, for i = 1, . . . τ .

To prove that the bias of f̃ is bounded by ε, we consider three cases.

Case 1: Function v2 in Eq. (6) is non-trivial, i.e., assume that v2 has at least one
term. For every fixed (but arbitrary) r1, function f̃ can be expressed as a function in
F (2)(C2) as follows:

f̃r1(r2) = c ⊕ c0 ⊕ v2(ŷ, r2) ⊕
τ∑
i=1

ci v
i
1(ŷ, r2),

where ŷ := y(r1) = C1(x1, r1), c0 := u2(r1), and ci := ui1(r1), for i = 1, . . . , τ (note, that
in this case τ can be 0 or for τ ≥ 1, all coefficient values ci can be 0). We may assume
that f̃ does not involve input nodes x2 of C2; Indeed if the input nodes are used then we
represent them as the corresponding output nodes of C1. This means that, in particular,
we may assume that v2 is not of the form g0 ⊕

∑t
i=1 gihi, where g0, g1, . . . gt are affine

functions of x2 = ŷ and h1, . . . ht ∈ F (1)(C2) \ {0,1}; If v2 has such a form, then one can
consider g0 as a function in F (2)(C1)\{0,1} and g1, . . . , gt as functions in F (1)(C1)\{0,1}
and, as a consequence, v2 would vanish.

Thus, by the assumption that C2 is ε-2-AS, we get that E(f̃r1(r2)) ≤ ε and since this
bound is true for every r1, we can conclude that the function f̃ , as defined in (6), has the
bias bounded by ε, too.

Case 2: f̃ in Eq. (6) has the form f̃(r1, r2) = c ⊕ u2(r1) ⊕
∑τ
i=1 u

i
1(r1) vi1(y(r1), r2),

with τ ≥ 1. In this case, for every fixed r1, we can represent f̃ a function in F (1)(C2) as
follows:

f̃r1(r2) = c ⊕ c0 ⊕
τ∑
i=1

ci v
i
1(ŷ, r2),

where, as in Case 1, ŷ := C1(x1, r1), c0 := u2(r1), and ci := ui1(r1), for i = 1, . . . , τ ≥ 1.
Note, that for some strings r1 it can happen that all coefficients ci = 0, what means that
for such r1 function f̃r1 has bias 1/2. Below, we argue that there are sufficiently many r1
such that at least one coefficient ci is non-zero. This will suffice to bound the bias of f̃ .

We consider the coefficient c1 that, recall, is defined as c1 := u1
1(r1) for the function

u1
1(·) in F (1)(C1). From the assumption, its bias is bounded as follows

E(u1
1(r1)) = |1/2− wt(u1

1)/2|r1|| ≤ ε′.
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It follows that wt(u1
1) ≥ 2|r1| (1/2− ε′) . Let R1 := {r1 | c1 = u1

1(r1) = 1} denote the set
of all such vectors r1. Its cardinality is at least 2|r1| (1/2− ε′) . Consider f̃r1(·) restricting
r1 to vectors from R1 only:

f̃r1(r2) = c ⊕
τ∑
i=1

ci v
i
1(r2), with r1 ∈ R1.

From the assumptions, we know that every such f̃r1 has its bias bounded by ε′:

E(f̃r1) = |1/2− wt(f̃r1)/2|r2|| ≤ ε′, for all r1 ∈ R1.

This means that: 2|r2| (1/2− ε′) ≤ wt(f̃r1) ≤ 2|r2| (1/2 + ε′), for all r1 ∈ R1, and
combining this with the bound on |R1|, we get

2|r1|+|r2| (1/2− ε′)2 ≤ |{(r1, r2) | f̃(r1, r2) = 1}| ≤ 2|r1|+|r2| (1/2 + ε′) .

Using our definition for ε′ = 1
2 −

√
1
2 − ε we can conclude that

2|r1|+|r2| (1/2− ε) ≤ |{(r1, r2) | f̃(r1, r2) = 1}| ≤ 2|r1|+|r2| (1/2 + ε) .

This completes the proof that in Case 2 the bias E(f̃) ≤ ε, too.

Case 3: Function f̃ in Eq. (6) has the form f̃(r1, r2) = c ⊕ u2(r1). In this case
the bound on the bias of f̃ follows directly from the assumption that C1 is ε-2-AS.

4.4.3 Encoding-Circuit Composability

Finally, we prove that a composition of an ε-2-AS encoding function E with an ε-2-AS
circuit C leads to a construction for which the second-order closure of F(C(E)) contains
functions of bias ≤ ε. Similarly to the security analysis of Encode[n, 1], the highest degree
term of Encode[n, 2] is found in the last share : xn = x⊕ x̃0x̃1x̃2⊕

⊕n−1
i=1 xi and clearly no

first or second-order combination of (x̃0, x̃1, x̃2, x1, . . . , xn) is constant. Thus, the following
holds for Encode[n, 2]:

1. ∀f ∈ Y(1) \ {0,1} and ∀x ∈ FN2 the bias of f(x, ·) : FRE
2 → F2 is not greater than ε′:

max
f∈Y(1)\{0,1},x∈FN

2

E(f(x, ·)) ≤ 3/8.

2. ∀f ∈ Y(2) \ {0,1} and ∀x ∈ FN2 the bias of f(x, ·) : FRE
2 → F2 is not greater than ε:

max
f∈Y(2)\{0,1},x∈FN

2

E(f(x, ·)) ≤ 31/64.

The composability of our ε-2-AS encoding function E with the ε-2-AS circuit C is
formulated in the proposition below, which can be proven analogously to Proposition 11.

Proposition 12. Let C(x′, rc) : FN ′2 × FRC
2 → FM2 be a Boolean circuit, and let E(x, re) :

FN2 × FRE
2 → FN ′2 be a function. If E is encoding ε-2-AS and C is circuit ε-2-AS then, for

d = 2, it is true:
max
fx∈Rd

E(fx) ≤ ε,

where Rd is defined in Definition 4.
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Table 4: Summary of the ε-1-AS and ε-2-AS bounds for the And, Xor and RefreshMask
gadgets and encoding function. The variable e = − log2(1/2+ε) where ε = maxfx∈Rd

E(fx)
as in Proposition 1 and Rc denotes the minimum number of randomness to achieve 128-bit
security.

And Xor RefreshMask Encode e ≈ Rc ≥
ε-1-AS 7/16 1/4 1/4 1/4 9.3× 10−2 1.503
ε-2-AS 2047/4096 31/64 31/64 31 /64 3.5× 10−4 3.6× 105

4.5 Prediction Security – a Summary
In the previous sections, we have shown the algebraic circuit security of our gadgets
and algebraic encoding security of our encoding functions. In this section, we give the
quantitative bounds on prediction security. We work with a security bound κ = 128 which
implies AdvPSC,E,1 ≤ 2−128 as defined in Definition 3.

We first consider the first-order prediction security bound of an (n, 1) scheme. Accord-
ing to Proposition 1, e = − log2(1/2 + ε) = − log2(1/2 + 7/16) ≈ 0.093. The number of
required random bits to achieve 128-bit security can be calculated as: Rc ≥ κ · (1 + 1/e) =
128 · (1 + 1/0.093) ≈ 1503. In conclusion, a circuit C composed with (n, 1) gadgets and
Encode[n, 1] is 1-PS (AdvPSC,E,1 ≤ 2−128) if the circuit contains Rc ≥ 1503 random bits.

Next, we compute the second-order prediction bound for an (n, 2) scheme. According
to Proposition 1, e = − log2(1/2 + ε) = − log2(1/2 + 2047/4096) ≈ 3.5× 10−4. As a result
the number of required random bits to achieve 128-bit security is drastically increased
to: Rc ≥ κ · (1 + 1/e) = 128 · (1 + 1/3.5 × 10−4) ≈ 3.6 × 105. A summary of first and
second-order algebraic security properties is given in Table 4.

Comparison with other masking schemes: An (n, d) scheme as defined in Section 3 is a
combination of linear and multiplicative components. The allocation of these components
results in different orders of protections and thus the scheme has two corner cases: (1)
d = 0 with n ≥ 1 and (2) d ≥ 1 with n = 0. The first case (1) acts as an additive
masking. Such schemes are widely used in the literature, e.g. for Boolean masking [RP10],
Threshold Implementations [NRS09], polynomial masking [RP12] and domain oriented
masking [GMK16]. The common point of these schemes is that the degree of their encoding
function is one, thus they are vulnerable to algebraic attacks, i.e. not prediction secure.
On the other hand, the latter case (2) corresponds to a multiplicative masking scheme. A
straightforward implementation of multiplicative masking is vulnerable to side-channel
attacks [GT03,FMPR11], i.e. is not probing secure. However, the scheme can become
secure if it is implemented with a solution that deals with the zero value, as given in [MQ18].
Although the scheme in [MQ18] is secure against side-channel attacks, the additive masking
phase of the scheme is still vulnerable to algebraic attacks. Therefore, previously proposed
masking schemes in the literature need to be combined with other masking schemes to
accomplish both prediction and probing security notions.

A straightforward approach is to employ both linear and multiplicative components, as
done in the affine masking by Fumaroli et al. [FMPR11]. The scheme processes a sensitive
value x in the form of r1x⊕ r0 such that r1, r0 ∈R Fn2 and fixed for each execution of the
algorithm. As stated by the authors, affine masking is not perfectly secure against higher-
order SCA but provides practical security. Indeed, some pairs of intermediate variables of
the scheme depend on sensitive variables. A second-order side-channel attack can break
the affine masking. Also, it is not clear how to generalize the scheme to higher orders.
Another approach to combine linear and multiplicative components is given in [BU18].
However, the scheme alone does not provide security against computation attacks as
described in Example 2. As a result, our scheme can be seen as a generalization of affine
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Table 5: The security properties of masking schemes. The mark # (resp.  ) means
the scheme is vulnerable (resp. resistant against) both to computational and algebraic
attacks. Mark H# (resp. G# ) stands for vulnerability to computational but resistant against
algebraic attacks (resp. resistant against computational but vulnerability to algebraic
attacks). Remark that a masking scheme with (n, 0) is the ISW transformation [ISW03]
while a masking scheme with (1, 1) is the scheme in [BU18]. The example structures for
the masking schemes with (2, 1) and (3, 1) can be found in Appendix B.

d
n 0 1 2 n

0 # G# [ISW03] G# [ISW03] G# [ISW03]
1 H# H# [BU18]  Ex. 3  [n, 1]
2 H# H#  Ex. 4  [n, 2]
d H# H#   Sec. 3.1

Table 6: The number of gadgets in one round of AES.

SubBytes MixColumns AddRoundKey ShiftRows
And 16 × 32 - - -
Xor 16 × 83 27 128 -

masking and the scheme by [BU18] in the sense of employing both linear and multiplicative
components while providing provable security in both prediction and probing security
notions. A summary of the security properties of the our scheme with different security
orders is presented in Table 5.

5 A Proof-of-Concept AES Implementation
In this section we introduce a white-box AES design based on the masking scheme defined
in Section 3. The AES block cipher consists of multiple rounds of operations on its state.
The operations include three linear layers: MixColumns, ShiftRows, and AddRoundKey, as
well as the non-linear SubBytes layer. The bitwise implementation for the linear operations
are straightforward. For the AES-Sbox we use the bitwise AES-Sbox design by Boyar and
Peralta [BP09]. The resulting exact number of And and Xor gadgets within one round of
AES-128 is given in Table 6. The resulting total number of bitwise operations7 can be
derived by combining the basic circuit size Table 6 and the performance analysis of the
protected gadgets from Table 1. A visual representation of the AES-128 implementations
with (n, 0) (i.e. ISW-transformation), (n, 1)-masking scheme and (n, 2)-masking scheme
is shown in Figure 2. As a base line, we also provide numbers for the reference masking
proposed in [BU18], where algebraically secure gadgets and a probing secure masking
were combined (each input is associated with a RefreshMask gadget, and the proposed
minimalist quadratic Masking is combined with a second order Boolean masking).

As shown in Figure 2, our hybrid construction outperforms the idea of using a first-order
linear masking on top of a non-linear masking. As stated in [BU18], using a combination of
two masking schemes even with the first-order protections requires roughly 200.000 gates
per AES round. Since the foundation of our scheme is the ISW transformation, we can
increase the probing security property of our scheme efficiently. However, increasing the
non-linear order is the bottleneck of our scheme. When we compare the smallest possible
implementations, we see that one round of AES-128 with (2, 0), (2, 1) and (2, 2)-masking

7The bitwise SubBytes design by Boyar and Peralta [BP09] also requires Not gates. Although we didn’t
give the explicit description of a Not gadget in our masking scheme, it can be easily defined as identical to
the Not gadget in the ISW transformation i.e. by flipping the nth (linear) share.
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Figure 2: Total number of bitwise operations and required randomness for one round of
AES-128 with different (n, 0), (n, 1) and (n, 2) masking schemes with and without initial
RefreshMask gadgets

schemes requires 15201, 30808(82678) and 74875(258415)gates respectively. The values in
parentheses correspond to the gadgets where the inputs are first processed by RefreshMask
gadgets. Clearly, RefreshMask gadgets impose a heavy overhead on our scheme. Therefore,
a significant performance advantage can be achieved by further optimizing the RefreshMask
gadget. While the first-order algebraically secure implementation requires a small overhead
over an unprotected implementation, the second-order algebraically secure implementation
comes at substantial cost. One round of AES-128 with (2, 1), (3, 1) and (4, 1)-masking
schemes requires 30808(82678), 46115(113945) and 64494(156264) gates, respectively.
Hence, the security against computational attacks can be increased with comparably
moderate overhead when compared with the overhead of increasing the security against
algebraic attacks. Furthermore, the randomness requirements of our scheme increases
similarly to the ISW-transformation, as seen in Figure 2.

5.1 Experimental Evaluation

To experimentally verify the security properties of our scheme we used the proof-of-concept
AES-128 implementation. The implementations using (n, 0), (n, 1) and (n, 2) masking
schemes including the analysis are available as open source 8.

Software traces are simulated by encrypting N random plaintext and collecting the
output of each node. We denote the ith trace (corresponding to the encryption of ith
plaintext) by ti = {vi1, . . . , viM} where vij denotes the output of jth node and M denotes
the number of the nodes in the circuit. Using the software traces we demonstrate a simple
leakage detection test by the test vector leakage assessment (TVLA) as proposed by
Goodwill et al. [GGJR+11]. In the first part of the test, two different sets of side-channel
traces are collected by processing either a fixed input or a random input under the same
conditions in a random pattern. After collecting the traces, we calculate the means (µf ,
µr) and standard deviations (σf , σr) for the two sets. Welch’s t-test is executed as in
Equation (7) where nf and nr denote the number of traces for fixed and random sets
respectively.

t = µf − µr√
(σ2

f/nf ) + (σ2
r/nr)

. (7)

Using the experimental setup we implement a first-order leakage detection test using
10000 traces (i.e. nf + nr = 10000) and M = 80000 (corresponds to the two round of
AES-128). As expected the test shows no observable leakage. The illustration of the test
can be seen in Figure 3.

8https://github.com/UzL-ITS/white-box-masking

https://github.com/UzL-ITS/white-box-masking
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Figure 3: A first-order leakage test on a circuit that simulates the AES-128 with (2, 1)-
masking defined in Section 3.1. Clearly, t-test value lie in threshold values as drawn by
red lines ([−4.5, 4.5]).

6 Conclusion

White-box cryptography has become a popular method to protect cryptographic keys
in an insecure software realm potentially controlled by the adversary. All white-box
cryptosystems in the literature have been practically broken due to differential computation
analysis. Algebraic attacks have shown the inefficacy of classic side-channel countermeasures
when they are applied in the white-box setting. Therefore, the need for a secure and
reliable method to protect white-box implementations against both attacks has become
evident.

We have proposed the first masking scheme that combines linear and non-linear
components to achieve resistance against both computational and algebraic attacks. The
new scheme extends the ISW transformation to resist algebraic attacks by increasing the
order of the decoding function. We have analyzed the two prevalent security notions
in the white-box model, probing security and prediction security, and underlined the
incompatibility of the notions, which reveals that a scheme should satisfy both notions.
We have used the well-known SNI setting to prove (n − 1)th order probing security of
an (n, d)-masking scheme and thus we showed that our scheme can resist (n− 1)th-order
computation attacks. We proved first and second-order prediction security for the concrete
construction of the (n, 1) and (n, 2) masking scheme, respectively. We have defined
the scheme generically such that it be extended to any orders of n and d, as long as
the computational structure satisfies the algebraic properties. We have examined the
implementation cost of our scheme for arbitrary orders of protection and compare it with
the ISW transformation. We have extended the algebraic verification tool to support our
scheme and to validate our results. The updated code has been made publicly available.
Finally, a proof-of-concept bit-wise AES-128 implementation was provided to perform
leakage detection and extensive performance analysis. The analysis showed that the new
combined masking scheme outperforms the previous approaches which require to combine
two different masking schemes to resist both attacks.
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A Additional Proofs
In this Appendix, we give the proofs for Lemma 1, the correctness of our scheme and for
the Propositions that concern the security features of the gadgets whose proof is not given
in the paper.

Lemma 1: Correctness of Circuit Transformation T(n,d)

Proof. For simplicity, let us denote Encode as:

Encode(x, x̃0, . . . , x̃d, x1, . . . , xn−1) = Encode(x).

Next we prove the functionality preserving property of each gadget.
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• x = Decode(RefreshMask(Encode(x))
= Decode(RefreshMask((x̃0, . . . , x̃d, x1, . . . , xn))
= Decode((x̃0 ⊕ r̃0), . . . , (x̃d ⊕ r̃d), (x1 ⊕

⊕n
j=2 r1,j), (r1,2 ⊕ x2

⊕n
j=3 r2,j),

. . . , (
⊕n−1

i=1 ri,n ⊕ xn ⊕W ⊕R))
= (x̃0 ⊕ r̃0) · · · (x̃d ⊕ r̃d)⊕ x1 ⊕ · · · ⊕ xn ⊕W ⊕R
= x̃0 · · · x̃d ⊕W ′ ⊕ x1 ⊕ · · · ⊕ xn ⊕W ⊕R
= x̃0 · · · x̃d ⊕ x1 ⊕ · · · ⊕ xn
= x

• Decode(Xor(Encode(x), Encode(y)))
= Decode(x̃0 ⊕ ỹ0, . . . , x̃d ⊕ ỹd, x1 ⊕ y1, . . . , xn−1 ⊕ yn−1, xn ⊕ yn ⊕ U)
where (x̃0, . . . , x̃d, x1, . . . , xn) = RefreshMask(Encode(x)) and
(ỹ0, . . . , ỹd, y1, . . . , yn) = RefreshMask(Encode(y)).
= [(x̃0 ⊕ ỹ0) · · · (x̃d ⊕ ỹd)]⊕ [(x1 ⊕ y1)⊕ · · · ⊕ (xn−1 ⊕ yn−1)⊕ (xn ⊕ yn ⊕ U)]
= [x̃0 · · · x̃d ⊕ U ⊕ ỹ0 · · · ỹd]⊕ [(x1 ⊕ y1)⊕ · · · ⊕ (xn−1 ⊕ yn−1)⊕ (xn ⊕ yn ⊕ U)]
= (x̃0 · · · x̃d ⊕ x1 ⊕ · · ·xn)⊕ (ỹ0 · · · ỹd ⊕ y1 ⊕ · · · yn)
= x⊕ y.

• xy = Decode(And(Encode(x), Encode(y)))
= Decode(And((x̃0, . . . , x̃d, x1, . . . , xn), (ỹ0, . . . ỹd, y1, . . . , yn)))
where (x̃0, . . . , x̃d, x1, . . . , xn) = RefreshMask(Encode(x)) and
(ỹ0, . . . , ỹd, y1, . . . , yn) = RefreshMask(Encode(y)).
= Decode(z̃0, . . . , z̃d, z1, . . . , zn)

where the output shares can be listed as follows:

z̃i = x̃iỹi′ ⊕ ri,1 ⊕ · · · ⊕ ri,n for 0 ≤ i ≤ d,

zi = xiyi ⊕
n⊕
j=1
j 6=i

ri,j for 1 ≤ i ≤ n.

Also, the values ri,j can be listed as:

r0,j = F(xj , yj) = [r0,j ⊕ (x̃0 . . . x̃d)yj ]⊕ xj(ỹ0 . . . ỹd) for 1 ≤ j ≤ n,
ri,j = (ri,j ⊕ xiyj)⊕ xjyi for 1 ≤ i < j ≤ n.
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Therefore,

Decode(z̄) = z̃0 · · · z̃d ⊕ z1 ⊕ . . .⊕ zn

=
d∏
i=0

[
x̃iỹi′ ⊕ ri,1 ⊕ · · · ⊕ ri,n

]
⊕

n⊕
i=1

xiyi ⊕ n⊕
j=0
j 6=i

ri,j



= [(x̃0 · · · x̃d)(ỹ0 · · · ỹd)⊕ V]⊕

 n⊕
i=1

(xiyi ⊕
n⊕
j=1
j 6=i

ri,j)

⊕
 n⊕
j=1

((r0,j ⊕ (x̃0 . . . x̃d)yi)⊕ xi(ỹ0 . . . ỹd))


= [(x̃0 · · · x̃d)(ỹ0 · · · ỹd)⊕ V]⊕

 ⊕
1≤i,j≤n

xiyj

⊕
[
V ⊕

n⊕
i=1

(x̃0 . . . x̃d)yi ⊕ xi(ỹ0 . . . ỹd)
]

= (x̃0 · · · x̃d)(ỹ0 · · · ỹd)⊕
⊕

1≤i,j≤n
xiyj ⊕

n⊕
i=1

((x̃0 . . . x̃d)yi ⊕ xi(ỹ0 . . . ỹd))

= (x̃0 · · · x̃d ⊕ x1 ⊕ · · ·xn)(ỹ0 · · · ỹd ⊕ y1 ⊕ · · · yn)
= xy.

Hence we showed that the gadgets introduced in Section 3 are functionally preserv-
ing gadgets. Therefore, the transformation that generates an (n, d)-masked circuit is a
functionally preserving transformation.

Proposition 2: t-SNI of RefreshMask[n, d] gadget

Proof. In order to prove the proposition, we first assume that the simulator can access the
values (x̃i)i∈[0,d] by Fact 1 and we show that every set of intermediate variables with t1
elements and every set of output variables with t2 such that t1 + t2 ≤ t can be simulated
from a set of input shares U = ((x̃i)i∈[0,d], (xi)i∈I) such that |I| ≤ t1.

Let us first classify the variables. The intermediate variables are xi, ri,j , x̃i, r̃j , ai,j ,
bj,i (where ai,j , bj,i as defined in Algorithm 3) and the intermediate variables within W,
R and the outputs are x̃′i, x′i.

Next, we can define I as follows:

• For each selected variable xi, ri,j and ai,j add i to I and bj,i add j to I.

• For each selected r̃j , x̃j and x̃j ⊕ r̃j , we don’t need to add any value since x̃j is
accessible by the simulator.

• Line 11, W and R: If one of the variables of form
∏
i∈J(x̃i ⊕ r0)

∏
i/∈J r̃i where

J ( {0, . . . , d} is selected, no values need to be added due to Fact 1. If one of the
variables inside R is selected, no values need to be added since in the expression only
shares x̃i and random variables are used.

It is clear that I contains at most t1 elements since each selected value adds at most
one index to I.
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Now we can define the simulator. For all i ∈ I the simulator can sample all ri,j for
j ∈ [i+ 1, n] and compute all partials sums ai,j and bj,i and thus the output x′i. For all
i ∈ [0, d] the simulator can sample r̃i and compute the output x̃′i. Moreover the simulator
can compute W and R by sampling random variables and computing (x̃i)i∈[0,d].

Finally, we need to consider the simulation of the output shares x′i such that i /∈ I.
Observe that i /∈ I means that any random value in the partial sum of x′i is not probed
and is not involved in a partial sum of it. Hence we can simulate x′i by an uniformly
random value. Also, by Fact 1 any output variable x̃′i can be simulated. As a result any
set of t1 selected intermediate variables and any set of t2 output variables can simulated
by U = ((x̃i)i∈[0,d], (xi)i∈I) such that |I| ≤ t1.

Proposition 3: t-SNI of And[n, d] gadget

Proof. In order to prove the proposition, we first assume that the simulator can access the
values (x̃i)i∈[0,d] and (ỹi)i∈[0,d] by Fact 1. Then we show that every set of t1 intermediate
variables and every set of t2 output variables such that t1 + t2 ≤ t can be simulated by two
sets of input shares (x̃i)i∈[0,d] and (xi)i∈I such that |I| ≤ t1, resp. (ỹj)j∈[0,d] and (yj)j∈J
such that |J | ≤ t1.

We first need to construct the sets of indices I and J corresponding to the shares of x
and y. The following two cases cover every variable in Step 2(b) and Step 3:

Group 1: For all xi, yi, xiyi, add i to I and J .

Group 2: For all ri,j or zi,j add, i to I and J where zi,j denotes the jth partial sum of zi.

Note that after thees steps, we have I = J and we denote this common set as U .

Group 3: For all xiyj ⊕ ri,j , if i ∈ U or j ∈ U , add both i, j to I and J .

Group 4: For all xiyj add, i to I and j to J .

To cover Step 1 and Step 2(a) we need to use the following classification:

Group 5: : For all x̃i, ỹi, ri,j and combination of these, no values are needed to be added
due to Fact 1.

Group 6: For all x̃iyj (resp. ỹjxi), add j to J (resp. i to I).

Group 7: For all values of the form
∏
i∈K x̃i

∏
j∈L ỹj where K,L ( {0, . . . , d}, no values

are needed to be added due to Fact 1.

Clearly, I and J have at most one index per selected variable, and therefore |I| ≤ t1
and |J | ≤ t1.

We now define the simulator for the intermediate variables. The simulation of the
variables in Group 1 and Group 4 can be performed easily.

Group 1: To simulate xi, yi, or xiyi, we can simply use the input variables, as both xi
and yi are known from I and J .

Group 4: To simulate xiyj we can simply use the input variables, as both xi and yj are
known from I and J .

For the remaining groups Group 1 and Group 4 (i. e. probed variables rj,i, zi,j or
xiyj ⊕ ri,j), we use the following claim.
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Claim 1. If i /∈ U , then ri,j is not selected and does not enter in the computation of
any probed zi,k. Similarly, if j /∈ U , then rj,i is not selected and does not enter in the
computation of any selected cj,k.

Proof. For i < j, the variable ri,j is used in all partial sums ci,k for k > j. Also ri,j is
used in ri,j ⊕ xiyj , which is a part of rj,i. Note that rj,i is used in all partial sums ci,k for
k > i.

For 1 < i < j let us consider the following cases:

Case 1: {i, j} ∈ U means that all the variables ri,j , xiyj , xiyj ⊕ ri,j , xjyi and rj,i can be
perfectly simulated while simulating ri,j by a uniformly random value.

Case 2: i ∈ U and j /∈ U implies that we can simulate ri,j as a uniformly random value
and if xiyj ⊕ ri,j is also selected we can perfectly simulate it since i ∈ U and j ∈ J
by Claim 1.

Case 3: i /∈ U and j ∈ U indicates that any variable of the form ri,j and zi,j is not selected
by Claim 1. More importantly ri,j is not used in any other selected value. Thus, we
can simulate rj,i with a uniformly random value. Also we can simulate xiyj ⊕ ri,j
(observe that xiyj ⊕ ri,j = xjyi ⊕ rj,i) since j ∈ U and i ∈ J .

Case 4: i /∈ U and j /∈ U means that if xiyj ⊕ ri,j is selected we can simply simulate it
with a uniformly random value, since ri,j is not selected and does not enter any
calculation.

From the above analysis we can see that any variable ri,j can be simulated if i ∈ U
including all partial sums zi,k and zi. Now, we need to consider the variables from Step 1
and Step 2(a).

• Every variable x̃i, ỹi, x̃iỹi′ , x̃iyj , ỹjxi ri,j or xor of these values can be simulated
according to Fact 1.

• Every variable in Step 2(a) can be simulated since the simulator accesses x̃i∈[0,d]
and ỹj∈[0,d].

Hence, we show that any set of intermediate variables, with t1 elements can be simulated
by the sets ((x̃i)i∈[0,d], (xi)i∈I) and ((ỹj)j∈[0,d], (yj)j∈J) which are uniformly random and
independent of any sensitive variable.

In the last part of the proof, we focus on the simulation of an arbitrary set of output
variables ((z̃i)i∈Õ, (zi)i∈O) where Õ ⊂ [0, d] and O ⊂ [1, n] with t2 elements such that
t1 + t2 ≤ t. Let us first analyze the non-linear output shares (z̃i)i∈Õ. Observe that we can
simulate ri,j as uniformly random values and perfectly simulate z̃i by Fact 1.

Next, we focus on the output shares (zi)i∈O. From the discussion above, we can see
that we can simulate outputs zi with i ∈ U perfectly. Now, consider zi with i 6∈ U . A set
of indices V is constructed as follows: For each variable xiyj ⊕ ri,j in Group 3 with i 6∈ U
and j 6∈ U (corresponding to Case 4 described above), we add j to V if i ∈ O or i to V if
i 6∈ O. Note that we only considered variables in Group 3, where we increased I and J by
two elements. As V was only increased by one element, we have |U |+ |V | ≤ t1 and thus
|U |+ |V |+ |Õ|+ |O| < n. Hence, there is an index j∗ ∈ [0, n] such that j∗ 6∈ (U ∪ V ∪O).
By definition, we have

zi = xiyi ⊕
n⊕

j=0;j 6=i
ri,j = ri,j∗ ⊕

xiyi ⊕ n⊕
j=0;j 6=i;j 6=j∗

ri,j

 .
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We will now show that ri,j∗ and rj∗,i are not processed in the computation of any
selected intermediate variable or another output variable zi′ with i′ ∈ O. Observe that, if
i 6∈ U (resp. j∗ 6∈ U) neither ri,j∗ (resp. rj∗,i) nor any partial sum zi,k (resp. zj∗,k) was
selected. Therefore, j∗ 6∈ O and zj∗ were also not selected. Hence, ri,j∗ and rj∗,i are not
used in the computation of a selected intermediate variable.

In the last part of the proof, we need to show that ri,j∗ and rj∗,i are not needed for
other output variables zi′ .

If i < j∗, then xiyj′ ⊕ ri,j∗ was not selected (since j∗ 6∈ V and i ∈ O). If j∗ < i, then
xj∗yi⊕ rj∗,i was not selected (since j∗ 6∈ (V ∪O). Hence, ri,j∗ and rj∗,i are not used in the
computation of any output variable zi′ and we simulate zi by sampling a random value.

Proposition 4: t-NI of Xor[n, d] gadget

Proof. In order to prove the proposition, we first assume that the simulator can access
the values (x̃i)i∈[0,d] and (ỹi)i∈[0,d] and show that every set of intermediate variables
including the output shares with ≤ t elements can be simulated by two sets of input
shares (x̃i)i∈[0,d] and (xi)i∈I such that |I| ≤ t (resp. (ỹj)j∈[0,d] and (yj)j∈J such that
|J | ≤ t). We denote the concatenations of these tuples by U = ((x̃i)i∈[0,d], (xi)i∈I) and
V = ((ỹj)j∈[0,d], (yj)j∈J).

We can define I and J as follows: for each selected xi, yi, xi ⊕ yi add i to I and J .
Due to Fact 1, all selected variables x̃i, ỹi, x̃i ⊕ ỹi, x̃iỹj and

∏
i∈K x̃i

∏
j /∈K ỹj , doe not

increase the size of the sets I and J .
It is clear that I and J contains at most t elements since each selected variable adds at

most one index to I and/or J . Remark that the above classification also covers the output
shares.

Now we can define the simulator. Every variable of the form xi, yi, xi ⊕ yi (resp. x̃i,
ỹi, x̃i ⊕ ỹi) can be simulated by the sets U and V . Moreover every variable of the form∏
i∈K x̃i

∏
j /∈K ỹj where K ( {0, . . . , d} can be simulated by Fact 1.

Proposition 6: ε-1-AS of And[n, 1] Gadget

Proof. In the first part of the proof we show that, except of affine functions of the inputs,
there exists no function f ∈ F (1)(C) which is constant when inputs are fixed. From
Proposition 5 and the fact that the refreshing and the main phase use different random
bits, it follows that we need to consider functions involving only the nodes of the main
part of the And gadget, i.e., the RefreshMask phase can be excluded.

First, let us reformulate the circuit C as follows:

C : ((Fn+2
2 × Fn+2

2 ),FRC
2 )→ Fn+2

2

((x̃0, x̃1, (xi)1≤i≤n), (ỹ0, ỹ1, (yi)1≤i≤n), r̄) 7→ (z̃0, z̃1, (zi)1≤i≤n).

where r̄ denotes the set of randomness that is used in the circuit. Next, we define three
classes of edges within the circuit:

• R: The set of random bits,

• B: The set of linear shares, i.e. xi and yj for all 1 ≤ i, j ≤ n,

• M: The set of non-linear shares, i.e. x̃0, x̃1, ỹ0 and ỹ1.

Using the above classification we can analyze the nodes ci ∈ C with respect to their
input edges in the main part of the And gadget (i.e. starting in line 3 in Algorithm 2). We
define the nodes as ci : (u1

i , u
2
i ) 7→ vi where u1

i , u
2
i ∈ F2 represent the input bits of the
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node and vi ∈ F2 represents the output bit of the node. Depending on the edges of the
nodes we classify them as follows

1. u1
i ∈ R or u2

i ∈ R,

2. u1
i ∈ B or u2

i ∈ B,

3. u1
i ∈ M and u2

i ∈ M.
Each ci ∈ C is either one of the forms above or a combination of them e.g. ci :

(vj , vk) 7→ vi or ci : (u1
j , vk) 7→ vi where u1

i ∈ (R ∪ B ∪M) and vj , vk are the output bits of
the nodes cj , ck.

Assume that there exists a function f ∈ F (1)(C) such that f is constant when the
inputs x and y are fixed. Remark that for a fixed c1, c2 ∈ Fn+2

2 , the gadget calculates
And((RefreshMask(c1), RefreshMask(c2)), r), which equals to And((c′1, c′2)), r) where c′1
and c′2 are the non-fixed outputs of RefreshMask(c1) and RefreshMask(c2), where by And
we mean here the main phase of the gadget. Due to Proposition 5 we know that there
exist no constant linear combinations of nodes inside RefreshMask with fixed input. Thus,
it is not possible to calculate a single bit input of the whole And gadget, since there exists
no common node or no common random node between main part of the And gadget and
the RefreshMask phase. Therefore, the only way of generating a constant function is to
have a node that calculates x̃0x̃1 ⊕ x1 ⊕ · · · ⊕ xn = x (resp. ỹ0ỹ1 ⊕ y1 ⊕ · · · ⊕ yn).

Any linear combination of the nodes of 1 and 2 cannot be constant due to the
RefreshMask gadgets, since either a node is random (non-fixed by definition) or the
node corresponds to linear masking (randomized by RefreshMask). Therefore, f should
include at least one node from the 3rd class or a combination of nodes that include mul-
tiplicative shares (M) to form the reconstructed multiplicative representation: x0 or y0.
Clearly, such a combination can be found in Step 1 and Step 2(a) where the following
computations are processed:

• z̃0 and z̃1,

• x̃1(x̃0yj ⊕ r0,j ỹ0) = x̃1x̃0yj ⊕ r0,j x̃1ỹ0 for 1 ≤ j ≤ n,

• ỹ1(ỹ0xj ⊕ r1,j x̃0) = ỹ1ỹ0xj ⊕ r1,j ỹ1x̃0 for 1 ≤ j ≤ n.

The use of parentheses indicates the order in which the nodes are used in the above
equations. The resulting order eliminates the generation of an affine function of x0 or y0
(the shares represented by x̃0, x̃1 and ỹ0, ỹ1 respectively), although these nodes calculate
the correct function (rj,0 as seen in Equation (2)). Any linear combination of these nodes
cannot be constant and thus there exists no constant function f ∈ F (1)(C) when the inputs
are fixed, besides the affine functions of input nodes.

In the second part, we examine the highest degree term in the gadget and find the
corresponding bias. For And[n, 1] the maximum degree term can be found in line 16 of
Algorithm 2. Specifically, xnyn which contains a node of the form r̃x0 r̃

x
1 r̃
y
0 r̃
y
1 where r̃x0 , r̃x1

(resp. r̃y0 , r̃
y
1) are the randomness used in RefreshMask(x) (resp. RefreshMask(y)). Clearly

the corresponding bias and the bias bound of the gadget can be calculated as 2−4 and
ε ≤ 1/2− 1/24 = 7/16 respectively. Thus the And gadget is ε-1-AS with ε := 7/16.

Proposition 9: ε-2-AS of And[n, 2] Gadget

Proof. Similar to the proof of Proposition 6, we reformulate the circuit C as follows:

C : ((Fn+3
2 × Fn+3

2 ),FRC
2 )→ Fn+3

2

((x̃0, x̃1, x̃2, (xi)1≤i≤n), (ỹ0, ỹ1, ỹ2, (yi)1≤i≤n), r̄) 7→ (z̃0, z̃1, z̃2, (zi)1≤i≤n).

Next we use the classification of the nodes that we used in the proof of Proposition 6:
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• R: The set of random bits,

• B: The set of linear shares, i.e. xi and yj for all 1 ≤ i, j ≤ n,

• M: The set of non-linear shares, i.e. x̃0, x̃1, x̃2, ỹ0, ỹ1, and ỹ2.

Using the above classification we can analyze the nodes ci ∈ C with respect to its input
edges. We define the nodes as ci : (u1

i , u
2
i ) 7→ vi where u1

i , u
2
i ∈ F2 represent the input bits

of the node and vi ∈ F2 represents the output bit of the node. The base classification of
the depending nodes is as follows, (1) u1

i ∈ R or u2
i ∈ R, (2) u1

i ∈ B or u2
i ∈ B, (3) u1

i ∈ M
and u2

i ∈ M. Each ci ∈ C is either one of the forms above or a combination of them, e.g.,
ci : (vj , vk) 7→ vi or ci : (u1

j , vk) 7→ vi where u1
i ∈ (R ∪ B ∪M) and vj , vk are the output

bits of the nodes cj , ck.
First let us consider a function f ∈ F (2)(C) \ {0,1}. As before we denote the function

f with a constant inputs c1, c2 ∈ Fn+3
2 as fc1,c2(r1). If fc1,c2 can be written of the form

fc1,c2 = g0 ⊕
∑t
i=1 gihi, where g0, g1, . . . gt are affine functions of c1, c2 and h1, . . . ht ∈

F (1)(C) \ {0,1}, then there exists c1, c2 ∈ Fn+3
2 such that fc1,c2 is constant and fc1,c2 lies

in condition 2.(a) of Definition 9.
Assume fc1,c2 does not reside in condition 2.(a) of Definition 9. As in the proof

of Proposition 6 we can state that for a fixed c1, c2 ∈ Fn+3
2 , the gadget calculates

And((RefreshMask(c1), RefreshMask(c2)), r), which equals to And((c′1, c′2)), r) where c′1
and c′2 are the non-fixed outputs of RefreshMask(c1) and RefreshMask(c2); Here, by And
we mean the main phase of the gadget. Due to Proposition 8 we know that there exists no
constant second-order combinations of nodes inside RefreshMask with fixed input. Thus
it is not possible to calculate a single bit input of the whole And gadget, since there exists
no common node or no common random node between the main part of the And gadget
and the RefreshMask phase. Therefore, the only way of generating a constant function is
to have a node that calculates x̃0x̃1x̃2 ⊕ x1 ⊕ · · · ⊕ xn = x (resp. ỹ0ỹ1ỹ2 ⊕ y1 ⊕ · · · ⊕ yn).

This observation indicates that f should include nodes from the third class or a
combination of nodes that include multiplicative shares (M) which can be found in Step
1 and Step 2(a). However, the nodes ci ∈ C contain at most one value from each
multiplicative representation, i.e., each node contains only one non-linear share. Thus, any
first or second-order combination cannot contain all three non-linear shares and f(x, y, ·)
cannot be fixed for all x, y ∈ Fn+3

2 .
In the second part of the proof we examine the highest degree term in the circuit. The

maximum degree term can be found in line 16 of Algorithm 2 for And[n, 2]. We can see
that the maximum degree term for this case is 6. The linear bias bound of the gadget is:

E(f ′) < ε′ := 1
2 −

1
26 , where f ′ ∈ F (1)(C) \ {0,1}

Thus, And[n, 2] is ε′-1-AS. Using the same argument, we can see that the maximum
degree term f ∈ F (2)(C) is less than or equal to 12. This result is followed by:

E(f) ≤ ε := 1
2 −

1
212 , where f ∈ F (2)(C) \ {0,1}.

Observe that in the first part of the proof we showed that there exists no function
f ∈ F (2)(C) such that fc1,c2 is constant, which implies both linear and second-order biases
cannot grow. Thus, the And[n, 2] gadget is ε-2-AS circuit where ε := 1/2− 1/212.

B Example Constructions
Example 3. n = 2, d = 1

Here is an example construction for the (2, 1)-masking scheme:
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• Encode(x, x1, x̃0, x̃1) = (x̃0, x̃1, x1, x2) where x2 = x̃0x̃1 ⊕ x1 ⊕ x.

• Decode(x) = x̃0x̃1 ⊕ x1 ⊕ x2.

• Xor(x, y) = (z̃0, z̃1, z1, z2) such that z = x⊕ y:

– z̃0 = x̃0 ⊕ ỹ0,

– z̃1 = x̃1 ⊕ ỹ1,

– z1 = x1 ⊕ y1,

– z2 = x2 ⊕ y2 ⊕ x̃1ỹ0 ⊕ x̃0ỹ1.

• And(x, y) = (z̃0, z̃1, z1, z2) such that z = xy;

Step 1: First, calculate the multiplicative representations of the output share z0:
– z̃0 = x̃0ỹ1 ⊕ r0,1 ⊕ r0,2,

– z̃1 = x̃1ỹ0 ⊕ r1,1 ⊕ r1,2 where (r0,1, r0,2, r1,1, r1,2)← rand(0, 1)
Step 2(a): Calculate the intermediate values rj,0 which include the reconstruction

of the values x0 and y0:
– r1,0 = x̃1(x̃0y1 ⊕ r0,1ỹ0)⊕ ỹ1(ỹ0x1 ⊕ r1,1x̃0)⊕ r1,1(r0,1 ⊕ r0,2),
– r2,0 = x̃1(x̃0y2 ⊕ r0,2ỹ0)⊕ ỹ1(ỹ0x2 ⊕ r1,2x̃0)⊕ r1,2(r0,1 ⊕ r0,2).

Step 2(b): Calculate the intermediate values rj,0 which do not include the recon-
struction of the values x0 and y0:
– r1,2 ← rand(0, 1),
– r2,1 = (r1,2 ⊕ x1y2)⊕ x2y1.

Step 3: Finally, calculate the rest of the shares:
– z1 = x1y1 ⊕ r1,0 ⊕ r1,2,

– z2 = x2y2 ⊕ r2,0 ⊕ r2,1.

• RefreshMask(x) = (x̃0, x̃1, x1, x2)

1. First, calculate the non-linear components of the output share x0:
– x̃0 = x̃0 ⊕ r̃0,

– x̃1 = x̃1 ⊕ r̃1 where (r̃0, r̃1)← rand(0, 1)
2. Calculate the rest the linear masks:

– x1 = x1 ⊕ r1,

– x2 = x2 ⊕ r1 where r1 ← rand(0, 1)
3. Select a random bit r0 ← rand(0, 1) and calculate the intermediate variable

with W and R :
– W = r̃0(x̃1 ⊕ r0)⊕ r̃1(x̃0 ⊕ r0) and R = (r̃0 ⊕ r0)(r̃1 ⊕ r0)⊕ r0 where
– x2 = x2 ⊕W ⊕R

Example 4. Example: n = 2, d = 2
Here is an example construction for the (2, 2)-masking scheme:

• Encode(x, x1, x̃0, x̃1, x̃2) = (x̃0, x̃1, x̃2, x1, x2) where x2 = x̃0x̃1x̃2 ⊕ x1 ⊕ x.

• Decode(x) = x̃0x̃1x̃2 ⊕ x1 ⊕ x2.

• Xor(x, y) = (z̃0, z̃1, z̃2, z1, z2) such that z = x⊕ y

– z̃i = x̃i ⊕ ỹi for i = {0, 1, 2}
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– z1 = x1 ⊕ y1

– z2 = x2 ⊕ y2 ⊕ x̃1(x̃2ỹ0 ⊕ ỹ2(x̃0 ⊕ ỹ0))⊕ ỹ1(x̃2ỹ0 ⊕ x̃0(x̃2 ⊕ ỹ2))

• And(x, y) = (z̃0, z̃1, z̃2, z1, z2) such that z = xy

Step 1: First, calculate the multiplicative representations of the output share z0:
– z̃0 = x̃0ỹ1 ⊕ r0,1 ⊕ r0,2,

– z̃1 = x̃1ỹ2 ⊕ r1,1 ⊕ r1,2,

– z̃2 = x̃2ỹ0 ⊕ r2,1 ⊕ r2,2 where ri,j ← rand(0, 1) for i = {0, 1, 2} , j = {1, 2}.
Step 2(a): Calculate the intermediate values rj,0 where the combination of random

nodes are defined as; u = (r1,1 ⊕ r1,2) and v = (r2,1 ⊕ r2,2).
– r1,0 = F(x1, y1) = x̃0

[
x̃2(x̃1y1 ⊕ r0,1ỹ0)⊕ r1,1vỹ1

]
⊕

ỹ0
[
ỹ1(ỹ2x1 ⊕ r1,1x̃2)⊕ r0,1ux̃2

]
⊕

x̃0ỹ1(r1,1x̃2ỹ0 ⊕ r2,1x̃1ỹ2)⊕ r0,1x̃1ỹ2(v ⊕ x̃2ỹ0)⊕
x̃2ỹ0(r0,1x̃0 ⊕ r1,1ỹ1)⊕ uvr0,1.

– r2,0 = F(x2, y2) = x̃0
[
x̃2(x̃1y2 ⊕ r0,2ỹ0)⊕ r1,2vỹ1

]
⊕

ỹ0
[
ỹ1(ỹ2x2 ⊕ r1,2x̃2)⊕ r0,2ux̃2

]
⊕

x̃0ỹ1(r1,2x̃2ỹ0 ⊕ r2,2x̃1ỹ2)⊕ r0,2x̃1ỹ2(v ⊕ x̃2ỹ0)⊕
x̃2ỹ0(r0,2x̃0 ⊕ r1,2ỹ1)⊕ uvr0,2.

Step 2(b): Calculate the intermediate values rj,0 which do not include the recon-
struction of the values x0 and y0:
– r1,2 ← rand(0, 1),
– r2,1 = (r1,2 ⊕ x1y2)⊕ x2y1.

Step 3: Finally, calculate the rest of the shares:
– z1 = x1y1 ⊕ r1,0 ⊕ r1,2,

– z2 = x2y2 ⊕ r2,0 ⊕ r2,1.

• RefreshMask(x) = (x̃0, x̃1, x̃2, x1, x2)

1. First, calculate the multiplicative representations of the output share x0:
– x̃0 = x̃0 ⊕ r̃0,

– x̃1 = x̃1 ⊕ r̃1,

– x̃2 = x̃2 ⊕ r̃2, where (r̃0, r̃1, r̃2)← rand(0, 1)
2. Calculate the rest the linear shares:

– x1 = x1 ⊕ r1,

– x2 = x2 ⊕ r1 where r1 ← rand(0, 1)
3. Select a random bit r0 ← rand(0, 1) and calculate the intermediate variable

with W and R :
– W = [r̃2(x̃0 ⊕ r0)][r̃1 ⊕ (x̃1 ⊕ r0)] ⊕ [r̃1(x̃2 ⊕ r0)][r̃0 ⊕ (x̃0 ⊕ r0)]⊕

[r̃0(x̃1 ⊕ r0)][r̃2 ⊕ (x̃2 ⊕ r0)]
R = (r̃0 ⊕ r0)(r̃1 ⊕ r0)(r̃2 ⊕ r0)⊕

r0r̃2(x̃0 ⊕ r0)⊕ r0r̃1(x̃0 ⊕ r0)⊕ r0r̃0(x̃1 ⊕ r0)⊕
r0r̃2(x̃1 ⊕ r0)⊕ r0r̃1(x̃2 ⊕ r0)⊕ r0r̃0(x̃2 ⊕ r0).

– x2 = x2 ⊕W ⊕R
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