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Abstract. Over the past decades, fault injection attacks have been extensively studied
due to their capability to efficiently break cryptographic implementations. Fault
injection attack models are normally determined by analyzing the cipher structure
and finding exploitable spots in non-linear and permutation layers. However, this
level of abstraction is often too high to distinguish vulnerable parts of software
implementations, due to specific operations and optimizations. On the other hand,
manually analyzing the assembly code requires non-negligible amount of time and
expertise.
In this paper, we propose an automated approach for analyzing cipher implementations
in assembly. We represent the whole assembly program as a data flow graph so that
the vulnerable spots can be found efficiently. Fault propagation is analyzed in a
subgraph constructed from each vulnerable spot, allowing equations for Differential
Fault Analysis (DFA) to be automatically generated.
We have created a tool that implements our approach: DATAC – DFA Automation
Tool for Assembly Code. We have successfully used this tool for attacking PRESENT-
80, being able to find implementation-specific vulnerabilities that can be exploited in
order to recover the last round key with 16 faults. Our results show that DATAC is
useful in finding attack spots that are not visible from the cipher structure, but can
be easily exploited when dealing with real-world implementations.
Keywords: automated fault attack, software implementations, assembly code, differ-
ential fault analysis

1 Introduction
When it comes to attacking cryptographic algorithms, fault injection attacks are among
the most serious threats, being capable of revealing the secret information by just one
single disturbance in the execution [TM09, DRA16, JKP12]. Differential Fault Analysis
(DFA) [BS97] has become the most commonly used fault analysis method for attacking
symmetric block ciphers. It is the first method of choice when it comes to testing fault
resilience of new cryptographic algorithms because of its simplicity and power to recover
the secret key by a low number of faulty encryptions.

In practice, the attack always has to be mounted on a real-world device, in an imple-
mentation that is either hardware- or software-based. When we focus on software, there
are many different ways to attack such implementations – one can corrupt the instruction
opcodes resulting to instruction change, skip the instructions completely, flip the bits in
processed constant values or register addresses, or change the values in the registers and
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memories directly [BECN+06, BBKN12]. These attacks can be achieved by various fault
injection methods, such as clock/voltage glitch, laser fault injection, or electromagnetic
fault injection [BECN+06, BBB+12].

As a consequence, different implementations of the same encryption algorithm do not
necessarily share the same vulnerabilities. Some attacks that work in theory might either
not be possible, or be hard to execute in practice (e.g. precisely setting particular bits of
the cipher state to some value [DP14]). On the other hand, there might be an exploitable
spot in the implementation that is not visible from the specification of the encryption
algorithm and can only be found by analyzing the assembly code. Up to now, the known
DFA on PRESENT all aim before the execution of Sbox layer of the last round. In Section
5 we will show a DFA attack on one PRESENT implementation which aims at the end of
player of the last round. The vulnerability comes from the implementation technique and
is not intrinsic to the cipher.

Even though there are works on fault analysis of a cipher from the cipher design level,
there is no work aiming at DFA on the assembly code level. Reason is that analyzing one
particular implementation by human is time consuming and it cannot be generalized to all
the implementations. Therefore, when attacking a single cipher, researchers rather aim
at fault models that work universally. However, since the real attack is always done on a
concrete implementation [CML+11, BJC15], it is important to have automated tools to
find the vulnerabilities of specific implementations. Our work aims to contribute to the
automation of DFA on assembly code.

Since DFA makes use of the data dependency between the intermediate values of the
algorithm and the secret key, we represent an assembly code as a customized data flow
graph in Static Single Assignment (SSA) form to record the operations (edges) and memory
structures (nodes) holding the data, as well as their relations. Hence, assuming a fault
is injected in one node (equivalently, the fault is injected in the instruction where this
node is an output operand), we can construct the corresponding subgraphs that represent
propagation of faults from this node to the ciphertext, while also showing its relation to
the round key(s). Ultimately, this allows us to automatically generate differential fault
analysis equations, by solving which we can mount a successful fault injection attack.

Different DFA attacks make use of different properties of the cryptosystems. The
simplest attacks aim at the last round, requiring higher number of faults. More sophisticated
attacks utilize properties of the cipher permutation layer, enabling them to aim at second
or third last round, while lowering the number of faults. Hence, we allow the users to
specify what kind of vulnerable spots to look for, which is realized as a user input variable
called output criteria.

Our methodology was implemented in a tool named DATAC – DFA Automation Tool
for Assembly Code, that takes an assembly code as input, and outputs subgraphs and
equations for each vulnerable node according to user specified output criteria.
Our Contribution. In this work we design and implement an automated tool DATAC
which automatically finds the vulnerable instructions with respect to DFA in an assembly
implementation of cryptosystem and outputs the related DFA equations for further analysis.

DATAC does not require any specific inputs of the cryptosystem and works inde-
pendently of plaintext and secret key, providing a general evaluation of the underlying
implementation. To the best of our knowledge, there is no tool working on assembly
level that could automate the whole process to such extent. We emphasize that DFA
vulnerabilities specific to software implementations are not visible from cipher design level.

We provide a case study on PRESENT-80 cipher implementation for 8-bit AVR
microcontroller that shows capabilities of DATAC by finding a new DFA attack which is
implementation specific, being able to recover the last round key by 16 fault injections.

To show the usage of output criteria, we provide an analysis of SPECK 64/128 and
SIMON 64/128 lightweight ciphers, as well as current industry standard, AES-128. Time
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required for analysis of AES is less than a second, by using a standard laptop computer.
The results show that the whole process is computationally feasible.

We would like to point out that our tool is modular and enables an easy extension to
the instruction set, making it easy to evaluate implementations for different devices.
Paper Organization. The rest of the paper is structured as follows. Section 2 provides
preliminaries for this paper. Section 3 specifies our approach, by detailing each step of
the evaluation used in DATAC. Section 4 provides implementation details of DATAC.
Section 5 explains an implementation specific DFA attack on PRESENT-80 found with
DATAC. Section 6 provides a discussion and finally, Section 7 concludes this work and
provides a motivation for future works.

2 Preliminaries
In this section, we first provide an overview of DFA in Section 2.1. Next, we detail several
related works in Section 2.2, focusing on automated fault analysis on design level and on
evaluating implementations. In Section 2.3, we explain necessary basics of intermediate
representations that are related to our work. We continue with stating assumptions and
scope for DATAC usage in Section 2.4. Finally Section 2.5 closes this part with formal
definitions and notations that are used later in the paper.

2.1 Differential Fault Analysis
Differential Fault Analysis (DFA) is among the most popular fault analysis methods for
analyzing symmetric block ciphers. The concept of DFA was introduced by Biham and
Shamir in [BS97] in ’97. The authors show that it is possible to break Data Encryption
Standard by analyzing 50-200 faulty ciphertexts with a bit-flip fault model.

DFA attack consists of injecting a fault into the intermediate state of the cipher,
normally during one of the last rounds. The fault then propagates, resulting into a faulty
ciphertext. Difference between the original and the faulty ciphertext is then analyzed,
giving the attacker information about the secret key. DFA exploits the properties of the
non-linear operation that is normally used in the cryptosystem. The whole concept is
similar to a classical differential cryptanalysis [BS91] of a reduced-round cipher.

Most of the block cryptosystems were shown to be vulnerable against DFA, since there
are no efficient cipher designs that could prevent this analysis up to date. For further
reading, one can find DFA on AES [TM09], DES [Riv09], PRESENT [BEG13], SIMON &
SPECK [TBM14], etc.

2.2 Related Work
Agosta et al.[ABPS14] utilized an intermediate representation in order to check for single
bit-flip vulnerabilities in the code to point out the exploitable parts. However, the approach
aims at detecting cipher design vulnerabilities instead of low-level implementation specific
vulnerabilities. That is also why instruction skip model is not considered, although it
being one of the most powerful and easy to implement attacks.

Khanna et al. [KRH17] proposed XFC – a method that checks exploitable fault
characteristics of block ciphers considering the DFA attack method. Their approach takes
a cipher specification as an input and then indicates the fault propagation through the
cipher. The main drawback of this work is its focus on a high-level cipher representation,
and therefore, being unable to check the security of a particular cipher implementation.

Goubet et al. [GHEDK16] developed a framework that generates a set of equations
for an SMT solver from assembly code. Then it uses this representation for evaluating
robustness of countermeasures against fault injection attacks. The evaluation is based on
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comparison of two code snippets: one that represents a code without any protection, and
a hardened code. These snippets are then represented as a finite automata, unfolded, and
analyzed. The main drawback of this work is its focus on code snippets instead of real
implementations of cryptosystems and the fact that analyzing 10 lines of code requires
10.7 s. Therefore it is not feasible to analyze the full cipher in a reasonable time.

Dureuil et al. [DPdC+16] proposed an approach using fault model inference – they
first determine fault models that can be achieved on a target hardware, together with
probability of occurrence of these models. Based on this information, they compute a
“vulnerability rate" that gives an estimate of the software robustness. The focus of this
paper is to estimate time required in order to successfully inject the required fault model.

Gay et al. [GBH+16] took several hardware implementations of AES and provided
their algebraic representations and translation into formulas in Conjunctive Normal Form
(CNF). These can be directly used by a SAT solver to mount an algebraic fault analysis.

A different approach to fault analysis automation was presented by Endo et al. [EHH+14].
Their work does not focus on finding a DFA vulnerability. However, it automates the way
to find a pre-defined vulnerable spot in a black-box implementation with a countermeasure
by checking whether the cipher output matches the requirement for the attack.

Our approach analyzes the assembly code directly, by building a customized data flow
graph, allowing users to tailor the requirements for vulnerabilities according to desired
fault models. Thanks to this, we can identify the points of interest efficiently and design
DFA equations automatically, so that only the solving part is left to the user. DATAC is
also scalable and can be used for analyzing a whole cipher implementation efficiently.

2.3 Intermediate Representation
Compiler construction normally depends on program analysis, where statements from an
abstract high-level language are translated into a binary form that is understandable by
the underlying processor. This process is not done in a single step but there are several
subprocesses involved, in order to optimize the resulting program. One of these steps
involves creation of an intermediate form that can be represented as a directed graph.
There are various intermediate forms that can represent a program. Here we detail three
intermediate representations which are most related to our work.

Data Dependency Graph. Data dependency graph [ASKL81, CGK80] represents
dependencies between (arithmetic assignment) statements that exist within program
loops. For assembly code, the data dependency graph is also called instruction depen-
dency graph, where each node corresponds to one instruction and each edge represents a
dependency [DJTK10].

Data Flow Graph. A data flow graph is a representation of data flow in a program
execution. The nodes correspond to operations. Input data of an operation are represented
as inward edges of the corresponding node and output data of an operation are represented
as outward edges of the node [Nie98].

Static Single Assignment. Static Single Assignment (SSA) form requires that each
variable is assigned exactly once and every variable is defined before it is used. As an
example, we can take an assignment of the form x = exp. Then, the left-hand side variable
x is replaced by using a new variable, e.g. x1. After this point, any reference to x, before
x is assigned again, is replaced with x1 [Bar13].

DATAC. In our work, we are dealing with the dependency between different memory
units that can be affected by performing operations on these units. Thus, DATAC
construct a graph where each node corresponds to a variable and each edge corresponds to
an instruction. There is an edge f from a variable a to a variable b if and only if a is one
input operand of instruction f and b is one output operand of f .

Furthermore, we consider an unrolled implementation. Hence, we can adopt the SSA
form to facilitate DFA. Therefore, a graph constructed by DATAC is a customized data
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flow graph in SSA form.

2.4 Assumptions and Scope
Obviously, there are many aspects that have to be taken into account when analyzing a
cipher implementation. It would be a daunting task to make a general-purpose analyzer
that could work on unrestricted space of programs and fault analysis methods. Therefore,
in the following we specify the scope for the tool usage and the rationale behind the design
and implementation.

• As most of the DFA proposals, our method assumes known-ciphertext model and a
single fault adversary (i.e., injecting one fault per encryption).

• We assume the implementation is available to the user and he can add annotations
to the assembly code for the purpose of distinguishing different rounds, round keys,
ciphertext words, etc.

• Majority of DFA proposals assume either bit-flip or random byte fault models.
Additionally, some works utilize a powerful instruction skip model that can change
the program flow in a way that some operations are avoided completely, resulting
into a trivial cryptanalysis [FXKH17]. Therefore, we assume these three fault models
in our analysis.

• The analysis automates the process of DFA that focuses on finding the vulnerable
spot in the program and creating the difference equations.

• The set of vulnerable nodes that are outputs from the analysis, is dependent on
parameters that are set by the user. These are referred to as the output criteria.
While we give some suggestions on tuning these so that the user can get readily
exploitable outputs, in the future there might be more efficient DFA methods available
that would require different parameters. By defining these as an input variable, it
makes it easy in the future to adjust the tool to these new attacks without rebuilding
the analysis subsystem.

• While the program outputs the difference equations, the final step of the analysis has
to be done manually. One of the reasons for this is that our tool does not operate on
concrete values, only on dependencies between the variables.

• For the analysis in this paper, we have chosen Atmel AVR instruction set 1. However,
for analyzing different instruction sets, only the parsing subsystem of the analyzer
has to be redefined (AsmFileReader class stated in the class diagram in Figure 8).

We would like to point out that the analysis is done on unrolled implementations. The
main reason for this is that fault attack can always exploit a jump/branch operation in
a way to render the computation vulnerable to DFA [YGS+16]. For example, if a round
counter is tampered with, attacker can easily change the number of rounds to 1, making it
trivial to recover the key. Or, if cipher operations are implemented as macros, one can
skip the jump to such macro [KPB+17].

2.5 Formalization of Fault Attack
Definition 1. We define a program to be an ordered sequence of assembly instructions
F = (f0, f1, . . . , fNF−1). NF is called the number of instructions for the program. For
each instruction f ∈ F , we associate f with a 4-tuple (fseq, fmn, f io, fdo), where fseq is

1http://www.atmel.com/images/Atmel-0856-AVR-Instruction-Set-Manual.pdf
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Table 1: Assembly code Fex for a sample cipher.
# Instruction # Instruction # Instruction

//round_1 5 EOR r1 r3 10 LD r3 key2+
0 LD r0 X+ 6 ANDI r0 0x0F 11 EOR r0 r2
1 LD r1 X+ 7 ANDI r1 0xF0 12 EOR r1 r3
2 LD r2 key1+ 8 OR r0 r1 //store_ciphertext
3 LD r3 key1+ //round_2 13 ST x+ r0
4 EOR r0 r2 9 LD r2 key2+ 14 ST x+ r1

the sequence number and fmn is the mnemonic of f . f io is the set of input operands of
f , which can be registers, constant values or pointers to memory addresses. fdo is the
set of destination (output) operands of f , which can be registers or pointers to memory
addresses.

Example 1. The assembly implementation Fex of a simple sample cipher in Table 1 has
NFex

= 15 instructions. Instruction f6 = ANDI r0 0x0F has input operands r0 and 0x0F,
destination operand r0. Thus f6 is associated with the 4−tuple (6, ANDI, {r0, 0x0F}, {r0}).

We note that for an instruction f = ADD r0 r1, the output operands of f are actually
r0 and carry, where carry is a flag, usually represented by a bit in the status register of
a microcontroller. The carry itself does not appear in the assembly code directly, however,
we consider it in our analysis as a standalone operand.

Fault attack is an intentional change of the original data value into a different value.
This change can either happen in a register/memory, on the data path, or directly in ALU.
In general, there are two main fault models to be considered – program flow disturbances
and data flow disturbances. The first one is achieved by disturbing the instruction execution
process that can result in changing or skipping the instruction currently being executed.
The second one is achieved either by directly changing the data values in storage units, or
by changing the data on the data paths or inside ALU.

Formally, we define a fault injection in a program F = {f0, f1, . . . , fNF−1} to be a
function ϑi : F 7→ F ′, where 0 ≤ i < NF and F ′ is a program obtained from F with the
instruction fi being tampered. Thus ϑi represents a fault injection on the instruction with
sequence number i in F . There are different possible fault models, we focus on following:

• Instruction skip: ϑi(F) = F\fi, i.e. instruction i is skipped.

• Bit flip: ϑi(F) = {f0, f1, . . . , fi, f
′
i+1, f

′
i+2, . . . , f

′
NF−1, f

′
NF
} such that f ′j+1 = fj for

i < j < NF and f ′i+1 = r xor ∆, where r ∈ fdo
i ∪f io

i is either a destination operand
or an input operand of instruction fi and ∆ is a pre-defined value which is called a
fault mask. In the case fdo

i = ∅, f ′i+1 = NOP.

• Random byte fault: ϑi(F) = {f0, f1, . . . , fi, f
′
i+1, f

′
i+2, . . . , f

′
NF−1, f

′
NF
} such that

f ′j+1 = fj for i < j < NF and f ′i+1 = r xor ∆, where r ∈ fdo
i ∪ f io

i and ∆ is a
random value. In the case fdo

i = ∅, f ′i+1 =NOP.

In the rest of this paper we assume that the attacker has the knowledge of the fault model
for the differential fault analysis.

3 Automated Assembly Code Analysis
In Section 3.1, we first provide an overview of the internal working of DATAC. Then, we
explain the methodology used in DATAC in details, following the same logical flow as the
actual analysis. Section 3.2 defines the specifics of our customized data flow graph. Output
criteria parameters are elaborated in Section 3.3. Subgraph and equation constructions
are illustrated in Sections 3.4 and 3.5, respectively.
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Figure 1: Our evaluation method for analyzing assembly code w.r.t. fault injection
vulnerabilities.

3.1 Overview
The main goal of DATAC is to analyze the assembly code and find vulnerable spots w.r.t.
DFA attack. This can be a challenging task, since the same instruction can be vulnerable
in one part of the code, but secure in the other part, depending on the context.

For our purposes, we have to capture the following details when transforming the
assembly code:
− Memory units holding the data (registers, RAM, flash, etc.) as well as direct operands
(constants) – these will be represented as nodes.
− Transitions between the nodes.
− Operations (instructions) in the program – represented as edges.
− Properties of operations (linear/non-linear).
− Ability to distinguish important nodes, such as round keys and ciphertext.
Our evaluation method is depicted in Figure 1. First, an assembly code is fetched as

the input. Based on its structure, a data flow graph is created. Depending on the output
criteria, vulnerable nodes are identified. Then, a subgraph is created for each vulnerable
node – it specifies a propagation pattern of the fault from the vulnerable node to the
ciphertext. Together with it, fault analysis equations are generated – based on them, a
fault attack can be executed. In the rest of this section, we provide details on how our
approach works.

3.2 From Assembly to Data Flow Graph
Given a program F = (f0, f1, . . . , fNF−1), a data flow graph is a directed graph GF,full =
(V,E), where the set of nodes V = A ∪ B is the union of two sets of labeled nodes. A
consists of labeled nodes with labels “x (i)” such that x is a destination operand (also
called output operand) of instruction i. B consists of labeled nodes with labels “y (i)”
such that y is an input operand of instruction i and y is not a destination operand of any
instruction.
− A = {“x (i)” : x ∈ fdo

i for some 0 ≤ i < NF};
− B = {“y (i)” : y ∈ f io

i for some 0 ≤ i < NF and y /∈ fdo
j for any 0 ≤ j < NF}.

We draw an edge from node a = “y (i)” to node b = “x (j)” if and only if the following
conditions are satisfied:
− i ≤ j,
− x is a destination operand of instruction j,
− y is an input operand of instruction j,
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load_plaintext

round_2

round_1

store_ciphertext

X+ (0)

r0 (0)

ld (0)

r1 (1)

ld (1)

r0 (4)

eor (4)

r1 (5)

eor (5)

key1+ (2)

r2 (2)

ld (2)

r3 (3)

ld (3)

eor (4) eor (5)

r0 (6)

andi (6)

r1 (7)

andi (7)

0x0F (6)

andi (6)

r0 (8)

or (8)

0xF0 (7)

andi (7)

or (8)

r1 (12)

eor (12)

r0 (11)

eor (11)

key2+ (9)

r2 (9)

ld (9)

r3 (10)

ld (10)

eor (11) eor (12)

x+ (13)

st (13)

x+ (14)

st (14)

Figure 2: Data flow graph GFex,full corresponding to the assembly program Fex in Table 1
constructed by DATAC.

− y is not an output operand for any instruction between instruction i and instruction j,
which means the value in y is not changed between instructions i and j.

Formally, an edge (a, b) ∈ E for a = “y (i)”, b = “x (j)” ∈ V iff i ≤ j, x ∈ fdo
j , y ∈ f io

j

and “y (k)” /∈ V ∀i < k < j. Furthermore, we label such an edge with “fmn
j (j)” and we

say that this edge is associated with instruction fj . We also refer to a as an input node
of fj and b as an output node of fj . Following the terminologies from graph theory, a is
called the tail of the edge (a, b) and b is called the head of (a, b).
Example 2. The data flow graph GFex,full corresponding to the assembly program Fex

in Table 1 is shown in Figure 2. Instruction f6 has input operands r0 and 0x0F, where r0
is the output operand of f4 and 0x0F is not an output operand of any instruction. The
output operand of f6 is r0. Hence f6 has two input nodes: “r0 (4)”, “0x0F (6)” and one
output node “r0 (6)” . Furthermore, f6 is related to two edges in the graph, both labeled
“ANDI (6)”. Both edges have head “r0 (6)”, one with tail “r0 (4)” and one with tail “0x0F
(6)” (see the nodes and edges highlighted in gray).

Since we are dealing with implementations of ciphers, we highlight the round keys as
well as the ciphertext in the graphs. As shown in Figure 2, the node that corresponds
to round key in round i will be denoted by “keyi+ (j)”, where j is the sequence number
of the first instruction that loads key values to registers in this round. Furthermore, the
output nodes of those key loading instructions are called key word nodes. Depending on
which word is loaded first, they are more specifically called the first key word node, the
second key word node, etc2.
Example 3. In Figure 2, “r2 (2)” is the first key word node of round key for round one.
“r3 (10)” is the second key word node of round key for round two.

The nodes representing output operands that give us different words of the ciphertext
are labeled “x+ (j)”, where “x+ (j)” is an output node of instruction fj , i.e. j is the

2We note that this is only a naming convention to make the analysis consistent. In special cases, where
the actual order of the key words is different from their loading sequence, user has to rearrange the key
words after the analysis.
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sequence number of the instruction that stores this word. We refer to them as the words
of the ciphertext. For example, in Figure 2, “x+ (13)” and “x+ (14)” are the words of the
ciphertext.

3.3 Output Criteria
For a directed graph G, a directed path from node v to node u is a sequence of edges
e1, e2, . . . , ek such that e1 = (v, x1), e2 = (x1, x2), e3 = (x2, x3), . . . , ek−1 = (xk−2, xk−1),
ek = (xk−1, u). For any pair of nodes v and u, if there exists a directed path from v to u,
we say u is a Gchild of v and v is a Gparent of u. For any edge e which appears in the
sequence, we say e belongs to this directed path from v to u.

Now let us look at the following two simple scenarios in Tables 2 and 3.
Table 2: Assembly code snippet 1.

# Instruction
0 LD r0 key0+
1 EOR r1 r0
2 ST x+ r1

Table 3: Assembly code snippet 2.

# Instruction
0 LD r0 key0+
1 AND r1 r0
2 ST x+ r1

1. In Table 2, let us assume a fault is injected at f1 such that some bits in r1 are
flipped before the execution of EOR. Then the exact same bits will be changed in ciphertext
x+. Knowing how r1 is changed and values of ciphertext with and without fault injection
will not give us any information about r0.

2. In Table 3, we assume a fault is injected in f1 such that some bits in register r1 are
flipped before the execution of AND. For example, suppose the first bit of r1 is changed.
Then we look at the first bit of the ciphertext x+. If the first bit of the ciphertext is also
changed, we know that the first bit of the key is 1, otherwise, it is 0.

In view of the above, we say an instruction f is linear if the following conditions are
satisfied: Let n be the register size in bits. For any pair a, b (a ∈ f io, b ∈ fdo), and for
any ∆ ∈ Fn

2 , if a is changed to a′ = a ⊕∆, then b will be changed to b′ = b ⊕∆. Thus
the linearity of an instruction f is determined by its mnemonics fmn. For example, the
following commonly used mnemonics correspond to linear instructions: EOR, LD, MV, ST.
And we say an edge e is non-linear if the instruction associated with e is non-linear.

For a pair of nodes v and u such that u is a Gchild of v, the Gdistance between v and
u, denoted by Gdistance(v,u) is defined to be the cardinality of the following set:

{e : e belongs to a directed path from v to u and e is non-linear}.
Example 4. In Figure 2, “x+ (13)” is a Gchild of “r0 (6)” with distance 1. “r0 (8)” is a
Gchild of “key1+ (2)” with distance 4.

For each node a = “x (i)”, we define CTGchild of a to be the set of ciphertext words
which are Gchildren of a. Thus if a fault is injected in node a, the fault will be propagated
to the ciphertext words that are in the set CTGchild of a.

To analyze the fault propagation that is useful, we need to focus on the nodes that
are related to the key. We say a node a is related to a key word node b of a round key
if b is not a Gparent of a and at least one of the Gchildren, say ch, of a is a Gchild of b
with Gdistance(b, ch) = 0. The distance condition specifies that we are only looking at
nodes that are linearly related to the key. The parent condition excludes nodes that would
be related to several key words in a way that would combine these words linearly and
therefore, making it impossible to recover the secret information. And we say a is related
to a round key key if it is related to at least one key word node of key.

For a given node a which is to be examined, several possible parameters have to be
specified. We refer to them as to output criteria, and they include the following:

• minAffectedCT: |CTGchild| ≥ minAffectedCT, i.e. the number of nodes in CT-
Gchild is bigger or equal than minAffectedCT;
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• minDist: |{ch : ch ∈ CTGchild, and Gdistance(a, ch) ≥ minDist}| ≥ minAffectedCT,
i.e. the number of nodes in CTGchild with Gdistance at least minDist from a is at
least minAffectedCT;

• maxDist: Gdistance(a, ch) ≤ maxDist ∀ch ∈Gchild, i.e. the Gdistance between any
Gchild and a should be at most maxDist;

• maxKey: the number of the round keys, counting from the last round key, that are
related to node a is at most maxKey;

• minKeyWords: there exists at least one round key such that the number of its
corresponding key word nodes related to a is at least minKeyWords.

DATAC takes a data flow graph G and an output criteria as input, then iterates
through all the nodes in G and outputs the nodes of G that satisfy the output criteria.
Recall, we assume that the information available to the attacker is the fault model, the
correct and faulty ciphertext.

Below, we explain that the output criteria defined are necessary for DFA and are
independent of the analyzed cipher. On the other hand, the choice of their values is
dependent on the analyzed implementation.

Why are the Output Criteria Mandatory
For DFA attack, minAffectedCT specifies how many words of the ciphertext are faulted
after the fault injection. This value should be at least 1 so that the ciphertext values can
be used. minDist reflects on how many non-linear operations are involved between the
faulted node and the ciphertext. For DFA, minDist should be at least 1 so that there are
non-linear operations involved and hence some information can be drawn. maxDist is an
upper bound on how many non-linear operations are involved in the calculations. maxDist
and minDist together restrict the number of non-linear operations to be solved for DFA.
maxKey restricts which round key(s) are to be attacked. In most DFA attacks, the attacker
focuses on the last round key (maxKey= 1) or the second last round key (maxKey= 2).
minKeyWords is able to exclude nodes which are related to only small number of key words.
Remark 1. The choice of output criteria is essential to DFA, which is the scope of this
paper. In case a different fault analysis method is considered, the output criteria should
be changed accordingly.

Choosing the Output Criteria Values
We note that the values of output criteria are closely related to each other and are
highly dependent on the actual assembly program being analyzed. For example, if the
program makes use of a high number of non-linear instructions right before storing the
ciphertext, maxDist should be set higher so that there are actually key words related to
the faulted node. On the other hand, maxKey should not be too big, otherwise some nodes
in the output will be associated with too many round keys, making the analysis harder.
Accordingly, minKeyWords should be set to a small value, but for obvious reasons, should
be at least 1. Or, if the user would like to have all the ciphertext words being affected, i.e.
setting minAffectedCT= the number of ciphertext words, the other conditions should be
loosened. For example, for the data flow graph GFex,full in Figure 2, with an output criteria
(minAffectedCT, minDist, maxDist, maxKey, minKeyWords) = (2, 1, 1, 1, 1) we cannot
get any output from DATAC.

For the data flow graph in Figure 2, with an output criteria (minAffectedCT, minDist,
maxDist, maxKey, minKeyWords)= (1, 1, 1, 1, 1), we get two nodes “r0 (6)” and “r1 (7)”.
For illustration purpose, we will focus on node “r0 (6)” in the following.
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3.4 Subgraph Construction
For a full cipher assembly implementation, the corresponding data flow graph involves
plenty of nodes and edges. It is not easy to see the fault propagation properties from the
full data flow graph. Thus we would like to construct a subgraph which shows the fault
propagation clearly.

Given a data flow graph GF,full for an assembly program F and node a in GF,full, we
construct a graph Ga which is a subgraph of GF,full = (V,E), i.e. Ga = (Va, Ea) is a pair
such that Va ⊆ V and Ea ⊆ E.

Sometimes, knowing how the faulted node relates to previous instructions will also help
with the fault analysis. Keeping this in mind, we define a parameter called depth for the
construction of the graph Ga.

We define KNGchild to be the set of key word nodes that are related to a. Then
Va =

(⋃depth
i=0 Ui

)⋃(⋃4
j=1 Vj

)
, where

− U0 = {b : b is an input node of an instruction f for which a is an input node}
− For 1 ≤ i ≤ depth, Ui = {b : b is an input node for an instruction f such that v
is an output node of f for some v ∈ Ui−1}
− V1 = {b : b is a child of a}
− V2 = {k : k is a round key that is related to a}
− V3 = {b : b is a key word node for a key k ∈ V2}
− V4 = {b : b is a child of a node v ∈ KNGchild and b is a parent of a child of a}.

Let V ′ = (Va\(V2 ∪ V3)) ∪ KNGchild. Then Ea = E1 ∪ E2, where E1 = {e :
both the head the tail of e are in V ′} and E2 = {(k, b) : k ∈ V2, b ∈ V3}.

Example 5. In Figure 3 (a) and (b) we present the subgraphs constructed from node “r0
(6)” of the data flow graph GFex,full (Figure 2) with depths equal to 0 and 1 respectively.
For this case, we have
− U0 = {“r0 (6)”, “r1 (7)”}
− U1 = {“r1 (5)”, “0xF0 (7)”, “r0 (4)”, “0x0F (6)”}
− V1 = {“r0 (8)”, “r0 (11)”, “x+ (13)”}
− V2 = {“key2+ (9)”}
− V3 = {“r2 (9)”, “r3 (10)”}
− V4 = {“r0 (11)”}

From Figure 3, we can see that with depth = 1, we do get extra useful information:
the two edges with label “andi (6)” show that the first four bits of “r0 (6)” are 0.

3.5 Equation Construction
Having the subgraph, constructed from a potentially vulnerable node, we would like to
construct equations out of the subgraph to connect different input/output nodes, which
can be easily analyzed by algebraic methods.

Given any subgraph Ga = (Va, Ea) ⊆ GF,full, where GF,full is the data flow graph
of an assembly program F , we take all the instructions in F that are related to at least
one edge e ∈ Ea. Next, we order these instructions according to their sequence numbers.
The equations are then constructed according to the input/output nodes and the edges
associated with the corresponding instructions.

In Table 4 we show some representations of equations for different mnemonics. Here,
the symbol “|” represents concatenation. For example, take f = MUL r2 r3, it calculates
the product of values in registers r2 and r3, then the high byte of the product is stored in
r1 and the low byte of the product is stored in r0. Hence the product in the equation is
represented as a concatenation of r1 and r0: r1 | r0.

In case the equation is related to an instruction that loads a round key, DATAC is
designed to indicate which key word node is involved in the equation (see Remark 2).
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r0 (6)

r0 (8)

or (8)

r1 (7)

or (8)

r0 (11)

eor (11)

x+ (13)

st (13)

r2 (9)

eor (11)

key2+ (9)

ld (9)

r3 (10)

ld (10)

r0 (6)

r0 (8)

or (8)

r0 (4)

andi (6)

0x0F (6)

andi (6)

r1 (5)

r1 (7)

andi (7)

0xF0 (7)

andi (7)

or (8)

r0 (11)

eor (11)

x+ (13)

st (13)

r2 (9)

eor (11)

key2+ (9)

ld (9)

r3 (10)

ld (10)

(a) (b)

Figure 3: Subgraph constructed from node “r0 (6)” of data flow graph in Figure 2 with
depth (a) 0 and (b) 1.

Table 4: Construction of equations from assembly instructions.
Instruction Equation

ADD r2 r3 carry | r2 = r2 + r3
ADC r2 r3 carry | r2 = r2 + r3 + carry
EOR r2 r3 r2 = r2 ⊕ r3
AND r2 r3 r2 = r2 ∧ r3
OR r2 r3 r2 = r2 ∨ r3
MUL r2 r3 r1 | r0 = r2 × r3
LD/MOV/ST r2 r3 r2 = r3
ROL r2 carry | r2 = r2 | carry
LSL r2 carry | r2 = r2 | 0
LPM r2 Z r2 = TableLookUp(ZH | ZL)

Now let us look at the assembly program Fex for our sample cipher from Table 1. Fex

and output criteria (1, 1, 1, 1, 1) (see Section 3.3) were given as input to DATAC. The data
flow graph GFex,full for this sample cipher is in Figure 2. DATAC outputs two vulnerable
nodes: “r0 (6)” and “r1 (7)”. The subgraphs with depths 0 and 1, constructed from
“r0 (6)”, are shown in Figure 3. As we pointed out in Section 3.4, the subgraph with depth
1 gives some additional useful information, compared to the one with depth 0.

The equations obtained by using DATAC from the subgraph with depth 1, constructed
from “r0 (6)” (Figure 3 (b)), are as follows:

“r0 (6)” = “r0 (4)” ∧ “0x0F (6)” (1)
“r1 (7)” = “r1 (5)” ∧ “0xF0 (7)” (2)
“r0 (8)” = “r0 (6)” ∨ “r1 (7)” (3)
“r2 (9)” = key2[0] (4)

“r0 (11)” = “r0 (8)”⊕ “r2 (9)” (5)
“x+ (13)” = “r0 (11)”. (6)

Equation (1) shows “r0 (6)” = 0000b4b5b6b7 for some bj ∈ {0, 1} (j = 4, 5, 6, 7). Equa-
tion (3) shows that if we skip instruction 8, the result of Equation (1) will be used instead
of the result of Equation (3) in instruction 11, which corresponds to Equation (5). Together
with the information from Equations (4) and (6), the instruction skip attack on instruction
8 would result in the first four bits of key2[0] to appear as the first four bits of the faulted
ciphertext.
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Table 5: List of assembly code annotations and variable names required for DATAC .
Action/variable name DATAC format
Loading plaintext //load_plaintext
Start of round i //round_i
Storing ciphertext //store_ciphertext
Name of key variable pointer i keyi
Name of ciphertext variable pointer x

Remark 2. The index [0] in the right hand of Equation (4) indicates that the node “r2 (9)”
is the first key word node of key2, i.e. the value in “r2 (9)” is the first byte of the second
round key.

4 Implementation
DATAC was implemented in Java programming language, to support multi-platform
environments and provide efficient running times. In this section, we provide implementa-
tion details of DATAC. Section 4.1 specifies the input format of the assembly code file.
Section 4.2 outlines the execution steps of DATAC. Section 4.3 provides instructions on
the usage of DATAC.

4.1 Assembly Code Properties
DATAC assumes the assembly code to be written in a text file, one instruction per line.
Some annotations are also required, as well as naming conventions for important variables.
These are stated in Table 5.

Another requirement for the code is that it should be unrolled. It would have been
possible to add a loop and function dependency analysis into DATAC, however, it was
shown before that loops and function calls can be easily disturbed by fault injection (e.g.
in [MDH+13]) and therefore, it would make more sense to just skip the whole portion of
the program instead of trying to analyze it with DFA.

4.2 Analysis Steps
In the following, we will outline the steps of the analysis that are being executed each time
DATAC is run:

Input: assembly code text file, output criteria, depth.

Step 1: Read the assembly file and construct an array of instructions.
When DATAC reads an instruction, it first recognizes the mnemonics. Based on
the type, it reads the operands that follow after the mnemonics. These are stored
together with the sequence number.
Some operands are put explicitly, e.g. LDI r0 0x01 has two operands – input
operand is 0x01, and the output operand is r0. In some cases, the operands are
implicit, e.g. MUL r5 r6 has four operands – input operands r5, r6 are explicit
and there are two implicit output operands: r0 and r1. The same holds for
instructions that use a carry bit, for example: ADC, ROL – in these cases, the carry
is treated as input or/and output operand, since a fault in a carry can cause
changes in later values.

Step 2: Construct the data flow graph of the program.
DATAC iterates through the array of instructions and analyzes both the operations
and operands. Operands are represented as nodes and operations are represented
as edges.
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To allow tracing the behavior under fault, cross-dependencies between edges and
nodes are also stored – each node has a set of input/output edges, and each edge
has its head (output node) and tail (input node).

Some operands involve pointers to memory use pre-/post- increment or decrement
operators (+/-). In this case, an array of consecutive memory values is used by the
program, normally either for loading plaintext and key or for storing ciphertext.
In the case of storing ciphertext, we treat different entries of the array separately,
since it is important to know which word is affected by the fault. Since a fault
injection in a memory cell can cause the same data disturbance as a fault on the
data bus or register directly, we do not differentiate particular memory cells in
case of loading the values. Therefore, such array would appear in the data flow
graph as a single variable from which other variables are being loaded.

Step 3: For each node, record the following sets of nodes: Gparent, Gchild, CTGchild,
related key words. For each Gchild of the node, calculate Gdistance between the
node and this Gchild.

DATAC iterates through each edge. The head of an edge, say v, is a Gchild of
the tail of this edge, say u. The Gchildren of v are assigned as Gchildren of u.
Furthermore, Gchildren of v are also assigned as Gchildren of the Gparents of u.

Step 4: Select the nodes that satisfy the output criteria, based on the information from
the previous step. These are the vulnerable nodes.

Step 5: Generate subgraph for each vulnerable node.

Step 6: Generate one set of equations for each subgraph.

Output: data flow graph, subgraphs and difference equations for each node that satisfies
the output criteria.

4.3 Usage of DATAC
Together with the assembly code file, user has to specify the output criteria as an input. We
suggest to use relatively tight values of output criteria as a preliminary test to see whether
all the key words can be recovered, then loosen the criteria to find possible vulnerable
nodes. We would like to point out that it is also possible to automate finding of the
optimal values in order to get the desired number of vulnerable nodes. One can start with
tight values and then loosen chosen parameters until this number is above some threshold.

Another user-specified parameter is the depth. One can get a good understanding
about a usefulness of this parameter by observing Figures 6 and 7 from Section 5. While
both vulnerable nodes are related to the same round key, their analysis requires usage of
different depths in order to get information about the respective key words. We suggest
user to start with higher values of this parameter (e.g. 5) and lower them after each
iteration in case there are nodes in the subgraph that are not useful in the analysis.

DATAC is capable of analyzing any microcontroller instruction set, after specifying this
set as a subclass of the Mnemonics class and specifying instruction properties (linearity,
table look-up, etc.) in a subclass of the MnemonicRecognizer class.

Also, the relation of the vulnerable node to the key can be adjusted in case some other
analysis instead of DFA is required. This can be done in the analyzeFaultedNodes()
method of the FaultAnalyzer class. The class diagram of DATAC is provided in Ap-
pendix B.
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5 Case Study

In this section, we will describe a DFA attack on PRESENT that was automatically
generated by DATAC. Section 5.1 gives the specifications of PRESENT. Section 5.2 details
the DFA attack we found using DATAC. This DFA attack is new and it requires 16 faults
to recover the last round key.

We would like to point out that while all the fault attacks proposed on this cipher so
far exploit the differential characteristics of the Sbox (e.g. [GYS, BH15, DSGSS, GLL+12,
JLSH13]), our tool was able to find the vulnerable spots in the program that are imple-
mentation dependent, easily exploitable, and yet not trivial to find in the assembly code
by a manual inspection.

5.1 PRESENT Cipher

For the case study, we have chosen a lightweight cipher PRESENT [BKL+07]. It is a
symmetric block cipher, designed as a substitution-permutation network (SPN). Block
length is 64 bits and key length can be either 128 bits or 80 bits (denoted as PRESENT-128
and PRESENT-80, respectively). A round function consists of three operations: xor of the
state with the round key, followed by a substitution by 4-bit SBox, and finally, a bitwise
permutation. After 31 rounds, there is one more addRoundKey, used for post-whitening.
The encryption process is depicted in Figure 4. Because of its lightweight character,
PRESENT-80 is usually used, therefore we focus on this variant in this section.

Plaintext

Ciphertext

31x
addRoundKey

sBoxLayer

pLayer

addRoundKey

Figure 4: High-level algorithmic overview of
PRESENT cipher.

Table 6: Assembly code of a table look-
up for PRESENT implementation.

# Instruction
0 LDI ZH 0x06
1 MOV ZL r0
2 LPM r21 Z
3 ANDI r21 0x0C
4 LDI ZH 0x07
5 MOV ZL r1
6 LPM r2 Z
7 ANDI r23 0x03
8 OR r21 r23

As a target, we chose a speed-optimized assembly implementation for 8-bit AVR from
Verstegen and Papagiannopoulos, publicly available on GitHub3. We note that we did not
use the key schedule for our analysis, since we were targeting the main encryption routine.

5.2 Fault Analysis

In order to get the vulnerable nodes from the cipher implementation, we have chosen our
output criteria to be (minAffectedCT, minDist, maxDist, maxKey, minKeyWords)=
(1, 1, 1, 1, 1). With this output criteria, DATAC outputs 16 vulnerable nodes, out of the
total 4,712 nodes. We will explain the fault attack procedure on one of these nodes – “r23
(4546)”. Subgraph for “r23 (4546)” with depth 1 is stated in Figure 6 in Appendix A.

3https://github.com/kostaspap88/PRESENT_speed_implementation

https://github.com/kostaspap88/PRESENT_speed_implementation
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Equations generated for the subgraph with depth 1 from “r23 (4546)” are as follows:

“r22 (4538)” = “r22 (4529)” ∨ “r23 (4537)” (7)
“r23 (4546)” = “r23 (4545)” ∧ “0x03 (4244)” (8)
“r22 (4547)” = “r22 (4538)” ∨ “r23 (4546)” (9)
“r1 (4648)” = key32[1] (10)
“r1 (4656)” = “r1 (4648)”⊕ “r22 (4547)” (11)
“x+ (4664)” = “r1 (4656)”. (12)

Equation (8) shows “r23 (4545)” = 000000b6b7 for some b6, b7 ∈ {0, 1}. Together with
the other equations we get

“x+ (4664)” = key32[1]⊕ (“r22 (4538)” ∨ 000000b6b7). (13)

Consider a bit flip fault injection with fault mask ∆ = 11111100 in “r23 (4546)” right
before the execution of instruction 4547, which corresponds to Equation (9), then Equa-
tion (13) becomes:

“x+ (4664)” = key32[1]⊕ (“r22 (4538)” ∨ 111111b6b7), (14)

where “x+ (4664)”′ denotes the faulted output. Let δ = δ0δ1δ2δ3δ4δ5δ6δ7 = “x+ (4664)”′
⊕ “x+ (4664)” and let “r22 (4538)” = a0a1a2a3a4a5a6a7. Since both ⊕ and ∨ are bitwise
operations, together with Equations (13) and (14) we have

δ0δ1δ2δ3δ4δ5 = (a0a1a2a3a4a5 ∨ 000000)⊕ (a0a1a2a3a4a5 ∨ 111111)
= a0a1a2a3a4a5 ⊕ 111111 =⇒ a0a1a2a3a4a5 = δ0δ1δ2δ3δ4δ5 ⊕ 111111.

Since the value of δ is known and the value of “x+ (4664)” is also known, together with
Equation (13), we have

the first 6 bits of key32[1] = first 6 bits of “x+ (4664)”⊕ δ0δ1δ2δ3δ4δ5 ⊕ 111111,

which gives the first 6 bits of the last round key.
With a subgraph constructed from “r22 (4538)” a similar fault analysis helps us to

recover the last 2 bits of key32[1]. This is the case where we have to utilize the depth
parameter of DATAC to get enough information about the faulted node. The subgraph
for the node “r22 (4538)” is stated in Figure 7 in Appendix A. As can be seen in this
subgraph to see the constants, three layers above the vulnerable node have to be revealed.

The same analysis can be carried out for the remaining 14 nodes to get all the bits of
the last round key.

To understand the found vulnerability, we examined the assembly code and provide an
explanation below on why the cipher implementation contains the exploitable operations
output by DATAC. This implementation combines the pLayer with the sBoxLayer in the
form of 5 look-up tables. We will explain how this procedure works on a simple example.
Table 6 contains the code for two table look-ups, which results into one nibble output.
First, a table index is loaded into higher byte of register Z (instructions 0 and 4) – this
decides which table will be used. Then, the intermediate state is loaded into lower byte
of register Z – it contains two nibbles of data, therefore, we expect to get 2 bits of data
back after the Sbox and the bit permutation are applied. To clear the remaining 6 bits,
ANDI instruction is used (instructions 3 and 7). Finally, we combine the values of these
two look-ups into a nibble with an OR instruction. The attack exploits the properties of
this combined layer as well as merging of the bits of the intermediate results together into
a single register.
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6 Discussion
This part discusses various aspects of our work. In Section 6.1, we discuss the output
criteria in details, by showing the DATAC analysis results of assembly implementations of
SIMON, SPECK and AES ciphers and compare the results to PRESENT. The scalability
of DATAC is discussed in Section 6.2, where we show analysis results on AES with various
number of rounds. Possibilities of extending DATAC to other ciphers and devices are
elaborated in Section 6.3. In Section 6.4, we discuss possible countermeasures against fault
attacks on software implementations and their selection. Finally, in Section 6.5 we give a
remark on security verification of cryptographic software and its relation to our work.

6.1 Output Criteria
To test our DATAC tool and give more insight into effect of output criteria, we analyzed
two more lightweight ciphers: SIMON and SPECK [BTCS+15], together with AES [DR02]
as a reference. For SIMON and SPECK, we used assembly implementations for 8-bit AVR
from Luo Peng, available from GitHub4 (The implementation is based on the proposal
from the authors of SIMON and SPECK, specified in [BSS+14]). More specifically, we
tested SIMON 64/128 and SPECK 64/128, both high-throughput implementations. AES
implementation, written by Francesco Regazzoni [EGG+12] is available from Ecrypt II
project website5.

Results are shown in Figure 5, which plots numbers of vulnerable nodes for various
output criteria values. When looking at SIMON and SPECK, because of the structure of
these ciphers, where only half of the state is directly related to one round key, the number
of vulnerable nodes is lower compared to PRESENT-80 and AES-128 in most of the cases.

Recall that maxDist specifies the maximum number of non-linear operations between
the vulnerable node and the ciphertext. To attack nodes in earlier computations, the user
needs to set maxDist to higher value. Thus, when maxDist is set to a bigger value, more
nodes would satisfy the output criteria. This can be seen from Figure 5 (a) – when the
value of maxDist parameter increases, we obtain more vulnerable nodes.

maxKey restricts the round keys to be attacked. To attack earlier round keys, the user
needs bigger values of maxKey. Hence, when this value increases, the number of vulnerable
nodes will increase, as shown in Figure 5 (b). In this case, we set the maxDist to a very
high number because otherwise the restriction from this parameter would be too tight
such that not that many rounds can be involved in the analysis.

Plot depicted in Figure 5 (c) varies the minKeyWords parameter. In this case, we set
the maxKey to 1 to restrict the analysis to the last round key, hence only nodes related
to last round key are considered. The graph shows that when the value of minKeyWords
increases, the number of vulnerable nodes decreases rapidly. For minKeyWords value of
1, the number of vulnerable nodes for PRESENT is relatively high. It is because the
PRESENT implementation combines sBoxLayer and pLayer, where multiple operations
have to be executed to merge particular bits after this layer, resulting in more nodes in
the graph.

In Figure 5 (d) we vary the value of minAffectedCT parameter, which is the minimum
number of ciphertext words related to vulnerable node. PRESENT and AES have much
higher number of nodes per round compared to SPECK and SIMON, therefore the initial
number of vulnerable nodes is high for these two ciphers. However, it is uncommon for a
node to relate to too many ciphertext nodes, therefore there is a significant drop when the
minAffectedCT increases from 1.

The results show that DATAC is capable of finding the vulnerable spots automatically
in different implementations, without additional knowledge of the internal cipher structure

4https://github.com/openluopworld/simon_speck_on_avr/tree/master/AVR
5https://perso.uclouvain.be/fstandae/lightweight_ciphers/source/AES.asm

https://github.com/openluopworld/simon_speck_on_avr/tree/master/AVR
https://perso.uclouvain.be/fstandae/lightweight_ciphers/source/AES.asm
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Figure 5: Comparison of different output criteria on different ciphers. Plot (a) varies the
maxDist parameter, while the other parameters are (minAffectedCT, minDist,maxKey,
minKeyWords) = (1, 1, 2, 1). Plot (b) varies the maxKey parameter, while the other param-
eters are (minAffectedCT, maxDist, minDist,minKeyWords) = (1, 200, 1, 1). Plot (c)
varies the minKeyWords parameter, while the other parameters are (minAffectedCT,
maxDist, minDist,maxKey) = (1, 200, 1, 1). Plot (d) varies the minAffectedCT pa-
rameter, while the other parameters are (maxDist, minDist, maxKey, minKeyWords)
= (200, 1, 2, 1).

(only annotations from Section 4.1 are required). Also, the running times show that our
approach is scalable.

Vulnerable Nodes and Exploitability

It is not guaranteed that every vulnerable node is exploitable by DFA. For example, for the
PRESENT implementation in the case study (Section 5), the maximum distance between a
node used in the last round and its CTGchild is 5. Thus for an extreme example, if we set the
output criteria to be (minAffectedCT, minDist, maxDist, maxKey, minKeyWords)=
(0, 0, 5, 1, 0), we get 150 vulnerable nodes, which involve all the nodes that are related
to the last round key. Or for a more reasonable example, if we set output criteria to
be (minAffectedCT, minDist, maxDist, maxKey, minKeyWords)= (1, 1, 5, 1, 1), we get
133 vulnerable nodes, which involve all the nodes that satisfy the following: affect at
least 1 ciphertext node; have at least distance 1 from at least one ciphertext node; are
related to the last round key. By an easy analysis, not all such nodes are exploitable.
On the other hand, with output criteria (minAffectedCT, minDist, maxDist, maxKey,
minKeyWords)= (1, 1, 1, 1, 1), we get 16 nodes, which are all exploitable as explained in
Section 5.

As stated in Section 4.3, we suggest the user to start with relatively tight values for
output criteria, analyze the resulting vulnerable nodes. If no exploitable node can be
found, then loosen the values of output criteria to get more vulnerable nodes.
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6.2 Scalability of DATAC
Table 7 shows the time for analyzing implementations with different number of rounds of
AES using DATAC. The results show that DATAC is capable of handling heavy algorithms
in reasonable time, while using a laptop computer with average computing power (mobile
Intel Haswell family CORE i7 processor with 8 GB RAM). For 50 rounds AES, DATAC
needs less than 40 seconds, with memory consumption of 500 MB. Given the number
of instructions in AES, this shows DATAC is capable of evaluating all current block
ciphers. The same holds for countermeasures – 50 rounds of AES can be considered as a
5× instruction redundancy compared to standard AES-128, while the usual overheads in
literature rarely go over 2× the original [KSV13].

We would like to point out that DATAC aims at DFA, where most of the attacks
target the last three rounds of the cipher (e.g. [TM09, JLSH13, TBM14]). Therefore, for a
practical usage of DATAC, it would be sufficient to analyze three rounds of a target block
cipher implementation.

6.3 Extension to Other Ciphers and Devices
As already mentioned in the introduction, DATAC can be used for analysis of current
state-of-the-art block ciphers. We are not aware of any restrictions on the cipher design or
structure – since the data propagation is always captured in the assembly implementation,
the customized DFG will identify all the necessary information needed for DFA. We have
tested DATAC on various cipher designs, including SPN with MDS matrix (AES), SPN
with bit permutation (PRESENT), Feistel with bit shifting (SIMON and SPECK). Round
functions of these ciphers encompass different non-linear elements, such as 4-bit and 8-bit
Sbox, modular addition, binary AND.

Our case studies were done on 8-bit AVR assembly code. When it comes to different
device architectures, identification of vulnerable nodes, construction of subgraphs and
generation of fault analysis equations do not need any change (see Figure 1). Only the
parsing subsystem, responsible for analyzing the assembly code and converting it to DFG,
has to be adjusted. More specifically, the AsmFileReader class (full class diagram is stated
in Figure 8) has to be changed so that nodes are properly identified. For example, for AVR
assembly code AND r0, r1, the input nodes are r0 and r1, the output node is r0. For
ARM assembly code AND r0, r1, r2, the input nodes are r1 and r2, the output node is
r0. We would like to point out that we aim at single fault injection. Thus we assume the
attacker has an ability to perform a single fault even for pipelined architectures.

6.4 Countermeasures
After identifying the vulnerable nodes, a natural question for the implementer would be:
How to avoid these vulnerabilities?

Over the time, several approaches to thwart fault attacks in software have emerged. They
are often based on instruction duplication/triplication or parity checks [BPB+10, MHD+14].
However, as shown in [YGS+16], these instruction-level countermeasures can be easily
broken by a simple clock-glitch. Especially, the instruction skip protection provided by
duplication can be simply overcome by targeting two instructions at once. Therefore,

Table 7: Scalability of DATAC tested on AES with different number of rounds.
# of rounds of AES 1 10 30 50

# of nodes 281 2,060 6,300 10,540
# of edges 415 3,209 9,909 16,609

# of instructions 259 1,901 5,801 9,701
Time (s) 0.07 0.87 5.11 38.89

Average time per round (s) 0.07 0.09 0.17 0.78
Memory (MB) 3 19 170 500
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one has to look at proposals offering more guarantees, such as coding theory based
countermeasures [BH16, BCC+14] or redundancy methods that spread the data across
several instructions [PYGS16, LCFS17]. Another approach is a technique called infective
countermeasure that tries to distribute the fault evenly to the whole cipher state so that
the attacker does not get any usable information about the secret key [PCM15].

Each of these countermeasures has some assumptions, e.g. fault model, number of
faults, fault precision, or number of flipped bits. Since DATAC is capable of analyzing
instruction skips and bit-level faults, it can evaluate countermeasures that claim protection
against these. However, if breaking the protection technique requires several faults to be
injected during a single encryption, such model falls out of the current scope of DATAC. In
the future, we would like to enhance the tool capability to include these more sophisticated
techniques.

6.5 Security Verification

We would like to emphasize that while our approach introduces new methods that can be
used in the direction of security verification, it cannot be used to guarantee the security
of the underlying implementation directly. To an extent, DATAC works in a similar way
to Sleuth [BRNI13], proposed to verify software implementations against side-channel
attacks. Sleuth, as a verification tool, provides an analysis of three specific countermeasures
against a user-defined leakage model – Boolean masking, arithmetic masking, and random
precharging. While it is able to point out the weaknesses of the implementation, it does
not guarantee the implementation is secure against all the SCA techniques. In the same
way, DATAC is able to detect DFA-vulnerable parts and provide the analyst with the
information on weaknesses in the code. However, when no vulnerable nodes can be found,
it does not mean the code cannot be broken by utilizing different fault analysis methods,
especially since some of them might not be known at the time of analysis.

7 Conclusion

We have proposed a methodology capable of finding spots vulnerable to DFA in software
implementations of cryptographic algorithms. Following our approach, we have created
the DATAC tool, which takes an assembly implementation and a user-specified output
criteria as an input. It outputs subgraphs for vulnerable nodes in the code, together with
equations that can be directly used for DFA on the cipher implementation.

We have presented a detailed DFA attack on PRESENT-80, exploiting implementation
weaknesses found by DATAC. Our results show that by using DATAC, it is possible to find
fault injection vulnerabilities that are not visible from observing the cipher structure and
are hard to find from an assembly code that is normally hundreds to thousands lines long.
To further prove its capabilities, we tested another two lightweight cipher implementations,
SPECK 64/128 and SIMON 64/128, together with current NIST symmetric key standard,
AES-128. All the implementations that we analyzed are publicly available programs. The
only adjustment was to add several annotations (and unroll the loops in some cases). The
results show that DATAC is scalable and can analyze current algorithms efficiently.

For the future work, we would like to extend DATAC to be able to analyze the differential
properties of non-linear operations in the cipher and solve the generated equations. There
is also a potential to extend the analysis technique from DFA to algebraic fault analysis.
Additionally, we would like to focus on protected implementations (e.g. [BCR16]) to find
loopholes and propose additional countermeasures automatically.
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A Subgraphs for Fault Analysis of PRESENT
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Figure 6: Subgraph with depth 1 generated by DATAC from the assembly implementation
of PRESENT, corresponding to vulnerable node “r23 (4546)”.
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Figure 7: Subgraph with depth 3 generated by DATAC from the assembly implementation
of PRESENT, corresponding to vulnerable node “r22 (4538)”.
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B Class Diagram of DATAC
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+formulateExpression(): String

«Class»
equation::EquationGenerator

+generateEquation(Instruction, Node): Equation
+generateDfaEquations(List<Node>, List<Edge>, Node): List<Equation>
+writeLatexEquations(List<Equation>): String

«Class»
equation::Equation

-leftSide: Expression
-rightSide: Expression
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Figure 8: Class diagram of DATAC . Some details were omitted, such as getters/setters
and helper methods. Colors represent different packages.
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