
High-Performance FV Somewhat Homomorphic
Encryption on GPUs: An Implementation using

CUDA
Ahmad Al Badawi1,2, Bharadwaj Veeravalli1, Chan Fook Mun2 and Khin Mi

Mi Aung2

1 Faculty of Engineering, National University of Singapore, Singapore
ahmad@u.nus.edu, elebv@nus.edu.sg

2 A * STAR, Data Storage Institute, Singapore
{chanfm,Mi_Mi_AUNG}@dsi.a-star.edu

Abstract. Homomorphic encryption (HE) offers great capabilities that can solve a wide
range of privacy-preserving computing problems. This tool allows anyone to process
encrypted data producing encrypted results that only the decryption key’s owner
can decrypt. Although HE has been realized in several public implementations, its
performance is quite demanding. The reason for this is attributed to the huge amount
of computation required by secure HE schemes. In this work, we present a CUDA-
based implementation of the Fan and Vercauteren (FV) Somewhat Homomorphic
Encryption (SHE) scheme. We demonstrate several algebraic tools such as the Chinese
Remainder Theorem (CRT), Residual Number System (RNS) and Discrete Galois
Transform (DGT) to accelerate and facilitate FV computation on GPUs. We also
show how the entire FV computation can be done on GPU without multi-precision
arithmetic. We compare our GPU implementation with two mature state-of-the-art
implementations: 1) Microsoft SEAL v2.3.0-4 and 2) NFLlib-FV. Our implementation
outperforms them and achieves on average 5.37x, 7.37x, 22.22x, 5.11x and 13.18x (resp.
2.03x, 2.94x, 27.86x, 8.53x and 18.69x) for key generation, encryption, decryption,
homomorphic addition and homomorphic multiplication against SEAL-FVRNS (resp.
NFLlib-FV).
Keywords: Homomorphic Encryption, FV, Parallel Processing, GPGPU, CUDA

1 Introduction
Nearing 8 years since their introduction, Fully Homomorphic Encryption (FHE) schemes
are set to revolutionize privacy-preserving computing by allowing one to perform arbitrary
operations on encrypted data without the need for the decryption key at any stage of
computation. This scheme serves as a winning solution for cloud computing applications
since it guarantees high level of privacy, confidentiality and serviceability at the same
time. For instance, in private single-client cloud computing paradigm [VDJ10], thin clients
with limited resources and computing power lease computation and storage facilities from
powerful thick servers. Clients upload their data to the cloud which, aside from storage, is
entitled to manipulate the data as per the owner’s requests. However, once a client uploads
her data to the cloud, she has no guaranteed global control over it. In particular, the client
can not assert where the data will be stored, who can access it, or how it will be used
raising up concerns about her privacy. FHE is considered a promising solution to overcome
privacy issues by allowing clients to store their data encrypted on a non-necessarily trusted
server, which can evaluate homomorphically arbitrary circuits (functions) on the encrypted

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 2, pp. 70–95
DOI:10.13154/tches.v2018.i2.70-95

mailto:ahmad@u.nus.edu
mailto:elebv@nus.edu.sg
mailto:chanfm@dsi.a-star.edu,Mi_Mi_AUNG@dsi.a-star.edu
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i2.70-95

Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun and Khin Mi Mi Aung 71

data, and be able to process, search and retrieve their data without entrusting the server
with their decryption keys.

Although the notion of FHE was introduced by Rivest, Adleman and Dertouzos in
1978 [RAD78], the first realization of FHE was only proposed in 2009 when Craig Gentry
proposed a lattice based FHE scheme in his seminal PhD thesis [Gen09]. Gentry’s
ingenious idea can be simplified as follows: he starts with a noise (error)-based encryption
scheme that hides the plaintext by some noise which can be completely filtered out by the
decryption function. His scheme can homomorphically evaluate a limited set of circuits
including its decryption circuit and one additional operation (NAND gate), in what is
called Somewhat Homomorphic Encryption (SHE) scheme. Noise increases with each
homomorphic evaluation until it blows up at some point and decryption cannot recover the
plaintext anymore. To control the noise, he defines a Recrypt algorithm that takes as input:
1) an encryption of a worn out ciphertext1, i.e., it contains large noise and 2) an encryption
of the decryption key. Recrypt evaluates homomorphically the decryption circuit using the
encrypted ciphertext and the encrypted decryption key to remove the inner encryption and
outputs a substitute ciphertext (i.e., it encrypts the same plaintext) with less noise allowing
for extra operations to be performed homomorphically. By repeating this process infinitely,
he realized a FHE scheme that can evaluate arbitrary circuits of any size homomorphically.
Gentry named this iterative procedure bootstrapping. The importance of Gentry’s notion
is twofold: 1) it proved theoretically that FHE is feasible in principle and 2) it formed as a
basis blueprint for all subsequent FHE constructions.

Despite the fact that several FHE schemes have been realized in practice through a
number of various implementations, they all require intensive amounts of computation and
storage. This is attributed to the computations embodied in large number multiplications,
large polynomial multiplications, large matrix multiplications or tensor products depending
on the underlying scheme. To alleviate this problem, researchers proposed several techniques
such as levelling the FHE scheme, which implies restricting the circuit multiplicative depth
that can be evaluated on ciphertexts to a predefined threshold [BGV12]. Although this
leaves us with SHE schemes, they can still be used for a set of specific applications. SHE
schemes are in general more practical compared to FHE, nevertheless, they still require
significant amount of computing power.

Another hot research track for improving HE schemes performance is to offload compu-
tations to hardware accelerators. FPGAs, ASICs and GPUs have proved to be powerful
accelerators in various application domains [BFF12, MV08, Rup12]. They also have been
used in accelerating some HE schemes [WHC+12, PNPM15, DÖS15]. A common feature
in the previous implementations is that only some parts of HE computation, usually
polynomial multiplication, run on the hardware accelerator. They include high number of
host-to-device and device-to-host data transfer rates aggravating the overall performance.
In this work, we follow this track and explore the feasibility of accelerating a variant of
the FV SHE [FV12] scheme using CUDA-enabled GPUs through GPGPU implementation.
However, the main feature in our implementation is that all FV primitives: key generation,
encryption, decryption and homomorphic addition and multiplication run entirely on GPU
reducing host-to-device and device-to-host transfer rates. We also avoid multi-precision
arithmetic (in the critical path of computation) by utilizing several algebraic tools, modular
algorithms and adaptations of the original FV scheme proposed by Bajard et al. [BEHZ16].
We compare our implementation with Microsoft SEAL v2.3.0-4 [KLP16] and NFLlib-
FV [AMBG+16] implementations of the FV scheme. Implementation results show that our
GPU solution outperforms them for the majority of parameter settings. The improvement
is more evident with large system parameters that provide 80-bit security level and large
multiplicative depth (L ≥ 5). With small settings, our implementation outperforms them
except in key generation and homomorphic addition due to data transfer between host

1At this point we have a doubly encrypted plaintext

72 High-Performance FV Somewhat Homomorphic Encryption on GPUs

and device and kernel launch overhead.
Precisely, the main contributions and scope of the paper can be summarized as follows:

• Accelerating the FV SHE scheme performance via a GPGPU-based implementation
on CUDA-enabled GPUs.

• Assuring that all FV primitives are performed on GPU without multi-precision
arithmetic on the critical path of computation by using several algebraic tools.

• Introducing a set of optimization techniques tailored for CUDA-enabled devices to
boost up performance to optimum level.

• Comparing the proposed implementation against state-of-the-art serial and parallel
implementations of the FV scheme.

1.1 Organization of the Paper
The rest of the paper is organized as follows: in Section 2, we touch on several software and
hardware implementations of HE schemes with more focus on the FV scheme. Section 3
introduces briefly the general CUDA programming paradigm. Next, in Section 4 we
introduce some algebraic tools such as the Chinese Remainder Theorem (CRT) and
Discrete Galois Transform (DGT). We review the textbook FV scheme and its Residual
Number System (RNS) variant in Section 5. In Section 6 we provide the layout of our
implementation and optimization techniques used. Our experiments and comparison results
are exposed in Section 7. Finally, Section 8 concludes the work and provides guidelines for
potential future work.

2 Literature Review
Improving HE performance using hardware accelerators has recently started to gain greater
attention from researchers. A few number of studies investigated the inclusion of different
hardware platforms for that purpose. These platforms include FPGAs, ASICs and GPUs.
FPGAs and GPUs may be considered more flexible and cheaper compared to ASICs
making them more popular as hardware accelerators. To the best of our knowledge, the
first work that employed FPGAs for HE is due to Cousins et al. [CGRS14]. Their work
introduces elementary building blocks for implementing an NTRU-based FHE [SS11] using
FPGA and Matlab Simulink. Unfortunately, the report does not include implementation
results. A more recent study conducted by Doroz et al. [DÖS15] reports that encryption,
decryption and recryption procedures of the Gentry-Halevi (GH) FHE [GH11] take 18.1
msec, 16.1 msec and 3.1 sec respectively, in a customized ASIC implementation.

More related to our work is Wang et al. [WHC+15] GPU implementation of the GH-
FHE. The authors managed to accelerate the scheme for small and medium parameter
settings, however, for secure recommended large parameters, they failed as GPU memory
was not sufficient to store all required precomputed constants. Nevertheless, their work
shows that GPUs have potential to accommodate for HE computational requirements.
Next, we touch on more related work where the FV scheme is implemented.

The FV SHE scheme was proposed by Fan and Vercauteren in [FV12]. The scheme can
be viewed as an extension of Brakerski’s Learning with Errors (LWE)-based FHE [Bra12]
to the ring version RLWE. FV is a SHE scheme that can be bootstrapped and made
FHE. The scheme has received widespread attention due to its simple construction and
practical performance. One particular feature of the FV is known as scale invariance
where modulus switching technique is not necessary for error control. Moreover, the
scheme has been implemented by two different teams: 1) Microsoft [KLP16] and 2)

Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun and Khin Mi Mi Aung 73

CryptoExperts [AMBG+16]. We use their implementations to evaluate the performance
of our GPU based implementation.

SEAL (v2.3.0-4) is a C++ CPU implementation that implements large number and
polynomial arithmetic natively. Previous versions (≤ v2.2) of SEAL implement the
textbook FV scheme using multi-precision arithmetic. Starting from version 2.3, the
library implements a variant of the scheme known as RNS FV proposed by Bajard et
al. [BEHZ16]. As will be shown in Section 6, the performance has dramatically improved
which highlights the importance of Bajard’s et al. adaptations. Major properties of
SEAL include a slight modification of the decryption and homomorphic multiplication
procedures. In particular, decryption may accept ciphertexts of arbitrary size by using
appropriate powers of the secret key. In addition, relinearization is made optional by
allowing the ciphertext to grow in size after homomorphic multiplication. In addition,
SEAL employs Nussbaumer’s algorithm to compute the Number Theoretic Transform
(NTT) for polynomial multiplication in Zq[x]/〈x2k +1〉 and uses special primes as ciphertext
coefficient modulus for efficient modulo operation. The library provides a user-friendly
interface that includes several features such as: encoding functions for representing data
in polynomials, which is a key requirement of FV, default parameters selector, noise
monitoring and CRT batcher.

On the other hand, NFLlib-FV is a parallel multi-core CPU implementation. It
utilizes NFLlib, an NTT based fast lattice library that performs polynomial arithmetic in
Zq[x]/〈x2k +1〉. NFLlib utilizes vector instructions (SSE and AVX2) to perform arithmetic
on multiprocessor architectures. The library compares favorably against well-known number
theory libraries such as NTL [S+01] and FLINT [Har13]. Unlike SEAL, NFLlib-FV has
less features. For instance, it does not include encoding or CRT batching techniques.

3 CUDA Programming Paradigm
GPU, or any other hardware accelerator, can be viewed as an auxiliary set of compute
elements that can aid the CPU in computing a specific task. The task at hand needs to be
manually divided and assigned to compute elements through painstaking map and reduce
procedures. Although some parallel computing frameworks, such as OpenACC [WSTaM12],
reduce the complexity of this task, for specific problems map and reduce are often performed
manually by the programmer to fully utilize the hardware. The most popular parallel
computing frameworks are: OpenCL [Mun09] and CUDA [Nvi07]. Both frameworks extend
the C language and provide a set of APIs for parallel programming on several platforms.
While CUDA is supported only by NVIDIA devices such NVIDIA GPUs, OpenCL works
with various platforms including NVIDIA GPUs. Unlike OpenACC, the programmer
has to do the map and reduce procedures in these frameworks. In this work, the CUDA
GPGPU programming framework is used. We provide here a basic overview of CUDA
GPU hardware and programming paradigm.

CUDA GPU includes a number of Streaming Multiprocessors (SMs). An SM comprises
several cores, also known as Streaming Processors (SPs), on chip that share computing
resources such as shared memory, L1 cache, register file and special function unit. The
SM can be viewed as a vector processor able to execute the same instruction on a number
of operands, also known as Single Instruction Multiple Data (SIMD) instructions, by
launching a number of threads, each running on a single core. CUDA provides a set of
intrinsic variables providing meta-data to uniquely identify the threads.

The programmer determines the total number of threads executing a specific kernel
(part of the code executed by CUDA threads) by organizing them in two structures: thread
blocks and grids. A thread block is 1-3 dimensional structure specifying the number of
threads in each dimension. Thread blocks are also grouped in grids of 1-3 dimensions
specifying the number of blocks in each dimension. The sizes of thread blocks and grids

74 High-Performance FV Somewhat Homomorphic Encryption on GPUs

are limited by the capabilities of the hardware. A thread block is assigned to run on a
single SM by the GPU. These threads are also grouped into warps2. The GPU guarantees
that threads in a warp run concurrently on one SM. The number of warps that can
simultaneously run on an SM is hardware-specific depending on the number of warp
schedulers. Although each thread gets its own set of registers, note that threads in a warp
may access each other’s registers through CUDA shuffle instructions.

Threads in one block can communicate directly through shared memory. In contrast,
threads of different blocks can only communicate through global memory. In device
code, synchronization points among threads in a block are possible, whereas global
synchronization points among all threads (in different blocks) was not possible until
CUDA 9 [Cud] through cooperative threads. Global synchronization can also be done by
computing large tasks through several kernels launches.

CUDA GPUs include various types of memories differing in access speed, scope and
read/write privileges. Global memory for instance is large, slow, persistent throughout the
entire program execution and can be accessed by any thread for read/write. On the other
hand, shared memory is on-chip, fast, but only visible by threads in a block for which it
was declared. Another type of fast and globally accessible memory is the constant memory.
It is limited to small size, 64 KB usually, and can only be used as a read-only memory
optimized for temporal locality. Finally, there is another type of persistent read-only
memory that utilizes the principle of spatial locality known as texture memory. Textures
are suitable for non-coalescent access pattern. They are faster than global memory but
slower than constant memory.

In order to achieve the best performance of GPUs, one should keep in mind the following
guidelines:

1. Accessing the GPU global memory should be coalesced, i.e., consecutive threads
access consecutive memory locations.

2. Avoiding to launch many kernels that perform simple tasks since data transfer and
launch time may dominate any speedup gained.

3. Minimizing thread divergence in kernels by avoiding long branches. In the ideal
scenario, threads in a warp execute the same path of instructions. With branches,
threads satisfying the condition execute one path while the rest are delayed and
evaluated in a second round.

4. Read-only data used heavily in kernels are better precomputed and stored in persistent
constant, texture, or global memory on GPU. The choice of memory depends on
data size and access pattern.

For a complete reference on CUDA programming, the reader is referred to [Nvi14,
Wil13].

4 Mathematical Preliminaries
In this section, we review some essential concepts that we believe are key to understand
the rest of the paper. We start by introducing the notations used throughout the paper.
Next, we introduce different algebraic tools and representations that cater for efficient
polynomial arithmetic.

2Currently, the number of threads in a warp is to 32.

Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun and Khin Mi Mi Aung 75

4.1 Notation
We use capital letters to refer to sets and small letters for elements of a set. As usual,
Z,Q,R, and C denote the integers, rationals, reals and complex numbers, respectively.
We use d·e, b·c, b·e to denote the round up, round down and round to nearest integer,
respectively. We use [·]q to denote the set of integers modulo q represented by the balanced
set {

⌈
− q2
⌉
, ...,

⌊
q−1

2
⌋
}, whereas |·|q is represented by {0, . . . , q−1}. We use |·| to denote the

size in bits of a number or the cardinality of a set. Rq is the polynomial ring Zq[x]/〈xn+1〉,
where n is a power of 2. Ring arithmetic is performed modulo both xn + 1 and q. Finally,
uniform sampling of a from a set S is denoted as a $←− S.

4.2 Residual Number System Representation of Polynomials
For secure settings and high multiplicative depth support3, the ring Zq[x]/〈xn+1〉 contains
long polynomials with large coefficients. In particular, n can be several thousand while |q|
can be several hundred of bits. Performing elementary arithmetic operations (addition
and multiplication) with these polynomials can be done by multi-precision arithmetic.
Although this approach is more intuitive and might be simpler to implement, it is not
efficient especially with large parameters. Other modular techniques and algebraic tools
can be used to achieve more efficient solutions. The basic idea is based on divide-and-
conquer. A large computational problem is divided into several smaller and independent
sub-problems which can be solved efficiently in parallel. The sub-solutions are then
combined to form a final solution to the original problem. We show below how this can be
applied to polynomial arithmetic.

The CRT/RNS can be used to decompose a polynomial a(x) of large coefficients into
a set of polynomials with smaller coefficients. First, we need to select a set of co-prime
moduli,M = {m0,m1, . . . ,mr−1}. The number of moduli depends on two main factors:
1) mi is chosen so that it fits in the underlying machine word and 2) m =

∏r−1
i=0 mi is

greater than or equal to the coefficient modulus q. The map a(x) (mod m) 7→ (a(x)
(mod m0), a(x) (mod m1), . . . , a(x) (mod mr−1)) defines a ring isomorphism Zm[x]/〈xn +
1〉 ∼= Zm0 [x]/〈xn + 1〉 × Zm1 [x]/〈xn + 1〉 × · · · × Zmr−1 [x]/〈xn + 1〉. In other words, one
can perform the computations in parallel in each ring Zmi [x]/〈xn + 1〉 and reconstruct
the desired result in Zm[x]/〈xn + 1〉 using a CRT reconstruction algorithm as follows. Let
〈x0, x1, . . . , xr−1〉 be the residues of integer x moduloM, the integer x can be reconstructed
via Equation 1.

x =
r−1∑
i=0

m

mi
×
((m

mi

)−1
xi (mod mi)

)
(mod m) (1)

A polynomial can be reconstructed from its residues by applying the CRT reconstruction
on each coefficient residues. It can be clearly noticed that this operation is completely
independent for each coefficient which makes it very suitable for GPU platforms. For further
details on CRT and modular algorithms, the reader is referred to [Gar59, Knu97, VZGG13].

4.3 Number Theoretic Transform Representation of Polynomials
CRT representation can be used to add or subtract polynomials efficiently by adding/-
subtracting polynomials residues coefficient-wise. Unfortunately, this is not the case with
multiplication. In order to cater for efficient multiplication, polynomials can be represented
by point-and-value instead of the canonical coefficient representation. This can be done by
evaluating polynomials (of degree < n) on a set of points using a DFT-like transform known

3Multiplicative depth is defined as the maximal number of multiplications on any path in the circuit
diagram.

76 High-Performance FV Somewhat Homomorphic Encryption on GPUs

as the Number Theoretic Transform (NTT) of length 2n [Pol71]. Point-wise multiplication
of the NTT representation of two polynomials corresponds to the NTT representation of
the product of the polynomials without reduction. A reduction algorithm modulo the ring
polynomial modulus is still required. However, since we are working in Zq[x]/〈x2k + 1〉, the
negative wrapped convolution can be used without reduction which can be computed effi-
ciently via the Discrete Weighted Transform (DWT) [Win12]. Furthermore, with negative
wrapped convolution, DWT transform of length n is only required.

For further improvement, one can use Crandall’s Discrete Galois Transform (DGT) to
compute an NTT equivalent representation, known as DGT representation in GF (p2), using
n/2 transform data-path. Crandall initially proposed his algorithm assuming that p must
be a Gaussian prime, i.e. p ≡ 3 (mod 4) [Cra99]. However, in another work, we generalized
his algorithm to work also with non-Gaussian primes, i.e. p ≡ 1 (mod 4) [ABBA18]. We
use our generalized DGT-based algorithm here to compute the DGT representation with
n/2 FFT-like data-path. With our generalized algorithm, no further restrictions are
imposed on the CRT moduli. For completeness, Algorithm 1 shows the DGT-based
polynomial multiplication algorithm. For more details on its generalization and how to
select its parameters, the reader is referred to [ABBA18].

Algorithm 1 Polynomial multiplication in Rmi via the DGT
Let Rmi

be the ring Zmi
[x]/〈xn + 1〉 where mi is a prime and n is a power of 2. Let g

be a primitive n/2-th root of unity in GF (m2
i) and h ∈ Z[i] be an n/2-th root of i in

GF (m2
i). Let a(x), b(x), c(x) ∈ Rmi be polynomials each of degree less than n with

integer coefficients {
⌈
−mi

2
⌉
, ...,

⌊
mi−1

2
⌋
}.

Input: a(x), b(x), g, g−1, h, h−1, n, n−1,mi

Output: c(x) = a(x) · b(x) (mod (mi, x
n + 1))

Precompute:
gj , g−j , hj , h−j (mod mi), where j = 0, . . . , n/2− 1

Initialize:
fold over input signals:
a′j = aj + iaj+n/2 . i =

√
−1

b′j = bj + ibj+n/2
Twist the folded signals:
ā′j = a′jh

j (mod mi)
b̄′j = b′jh

j (mod mi)
Compute n/2 DGT:
A = DGTg(ā′)
B = DGTg(b̄′)

Point-wise multiplication:
Cj = Aj ·Bj (mod mi)

Compute n/2 IDGT:
c̄′ = IDGTg−1(C)

Remove twisting factors:
c′j = c̄′jh

−j (mod mi)
Unfold output signal:
cj = Re(c′j) . Re returns the real part
cj+n/2 = Im(c′j) . Im returns the imaginary part

return c(x)

Algorithm 1 shows that given two polynomials in DGT representation, their product
can be computed in O(n) by coefficient-wise multiplication. We should remark here that
every polynomial residue (in RNS/CRT domain) should be transformed to DGT before

Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun and Khin Mi Mi Aung 77

multiplication can start.
Note that DWT/DGT requires weighting the polynomials with some twisting factor h

in Algorithm 1. These twisters should be distinguished from twiddle factors g used in the
transform.

4.4 Limitations of Using the Ring Z[x]/〈x2k + 1〉
Although the polynomial ring used here offers fast ring multiplication, it suffers from a
crucial problem related to plaintext batching. Plaintext batching, also known as CRT
batching, is a common technique proposed by Brakerski et al. [BGH13] to reduce HE
computational complexity. This technique enables packing several plaintexts in one
ciphertext. Operations on the ciphertext affect the packed plaintexts in a SIMD manner.
To highlight the limitation of using the ring Z[x]/〈x2k + 1〉, we need to provide a simple
overview of plaintext batching.

As we shall see in subsequent sections, the plaintext space is a polynomial ring
Rt = Zt[x]/〈x2k + 1〉. For some (k, t), x2k + 1 can be factored modulo t into a set of
mutually co-prime polynomials, say fi(x), 0 ≤ i < s. Using the CRT, Rt can be partitioned
by the following map:

Rt = Zt[x]
x2k + 1

∼=
Zt[x]
f0(x) × · · · ×

Zt[x]
fs−1(x) (2)

This means that we can encode s plaintext messages, apply CRT using the factors
fi(x) as moduli, given that fi(x) are mutually co-prime, and produce a single polynomial
that encodes s messages. The problem in Rt is that it only factors into a single factor
considering t = 2. This is an important case since it allows handling Boolean gates
XOR and AND using homomorphic addition and multiplication which makes constructing
Boolean circuits very simple.

Nevertheless, the problem can be solved by choosing larger values of t at the expense
that XOR becomes as costly as AND in noise growth. The reason for this can be illustrated
by the following example:

Example 1 Let c0, c1 be encryptions of two ones. Suppose we want to evaluate XOR
gate on c0, c1. Note that larger values of t means that polynomial coefficients can grow up
to t − 1. Evaluating homomorphic addition on the inputs results in an encryption of 2.
This can be corrected by subtracting (2× c0 × c1). Hence, the almost free homomorphic
addition becomes as costly as homomorphic multiplication considering that multiplication
by 2 can be done efficiently.

5 The Textbook FV and its RNS Variant
In this section, we review the textbook FV scheme and its RNS variant. We start by
describing the plaintext and ciphertext spaces before delving into the main procedures of
the schemes.

5.1 Plaintext and Ciphertext Spaces
The plaintext and ciphertext spaces are polynomial rings determined by the plaintext
modulus t and ciphertext modulus q both ∈ Z, where 2 ≤ t� q. We refer to these rings
by Rt : Zt[x]/〈xn + 1〉 and Rq : Zq[x]/〈xn + 1〉. While plaintext is a single element m ∈ Rt,
ciphertext is however, a pair of two elements (ct[0], ct[1]), where ct[i] ∈ Rq. The ratio
∆ = b qt c determines the multiplicative depth of the scheme. Choices of n, q affect the
security level by defining the hardness of the underlying RLWE problem.

78 High-Performance FV Somewhat Homomorphic Encryption on GPUs

5.2 The Textbook FV Scheme
The textbook FV scheme described in [FV12] is a tuple of 5 procedures: key generation,
encryption, decryption, homomorphic addition and homomorphic multiplication. In
addition to plaintext and ciphertext spaces parameters, the scheme defines additional
parameters described as follows:

• λ: a security parameter represented in unary notation.

• w: a decomposition base used to express a polynomial in Rq in terms of l + 1
polynomials in base w ∈ Z, where l = blogqwc.

• Xerr: a truncated zero-mean discrete Gaussian distribution used to sample error
polynomials. The distribution is parameterized by the standard deviation σ and
error bound βerr.

We review below the main procedures of the scheme.

• KeyGen(λ,w): The Secret Key (sk) is simply a binary polynomial sk $←− R2. The
Public Key (pk) is a pair of polynomials (pk0, pk1) = (−[a · sk + e]q, a), where
a

$←− Rq and e
$←− Xerr. The Evaluation Key (evk) is a set of (l + 1) pairs of

polynomials generated as follows: for 0 ≤ i ≤ l, sample ai
$←− Rq and ei

$←− Xerr.
evk[i] = ([wis2 − (ai · sk + ei)]q, ai). The procedure outputs: (sk, pk, evk).

• Enc(m, pk): encryption takes a plaintext message m ∈ Rt, samples u $←− R2 and
e1, e2

$←− Xerr. It produces the ciphertext ct = ([∆m+ pk0u+ e1]q, [pk1u+ e2]q).

• Dec(ct, sk): the procedure simply outputs
[⌊

t
q [ct[0] + ct[1]sk]q

⌉]
t
.

• EvalAdd(ct0, ct1): homomorphic addition takes two ciphertexts and produces:
ctadd = ([ct0[0] + ct1[0]]q, [ct0[1] + ct1[1]]q).

• EvalMul(ct0, ct1, evk): homomorphic multiplication takes two ciphertexts and com-
putes
1):

c0 =
[⌊ t
q
ct0[0]ct1[0]

⌉]
q

c1 =
[⌊ t
q

(ct0[0]ct1[1] + ct0[1]ct1[0])
⌉]
q

c2 =
[⌊ t
q
ct0[1]ct1[1]

⌉]
q

2) decomposes c2 in base w as c2 =
∑l
i=0 c

(i)
2 wi.

3) returns ctmul, such that:

ctmul[0] =
[
c0 +

l∑
i=0

evk[i][0]c(i)
2

]
q

ctmul[1] =
[
c1 +

l∑
i=0

evk[i][1]c(i)
2

]
q

Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun and Khin Mi Mi Aung 79

It can be seen that all procedures incorporate arithmetic in polynomial ring. Polynomials
are long and include large coefficients; hence either multi-precision or modular algorithms
can be used to handle them. Modular algorithms offer better performance especially if
they are executed in parallel [VZGG13]. One known modular algorithm is based on the
CRT/RNS helps in decomposing long and large polynomials into a set of independent
polynomials with small coefficients. Size of coefficients can be controlled by varying the
size of CRT moduli. Usually, the CRT moduli size is chosen such that a modulus can fit
in one machine word for efficient implementation.

The appealing property of the modular approach in handling polynomial arithmetic
stems from the fact that the generated polynomials are independent and can be operated
on in parallel making the problem suitable for parallel platforms. The only problem in
CRT/RNS approach is that some operations become more difficult such as division-and-
rounding and base decomposition. A close examination of the textbook FV shows that these
operations are required for decryption and homomorphic multiplication. We should remark
here that regarding division-and-rounding, the problem is not in division which can be
converted to multiplication by a modular inverse, it is in rounding that requires comparison
which is hardly compatible with RNS. As we mentioned in Section 4, polynomials are
represented in two representations: 1) CRT/RNS and 2) NTT representations. After
multiplication, polynomials are represented in NTT domain. It is not known if rounding
is even possible to do in NTT representation which imposes a conversion to the CRT
representation. Even in the CRT representation, rounding is not cheap and requires a
complex implementation [OP07]. Hence, another conversion to the canonical coefficient
representation of polynomials is required to perform multi-precision comparison. The same
argument applies to base decomposition.

Fortunately, Bajard et al. [BEHZ16] proposed a clever way to perform approximate
rounding in the RNS domain by utilizing the floor function. Since FV is a noisy/error
based encryption scheme, introducing extra errors may not violate its functionality as
long as the error is controlled. They adapted the textbook Dec and EvalMul to perform
approximate rounding in CRT/RNS domain. Moreover, they avoided base decomposition by
decomposing polynomials in the CRT moduli. The modified Dec and EvalMul procedures
of Bajard et al. are more efficient and do not affect much the maximum multiplication
depth supported by the scheme. In the following section, we review their procedures and
introduce how to map them to GPU.

A practical note The relinearization procedure (steps 2 and 3 in EvalMul) is crucial to
reduce ciphertext length and error growth during homomorphic evaluations. Furthermore,
computing the product c1 in step 1 can be performed via Karatsuba multiplication
algorithm to reduce the number of multiplications from 4 to 3.

5.3 The RNS Variant of FV
The core component of the proposed RNS FV of Bajard et al. is an efficient method to
convert between RNS bases called fast base conversion (FastBconv) provided in Equation 3.
FastBconv converts an integer x represented in base q with r moduli to RNS representation
in base B. It can also be used for a polynomial where the operation is applied to each
coefficient. FastBconv is similar to the CRT reconstruction except that no modular
reduction modulo m is required. This means the conversion is approximate and introduces
errors that can be removed by some correction techniques such as Shenoy-Kumaresan
algorithm through a redundant modulus [SK89].

FastBconv(x, q,B) =
(r∑
i=1

∣∣∣xi qi
q

∣∣∣
qi

× q

qi
(mod b)

)
b∈B

(3)

80 High-Performance FV Somewhat Homomorphic Encryption on GPUs

Another important aspect of the RNS FV is the replacement of round by floor. Rounding
requires comparison which is hardly compatible with RNS, instead flooring can be done
efficiently if the divisor is a product of a subset of the RNS moduli. For decryption, they use
the basic definition of the floor function as in Equation 4 to calculate an approximate value
of
[⌊

t
q [ct[0] + ct[1]sk]q

⌉]
t
. The redundant modulus γ is chosen co-prime to q and greater

than or equal to r the number of CRT moduli in q. To correct the error due to fast base
conversion and the usage of flooring instead of rounding, they apply Shenoy-Kumaresan
algorithm. The new decryption procedure is shown in Algorithm 2.⌊a

q

⌋
= a− (a mod q)

q
(4)

Algorithm 2 DecRNS [BEHZ16]

Input: ciphertext ct, secret key sk and a redundant modulus γ ∈ Z.
Output: the plaintext message [m]t.
for j ∈ {t, γ} do

s(j) ← FastBconv(|γt · (ct[0] + ct[1]sk)|q, q, j)× | − q−1|j (mod j)
s̃(γ) ← [s(γ)]γ
m(t) ← [(s(t) − s̃(γ))× |γ−1|t]t
return m(t)

𝑐𝑡0[0] 𝑞 𝑐𝑡1[0] 𝑞

FastBConv 𝑐𝑡𝑖 0 𝑞 , 𝑞, 𝐵𝑠𝑘 , 𝑖 ∈ 0,1

𝑐𝑡0[0] {𝑞,𝐵𝑠𝑘} 𝑐𝑡1[0] {𝑞,𝐵𝑠𝑘}

𝑐 = 𝐼𝑁𝑇𝑇(𝑁𝑇𝑇 𝑐𝑡0 0 𝑞,𝐵𝑠𝑘
⋅ 𝑁𝑇𝑇(𝑐𝑡1[0] {𝑞,𝐵𝑠𝑘}))

𝑐 {𝑞}

𝑐𝑚𝑢𝑙 {𝑞}= ExactBConv(𝑐𝑚𝑢𝑙 {−,𝐵𝑠𝑘}, 𝐵𝑠𝑘 , 𝑞)

Ignore 𝑐𝑚𝑢𝑙 𝐵𝑠𝑘

𝑐 {𝐵𝑠𝑘}

𝑐 {𝑞} {𝐵𝑠𝑘}
= FastBConv(𝑡. 𝑐 𝑞 , 𝑞, 𝐵𝑠𝑘)

𝑐𝑚𝑢𝑙 {−,𝐵𝑠𝑘} = 𝑡 ⋅ 𝑐 𝐵𝑠𝑘
− 𝑐 {𝑞} {𝐵𝑠𝑘}

𝑞−1
𝐵𝑠𝑘

Note that 𝑐𝑚𝑢𝑙 {𝑞} is irrelevant to the result of flooring
𝑐𝑚𝑢𝑙 {−,𝐵𝑠𝑘}

𝑐𝑚𝑢𝑙 {𝑞}

1

2

3

4

F
a

stR
N

S
F

lo
o

r

Figure 1: Flow diagram of computing divide-and-round in RNS FV

On the other hand, homomorphic multiplication is more involved and carried out in
four steps:

1. Extending polynomials in larger RNS moduli to contain polynomial product in
Z[x]/〈xn + 1〉, i.e. no modular reduction is applied to the coefficients.

2. Multiplying the extended polynomials in the NTT domain.

Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun and Khin Mi Mi Aung 81

3. Performing approximate rounding by flooring.

4. Relinearization by decomposing c2 in the RNS moduli of q instead of w.

Figure 1 shows how to carry out steps 1-3 to compute c0 =
[⌊

t
q ct0[0]ct1[0]

⌉]
q
. Initially,

we have the RNS representation in base q of polynomials: ct0[0] and ct1[0]. Each polynomial
is extended modulo an auxiliary moduli Bsk = B ∪ msk. The moduli in B are chosen
co-prime to q such that

∏l
i=1 mi ≥ 4(q − 1)2n · t,∀mi ∈ {q ∪ B}. This is to contain the

products c0, c1 and c2 as if they were calculated in Z[x]/〈xn + 1〉, i.e. without a reduction
modulo q. The redundant modulus msk must be co-prime to {q ∪ B} and greater than
2(|B| + dτe), where τ is the largest multiple of B the polynomial product may contain
at any point of computation. It should be remarked that as we do fast conversion from
base q to Bsk, overflows of q may be generated and hence an extra moduli m̃ > |q| is
used to remove these overflows using Shenoy-Kumaresan algorithm. Next, we multiply the
extended polynomials in NTT domain. The product is converted back to the RNS base
{q ∪ Bsk}. In step 3, flooring is carried out via division by q. Although division is hardly
compatible with RNS, dividing by product of a subset of the moduli, also known as scaling,
is much simpler. Bajard et al. used Barsi and Pinotti [BP95] scaling algorithm. While
computing the floor function, the polynomials are multiplied by t as shown in step 3 in the
figure. At this point, we have the floored polynomial in base Bsk. Finally, we transform
the product back to base q using Shenoy-Kumaresan algorithm and the redundant moduli
msk. The resultant product contains an extra error e where ||e||∞ ≤ |q|.

To bypass base decomposition in EvalMul, they adapt the relinearization step as follows:
1) ξq(c2) =

∑k
i=1

∣∣∣c2
qi

q

∣∣∣
qi

.

2) PRNS,q(sk2) =
(∣∣∣sk2 q

q1

∣∣∣
q
, . . . ,

∣∣∣sk2 q
qk

∣∣∣
q

)
.

3) replace evk by evkRNS[i] = ([PRNS,q(sk2)[i]− (ei + ai · sk)]q, ai)
For completeness, the RNS EvalMul procedure is listed in Algorithm 3.

Algorithm 3 EvalMulRNS [BEHZ16]

Input: ciphertexts ct0, ct1, evaluation key evkRNS and two redundant moduli msk, m̃ ∈
Z.
Output: ctmul in q.

S0: Convert fast ct0 and ct1 from q to
{
Bsk = ({B ∪msk}) ∪ {m̃}

}
S1: Convert ct0 and ct1 from Bsk ∪ m̃ to Bsk via Small Montgomery algorithm4 to get

ct′0 and ct′1.
S2: Compute the product ct′? = ct′0 × ct′1 in q ∪ Bsk. . × is ring multiplication
S3: Convert fast ct′? from q to Bsk to get c̃tmul + e in Bsk.
S4: Convert from Bsk to q to get c̃tmul + e in q.
S5: Perform the adapted relinearization step to get ctmul in q.

To highlight the significant improvement in performance of the RNS variant over the
textbook FV, Figure 2 shows the latency of decryption and homomorphic multiplica-
tion using SEAL (v2.1) which implements the textbook FV and SEAL (v2.3.0-4) which
implements the RNS variant.

In the following section, we describe our GPU implementation of the RNS FV and an
array of optimizations to achieve optimum performance on GPUs.

4An algorithm used to represent the polynomial coefficients in Montgomery representation with respect
to m̃.

82 High-Performance FV Somewhat Homomorphic Encryption on GPUs

0.1

1

10

100

1000

10000

(2K,60) (4K,180) (8K,360) (16K,720)

T
im

e
 (

m
s)

(n, |q| bits)

Decryption

SEAL v2.1

SEAL v2.3

1

10

100

1000

10000

100000

(2K,60) (4K,180) (8K,360) (16K,720)

T
im

e
 (

m
s)

(n, |q| bits)

Homomorphic Multiplication

SEAL v2.1

SEAL v2.3

Figure 2: Performance of decryption and homomorphic multiplication in the textbook FV
(implemented in SEAL (v2.1)) and its RNS variant (implemented by SEAL (v2.3.0-4))
averaged over 500 runs. Both versions were run on Intel(R) Xeon(R) E5-2620 at 2.40 GHz
with 24 cores equipped with ArchLinux (4.8.13-1-ARCH). Note that the vertical axes in
the figures are in log scale.

6 Implementation Layout
Our GPU implementation is highly inspired by cuHE, a CUDA based library for polynomial
arithmetic [DS15]. cuHE was designed specifically to perform polynomial arithmetic in
arbitrary rings on CUDA GPUs. The library utilizes NTL for CPU interface and employs
the CRT, NTT and polynomial Barrett reduction. cuHE supports natively only three
polynomial degrees: {8192, 16384, 32768}, i.e. polynomials with different degrees are
padded with zeros to a higher supported degree. As the library deals with arbitrary
polynomial rings, polynomial length is doubled and zero-padded before computing the
NTT. After multiplication, Barrett reduction is used to reduce the product in the ring.
Below we describe our implementation pointing out similarities and differences with cuHE.

6.1 Polynomial Representation
Polynomials are initialized using NTL on CPU. We use NTL mainly for initializing the
encryption keys. Eventually, all the keys are converted to CRT and NTT domain and
stored in GPU global memory.

On GPU, we store polynomials, represented in double CRT, in a Structure of Arrays
(SOA) layout. This allows for coalescent access pattern allowing each thread to deal with
one polynomial coefficient/residue5 at a time.

6.2 The Chinese Remainder Theorem and its Reconstruction
The CRT operation takes a polynomial with large multi-word coefficients and produces
a set of polynomial residues with smaller coefficients that can fit in one machine word.
CRT reconstruction is the inverse of CRT, it applies the Chinese remainder theorem and
reconstructs a polynomial from its residues.

The word size in our CUDA cards is 32 bit. The ideal solution in this scenario is
to choose 32-bit CRT moduli to minimize the number of residues and to avoid using
multi-precision arithmetic. Note that 2-word moduli can be used if the hardware/software

5A thread may process one whole coefficient in Zq or a smaller residue of it. For instance, point-wise
addition/multiplication is done at the residue level where each thread adds/multiplies two residues. In
contrast, the CRT reconstruction is processed at the coefficient level such that each thread processes one
coefficient at a time.

Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun and Khin Mi Mi Aung 83

supports efficient 4-word arithmetic. Another factor that affects the choice of CRT moduli
is the efficiency of modulo operation. A carefully chosen moduli offer more efficient modulo
operation than arbitrary moduli. For instance, NFLlib [AMBG+16] uses a carefully chosen
CRT moduli of size 30 bits and 62 bits to perform efficient modulo using lazy modular
reduction procedure. After investigating NFLlib’s approach, we found out that NFLlib’s
reduction algorithm is not ideally suited for GPUs. We performed a simple experiment to
apply modulo reduction of N 62-bit integers modulo one of NFLlib 30-bit primes using
NFLlib’s reduction and the native modulo operation (%) in CUDA. The native modulo
outperformed NFLlib’s algorithm by a slight margin as illustrated in Table 1.

Table 1: Latency in (millisecond) of reducing N 62-bit integers modulo a 30-bit NFLlib
prime p = 984481793 on Intel(R) Xeon(R) E5-2620 at 2.40 GHz with 24 cores and NVIDIA
Tesla K80 card averaged over 10000 runs.

N CPU GPU

% [AMBG+16]
Algorithm 2 Speedup % [AMBG+16]

Algorithm 2 Speedup

211 0.025 0.007 3.57x 0.0089 0.0093 0.96x
212 0.052 0.014 3.71x 0.0091 0.0094 0.97x
213 0.108 0.031 3.48x 0.0097 0.0099 0.98x
214 0.219 0.054 4.06x 0.0100 0.0102 0.98x

Although NFLlib reduction algorithm is very efficient on CPU, it does not perform well
on GPU. This might be attributed to two reasons: 1) bit operations required in NFLlib’s
algorithm seem to be less efficient on CUDA and 2) thread divergence (or predicated
execution overhead) due to a condition at the end of the algorithm. Hence, we use 32-bit
primes to form our CRT moduli and perform modulo operation using the native CUDA
modulo operation. In fact, using 32-bit primes over 30-bit primes may lead to reduced
number of moduli to represent q and consequently less number of NTT procedures.

6.2.1 CRT

We launch n threads to reduce a polynomial of degree < n modulo the CRT moduli. Each
thread reduces a multi-precision integer modulo a single-precision CRT modulus. Let x
be a d-word integer. Decomposing x in base 232 results in xd−1(232)d−1 + xd−2(232)d−2 +
· · ·+x0(232)0, where xi is a 32-bit number. Reducing x modulo, say mj , can be applied to
each term independently. Since CUDA supports double-precision6 operations, we reduce
each term of x independently and sum up the remainders modulo mj . To obtain a more
efficient implementation, one may choose to precompute and store the constants (232)i

(mod mj) in GPU constant memory.

6.2.2 CRT-reconstruct

The CRT reconstruction can be performed by two methods: 1) using the Chinese remainder
theorem as shown in Equation 1 and 2) using a mixed-radix system. Both methods can be
implemented on GPUs, however we argue that the second method is more suited for GPU
platforms. In order to prove this point, we need first to introduce Garner’s algorithm that
employs a mixed-radix system [Gar59]. We remark here that cuHE implements the classic
CRT reconstruction.

Algorithm 4 shows two main steps: 1) precomputation of the constants Ci’s and 2)
reconstruction. Since we are dealing with fixed moduli M, precomputation is done at

6In our scenario, double-precision operations refer to 64-bit operations.

84 High-Performance FV Somewhat Homomorphic Encryption on GPUs

program initialization and the constants Ci’s are stored in GPU constant memory. Storage
requirement for Ci’s is O(r), where r is the number of CRT moduli. The reconstruction
step is however more involved and must be applied to each coefficient. The required
operations for this step are as follows: 1) 2 multi-precision subtraction/addition modulo a
single-precision integer mi and 2) 1 multiplication of a multi-precision integer (

∏i−1
j=0 mj)

by a single-precision integer u. We perform these operations via CUDA PTX language to
obtain access to the carry bits. Another optimization used here is storing the constants
Ki =

∏i−1
j=0 mj in GPU constant memory. The product Ki requires i words of storage.

Assuming the maximum number of CRT primes is z, we allocate constant memory of size
(z − 1) · z/2. Figure 3 illustrates the storage and indexing of Ki’s. We remark here that
we use z instead of r as the constant memory size should be known at compile time.

Algorithm 4 Garner’s CRT-reconstruct using mixed-radix system
Let M = {m0,m1, . . . ,mr−1} denote the set of r co-prime CRT moduli and m =∏r−1
i=0 mi.

Input: The RNS representation of x ∈ Z: RNS(x) = (x0, x1, . . . , xr−1) moduloM
Output: The unique integer x, such that x < m

Precomputation:
for i = 1; i < r ; i+ + do

Ci = 1
for j = 0; j < i ; j + + do

t = m−1
j (mod mi)

Ci = t · Ci (mod mi)
Reconstruction:
u = x0
x = t

for i = 1; i < r ; i+ + do
u = (xi − x) · Ci (mod mi)
x = x+ u ·

∏i−1
j=0 mj

return x

. . .

𝑧−1 𝑧

2
 words

. . .

1 word

𝐾1 𝐾2 𝐾3 . . . 𝐾𝑧−1

(𝑧 − 1) words

0 1 3
𝑖 − 2 𝑖 − 1

2

. . . 𝐾𝑖

Figure 3: Memory layout of CRT products used in Garner’s CRT-reconstruct algorithm

Efficiency of Garner’s Algorithm on GPU Garner’s CRT-reconstruct is more suited for
GPU compared to classic CRT-reconstruct using Equation 1. First, classic CRT-reconstruct
requires the reduction of multi-precision integer (the sum) modulo another multi-precision
integer m. This operation is not only costly, but also requires a complex implementation.
One may avoid this costly reduction by exploiting the fact that in each iteration, the sum
is less than 2m, i.e., reduction can be substituted by a check whether the sum is greater
than or equal to m and subtracting m if the condition is true. Although this approach

Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun and Khin Mi Mi Aung 85

is less costly, it is not ideally suited for GPU platforms as the conditional check may
create divergence in threads execution which in turn leads to sequential execution in a
thread warp. In addition, the storage requirements for the constants used in the classic
CRT-reconstruct is higher than that in Garner’s algorithm. In classic CRT-reconstruct, one
has to store r values of multi-precision numbers m/mi and r of single-precision numbers,
whereas in Garner’s algorithm storage requirement is (r(r− 1))/2 and r of single-precision
numbers.

To back up our argument, we performed an experiment to reconstruct the coefficients
of a randomly generated polynomial of fixed degree < (n = 8192) with a predefined
coefficient size. Table 2 shows the latency of three CRT-reconstruct algorithms: the classic
algorithm employing Multi-Precision (MP) modulo m using Algorithm 14.20 in [MVOV96],
enhanced classic with conditional MP subtraction using cuHE CRT-reconstruct and
Garner’s algorithm. It should be remarked that all algorithms were implemented in CUDA.
In addition, the reported time does not include memory transfer. Pseudo-code for the
implemented Garner’s algorithm can be found in appendix A.1. For better performance,
our pseudo-code stores negatives of the constants Ci.

Table 2: Latency in (millisecond) of reconstructing a polynomial of degree < (n = 8192)
with coefficients of size logq2 on Tesla K80 NVIDIA GPU card averaged over 10000 runs.

logq2 Classic Classic Garner’s
MP-mod MP-sub Algorithm

62 0.4142 0.0312 0.0153
186 0.8057 0.0624 0.0506
372 1.7040 0.1638 0.1299
744 3.8620 0.5660 0.4252

6.3 The Discrete Galois Transform and its Inverse
DGT and its inverse are used to compute the NTT representation of polynomials. As
we mentioned previously, this transform allows computing the NTT (or more precisely
the DGT) representation using n/2 FFT-like data-path. Thus, we only need to store n/2
twiddle roots. On the other hand, twisting factors are Gaussian integers each requires
two integers for real and imaginary parts. We store twiddles in texture memory while the
twisting factors in global memory due to different memory access patterns.

DGT and IDGT are computed via multi-radix Stockham algorithm. We adapted the
algorithm to work in GF (m2

i). Details and pseudo-code of the algorithm can be found
in [GLD+08, amd]. We should remark that cuHE computes the NTT representation using
a single special 64-bit Solinas prime p̂ = 264− 232 + 1 that provides efficient 128-bit integer
reduction. In fact, this prime was originally used by Emmart and Weems [EW11] in their
large integer GPU multiplier. Computing NTT in one prime has the following advantages:
1) one can optimize modulo operations for one modulus and 2) precomputed twiddles and
twisting factors for a single prime are only required. However, this approach suffers from a
significant drawback. The CRT moduli mi must be ≤ b|

√
p̂/(2n)|c] so that the maximum

convolution value is supported modulo p̂. This bound covers only a single multiplication of
two polynomials, if more than two polynomials are to be multiplied in the NTT domain,
the bound will be further smaller. Smaller CRT moduli size increases the number of NTT
transforms which deteriorates the performance.

For small polynomial degrees (≤ 4k) we launch a single kernel for computing DGT/IDGT.
The entire computation is done by a single block which enables us to synchronize all the
threads and process the polynomial in several passes. For larger degrees, 2-3 kernels might
be required instead since several blocks are launched together. Global synchronization

86 High-Performance FV Somewhat Homomorphic Encryption on GPUs

between threads is achieved by launching successive kernels on the same stream. We should
remark that we perform the DGT/IDGT computation on all polynomial residues at the
same time. We pack all polynomial residues together and launch the transform kernel
only once. This reduces the total number of expensive kernel launches. Packing is simply
done by launching 2D grid of thread blocks. Grid dimensions are x and y, where x is the
number of thread blocks required to compute DGT/IDGT for a single residue and y = r
the number of primes in the CRT moduli.

In cuHE, NTT/INTT computation is carried out using 3 kernels hard-coded for each
polynomial degree without batching. We noticed that kernel launch time takes more than
kernel computation. By reducing the number of kernel launches, noticeable improvement
can be achieved. In addition, one NTT/INTT conversion can be done at a time in
cuHE. This is due to the usage of a single shared buffer as temporary storage for NTT
computation. We provide a separate buffer for each DGT/IDGT launch allowing for
concurrent DGT/IDGT invocations.

6.4 Fast Base Conversion

A close examination of fast base conversion (Equation 3) shows the similarity between it and
the CRT reconstruction (Equation 1). However, since the summation is calculated modulo
b ∈ B, which is a single word modulus, the constants q

qi
(mod b) can be pre-computed and

stored in the constant memory. Storage requirement for them are O(z · v) words, where z
and v are the maximum number of moduli chosen for the bases q and B. Similarly, the
constants qi

q (mod qi) are precomputed and stored in the constant memory requiring O(z)
words.

On more constrained devices, one may choose to calculate the conversion without
pre-computed constants similar to CRT-reconstruct by reconstructing the number from its
residues followed by multi-precision modulo b. The only difference is that a multi-precision
subtraction of the dynamic range is not required. This approach however requires costly
multi-precision multiplication.

6.5 Random Number Generation

Random polynomials required for key generation and encryption are generated on GPU by
means of CUDA cuRAND. Three distributions are identified: 1) X2, 2) Xq, and 3) Xerr.
The first two are uniform distributions while the third is discrete truncated Gaussian.

To sample a random polynomial from X2, we launch n threads. Each thread samples a
number from cuRAND uniform random number generator modulo 2. For Xq, each thread
generates r random numbers and construct a random coefficient in CRT representation.
Lastly, For Xerr we launch n/2 threads, each thread uses its own uniform random number
to generate a pair of independent standard, normally distributed random numbers using
Box-Muller method [BM+58].

6.6 Multiple CUDA Streams

In order to fully utilize the GPU and increase throughput, we launch independent kernels
on multiple streams. This allows for concurrent and interleaved execution of independent
operations. A clear example on this is the homomorphic multiplication procedure. Com-
puting c0, c1, and c2 are independent and can be done simultaneously. We also hide the
latency of memory transfer behind kernel execution by using pinned memory allocation.

Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun and Khin Mi Mi Aung 87

6.7 Memory Pool
Dealing with several representations of polynomial requires allocating and deallocating a
large amount of memory during computation. In addition, the evaluation of homomorphic
multiplication requires a large amount of temporary storage for base conversion. In order
to reduce the cost of that, we employ a memory pool mechanism to pre-allocate memory
on GPU at system initialization.

7 Experiments and Results
In this section, we compare our implementation with two other implementations. First, we
describe our comparison methodology, the test environment and hardware configuration
for both CPU and GPU. Next, we analyze the results and point out the pros and cons of
each implementation.

7.1 Methodology
To evaluate the performance of our implementation, we compare it with Microsoft SEAL-
FVRNS (v2.3.0-4) [KLP16] and NFLlib-FV7 [AMBG+16]. To highlight the efficiency of
RNS techniques, we include timings of a GPU implementation that performs divide-and-
round and base decomposition in coefficient representation on CPU via NTL version
(10.5.0). We refer to these implementations as: GPU-FVRNS, SEAL-FVRNS, NFLlib-FV
and G-CPU-FVK80.

We report the running time of the FV primitives: key generation, encryption, decryption,
homomorphic addition and homomorphic multiplication. Any initialization operation that
would only be done once is not included in our measurements. Computing powers of roots,
library objects initialization and creation were not included in the timing figures. On CPU,
we measure the time via C++ library chrono [cpp]. On the other hand, CUDA events
were used to record and measure kernels execution time. Each experiment was performed
500 times and the average execution time is always reported.

7.2 Testbed Environment
We developed our implementation via CUDA 8.0 on a lightly loaded 64-bit machine
equipped with two 6-core CPUs (with hyper-threading enabled), NVIDIA Tesla K80 GPU
of 3.7 compute capability and NVIDIA Tesla P100 of 6.0 compute capability. The operating
system is ArchLinux (4.14.6-1-ARCH). The compilers used are GCC (7.2.1 20171128) and
NVCC (8.0.61). We run NFLlib-FV and SEAL-FVRNS on the same machine enabling all
CPU cores which also support AVX2 instructions. This means that NFLlib-FV can utilize
24 cores. Table 3 describes the hardware configuration of both CPU and GPU. We should
remark that we only utilize one GPU in all our experiments. On the other hand, all CPU
cores were enabled and made ready for use by SEAL-FVRNS and NFLlib-FV.

7.3 Choice of Parameters
The FV scheme is parametrized by the following parameters: n, q, t, σ and, βerr. There
are other parameters related to RNS techniques such as γ,msk, m̃. In choosing FV’s
parameters, we followed Lepoint and Naehrig’s security analysis [LN14]. For γ,msk and
m̃, we consider the recommendations of Bajard et al. (see Table 1 in [BEHZ16]). Table 4
shows the range of values used in experiments and the maximum multiplicative depth L
supported by the implementations. Note that these settings provide 80-bit security level.

7No version could be found for NFLlib-FV. The source code used had been cloned on Dec 30th 2017.

88 High-Performance FV Somewhat Homomorphic Encryption on GPUs

Table 3: Testbed environment hardware configurations.
Feature CPU GPU

K80 P100

Model Intel(R) Xeon(R) E5-2620 K80 P100
Cores 24 2496 3584
Frequency 2.40 GHz 0.82 GHz 1.328 GHz
RAM 62 GB 12 GB 16 GB

For NFLlib-FV, we choose the size of small CRT parameters as 62 bit. This actually
gives better results compared to 30-bit moduli as shown in Table 5 in [BEHZ16]. For
SEAL-FVRNS (v2.3.0-4), the user may choose a combination of various sizes (30, 40,
50 and 60 bits) as small CRT moduli. We choose 60-bit moduli as it is the closest to
NFLlib-FV and our settings. It should be remarked that SEAL-FVRNS also provides a set
of recommended settings for two levels of security: 128-bit and 192-bit. The user can use
the "ChooserEvaluator" to select a set of parameters. For more details on SEAL-FVRNS’s
default and recommended parameters, the reader is referred to Table 3 in [KLP16].

Note that the choice of m̃ impacts the noise growth in homomorphic multiplication.
A lower value of m̃ increases noise growth. In fact, one may choose m̃ = 0 and skip
(S1) in Algorithm 3. Although that improves the performance, it lowers the maximum
multiplicative depth supported.

To avoid the complexity of calculating RNS parameters, we choose constant values for
γ, m̃ and msk as shown in Table 4.

Table 4: Parameters for NFLlib-FV, GPU-FVRNS, G-CPU-FVK80 and SEAL-FVRNS
(v2.3.0-4).

n dlogq2e t σ βerr γ m̃ msk L

SEAL rest
211 60 62 2 8 48 7 (no need) 4211212259 2
212 180 186 2 8 48 13 (no need) 4211212259 5
213 360 372 2 8 48 37 216 4211212259 13
214 720 744 2 8 48 53 216 4211212259 25

7.4 Timing Results
Table 5 lists the timing and speedup gains for the four implementations. Speedup is
computed with reference to P100 except for G-CPU-FVK80 whose speedup is calculated
with reference to K80. It can be noticed that GPU-FVRNS performance on P100 compares
favorably against the rest. On average, it achieves 5.37x, 7.37x, 22.22x, 5.11x and
13.18x (resp. 2.03x, 2.94x, 27.86x, 8.53x and 18.69x) for key generation, encryption,
decryption, homomorphic addition and homomorphic multiplication against SEAL-FVRNS
(resp. NFLlib-FV). On K80, GPU-FVRNS still outperforms SEAL-FVRNS and NFLlib-FV
but with less speedup gains.

A common feature in all primitives is as parameter sizes increase, differences in
performance become more evident. On the other hand, less improvement is noticed with
small parameters. As can be seen in Figure 4, GPU utilization rate increases as problem
grows in size. When the amount of offloaded work is small, data transfer time between host
and device and kernel launches overhead dominates computation time. Another noticeable

Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun and Khin Mi Mi Aung 89

feature is that amongst the five procedures, key generation and encryption have the lowest
speedup when compared to NFLlib-FV, this is due to the expensive uniform and Gaussian
sampling required for generating error polynomials. Obviously, NFLlib random generation
algorithm is more efficient (in small settings) than our simple Box-Muller based random
generator.

0

20

40

60

80

100

120

0

20

40

60

80

100

120

140

160

(2K,62) (4K,186) (8K,372) (16K,744)

U
ti

liz
at

io
n

 %

P
o

w
er

 (
W

)

(n, |q| bits)

Figure 4: P100 (solid) and K80 (dashed) power consumption (W) and utilization rate for
homomorphic multiplication of polynomials of degree < n with coefficients size |q| bits
averaged over 10000 samples.

Focusing on SEAL-FVRNS and NFLlib-FV, although NFLlib-FV is a multi-core library
employing AVX2 and SSE instructions, it only outperforms SEAL-FVRNS (which only
employs software based multi-threading) in key generation and encryption. In decryption
and homomorphic addition, SEAL-FVRNS outperforms NFLlib-FV by a slight margin.
The gap is more evident with homomorphic multiplication since SEAL-FVRNS employs
Bajard’s et al. RNS FV. It would be interesting to find out the performance of NFLlib-FV
with the RNS techniques adopted8.

RNS variant performance can also be noticed from GPU-FVRNS and G-CPU-FVK80
results. Performing divide-and-round and base decomposition on coefficient representation
is certainly not a desired approach especially for homomorphic multiplication.

A question that may rise is how much speedup we can get from GPU and whether we
were able to reach that. Although there seems no simple and accurate model to evaluate
GPU performance, some approximated results from the literature can help. A team of Intel
corporation provided a thorough benchmark study to evaluate the performance of NVIDIA
GTX280 and Intel Core i7 960 processors [LKC+10] using 14 compute/memory-bound
workloads. They found that the gap between the two processors narrows down to only
2.5x (in favor of GPU) when software optimizations are applied appropriately to CPU
and GPU codes. Although the processors used in our experiments are not the same, one
can infer that GPU would not provide massive improvement compared to CPU. In our
experiments, we could gain speedups from 0.32x to 60.95x against highly optimized CPU
implementations on a single GPU card.

We present one more experiment to provide insights into hardware utilization and
power consumption. In this experiment, only homomorphic multiplication (the most
performance-critical operation) is performed. Unsurprisingly, utilization rate increases
as polynomial degree and coefficient size increase. Although no changes were made on

8The reader should note that we could only run NFLlib-FV for (n, |q|) = (214, 744) after increasing the
system stack size. With default stack size (8 MB) the library crashes on multiplication since it allocates
large arrays on the stack. The problem is resolved after increasing the stack size to (64 MB).

Table 5: Latency T (millisecond) averaged over 500 runs of the FV primitives and speedup S for the full GPU
implementation(GPU-FVRNS) on P100 and K80, cooperative CPU-GPU FV(G-CPU-FVK80) on K80, SEAL-FVRNS (v2.3.0-4)
and NFLlib-FV.
Procedure n |q| GPU-FVRNS G-CPU-FVK80 SEALRNS NFLlib-FV

SEAL rest TP100 TK80 S T S T S T S

KeyGen

211 60 62 2.786 5.943 2.13x - - 4.981 1.79x 0.903 0.32x
212 180 186 8.147 17.218 2.11x - - 35.624 4.37x 12.131 1.49x
213 360 372 30.943 86.095 2.78x - - 212.719 6.87x 83.366 2.69x
214 720 744 174.508 356.224 2.04x - - 1474.903 8.45x 633.42 3.63x

Enc

211 60 62 0.271 0.541 2.00x - - 1.642 6.06x 0.276 1.02x
212 180 186 0.730 1.440 1.97x - - 4.095 5.61x 1.081 1.48x
213 360 372 1.081 2.645 2.45x - - 9.792 9.06x 4.321 4.00x
214 720 744 3.296 6.657 2.02x - - 28.834 8.75x 17.353 5.26x

Dec

211 60 62 0.065 0.151 2.32x 1.484 9.83x 0.198 3.05x 0.396 6.09x
212 180 186 0.108 0.194 1.80x 3.444 17.75x 0.967 8.95x 1.494 13.83x
213 360 372 0.152 0.252 1.66x 9.615 38.15x 3.308 21.76x 4.645 30.56x
214 720 744 0.252 0.610 2.42x 19.55 32.05x 13.888 55.11x 15.36 60.95x

Add

211 60 62 0.016 0.037 2.31x - - 0.007 0.44x 0.007 0.44x
212 180 186 0.021 0.052 2.48x - - 0.054 2.57x 0.065 3.10x
213 360 372 0.030 0.068 2.27x - - 0.177 5.90x 0.309 10.30x
214 720 744 0.053 0.127 2.40x - - 0.612 11.55x 1.075 20.28x

Mul

211 60 62 1.072 3.343 3.12x 203.622 60.91x 2.327 2.17x 3.231 3.01x
212 180 186 1.833 3.873 2.11x 817.958 211.19x 13.655 7.45x 16.722 9.12x
213 360 372 3.538 7.700 2.18x 3351.660 435.28x 57.857 16.35x 81.363 23.00x
214 720 744 11.747 28.953 2.46x 12674.51 437.76x 314.029 26.73x 465.587 39.63x

Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun and Khin Mi Mi Aung 91

code, P100 utilization rate increases at lower rate compared to K80. Similarly, power
consumption increase from 62 W to 148 W for K80. Power on P100 has a similar behavior
but with less magnitude. Note that in this experiment GPU-FVRNS was set to run on a
non-heated GPU card in each (n, |q|) setting to limit the effect of previous runs on current
measurements.

Lastly, we provide the latency of core compute kernels of our GPU implementation
shown in Tables 6 and 7. It can be seen that the RNS kernels (Fast Base Conversion and
Fast RNS Floor) contribute largely to the total execution time. It should be remarked
that although CRT functions are also expensive, they are not on the critical path of
computation as they are only used in encoding and decoding.

Table 6: Latency in (millisecond) of core compute kernels on NVIDIA Tesla K80.
n dlogq2e CRT CRT DGT DGT Fast Base Fast RNS

Reconstruct Inverse Conversion Floor
211 62 0.007 0.024 0.031 0.033 0.023 0.050
212 186 0.022 0.056 0.039 0.041 0.064 0.140
213 372 0.091 0.131 0.048 0.050 0.183 0.443
214 744 1.057 1.409 0.193 0.202 0.858 2.090

Table 7: Latency in (millisecond) of core compute kernels on NVIDIA Tesla P100.
n dlogq2e CRT CRT DGT DGT Fast Base Fast RNS

Reconstruct Inverse Conversion Floor
211 62 0.004 0.014 0.027 0.030 0.012 0.028
212 186 0.012 0.037 0.036 0.040 0.030 0.069
213 372 0.040 0.100 0.040 0.048 0.062 0.164
214 744 0.218 0.323 0.087 0.093 0.318 0.790

8 Conclusion
In this work, we presented the details of a GPU implementation of the FV SHE scheme.
We developed a high performance modular arithmetic library for the polynomial ring
Zq[x]/〈x2k + 1〉. In this library, we employed several algebraic tools such as CRT, RNS
and DGT/IDGT to perform arithmetic on long polynomials with large coefficients.

We showed that division-and-round and base decomposition in the textbook FV scheme
require multi-precision arithmetic due to the need for positional numbering system. This is
even more difficult to deal with on GPU. To overcome this problem, we employed the fast
base conversion techniques of Bajard et al. to do computation in the CRT/RNS domain
on GPU without the need to offload the computation to CPU.

The RNS techniques used here require conversion form NTT to RNS domain. It
would lead to a more efficient solution if division-and-round and base decomposition were
performed in the NTT domain directly. Moreover, other CUDA programming models may
apply to improve our implementation further such as handling polynomial coefficient by a
warp or half warp of threads instead of a single thread.

We compared our implementation with mature state-of-the-art implementations of the
textbook FV and provided the speedups achieved.

As an immediate extension of this work, we believe our implementation can be ported
to run on other hardware accelerators such FPGAs and ASICs. These platforms are known
to offer even higher computational power than GPUs.

92 High-Performance FV Somewhat Homomorphic Encryption on GPUs

Acknowledgments
This work was supported by A * STAR, Data Storage Institute and the National University
of Singapore. We thank Benjamin Hong Meng Tan and Nan Xiao who provided insight
and expertise that greatly assisted the research. We would also like to thank the four
anonymous reviewers for their comments and insights which helped in improving this work.

A CUDA code of main Algorithms
A.1 CRT Reconstruction via Garner’s Algorithm

1 __global__ void ICRT_Garner (uint32 *out , uint32 *in ,
2 uint32 r, uint32 m_w32_cnt , uint32 n) {
3 int t_id = blockIdx .x* blockDim .x+ threadIdx .x;
4 if (t_id >= n) return ;
5 uint32 x[z+1];
6 for (int i = 0; i < m_w32_cnt ; i++)
7 x[i] = 0;
8 uint32 u = in[t_id];
9 x[0] = u;
10 for (int m = 1; m < r; m++) {
11 uint32 p = tab_p[m];
12 uint32 t0 = ((uint64)tab_c[m]*in[m*n+t_id]) % p;
13 uint32 x_w32_cnt = 0;
14 for (int i = 0; i < m_w32_cnt ; i++)
15 if (x[i] != 0) x_w32_cnt ++;
16 int64 t1 = (int64)x[0] - in[m*n+t_id];
17 if (t1 <=p)
18 t1 += p;
19 if (t1 >p)
20 t1 -= p;
21 uint32 old_x0 = x[0];
22 x[0] = t1;
23
24 u = MP_mod_SP (x, x_w32_cnt , p);
25 u = ((uint64) tab_minus_c [m]*u) % p;
26 u = t2;
27 uint32 pj_index = ((m -1)*m)>>1;
28 uint32 pj_w32_cnt = m;
29 x[0] = old_x0 ;
30 // Mul MP with SP and Add MP number
31 MP_mul_SP_add_MP (tab_pj +pj_index , pj_w32_cnt ,
32 u, x, x_w32_cnt);
33 }
34 for (int i = 0; i < m_w32_cnt ; i++)
35 out[t_id+i*n] = x[i];
36 }

References
[ABBA18] Ahmad Al Badawi, Veeravalli Bharadwaj, and Khin Mi Mi Aung. Efficient

polynomial multiplication via modified discrete galois transform and nega-

Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun and Khin Mi Mi Aung 93

cyclic convolution. In Future of Information and Communications Conference
(FICC). IEEE, 2018.

[AMBG+16] Carlos Aguilar-Melchor, Joris Barrier, Serge Guelton, Adrien Guinet, Marc-
Olivier Killijian, and Tancrede Lepoint. Nfllib: Ntt-based fast lattice library.
In Cryptographers? Track at the RSA Conference, pages 341–356. Springer,
2016.

[amd] Opencl: Optimization case study fast fourier transform - part 1, 2. Available
at: http://developer.amd.com/resources/articles-whitepapers/
opencl-optimization-case-study-fast-fourier-transform-part-1/.
Accessed 2017.

[BEHZ16] Jean-Claude Bajard, Julien Eynard, Anwar Hasan, and Vincent Zucca. A
full rns variant of fv like somewhat homomorphic encryption schemes. In
Selected Areas in Cryptography-SAC, 2016.

[BFF12] Javier Baladron, Diego Fasoli, and Olivier Faugeras. Three applications
of gpu computing in neuroscience. Computing in Science & Engineering,
14(3):40–47, 2012.

[BGH13] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in lwe-
based homomorphic encryption. In Public Key Cryptography, volume 7778,
pages 1–13. Springer, 2013.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, pages 309–325.
ACM, 2012.

[BM+58] George EP Box, Mervin E Muller, et al. A note on the generation of random
normal deviates. The annals of mathematical statistics, 29(2):610–611, 1958.

[BP95] Ferruccio Barsi and Maria Cristina Pinotti. Fast base extension and precise
scaling in rns for look-up table implementations. IEEE transactions on signal
processing, 43(10):2427–2430, 1995.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical gapsvp. In CRYPTO, volume 7417, pages 868–886. Springer,
2012.

[CGRS14] David Bruce Cousins, John Golusky, Kurt Rohloff, and Daniel Sumorok.
An fpga co-processor implementation of homomorphic encryption. In High
Performance Extreme Computing Conference (HPEC), 2014 IEEE, pages
1–6. IEEE, 2014.

[cpp] C++ chrono time library. Available at: http://en.cppreference.com/w/
cpp/chrono. Accessed 2018.

[Cra99] Richard E Crandall. Integer convolution via split-radix fast galois transform.
Center for Advanced Computation Reed College, 1999.

[Cud] Cooperative groups: Flexible cuda thread programming. Available at:
https://devblogs.nvidia.com/parallelforall/cooperative-groups/.
Accessed 2017.

http://developer.amd.com/resources/articles-whitepapers/opencl-optimization-case-study-fast-fourier-transform-part-1/
http://developer.amd.com/resources/articles-whitepapers/opencl-optimization-case-study-fast-fourier-transform-part-1/
http://en.cppreference.com/w/cpp/chrono
http://en.cppreference.com/w/cpp/chrono
https://devblogs.nvidia.com/parallelforall/cooperative-groups/

94 High-Performance FV Somewhat Homomorphic Encryption on GPUs

[DÖS15] Yarkın Doröz, Erdinç Öztürk, and Berk Sunar. Accelerating fully homomor-
phic encryption in hardware. IEEE Transactions on Computers, 64(6):1509–
1521, 2015.

[DS15] Wei Dai and Berk Sunar. cuhe: A homomorphic encryption accelerator library.
In International Conference on Cryptography and Information Security in
the Balkans, pages 169–186. Springer, 2015.

[EW11] Niall Emmart and Charles C Weems. High precision integer multiplica-
tion with a gpu using strassen’s algorithm with multiple fft sizes. Parallel
Processing Letters, 21(03):359–375, 2011.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomor-
phic encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

[Gar59] Harvey L Garner. The residue number system. In Papers presented at the the
March 3-5, 1959, western joint computer conference, pages 146–153. ACM,
IEEE, 1959.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009.

[GH11] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic
encryption scheme. In EUROCRYPT, volume 6632, pages 129–148. Springer,
2011.

[GLD+08] Naga K Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and
John Manferdelli. High performance discrete fourier transforms on graphics
processors. In Proceedings of the 2008 ACM/IEEE conference on Supercom-
puting, page 2. IEEE Press, 2008.

[Har13] William B Hart. Flint: Fast library for number theory. Computeralgebra
Rundbrief, 2013.

[KLP16] Hao Chen Kim Laine and Rachel Player. Simple encrypted arithmetic
library-seal (v2. 1). Technical report, Technical report, Microsoft Research,
2016.

[Knu97] Donald E Knuth. The art of computer programming, 3rd edn. seminumerical
algorithms, vol. 2, 1997.

[LKC+10] Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun
Kim, Anthony D Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas
Chennupaty, Per Hammarlund, et al. Debunking the 100x gpu vs. cpu myth:
an evaluation of throughput computing on cpu and gpu. ACM SIGARCH
computer architecture news, 38(3):451–460, 2010.

[LN14] Tancrede Lepoint and Michael Naehrig. A comparison of the homomorphic
encryption schemes fv and yashe. In International Conference on Cryptology
in Africa, pages 318–335. Springer, 2014.

[Mun09] Aaftab Munshi. The opencl specification. In Hot Chips 21 Symposium (HCS),
2009 IEEE, pages 1–314. IEEE, 2009.

[MV08] John Michalakes and Manish Vachharajani. Gpu acceleration of numerical
weather prediction. Parallel Processing Letters, 18(04):531–548, 2008.

Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun and Khin Mi Mi Aung 95

[MVOV96] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook
of applied cryptography. CRC press, 1996.

[Nvi07] CUDA Nvidia. Compute unified device architecture programming guide,
2007.

[Nvi14] CUDA Nvidia. Toolkit documentation. NVIDIA CUDA Getting Started
Guide for Linux, 2014.

[OP07] Amos R Omondi and Benjamin Premkumar. Residue number systems: theory
and implementation, volume 2. World Scientific, 2007.

[PNPM15] Thomas Pöppelmann, Michael Naehrig, Andrew Putnam, and Adrian Ma-
cias. Accelerating homomorphic evaluation on reconfigurable hardware. In
International Workshop on Cryptographic Hardware and Embedded Systems,
pages 143–163. Springer, 2015.

[Pol71] John M Pollard. The fast fourier transform in a finite field. Mathematics of
computation, 25(114):365–374, 1971.

[RAD78] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and
privacy homomorphisms. Foundations of secure computation, 4(11):169–180,
1978.

[Rup12] K. Rupp. GPU-Accelerated Non-negative Matrix Factorization for Text
Mining. In NVIDIA GPU Technology Conference 2012, page 77, 2012.

[S+01] Victor Shoup et al. Ntl: A library for doing number theory, 2001.

[SK89] AP Shenoy and Ramdas Kumaresan. Fast base extension using a redundant
modulus in rns. IEEE Transactions on Computers, 38(2):292–297, 1989.

[SS11] Damien Stehlé and Ron Steinfeld. Making ntru as secure as worst-case
problems over ideal lattices. In Eurocrypt, volume 6632, pages 27–47. Springer,
2011.

[VDJ10] Marten Van Dijk and Ari Juels. On the impossibility of cryptography alone
for privacy-preserving cloud computing. HotSec, 10:1–8, 2010.

[VZGG13] Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer algebra.
Cambridge university press, 2013.

[WHC+12] Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang, and Berk Sunar. Ac-
celerating fully homomorphic encryption using gpu. In High Performance
Extreme Computing (HPEC), 2012 IEEE Conference on, pages 1–5. IEEE,
2012.

[WHC+15] Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang, and Berk Sunar. Ex-
ploring the feasibility of fully homomorphic encryption. IEEE Transactions
on Computers, 64(3):698–706, 2015.

[Wil13] Nicholas Wilt. The cuda handbook: A comprehensive guide to gpu program-
ming. Pearson Education, 2013.

[Win12] Franz Winkler. Polynomial algorithms in computer algebra. Springer Science
& Business Media, 2012.

[WSTaM12] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey. Ope-
nacc?first experiences with real-world applications. Euro-Par 2012 Parallel
Processing, pages 859–870, 2012.

	Introduction
	Organization of the Paper

	Literature Review
	CUDA Programming Paradigm
	Mathematical Preliminaries
	Notation
	Residual Number System Representation of Polynomials
	Number Theoretic Transform Representation of Polynomials
	Limitations of Using the Ring Z[x]/"426830A x2k+1 "526930B

	The Textbook FV and its RNS Variant
	Plaintext and Ciphertext Spaces
	The Textbook FV Scheme
	The RNS Variant of FV

	Implementation Layout
	Polynomial Representation
	The Chinese Remainder Theorem and its Reconstruction
	The Discrete Galois Transform and its Inverse
	Fast Base Conversion
	Random Number Generation
	Multiple CUDA Streams
	Memory Pool

	Experiments and Results
	Methodology
	Testbed Environment
	Choice of Parameters
	Timing Results

	Conclusion
	CUDA code of main Algorithms
	CRT Reconstruction via Garner's Algorithm

