
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 1, pp. 426–450. DOI:10.46586/tches.v2021.i1.426-450

Redundant Code-based Masking Revisited
Nicolas Costes and Martijn Stam

Simula UiB
Merkantilen (3rd floor)
Thormøhlensgate 53D
N-5006 Bergen, Norway.

{nicolas,martijn}@simula.no

Abstract. Masking schemes are a popular countermeasure against side-channel attacks.
To mask bytes, the two classical options are Boolean masking and polynomial masking.
The latter lends itself to redundant masking, where leakage emanates from more
shares than are strictly necessary to reconstruct, raising the obvious question how
well such “redundant” leakage can be exploited by a side-channel adversary.
We revisit the recent work by Chabanne et al. (CHES’18) and show that, contrary
to their conclusions, said leakage can—in theory—always be exploited. For the
Hamming weight scenario in the low-noise regime, we heuristically determine how
security degrades in terms of the number of redundant shares for first and second
order secure polynomial masking schemes.
Furthermore, we leverage a well-established link between linear secret sharing schemes
and coding theory to determine when different masking schemes will end up with
essentially equivalent leakage profiles. Surprisingly, we conclude that for typical
field sizes and security orders, Boolean masking is a special case of polynomial
masking. We also identify quasi-Boolean masking schemes as a special class of
redundant polynomial masking and point out that the popular “Frobenius-stable”
sets of interpolations points typically lead to such quasi-Boolean masking schemes,
with subsequent degraded leakage performance.
Keywords: Coding Theory · Masking · Shamir Secret Sharing · Success Rate

1 Introduction
Context and challenge. Differential power analysis (DPA) in its simplest form can be
regarded as running a maximum likelihood estimator individually on each of the 16 key
bytes (for AES-128) of either the first or last round key [HRG14]. Against unprotected
blockciphers, DPA is almost always successful in recovering the full key, given sufficiently
many traces. Quite how many traces depends on various factors, including how noisy the
traces are; an established rule of thumb is that the number needed is inversely proportional
to the standard deviation of the noise [MOP07, Eq. (6.9)].

The success of DPA has instigated a multitude of countermeasures, of which masking
is one of the most popular. In traditional masking schemes of order d, each sensitive
variable v is shared into d + 1 shares c = c1, . . . , cd+1 using an encoding. The classical
example is Boolean masking, where v =

∑d+1
i=1 ci. In general, the encoding c would allow

recombination of the sensitive variable v, yet a properly masked implementation will only
use so-called gadgets to compute on the shares without ever reconstructing a sensitive
variable. In a typical masked blockcipher implementation, the main gadgets required are
for secure finite-field multiplication and, often as a subroutine, for refreshing the sharing.
For masked schemes and sufficiently noisy leakage, the new rule of thumb is that the
number of traces required is exponential in the order d [CJRR99, PR13].

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-07-15 Accepted: 2020-09-15 Published: 2020-12-03

https://doi.org/10.46586/tches.v2021.i1.426-450
mailto:nicolas@simula.no,martijn@simula.no
http://creativecommons.org/licenses/by/4.0/

N. Costes and M. Stam 427

To protect against glitches, Prouff and Roche [PR11] introduced polynomial masking.
Their (d, n) polynomial masking follows Shamir secret sharing: to mask a sensitive variable
v, a random degree d polynomial with constant term v is selected and evaluated in n
different non-zero interpolation points, leading to n shares. If the number of shares n
exceeds the minimum threshold d+ 1 needed to reconstruct a sensitive variable, we speak
of redundant masking. By setting n = 2d + 1, Prouff and Roche leverage a classical
result from multi-party computation [BGW88] to thwart the effect of ≤ d glitches on their
masked implementation, providing a security proof in the novel glitch model (an extension
of the customary probing model [ISW03]). More recently, Seker et al. [SFRES18] showed
how the redundancy of polynomial masking can be used to detect up to n− 2d− 1 errors
to protect against fault attacks.

Polynomial masking with n = d + 1 can be considered as alternative to Boolean
masking for the non-redundant case. Unlike Boolean masking, (d, d + 1) polynomial
masking is parameterized, namely by S, the set of interpolation points: a different selection
of these points leads to slightly different masking schemes that may leak slightly more
or less [WSY+16]. To speed up the squaring gadget, Roche and Prouff [RP12], refined
their masking scheme by restricting to a set S of interpolation points that is stable under
the Frobenius automorphism (essentially, squaring an interpolation point is guaranteed to
result in another interpolation point). For (d, n) ∈ {(1, 2), (2, 3)} they compare the leakage
profile of non-redundant polynomial masking (for unspecified S) with first and second
order Boolean masking, respectively, by considering mutual information of noisy Hamming
weight leakage for noise deviation σ ∈ [0, 4.5]. They conclude that, for the same degree,
Boolean masking is considerably more leaky than polynomial masking [RP12, Figure 3].

Unfortunately, redundant masking schemes are excluded from the comparison above.
Thus, it is unclear what happens when redundant masking schemes are used, where
n > d+ 1. From an information-theoretic perspective, one would expect that exploiting all
available information is always advantageous, with the only real caveat that computational
complexity might increase. Roughly speaking, more information per trace would mean
that fewer traces are needed to recover a key, though the processing of these traces might
take longer.

Intriguingly, when Chabanne, Maghrebi, and Prouff [CMP18] recently addressed how
redundant polynomial masking leaks, they remark that “observing strictly more than d+ 1
shares will merely provide the attacker with more noise than information” and they argue
and experimentally establish that observing d+ 2 shares leads to better attacks than any
subset of d + 1 shares if and only if the signal-to-noise ratio is lower than some bound.
Thus, their results go counter to the information-theoretic adage.

Our contribution. We revisit the effect of leakage of redundant masking schemes, rephras-
ing the research questions posed by Chabanne et al. [CMP18] as follows:

1. How does the choice of public interpolation points influence the effectiveness of
side-channel attacks against (d, n) polynomial masking schemes?

2. How does the availability of leakage on redundant shares affect the number of traces
needed to mount a successful side-channel attack?

To answer the above two questions, we restrict ourselves to the customary simulated
setting, where we consider the single byte output of a first round AES S-box as the sensitive
variable and we assume an adversary gets access to noisy Hamming weights on each of the
shares used to encode said sensitive variable.

The leakage of a polynomial masking scheme can depend on S, that is the choice of the
interpolation points—and to a lesser extent on the choice of field representation [WSY+16].
As we want to ensure that our subsequent investigation into the effects of redundancy
is not unduly affected by these choices, in Section 2 we recast polynomial masking as

428 Redundant Code-based Masking Revisited

2 3 4 5 6
n

1

2

3

4

5

6

7

8

9

10

11

12

nu
m

be
r

of
tr

ac
es

(l
og

2
)

number of traces for a (1,n) at σ2 = 0.05
number of traces for a (2,n) at σ2 = 0.05

Figure 1: Number of traces needed by ML distinguisher to reach 90% success rate in the
noisy Hamming weight model with σ2 = 0.05 against redundant (d, n) polynomial masking
schemes with d = 1 and d = 2 for varying n.

linear, code-based masking (Definition 1), which subsequently enables us to formalize (in
Section 3.2) the folklore notion of equivalent leakage for masking schemes (Definition 2) and
establish when two different interpolation sets are essentially leak-equivalent (Theorem 1).

A more refined investigation (in Section 3.3) reveals that, up to fairly high degree,
Boolean masking is equivalent to polynomial masking with appropriately chosen interpola-
tion set. This surprising equivalence highlights even more the importance of interpolation
point selection: a particularly poor selection can seriously downgrade security. The same is
true for redundant polynomial masking schemes, where we introduce the concept of quasi-
Boolean masking (Definition 3). We claim that quasi-Boolean choices have an atypically
weak leakage profile and for that reason should, if possible, be avoided. Unfortunately, it
turns out that Roche and Prouff’s suggestion of Frobenius-stable interpolation sets—also
taken up by Seker et al. [SFRES18]—typically leads to quasi-Boolean behaviour.

So far, our claims are primarily qualitative: for instance that quasi-Boolean behaviour is
detrimental to security. We back this claim up by determining the number of traces needed
by the optimal maximum-likelihood (ML) distinguisher to achieve a success rate of 90%.
However, before we do so, we expand on the mathematics behind the ML distinguisher
in case of redundant masking schemes in Section 4. Although we dare not claim novelty
here—all we are doing here is applying the well-known concept of a ML distinguisher to
the current context—it is here that Chabanne et al. [CMP18] made a mistake, resulting in
their, in retrospect, erroneous conclusions.

With the distinguisher sorted, we first turn our attention to quasi-Boolean and Frobenius
masking (Section 5.1). As expected, we confirm that polynomial masking is equivalent to
Boolean masking and performs the same as Boolean masking of the same order; moreover,
we can see that the quasi-Boolean (1, 3) Frobenius masking performs considerably worse
than typical (1, 3) polynomial masking.

We then turn our attention to a wider spectrum of choices of (d, n) for “typical”
polynomial masking (Section 5.2), where we use the same set of interpolation points as
Chabanne et al. Somewhat surprisingly, we observe that the very low noise σ2 = 0.05
case is reasonably representative even for higher noise when comparing different choices
of (d, n). Specifically, it is not the case that redundant masking performs worse than
non-redundant masking or that it is advantageous, as Chabanne et al. [CMP18] claim, to
only consider a subset of the shares being leaked upon.

So let’s treat the number of traces needed to attain 90% success rate at noise level

N. Costes and M. Stam 429

σ2 = 0.05 as a simple, approximate metric for the hardness of mounting a side-channel
attack against typical polynomial masking with parameters (d, n). We plotted this metric
for select choices of (d, n) in Figure 1, yielding a useful quantitative insight in how much
faster the MLE key recovery runs (in terms of the traces needed) when the sharing becomes
more redundant.

For d = 1 having one redundant share, so moving from n = 2 to n = 3, implies more
than a five-fold reduction in the number of traces needed, whereas two redundant shares
(from n = 2 to 4) yield a fifteen-fold reduction. After that, the returns of additional
redundant shares are diminishing. For d = 2 the initial reductions are even more stark:
almost tenfold for one redundant share and over fiftyfold for two.

To put these numbers in perspective, imagine a hypothetical adversary that given a
single leakage on n shares, creates

(
n
d+1
)
leakages on d+ 1 shares and runs a maximum

likelihood distinguisher, ignoring the dependency introduced in the process. Then the
number of traces for d = 1 would only increase threefold for n = 2 to 3 and sixfold for
n = 2 to 4. Similarly, for d = 2 the gains would ‘only’ be fourfold and thirtyfold. As we
demonstrate, a direct multivariate distinguisher exploiting the redundancy between the
shares gains even more!

Related work. Moradi and Mischke [MM13] attack the original polynomial masking
scheme [PR11], so with random public evaluation points. They concentrate on the case
d = 1 and, for their experiments, select points {02, 03, 04}; this set is not Frobenius stable.
They use an experimental hardware setup to mount a successful correlation-collision attack
using second moments and about a million traces. Their results are incomparable to ours.

Goubin and Martinelli [GM11] introduced a slightly different version of polynomial
masking, where the interpolation points were treated as part of the encoding: initially
selected at random, they change during computations (e.g. for squaring or mask refreshing).
Thus, the interpolation points are rightly treated as part of the encoding, rather than
as a fixed parameter and consequently reconstruction is no longer linear in the encoding
(cf. inner product masking, Remark 3). The scheme was subsequently shown to be
flawed [CPR12].

To gain confidence that the operations on masked intermediates do not leak, security
of masking schemes is often formally analysed in an appropriate probing model [ISW03,
BBD+16]. Security in the probing model is information-theoretic and at first sight
somewhat removed from practice: after all, an adversary observing traces learns a little
about all intermediate values, as opposed to the probing’s model concept of learning
everything about a few intermediates. Yet under appropriate assumptions, security in the
probing model does have implications to the real-world by providing upper bounds on the
success rate of an adversary [DDF19, DFS19]. However, the proven bounds are not very
sharp and can be vacuous even for relatively high noise regimes.

A typical implementation of d-th order multiplication might easily leak d times on
the same share, so counterintuitively, in some models increasing the number of shares
might actually decrease security [BCPZ16]. As said, we concentrate on leakage on the
individual shares only and ignore how computation might influence the effective SNR or
lead to leakage on multiple shares simultaneously. The latter problem has recently also
received attention in the context of bit-sliced implementations [GMPO19].

Although masking schemes are well known to relate to secret sharing schemes and secret
sharing schemes to coding theory, the coding-theoretic perspective of masking schemes is
relatively underexplored. Several prior works linking masking schemes to coding theory
establish a direct link between the two concepts [CRZ13, BCC+14, WMCS20], ignoring
the link through secret sharing schemes. Yet, as we will demonstrate, exploiting this
intermediate link is highly beneficial in understanding the leakage potential of masking
schemes. Furthermore, most work concentrates on how to perform computations on

430 Redundant Code-based Masking Revisited

masking schemes, code-based or not, and classifies masking schemes primarily in those
terms [GSF14]: multiplication gadgets for Boolean are faster than those for polynomial
masking with Frobenius-stable interpolation sets (which in turn should be faster than
those for arbitrary polynomial masking).

2 Preliminaries

2.1 Masking Schemes and their Leakage
Masking. Masking schemes are commonly used to complicate power analysis attacks.
These schemes consist of an encoding mask, where a key or sensitive variable v is represented
using multiple, randomized shares by c←$ mask(v). We write C(v) for the support of mask
on input v, that is c ∈ C(v) iff there is a non-zero probability that mask(v) returns c. A
correct masking scheme satisfies that C(v) and C(v′) are disjoint for distinct v and v′.

Additionally, a masking scheme requires “gadgets” to perform operations in the encoded
domain. These gadgets avoid ever having to reconstruct the key (or any intermediate value
that depends deterministically on the key and known inputs), thereby ostensibly reducing
the leakage at any point in time and forcing an attacker to attempt more expensive and
often less effective higher order attacks instead.

Many different masking schemes have been proposed over the years, varying in both
their encodings and how to compute on them. We are exclusively interested in the
encoding, i.e. in mask, and then primarily in those that are based on linear codes suitable
for secret sharing. This includes Boolean masking [CJRR99], as well as polynomial
masking [GM11, PR11] and the closely related revisited inner product masking [BFG15].

Side-Channel Analysis. To analyse the security of a masking scheme, we imagine an
adversary trying to recover the unknown key k ∈ F based upon multiple, independent
leakages Leak(k) on said key. We will concentrate on the scenario where each leakage is
on a relevant S-box output, so that technically the leakage consists of a randomly chosen
plaintext xi and a leakage trace on a sensitive variable, in our case an S-box output on
k ⊕ xi.

Furthermore, we adopt the common scenario where for each trace, the sensitive variable
is freshly masked and the resulting shares each individually and independently “drip”
some leakage, i.e. for each share cj we obtain a noisy observation of some deterministic
transformation f(cj). Figure 2 formalizes the full key-recovery under leakage setting, where
we further narrowed down to dripping the Hamming weight with independent Gaussian
noise of variance σ2. Thus we are in the well-trodden noisy Hamming weight model (and
see below).

We use the notation N (0, σ2) to denote the drawing of this noise; later we will use
N
(
x
∣∣µ, σ2) for evaluating the probability density function (pdf) of a Gaussian with mean

µ and variance σ2 in x. Here we prefer the use of σ2 over σ or log10 σ to have a more
direct link with the signal-to-noise ratio (SNR), but obviously one can easily move to and
fro. Related to SNR, for Hamming weight leakage on a uniform variable in F28 , the signal
variance is 2, so the SNR is 2/σ2.

Typically there are three interesting regimes of noise to consider: the low noise scenario
where behaviour is governed primarily by the noiseless scenario, the high noise scenario
where behaviour is starting to follow the asymptotic trend, and the medium noise scenario
to bridge the change in behaviour. We interpret behaviour here as the key-recovery success
rate of an adversary. Bruneau et al. [BGHR14] considered σ2 = 1 still as low noise, whereas
σ2 = 9 was called high; Cheng et al. [CGC+20] recently indicated the bounds σ2 ≤ 2−1

for the low noise case and σ2 ≥ 2 for the high noise case.

N. Costes and M. Stam 431

Expkr(n)
(n,d)(A)

k←$ F
for i ∈ {1, . . . , N}
`i ← Leak(k)

k̂ ← A(`1, . . . , `N)
return k̂ = k

Leak(k)

xi ←$ F
vi ← S(k ⊕ xi)
ti ← Trace(vi)
return (xi, ti)

Trace(vi)

c← mask(vi)
for j ∈ {1, . . . , n}
tij ←$ Drip(cj)

return (ti1, . . . , tin)

Drip(cj)

return

Hw(cj) +N (0, σ2)

Figure 2: The key recovery game given noisy Hamming weight leakage of a masked S-box
output.

The noisy Hamming weight model has been used extensively, including for the study of
masking schemes [RP12, GM11, BFG15, PGS+17] and the simulation of leakage [TAL09,
dHVdV+03]. Yet, it is good to realize its limitations as a model. In a practical setting,
traces are acquired via measuring the power consumption of the chip or the eletromagnetic
radiations it emits: each measurement yields a leakage trace where several points of interest
(or features) can be considered (resp. extracted), depending on which operation is targeted.

The Hamming weight model and the Hamming distance model are historically the
most popular “simple” models and Mangard, Oswald, and Popp [MOP07, Section 3.3.2]
argue that, in most cases, the Hamming distance is the more appropriate of the two as it
better captures transitions. Recent investigations into the Cortex-M0 [MOW17] confirmed
that most operations leak on transitions, moreover not all bits (of a byte) contribute
equally to the leakage produced. Only for the load operation could the Hamming weight
model be considered appropriate. In a similar vein, Kannwischer et al. [KPP20] showed
that for an 8-bit AVRXMEGA (as well as for a 32-bit STM32F405) the store operation
also leaks Hamming weight, with σ ≈ 0.5 (for the AVRXMEGA). They conclude that,
when considering interaction with the SRAM, Hamming weight leakage is a good model.
Poussier et al. [PGS+17] investigate an implementation that performs successive load or
store on all the shares of the output of the first SBOX and also observe Hamming weight
leakage.

Notwithstanding these results supporting the Hamming weight model, for most imple-
mentations said model is probably not a good representation of reality. For instance, a
bitsliced or n-sliced implementation would not exhibit such leakage. All in all, when a
specific masked implementation on a particular platform is considered (for security evalu-
ation), suitably refined models are likely more appropriate, ranging from the Hamming
distance model, from the weighted Hamming weight model, to a more advanced leakage
emulator such as ELMO [MOW17].

Our main motivation to opt for the noisy Hamming weight model are its simplicity
when running simulations on a range of σ2 and its popularity in the literature, facilitating
comparison with previous work. Our results, expressed in the number of traces needed
to achieve a certain success rate, should therefore not be thought of as a proxy for real
attacks in any scenario, but rather as a means to compare the effect of different masking
design choices on the potential to leak, in several noise regimes.

Mutual Information. When regarding the key-recovery experiment (Figure 2), in first
instance we are interested in the success rate as a function of the number of traces N ,
where success rate is simply the probability that indeed k̂ = k at the end. Conversely, we
can also look at the number of traces N needed to achieve a given success rate. We will
focus on the latter metric, typically for a success rate of 90%.

A very popular alternative to looking at success rates or trace-complexity directly
is to evaluate the mutual information I(K;L1) between the random key variable K
(corresponding to the choice of k in our experiment) and the leakage L1 on it given a

432 Redundant Code-based Masking Revisited

single “leak”, thus corresponding to `1 in our experiment. The number of traces needed
to achieve a given success rate is believed to be correlated to the reciprocal of this
mutual information [SVO+10a]. We believe that looking directly at success rates through
simulated attacks, though computationally more costly, provides a more precise picture
when comparing different masking choices. Indeed, as we will see, in some cases we know
that two masking schemes will lead to the same mutual information, yet we cannot prove
that they lead to identical success rate curves.

2.2 Linear Codes
An [n̄, k̄, d̄]F linear error-correcting code C is the set of elements (codewords) in a k̄-
dimensional subspace of Fn̄, where F is a finite field and the minimum distance d̄ is defined
as the minimum Hamming weight, taken over all nonzero codewords in C. Below we list
some elementary facts about linear error-correcting codes relevant to this work; more
details can be found in any of the standard textbooks [vL99, MS77]. As an aside, we use
bars for n̄, k̄, d̄, etc. to detangle a notational knot later on.

An [n̄, k̄, d̄]F code C can be generated by a matrix G ∈ Fk̄×n̄, meaning that C =
{x̄ · G|x̄ ∈ Fk̄}, using row vectors throughout. If G is a generator of an [n̄, k̄, d̄]F code
and A ∈ Fk̄×k̄ is invertible, then G′ = A · G generates the same code. For an index set
I ⊆ {1, . . . , n̄} we define GI ∈ Fk̄×|I| as the restriction of G to those columns indexed by
I and similarly c̄I as the restriction of c̄ ∈ C to those positions indexed by I. If A = GI
for I = {1, . . . , k̄} is invertible, then G′ = A ·G is systematic, meaning G′ = [Ik̄|P] with
Ik̄ ∈ Fk̄×k̄ the identity matrix and P ∈ Fk̄×(n̄−k̄).

Two codes are equivalent iff one can obtain one code from the other by permuting the
positions of all codewords. For reasons explained later, we deliberately do not include
position-wise scalar multiplication in our definition of equivalence. We call two generator
matrices G and G′ resulting in equivalent codes equivalent. Two generator matrices are
equivalent iff there exist invertible A ∈ Fk̄×k̄ and permutation matrix B ∈ Fn̄×n̄ such that
G′ = A ·G ·B.

An important class of codes are so-called maximum distance separable (MDS) codes.
These codes satisfy n̄ − k̄ = d̄ − 1, which is optimal in the sense the Singleton bound
n̄− k̄ ≥ d̄− 1 is met. For our purposes, the minimum distance d̄ is not that relevant and
we will henceforth drop it from our notation. We are interested in the special properties
of an MDS code’s generator matrix, specifically, G is the generator matrix of an MDS
code if and only if any k̄ columns are linearly independent. Thus, if I ⊆ {1, . . . , n̄} with
|I| = k, then GI is invertible. Consequently, the dual code C⊥ of an [n̄, k̄]F MDS code C is
an [n̄, n̄− k̄]F MDS code, where by definition the dual code C⊥ is the vector space of Fn̄
orthogonal to C, i.e. d̄ ∈ C⊥ iff c̄ · d̄T = 0 for all c̄ ∈ C.

The most famous class of MDS codes are Generalized Reed–Solomon (GRS) codes,
based on polynomial evaluation: each polynomial of degree < k̄ defines a codeword of
length n̄ by evaluating the polynomial in n̄ distinct elements αi of the field F = Fq, followed
by multiplication by a coordinate-wise constant βi. The resulting generator matrix is

G =

β1 β2 . . . βn
β1α1 β2α2 . . . βnαn
...

β1α
k̄−1
1 β2α

k̄−1
2 . . . βnα

k̄−1
n

where the column (0, . . . , 0, β)T is also allowed, corresponding to evaluation in the point
at infinity, so α =∞ (cf. [CDN15, Section 11.7]). Thus, for q = |F| and all 1 ≤ k̄ ≤ q + 1
there exists a [q + 1, k̄]F GRS hence MDS code [MS77, Ch. 4, Theorem 9].

N. Costes and M. Stam 433

3 The Theory of Code-based Masking
3.1 Secret Sharing and Masking
In 1979, Blakley [Bla79] and Shamir [Sha79] concurrently introduced the concept of secret
sharing (see [CDN15, Chapter 11] for a modern treatise). We are exclusively interested
in threshold schemes. Here a dealer shares a secret amongst n participant in such a way
that only subsets of strictly more than d participants are capable of reconstructing the
subset, yet unauthorized subsets (of at most d participants) cannot learn anything about
the secret whatsoever. Massey [Mas93] showed a general transform from any [n+ 1, d+ 1]
MDS code to a secret sharing scheme with n players and privacy threshold d: given the
code C and a fixed position i ∈ {1, . . . , n+ 1} in the code, to share a secret s ∈ F randomly
pick a codeword c̄ ∈ C satisfying ci = s. The remaining positions (differing from i) of the
codeword make up the n shares.

Threshold schemes have been suggested as a countermeasure against side-channel
attacks (esp. DPA) under the name masking, initially for the special case of d-order
masking where n = d+ 1, but later also for the redundant case n > d+ 1. Here the order
d (for the masking scheme) corresponds to the privacy threshold of the associated secret
sharing scheme; probing security up to d-probes immediately follows from this privacy
threshold. Masking schemes based on linear secret sharing schemes can most easily be
expressed by exploiting the link with coding theory.

Definition 1 (Code-based Masking). Let G be a generator for a [n + 1, d + 1]F MDS
code with first column (1 0 . . . 0)T , then to mask a sensitive variable v ∈ F, select ui←$ F
uniformly at random for i ∈ {1, . . . , d} and calculate c̄← (v u1 . . . ud) ·G. Indexing c̄ from
zero, so c̄ = (c0, c1, . . . , cn), share i equals ci, for i ∈ {1, . . . , n}. We call c = (c1, . . . , cn) a
code-based masking of v and may write c←$ maskG(v).

Remark 1. Sticking to MDS codes ensures both that any d+ 1 shares suffice to reconstruct
the sensitive variable v yet that no d shares jointly provide any information about v. The
first column of G being (10 . . . 0) ensures c0 = v, corresponding to Massey’s construction
using the first position. If G is systematic, then ci = ui for i ∈ {1, . . . , d} which matches
the traditional use of the word “mask” in the literature. If furthermore n = d+ 1 then the
final cd+1 is known as the masked variable; for redundant masking, where n > d+ 1, this
terminology may become misleading.

Lemma 1 (Code-based Reconstruction). Let G be a generator for a [n+ 1, d+ 1]F MDS
code C with first column (10 . . . 0)T , and let c←$ maskG(v) be a code-based masking of
some v. Let d̄ ∈ C⊥ indexed from zero, so d̄ = (d0, . . . , dn), that satisfies d0 = −1. Let
d = (d1, . . . , dn)T , called a reconstruction vector. Then v = c · d.

Proof. By construction of code-based masking, we can uniquely extend c to c̄ = (v|c) ∈ C.
Then by definition of the dual code C⊥, 0 = c̄ · d̄T = −v + c · dT .

Remark 2. Recall that the dual of an [n+1, d+1]F MDS code itself is an [n+1, n−d] MDS
code. Thus, for non-redundant schemes with n = d+ 1 it follows that n−d = 1, implying a
unique reconstruction vector d, with no zero coordinates. However, for redundant schemes,
n− d > 1 and reconstruction vectors are no longer unique.

The simplest meaningful example, for n = d+ 1, is an analogue of the one-time pad.
Given a sensitive variable v ∈ F, select random shares c1, . . . , cn ∈ F subject to

v =
n∑
i=1

ci = c1 ⊕ . . .⊕ cn ,

where the ⊕-notation is indicative of the typical cryptographic case of a binary finite field,
so field addition corresponds to bitwise exclusive or. The corresponding masking scheme is

434 Redundant Code-based Masking Revisited

commonly referred to as d-th order Boolean masking (where d = n− 1). It corresponds
to code-based masking with generator matrix Gbool = [Id+1|1d+1] where 1d+1 is the all-1
column vector in Fd+1.

For the more general threshold case, n ≥ d+ 1, Shamir secret sharing is the best known.
Given a sensitive variable v ∈ F, select a random polynomial p(x) over F of degree at
most d such that p(0) = v. Then the shares are evaluations of p(x) in points differing
from 0, where customarily player i gets share p(αi). We refer to the set S = {α1, . . . , αn}
as the interpolation set. Any d+ 1 players can uniquely reconstruct the polynomial and
retrieve the secret, e.g. using Lagrange interpolation. On the other hand, for any d players,
each secret is still equally likely. Shamir secret sharing can be derived from generalized
Reed–Solomon codes by setting βi = 1 for all i [MS81] and α0 = 0 (after re-indexing the
columns). For the resulting masking scheme, which we will refer to as polynomial masking,
it is still possible that n = d+ 1, but we will also study the redundant n > d+ 1 case.

Revisited inner product (RIP) masking works exclusively for the case n = d+ 1. First
fix a public reconstruction vector d ∈ (F∗)n subject to dn = 1. To share v, select a random
c satisfying v = c · dT , typically by first selecting c1, . . . , cd uniformly at random and then
solving for cn. In that case, the generator matrix is

Grip =
(

1 0 1
0 Id −dT

)
.

Remark 3. Inner product masking as originally devised [BFGV12, DF12] masked a sensitive
variable v by selecting both d and c at random subject to correct reconstruction v =
c · dT (where d ∈ (F∗)n but without the dn = 1 constraint), considering (c,d) as the
masking. Proper inner product masking is easily seen not to be linear as the reconstruction
formula is clearly of degree 2. Balasch et al. [BFGV12] already observed that a non-
redundant polynomial masking scheme would emerge by fixing d to the appropriate
Lagrange coefficients. Later, Balasch et al. [BFG15] suggested to fix d as described above,
with d1 = 1 (we found fixing dn = 1 easier on notation), giving rise to RIP (which is
of course linear). Confusingly, RIP is often referred to as inner product masking (IPM),
ignoring the rather crucial difference between linear and non-linear schemes (cf. the diffence
between polynomial masking with fixed versus flexible interpolation points [GM11, PR11]).
Remark 4. For comparison, Wang et al. [WMCS20] use a slightly different formalization
of code-based masking. They allow packed secret sharing and they omit the zero-indexed
column that we use to ensure the sensitive variable can be recovered (instead they impose
appropriate rank conditions on the various matrices involved). The difference is clearly
visible by comparing their Figure 2 with our Gbool and Grip. Packed secret sharing does
have the advantage that it is easier to consider a masking scheme at the bit-level, by
explicitly mapping F2e to Fe2. We ignore the choice of the finite field representation, which
is not without loss of generalization as Hamming weight leakage does actually depend on
this choice. We settle for the standard AES field representation throughout.

3.2 Equivalence of Code-based Masking Schemes
What is equivalence? Even when fixing the security order d, the number of shares n,
and the finite field F, code-based masking is parameterized by a generator matrix G.
Some generators lead to identical or equivalent codes, but does this also imply that the
corresponding code-based masking schemes “leak equivalent”? To answer this question,
we first need to pin down what equivalence of leakage entails.

Consider again the key recovery game (Figure 2) and notice the adversarial input
`1, . . . , `N . Over the randomness of the game, we can consider these inputs as random
variables, which we will denote L1, . . . , LN respectively. The distribution of these random

N. Costes and M. Stam 435

variables depends on a number of choices, namely the S-box, the Drip-function, and finally
the masking scheme (plus implicitly the finite field representation). We already fixed the
Drip-function to noisy Hamming weight (parameterized by σ2), the S-box to the AES one,
and the finite field representation to the customary AES one. This leaves the masking
scheme or, for code-based masking, the choice of the generator matrix. Suppose G and G′
are both suitable for CBM, then denote with L(N) = (L1, . . . , LN) the random variable
for the leakage induced by maskG and with L′(N) = (L′1, . . . , L′N) that by maskG′ . The
leakages are equivalent if anything an adversary can do with L(N) it can also do with L′(N)

and vice versa.

Definition 2 (Leak-equivalence). Let n and d be given. Two generators G and G′,
both in F, are fully leak-equivalent iff there exists a bi-efficient bijection π such that the
distributions L(N) and π(L′(N)) are identical for all N . They are leak-equivalent iff there
exists a bi-efficient bijection π such that the distributions L1 and π(L′1) are identical.

Remark 5. As we tailored our notation in Figure 2 to our later experimental setting,
we defined leak-equivalence in those terms as well. Of course, it is easy to generalize
the concept by allowing different kind of Leak functions. We require the bijection to be
efficiently computable in both directions. We refrain from providing a formal computational
model, but rely on an intuitive understanding of efficiency; in our context efficiency should
always be rather obvious and incontrovertible.

General relationships. Fully leak-equivalence immediately implies leak-equivalence. A
natural question is whether the converse is true, but as we will see shortly, there are strong
arguments why this is unlikely. Leak-equivalence is as least as strong as having identical
mutual information, as we formalize in the lemma below.

Lemma 2 (Relationship with mutual information). Leak-equivalence implies I(K;L1) =
I(K;L′1) and full leak-equivalence implies I(K;L(N)) = I(K;L′(N)) for all N .

Proof. The implications are straightforward and can be seen as a consequence of both
K → L(N) → L′(N) and K → L′(N) → L(N) forming Markov chains so the data-processing
inequality implies both I(K;L(N)) ≥ I(K;L′(N)) and I(K;L′(N)) ≥ I(K;L(N)).

Suppose that we would consider a slightly different Leak-function, where the sensitive
variable vi equals the key k to be recovered (essentially always pick xi ← 0 and use the
identity S-box). For this Leak-function, leak-equivalence implies fully leak-equivalence.
Moreover, if we restrict to Boolean masking and noiseless Hamming-weight leakage (on
the shares), we know that even with N →∞, we only ever learn the Hamming weight of
the key. Thus the success rate will not tend to 1. Let’s call this the deterministic scenario.

Now keep the masking and per-share leakage the same, but reintroduce the random
selection of xi and a decent S-box, i.e. we are back in our normal scenario. Then it’s
easy to see—as has been seen before—that the single trace mutual information I(K;L1)
is the same in the normal and the deterministic scenario. In the normal scenario given
enough traces the key will roll out (e.g. [LPR+14]), so H

(
K
∣∣L(N)) tends to zero. Yet

in the deterministic scenario, uncertainty remains, so H
(
K
∣∣L(N)) cannot tend to zero.

Consequently, having identical I(K;L1) cannot imply full leak-equivalence.

The code-based case. Let’s consider when two code-based masking schemes are (fully)
leak-equivalent. We start with the easier case, where two generator matrices produce
equivalent but not necessarily identical codes, yet the matrices are closely related.

Lemma 3. Let G be a (d, n) CBM-suitable generator and let B be a permutation matrix
on n+ 1 elements, corresponding to permutation π on the set {0, . . . , n}. Assume π(0) = 0,
then G′ = G ·B is (d, n) CBM-suitable and fully leak-equivalent to G.

436 Redundant Code-based Masking Revisited

Proof. The permutation π simply shuffles the shares around and since leakage is i.i.d. for
the shares (through Drip), it is easy to shuffle the leakage accordingly.

The case where two distinct generators produce identical codes turns out a bit more
tricky and we can only prove leak-equivalence under the extra assumption of uniformly
chosen keys.

Theorem 1. Let G and G′ be (d, n) CBM-suitable generators defining an identical code
C. Then for uniform secrets, G and G′ are leak-equivalent.

Proof. A code-based masking scheme defines parallel affine spaces, as well as a bijection
from each sensitive variable v to the corresponding affine space C(v). (Linearity ensures
that v = 0 is mapped to an actual subspace and if n− d = 2 then the affine spaces are in
fact hyperplanes that partition the full space.) To mask a sensitive variable, a random
element from C(v) is selected.

If G and G′ generate identical codes, the affine spaces will be the same but the
mappings from sensitive variables to affine space might differ. As we assume the key is
chosen uniformly at random (and the S-box in Leak is a permutation), even conditioned
on X1, the sensitive variable being masked is uniformly random as well. Thus over the
choice of both the key and the masking, a codeword is selected uniformly from the full
code C, irrespective of the generator being used and even when conditioned on X1.

As the trace is calculated directly on the codeword (without further reference to other
variables), identical codeword distributions imply an identical trace distribution.

As a corollary, if Leak is deterministic, then uniform keys and generators for the same
code lead to full leak-equivalence. Effectively, each C(v) induces its own leakage distribution
over Rn (cf. the heat maps for second order DPA [SVO+10b, Figs. 11-13]). Irrespective of
the generator matrix, the uniform choice of the key leads to the uniform selection of one
the affine spaces C(v), and subsequently leakage follows the corresponding distribution
over Rn.

Remark 6. In the above scenario, the uniformity of the keys can also seen to be necessary.
Some distributions are closer to each other than others, e.g. in terms of Jensen–Shannon
divergence. As an example of a non-uniform distribution, suppose only two keys are
possible from the much larger F. The choice of generator matrix, even for identical
codes, determines how our two keys are mapped to different C(v)s and, hence, to different
distributions over Rn. A generator selecting two very close distributions for the two keys
will obviously be less leaky than a generator that ends up assigning two very remote
distributions for those same keys.

Remark 7. If we take into account plaintext whitening and the S-box, then each xi together
with the S-box and generator matrix, fixes a a new bijection between keys and affine
spaces. If we could select those xi anyway we want, we get an impression why proving
full leak-equivalence is tricky. Imagine we are working over F2

2 so there are only four
affine planes to consider. Suppose that, for some magical reason, the induced leakage
distribution for C(v0v1) is a 2-dimensional Gaussian centered around (v0, v1) ∈ R2. Taking
one step further into the rabbit hole, our choice of S and xis is such that generator G
always assigns key k to sensitive variable v = k, whereas generator G′ the mapping will
depend on i. Then the key recovery advantages under G and G′ differ. Technically, the
above argument leaves open the possibility that full leak-equivalence can be proven. For
instance, in the real game the xi are chosen at random, yet they are known to the adversary
which hampers exploiting said randomness in a proof setting. For most cases, we expect
that leak-equivalence leads to identical or at least very close success rates for arbitrary N .

N. Costes and M. Stam 437

3.3 Boolean and Quasi-Boolean Masking
Boolean masking is often treated as distinct from polynomial masking. However, when
we consider polynomial masking as being parameterized by an interpolation set S, some
of these sets might lead to polynomial masking leak-equivalent to Boolean masking. An
immediate, necessary condition for an equivalent polynomial masking scheme to exist is
that there exist d+ 1 different interpolation points in the field F2e , including the point
at infinity and excluding 0. Thus d+ 1 ≤ 2e is a hard requirement. In Lemma 4 we set
out two further necessary conditions for equivalence, phrased in terms of properties of the
interpolation set.

Lemma 4. Consider d-order Boolean masking over F2e and let S be an interpolation set
for an equivalent polynomial masking scheme. Then ∞ ∈ S iff d odd and

∑
s∈S\{∞} s = 0

if d > 1 and S = {1,∞} if d = 1.

Proof. Let G be a generator matrix for a CBM scheme. Then it is equivalent to Boolean
masking iff 1 is in the dual code, so G · 1 = 0. Thus each row of G has to sum to 0.

The first row sums to 1 +
∑
s∈S\{∞} 1, which implies that the number of elements in S

excluding ∞ has to be odd. As the total number of elements in S equals d+ 1, ∞ has to
be included in S iff d+ 1 is even, or equivalently iff d is odd.

The second row sums to b +
∑
s∈S\{∞} s where b = 1 iff ∞ ∈ S ∧ d = 1 and b = 0

otherwise. If d = 1, then ∞ ∈ S and as S has cardinality d + 1 = 2, there is only one
non-∞ element s left that has to satisfy s = 1.

For low degrees we can go a little further by determining interpolation sets leading to
Boolean masking. Lemma 5 provides sufficient conditions for d ≤ 5, we leave open the
question for d > 5 though we suspect that for F28 equivalent polynomial schemes exist for
most reasonable values of d.

Lemma 5. Consider d-order Boolean masking over F2e , then an interpolation set S for
an equivalent polynomial masking scheme exists if d = 1, d = 2 and e ≥ 2, d = 3 and 2|e,
d = 4 and 4|e, or d = 5 and 5|e.

Proof. Below we state necessary and sufficient conditions on S for the four different values
of d and establish how to instantiate:

d = 1: Lemma 4 already identified S = {1,∞}.

d = 2: As d is even, Lemma 4 implies that necessarily S = {a, b, a+ b} for distinct, non-zero
a and b. For sufficiency, we need that the final, third row sums to zero as well, but
as
∑
s∈S s

2 = (
∑
s∈S s)2 this is guaranteed for our choice of S. Note that e ≥ 2 is a

necessary and sufficient condition for the existence of distinct non-zero a and b in
F2e .

d = 3: As d is odd and > 1, Lemma 4 implies that necessarily S = {a, b, a+b,∞} for distinct,
non-zero a and b. Again,

∑
s∈S\{∞} s

2 = (
∑
s∈S\{∞} s)2 = 0, so the remaining

necessary and sufficient condition on S is that
∑
s∈S\{∞} s

3 = 1, or equivalently that
ab(a + b) + 1 = 0; if 2|e, then F2e contains a nontrivial third root of unity α and
setting a = 1, b = α is a valid assignment as 1 · α(1 + α) + 1 = α2 + α+ 1 = 0.

d = 4: Here Lemma 4 implies that S = {a, b, c, d, a+ b+c+d} for distinct, non-zero a, b, c, d.
As before, we automatically get that

∑
s∈S s

2 = 0 and similarly we conclude that∑
s∈S s

4 = 0. Thus a necessary and sufficient condition on S is that
∑
s∈S s

3 = 0.
If 4|e, then F2e contains a nontrivial fifth root of unity β and S = {β, β2, β3, β4, 1}
is a valid example as in that case cubing simply permutes the roots of unity, thus∑
s∈S s

3 =
∑
s∈S s = 0 as desired.

438 Redundant Code-based Masking Revisited

d = 5: Here Lemma 4 implies that S = {a, b, c, d, a + b + c + d,∞} for distinct, non-zero
a, b, c, d. For i ∈ {2, . . . , 4} we require that

∑
s∈S\{∞} s

i = 0 and additionally we
require that

∑
s∈S\{∞} s

5 = 1. As β from the d = 4 case is a fifth root of unity,
β5 = 1 and therefore setting S = {β, β2, β3, β4, 1,∞} works.

Having established that for suitably chosen interpolation sets, non-redundant polynomial
masking is leak-equivalent to Boolean masking, a natural question is what happens when we
consider redundant polynomial masking. Full leak-equivalence will be unlikely as Boolean
masking is not redundant, but what happens when we take a “Boolean” interpolation
set and add a point to it (increasing n), or evaluate the polynomial masking to a lower
degree (reducing d)? In both cases, one might expect some of the Boolean behaviour still
to be present, yet without being leak-equivalent to Boolean masking. We capture such
behaviour under the moniker quasi-Boolean masking, as defined below.

Definition 3 (Quasi-Boolean Masking). A code-based masking scheme is called quasi-
Boolean of degree d⊕ when

d⊕ =
(

min
d̄∈(C⊥∩{1}×Fn

2)
Hw(d̄)

)
− 2

is finite.

In other words, we are looking for a binary reconstruction vector d of the smallest
weight possible, where d̄ = (1d). If no such d exists, then the scheme is not quasi-Boolean,
otherwise Hw(d) shares suffice to reconstruct by simply adding those shares, corresponding
to Boolean degree Hw(d)−1. By definition, d⊕ ≥ mind̄∈C⊥\{0}Hw(d̄)−2, i.e. the minimum
distance of the dual code minus two. As we insisted on MDS codes (Definition 1), this
minimum distance equals d+ 2, thus d⊕ ≥ d.

Lemma 6 (Quasi-Booleanness for Small d). Let a (1, n) polynomial masking scheme over
F2e be given with interpolation set S 63 ∞ and of quasi-Boolean degree d⊕. Then if n > 2,
the (2, n) polynomial masking scheme over F2e with the same interpolation set S is also
quasi-Boolean with degree d⊕.

Proof. Let d̄ = (1d) be an argument for which the minimum defining d⊕ is attained, so
Hw(d) = d⊕ + 1. Let S⊕ consists of those elements in S where d is set. Then quasi-
Booleanness implies that

∑
s∈S⊕ s = 0. As we are working in a characteristic 2 field, this

implies that
∑
s∈S⊕ s

2 = 0 as well.

3.4 Frobenius-stable Interpolation Sets
Roche and Prouff [RP12] suggest the use of interpolation sets that are stable under the
fields Frobenius automorphism. For F28 they demonstrate existence of suitable sets (up to
cardinality 255) by a not entirely constructive counting argument. For small cardinalities
(up to and including 3) the stable set turns out to be unique when excluding 0 (and ignoring
the point at infinity): for cardinality 1, only the identity suffices, and for cardinality 3
it is given as {1, 0xbc, 0xbd}. Remarkably, these points satisfy our criterion for quasi-
Booleanness of degree d⊕ = 2, even though the masking scheme itself only has degree
d = 1. A natural question is to what extent other Frobenius stable interpolation sets
are quasi-Boolean. Below we enumerate the possible Frobenius-stable sets for n ≤ 7 and
investigate their quasi-Booleanness.

For quasi-Booleanness of these sets, we are interested in odd-cardinality subsets S⊕ of
S such that

∑
s∈S⊕ s

i = 0 for i = 1, but ideally also for all i > 0 up to some maximum

N. Costes and M. Stam 439

Table 1: Frobenius-stable sets of interpolation points and their quasi-Booleanness.

n S quasi-Boolean subsets for (d⊕, dmax)
2 {α, α+ 1} safe
3 {1, α, α+ 1} S⊕ = S3 for (2, 2)
4a {β, β2, β3, β4} safe
4b {β + 1, β2 + 1, β3 + 1, β4 + 1} safe
4c {β + β2, β + β3, β2 + β3, β3 + β4} safe
5a S4a ∪ {1} S⊕ = S5a for (4, 4)
5b S4b ∪ {1} S⊕ = S5b for (4, 4)
5c S4c ∪ {1} S⊕ = S5c for (4, 4)
6a S4a ∪ S2 S⊕ = {α, β, β4} for (2, 2)
6b S4b ∪ S2 S⊕ = {α, β + 1, β4 + 1} for (2, 2)
6c S4c ∪ S2 S⊕ = {α, β + β3, β4 + β3} for (2, 2)
7a S4a ∪ S3 ex. S⊕ = S3 for (2, 2), S⊕ = S5a for (4, 4)
7b S4b ∪ S3 ex. S⊕ = S3 for (2, 2), S⊕ = S5b for (4, 4)
7c S4c ∪ S3 ex. S⊕ = S3 for (2, 2), S⊕ = S5c for (4, 4)

value dmax. The cardinality of S⊕ minus 1 indicates the quasi-Boolean degree d⊕, with
dmax the highest degree d (of the masking) for which the quasi-Booleanness holds.

Our analysis works for any binary field whose extension degree is a multiple of 4,
as it turns out that the relevant Frobenius-stable sets all live in F24 . Recall that the
multiplicative group of the finite field F24 is cyclic of order 15 = 3 · 5 and there exist unique
subgroups of order 3 and 5, respectively.

The group of order 3 consists of {1, α, α2} where α is a root of the third cyclotomic
polynomial, thus α2 +α+ 1 = 0 or α2 = α+ 1. Moreover, (α2)2 = α, thus S2 = {α, α+ 1}
is the unique Frobenius-stable set of cardinality 2 and S3 = {1, α, α + 1} is the unique
Frobenius-stable set of cardinality 3 (and it matches the set explicitly given by Roche and
Prouff for this size). For S2, there is no quasi-Boolean behaviour possible, but for S3, we
can consider S⊕ = S3 and observe that 1i + αi + (α+ 1)i equals 0 for i ∈ {1, 2}, but no
longer for i = 3.

The group of order 5 consists of {1, β, β2, β3, β4} where β is a root of the fifth cyclotomic
polynomial, thus those five elements sum to zero. Moreover, we can choose α and β such
that α = β + β4 and α2 = β2 + β3. Then the three elements β, αβ, α2β each generate
(disjoint) Frobenius-stable sets of cardinality 4. Each cardinality 4 set can uniquely be
extended to a cardinality 5 set by appending {1}, to a cardinality 6 set by appending
{α, α2}, or to a cardinality 7 set by appending {α, α2, 1}. For the cardinality 4 set, no
quasi-Boolean weakness exists, but for larger sets, more and more problems manifest itself.

Our results are summarized in Table 1. For instance, for row ‘5a’, we see that
(d⊕, dmax) = (4, 4), implying that using that set S4a ∪ {1} for polynomial masking of
degree d ≤ dmax = 4 will result in quasi-Booleanness of degree d⊕ = 4. We observe that
opting for Frobenius-stable interpolation sets for any value other than n ∈ {2, 4} introduces
quasi-Booleanness up to second order masking schemes, so whenever d ≤ 2. Consequently,
Frobenius-stable interpolation sets are likely less secure than some generic interpolation
set of the same size, at least when considering noisy Hamming weight leakage with the
same noise level. For d = 1 we investigate later on (Section 5.1) and confirm that S3
is performing particularly poor, whereas S4 appears fine (for n > 4 we did not run any
experiments).

Extending our analysis to n ≥ 8 becomes slightly more tedious. For a Frobenius-stable
set of cardinality 8, one could of course join any two distinct cardinality 4 sets (with
quasi-Boolean degree 2 for either of the three resulting sets). For F24 this would more
or less be the end of the story: for 8 ≤ n ≤ 11 there are three possible Frobenius-stable

440 Redundant Code-based Masking Revisited

sets each, whereas for 12 ≤ n ≤ 15 the Frobenius-stable sets are unique. Moreover, as
these larger Frobenius-stable sets are constructed from the smaller ones, they inherit
and often amplify quasi-Boolean behaviour from below. For F28 , the number of possible
Frobenius-stable subsets of cardinality 8 is a lot higher. Indeed, Roche and Prouff indicated
there to be 30, far exceeding our appetite for enumeration.

3.5 Polynomial Masking
Stepping away from special cases of polynomial masking, we briefly consider the more
general case. Our main result is that it should be fairly safe to always include 1 in the
evaluation set; the only real exception occurs when ∞ is around as well.

Lemma 7. Let a (d, n) polynomial masking set with S 63 ∞ be given, then there exists a
leak-equivalent polynomial masking scheme with 1 ∈ S ′.

Proof. Let α1 be the first element of S = {α1, . . . , αn} used to create G, so we know
α1 ∈ F∗. Then the (d+ 1)× (d+ 1) diagonal matrix with αi on its diagonal for i = 0, . . . , d
provides the same interpolation code based on S ′ = S/α1.

In the special case of first order polynomial masking, there is a cute little corollary
that an interpolation point and its inverse leak the same (both in conjuction with 1).

Corollary 1. Let α ∈ F∗, then the (1, 2) polynomial masking schemes defined by {1, α}
and {1, α−1} are leak-equivalent.

Proof. By Lemma 3 interpolation based on {1, α} or on {α, 1} is fully leak-equivalent.
Applying the procedure from the proof of Lemma 7 then produces {1, α−1}.

3.6 Revisited Inner Product Masking, Revisited
Balasch et al. [BFGV12] already described how to cast non-redundant polynomial masking
as a special case of the later RIP [BFG15]. Indeed, RIP is presented as a generalization of
both polynomial masking and of Boolean masking, we already saw how to mimic Boolean
masking by polynomial masking using specially chosen interpolation sets S. A natural
question is to what extent we can mimic RIP as well by chosing suitable S.

Previously, we cast d-order RIP as a code-based masking scheme based on a [d+2, d+1]
MDS code. Moreover, any [d+ 2, d+ 1] MDS code—can be cast as a GRS code as long
as d+ 1 ≤ |F|. The upper bound on d is a simple consequence of a field F of size q only
providing q possible interpolation points (namely all elements of F∗ plus the point at
infinity).

The question however is whether we can use the more restrictive (shortened) Reed–
Solomon codes (corresponding to polynomial masking) to capture RIP. We first provide a
negative result (Lemma 8), by providing a much sharper upper bound on d for which full
equivalence might be possible. For instance, if q = 28, then d > 32 forces inequivalence.

Lemma 8. For any finite field F of size q, d-order RIP masking is more general than
(d, d+ 1) polynomial masking if (q − 1)d/d! >

(
q
d+1
)
.

Proof. For a polynomial masking scheme, we get to select n distinct elements from a set
of size q = |F|. There are

(
q
n

)
ways of selecting the set of interpolation points and then

n! ways of assigning the points to the parties. These n! assignments evidently lead to
equivalent codes, but it’s even possible that different sets of interpolation points lead to
equivalent or even identical codes (as we will see in a moment). Thus the number of
non-equivalent codes using polynomial masking is at most

(
q
n

)
.

On the other hand, for RIP, we need to select n − 1 coefficients from F∗, where we
allow duplicates. Thus there are (q − 1)n−1 ways of selecting these coefficients. Some of

N. Costes and M. Stam 441

these selections will be equivalent as we can freely permute the coefficients to arrive at an
equivalent code. Yet, for any given coefficient selection, there are at most (n− 1)! ways of
permuting the coefficient, so there are at least (q − 1)n−1/(n− 1)!

For a fixed q and sufficiently large n, we have that (q− 1)n−1/(n− 1)! >
(
q
n

)
, indicating

that RIP includes strictly more equivalence classes than polynomial masking.

An obvious follow up question is whether there is any significant security benefit of
RIP over polynomial masking for smaller, and arguably more realistic, masking order d.
For instance, for d = 1 using polynomial masking with S = {λ,∞} the reconstruction
formula will be (1 λ), corresponding to RIP.

For larger d, we can establish a generalization of Lemma 4, as we do below.

Lemma 9. Consider d-order RIP masking over F2e with reconstruction vector d ∈ (F∗)n
subject to dn = 1 and let S be an interpolation set for a leak-equivalent polynomial masking
scheme. Then ∞ ∈ S iff

∑d
i=1 di = 1.

4 Maximum Likelihood Distinguisher
What it computes. When trying to solve the key recovery game (Figure 2), the optimal
strategy for an adversary would be to output the key k that maximizes

Pr[K = k | (L1, . . . , LN) = (`1, . . . , `N)] .

This so-called MAP estimate will equal the maximum likelihood estimate (MLE) if
the key’s prior is uniform, which it is. The MLE outputs the key that maximizes
p ((L1, . . . , LN) = (`1, . . . , `N) |K = k). Taking logarithms and exploiting independence
of the leakage (i.e. the invocations of Leak in the game), an adversary wants the key
that minimizes

∑N
i=1 lg p (Li = li |K = k). Moreover, p (Li = li |K = k) = Pr[Xi = xi] ·

p (Ti = ti |K = k,Xi = xi).
The first factor is irrelevant, so we can stick to p (Ti = ti |K = k,Xi = xi). In our

setting, k and xi uniquely determine the sensitive variable vi that is leaked upon, so for a
given vi and ti we are interested in pTrace (Trace(vi) = ti), where the randomness is over
the choices of the Trace code, which incorporates both the masking and the subsequent
leakage on said masking.

We can expand the evaluation of Trace’s pdf by making the masking explicit and
exploiting that we drip on each share independently. Thus

pTrace (Trace(vi) = ti) =
∑

c∈C(vi)

Prmask [mask(vi) = c] ·
n∏
j=1

pDrip (Drip(cj) = tij)

where the factor Prmask [mask(vi) = c] represents a uniform choice which can safely be
ignored.

We can summarize the discussion above by describing the distinguishing score S(k) in
terms of the given traces ti and the k-dependent intermediate variables vi = S(k ⊕ xi):

S(k) =
N∑
i=1

lg
∑

c∈C(vi)

n∏
j=1

pDrip (Drip(cj) = tij) =
N∑
i=1

lg s(vi, ti) (1)

We stress that both MAP and MLE are very well-trodden concepts from machine
learning and their application to side-channel analysis is well-known. The derivation above
largely follows that of the “Higher-Order Optimal Distinguisher” [BGHR14, Theorems 2
and 7], adapted to our notation and setting that allows for redundant masking, with the
further simplification of taking logarithms and ignoring Prmask [mask(vi) = c].

442 Redundant Code-based Masking Revisited

How to compute it. For the code-based masking schemes with noisy Hamming-weight
leakage, the right hand side of 1 can be simplified further. Henceforth, we concentrate
on the second summation only, namely the one captured by s(v, t). Here we dropped the
dummy variable ‘i’ so we can repurpose it in a moment.

Recall that for code-based masking of sensitive variable v, we select a random u ∈
Fd2e and then calculate c̄ ← (v u) · G. If G is the (transpose) Vandermonde matrix
corresponding to polynomial masking with interpolation set S = {α1, . . . , αn} 63 ∞, then
we can alternatively write

∀1≤j≤n cj ← v +
d∑
i=1

uiα
i
j .

For noisy Hamming-weight leakage,

pDrip (Drip(cj) = tj) = N
(
tj
∣∣Hw(cj), σ2) ,

leading to the following

s(v, t) =
∑

u∈Fd
2e

n∏
j=1
N
(
tj
∣∣Hw(cj), σ2)

with cj as described above and N
(
tj
∣∣Hw(cj), σ2) describes the pdf of a Gaussian (normal)

distribution of mean Hw(cj) and variance σ2 evaluated at tj .

How not to compute it. Chabanne et al. [CMP18] based their distinguisher on an earlier
adaptation of the likelihood distinguisher to Boolean masking [LPR+14, Eq. (32)]. For
Boolean masking, one can evaluate (correctly)

s(v, t) =
∑

(c1,...,cd)∈Fd
2e

d+1∏
j=1
N
(
tj
∣∣Hw(cj), σ2)

where cd+1 =
∑d
i=1 ci. A similar, reconstruction-centric distinguisher is possible for RIP,

and was also suggested by Chabanne et al. for redundant masking, namely by evaluating

s(v, t) =
∑

(c2,...,cn)∈Fn−1
2e

n∏
j=1
N
(
tj
∣∣Hw(cj), σ2)

where c1 = 1
β1

(v +
∑n
i=2 ciβi) and βi =

∏n
j=1,j 6=i

αj

αi−αj
. Essentially, the first share is

recomputed based on reconstruction using all other remaining shares. (The reconstruction
vector itself might not be entirely correct either, as there should be a dependency on the
reconstruction set.)

Essentially, the Chabanne et al. distinguisher is still operating under the assumption
that n− 1 of the shares can be seen as independent random variables following a uniform
distribution. However, when moving to redundant masking, this assumption is no longer
true: the dimensions (or degrees of freedom) simply no longer match! It should always be
d, not n− 1, with the latter only being correct if it happens to match d (which is of course
precisely the non-redundant case).

5 Measuring the Effect of Redundancy
All our experiment are conducted using the AES field-representation. We do not study the
effect of changing the field representation in this work. The source code used for running
the simulations and the experimental data with details of the experimental protocol can
be found at https://github.com/Simula-UiB/Redundant-Code-based-Masking.

https://github.com/Simula-UiB/Redundant-Code-based-Masking

N. Costes and M. Stam 443

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
σ2

0

500

1000

1500

2000

2500

3000

3500

4000
nu

m
be

r
of

tr
ac

es
first order Boolean
second order Boolean
237-198 (1,2)
221-198 (1,2)
188-189 (1,2)
1-188-189 (1,3)
5-221-198 (1,3)
237-221-198 (1,3)
12-80-176-237 (1,4)
5-237-221-198 (1,4)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
σ2

3

4

5

6

7

8

9

10

11

12

nu
m

be
r

of
tr

ac
es

(l
og

2
)

Figure 3: Attacks on (1, n) masking scheme with sets of interpolation points stable under
the Frobenius automorphism for 0.05 ≤ σ2 ≤ 1.0 and comparison with Boolean masking
and “normal” sets of interpolation points.

5.1 Frobenius and Quasi-Boolean Polynomial Masking
We start with determining the quantitative effect of using interpolation sets S that are
stable under the Frobenius automorphism. In Section 3.4 (Table 1) we investigated for
which n we expect quasi-Boolean behaviour: n = 2 and n = 4 are not quasi-Boolean and
should therefore perform relatively normal, whereas n = 3 is quasi-Boolean, which should
yield much weaker security.

We ran attacks on (1, n) polynomial masking with Frobenius stable sets for 2 ≤ n ≤ 4
for 0.05 ≤ σ2 ≤ 1.0 (Figure 3) and 0.25 ≤ σ2 ≤ 4.0 (Figure 4). Given our leakage
model, this range of σ2 means the SNR ranges from 40 down to 1/2. The Frobenius
sets are {188, 189}, {1, 188, 189} and {12, 80, 176, 237}, respectively. For comparison and
benchmarking, we also included first and second order Boolean masking, as well as two
representative sets for n = 3 (the best and worst performing for very low noise). For
0.05 ≤ σ2 ≤ 1.0 are also included representative sets for n = 2 and n = 4.

We make several observations. Firstly, for the Frobenius sets that are not quasi-Boolean,
so n = 2 and n = 4, there is no noticeable difference compared to the representative sets,
confirming our hypothesis from Section 3.4 that these Frobenius stable sets do not lead to
any security degradation. For this reason, we excluded them in Figure 4. Secondly, for
n = 3 we observe very atypical and degraded behaviour. Initially it leaks even more than
either representative set, but surprisingly it also out-leaks first-order Boolean masking.
Somewhere between 0.25 ≤ σ2 ≤ 0.4 it catches up with both first-order Boolean and the
representative sets. For σ2 > 0.4 it starts to leak a lot worse again than the representative
sets. At σ2 = 4 the amount of traces is almost twice as low as for the worst performing
representative set. This strongly points towards quasi-Boolean yielding a much weaker
security in general. An interesting question that remains is whether for even higher σ2 the
(1, 3) Frobenius stable set eventually catches up on second order Boolean masking.

444 Redundant Code-based Masking Revisited

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
σ2

5

6

7

8

9

10

11

12

13

14

15

16
nu

m
be

r
of

tr
ac

es
(l

og
2
)

first order Boolean
second order Boolean
188-189 (1,2)
1-188-189 (1,3)
5-221-198 (1,3)
237-221-198 (1,3)
12-80-176-237 (1,4)

Figure 4: Attacks on (1, n) with sets of interpolation points stable under the Frobenius
automorphism for 0.25 ≤ σ2 ≤ 4.0 and comparison with Boolean masking and “normal”
sets of interpolation points.

Boolean. As explained in Section 3, a (2, 3) polynomial masking scheme with S =
{a, b, a+ b} is leak-equivalent to second-order Boolean masking. Formally, we could not
prove full leak-equivalence, thus to gain extra insight, we run attacks on second order
Boolean masking as well as two distinct, Boolean-like (2, 3) polynomial masking schemes,
using {1, 188, 189} and {1, 146, 147}, respectively. The results are shown in Figure 5.

The experiments demonstrate that the practice matches the theory, as both Boolean-
like polynomial masking schemes closely track the second-order Boolean scheme. For a
sufficiently low SNR and well-chosen evaluation points, first-order polynomial masking is
more secure than second-order Boolean masking [RP12, Figure 3]. By extension, first-order
polynomial masking can also end up being more secure than second order polynomial
masking with a particularly poor selection of evaluation points, highlighting even more the
crucial need of careful selection of interpolation points.

5.2 “Normal” Redundant Polynomial Masking
We now turn our attention to the effect of redundancy for the more general case. We use
the set {5, 175, 198, 221, 237}, as previously used by Chabanne et al. [CMP18], as being
“representative”. We focus on d = 1 and range n from 2 up to 5, where for n < 5 we
report on various possible subsets of the master set (our selection here was governed by
the behaviour for very low noise).

The results, presented in Figure 6, clearly demonstrate the distinguishing gain by
exploiting as many shares as available, rather than just targeting the leakiest subset of
d + 1 points (as suggested by Chabanne et al. [CMP18] for some SNR). Regardless of
the SNR, redundant shares can always be exploited by the distinguisher and the more
redundant shares are available, the easier it gets to recover the key. Thus, when introducing
redundancy to guard against other threats (glitches, faults), it is important to realize that
the trade-off may not just be more security for less performance, but can actually require
a balancing of various threat models, resulting in improved active security for reduced
passive security.

N. Costes and M. Stam 445

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
σ2

0

500

1000

1500

2000

2500

3000

3500

4000
nu

m
be

r
of

tr
ac

es
1-146-147
1-188-189
second order Boolean

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
σ2

4

5

6

7

8

9

10

11

12

nu
m

be
r

of
tr

ac
es

(l
og

2
)

Figure 5: Attacks on "boolean case" (3,2) polynomial masking and second order masking.

When looking at the curves in lg scale, we observe that they are roughly translations
of each other. Thus, the difference between the curves at σ2 = 0.05 is a very appropriate
approximation of the difference at σ2 = 1.0. Thus, we can compactly represent the effect
of redundancy concentrating on σ2 = 0.05 and compare the various choices for n and d.
We already reported on these results in the Introduction, using Figure 1. That Figure
contains a few more data points, namely n = 6 for d = 1, as well as 2 ≤ n ≤ 5 for (2, n).
Nonetheless, the number of data points available is too small to fit a function in order to
establish a suitable rule of thumb capturing the quantitative security degradation as a
consequence of redundant masking.

In a practical setting, exploiting more shares almost certainly increases the cost of
extracting features from real traces, more difficulty to align the traces properly and
more involved and costly profiling. Moreover, against standard, non-redundant masking
schemes it is well-known how to run non-profiled attacks, for instance by using leakage
combiners [OM07, SVO+10a, BGHR14]. From that perspective, the most practical attack
in real-life might only exploit the minimal amount of shares available, or at least not all.
Then again, an attacker with a lot of processing power but only limited access to traces,
might want to try to exploit redundant shares as much as possible (cf. the application of
belief propagation to side-channel attacks [VGS14, GRO18]).

Finally, in the Introduction we suggested that one could turn a single trace leaking on
n shares into

(
n
d+1
)
tuples of traces, each leaking on d+ 1 shares. Against each tuple, one

could then run an unprofiled attack against the suspected d + 1 traces (e.g. by using a
combiner) and then merge the resulting scores. This could lead to a substantial acceleration
to recover the secret in a potentially practical way.

6 Conclusion
We investigated polynomial masking through the prism of code-based masking, allowing us
to consider leak-equivalence when comparing different classes of masking schemes. Code-
based masking scheme is properly parameterized by its generator matrix G and classical
schemes such as polynomial masking, Boolean masking, and RIP all impose structure by

446 Redundant Code-based Masking Revisited

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
σ2

0

500

1000

1500

2000

2500

3000

3500
nu

m
be

r
of

tr
ac

es
221-198
237-175
237-198
5-221-198
237-175-221
237-221-198
5-237-221-198
237-175-221-198
5-237-175-221-198

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
σ2

2

3

4

5

6

7

8

9

10

11

12

nu
m

be
r

of
tr

ac
es

(l
og

2
)

Figure 6: Attack on redundant masking scheme with 0.05 ≤ σ2 ≤ 1.0 and 2 ≤ n ≤ 5.

considering only a subset of the full parameter space. On the one hand, the additional
structure might speed up computations by allowing for specialized gadgets, but on the
other hand, the more general schemes allow a larger search space to explore in order to
minimize leakage.

When considering noisy Hamming weight leakage on individual shares of a typical
sensitive variable only, the security loss of a more specialized parameter selection can be
significant, as we saw for the Frobenius-stable polynomial evaluation, which we identified
as quasi-Boolean for n = 3. For real implementations, the specialized gadgets tend to be
faster, so perhaps one should expect them to leak less (lower SNR), potentially offsetting
the higher leakage for identical SNR. We leave open this fascinating possibility.

If we fix d and σ2, then security in our noisy model decreases for increasing n. This
holds for any σ2 under investigation, contrary to the claim by Chabanne et al. [CMP18]
that for larger σ2 (within our range) it might be advantageous to ignore some leakages. We
also challenge the claim by Seker et al. [SFRES18] that (1, 4), (1, 5), and (1, 6) polynomial
masking (using Frobenius stable interpolation sets) all have the same side-channel resistance:
certainly in the noisy Hamming weight model one has to expect serious security degradation
(cf. Table 1). Our results do chime with an observation by Bruneau et al. [BGHR14, Section
6] in the setting of attacking a typical masked AES evaluation pattern based on first order
Boolean masking. They write “The correct answer is to prevent from selecting only two
leakages when more are available, and instead exploit all of them simultaneously in a single
attack.” We concur.

Finally, n has no bearing on the d-probing security of the sharing. This contrasts with
the result [DFS19, Corollary 1] that for dth order Boolean masking, any 0 < γ < 1 and
sufficiently large σ, the key recovery advantage based on N traces can be bounded by
1 − Nγd. Although our result is compatible with that earlier result, there does appear
to be some tension. It would be interesting to see how a concrete generalization of the
probing-model-to-noisy-leakage result [DDF19] to more redundant code-based masking
would pan out and where the necessary dependency on n comes into play. For instance,
what entails “sufficiently large” could well depend on n.

N. Costes and M. Stam 447

References
[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-

jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 116–129. ACM Press, October 2016.

[BCC+14] Julien Bringer, Claude Carlet, Hervé Chabanne, Sylvain Guilley, and
Houssem Maghrebi. Orthogonal direct sum masking - A smartcard friendly
computation paradigm in a code, with builtin protection against side-channel
and fault attacks. In WISTP, volume 8501 of LNCS, pages 40–56. Springer,
Heidelberg, 2014.

[BCPZ16] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina
Zeitoun. Horizontal side-channel attacks and countermeasures on the ISW
masking scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
CHES 2016, volume 9813 of LNCS, pages 23–39. Springer, Heidelberg, August
2016.

[BFG15] Josep Balasch, Sebastian Faust, and Benedikt Gierlichs. Inner product
masking revisited. In Elisabeth Oswald and Marc Fischlin, editors, EU-
ROCRYPT 2015, Part I, volume 9056 of LNCS, pages 486–510. Springer,
Heidelberg, April 2015.

[BFGV12] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, and Ingrid Verbauwhede.
Theory and practice of a leakage resilient masking scheme. In Xiaoyun Wang
and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages
758–775. Springer, Heidelberg, December 2012.

[BGHR14] Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, and Olivier Rioul. Masks
will fall off - higher-order optimal distinguishers. In Palash Sarkar and Tetsu
Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages
344–365. Springer, Heidelberg, December 2014.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation (extended
abstract). In 20th ACM STOC, pages 1–10. ACM Press, May 1988.

[Bla79] G. R. Blakley. Safeguarding cryptographic keys. Proceedings of AFIPS 1979
National Computer Conference, 48:313–317, 1979.

[CDN15] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Secure Multiparty
Computation and Secret Sharing. Cambridge University Press, 2015.

[CGC+20] Wei Cheng, Sylvain Guilley, Claude Carlet, Sihem Mesnager, and Jean-Luc
Danger. Optimizing inner product masking scheme by A coding theory
approach. IACR Cryptol. ePrint Arch., 2020:692, 2020.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 398–412. Springer,
Heidelberg, August 1999.

[CMP18] Hervé Chabanne, Houssem Maghrebi, and Emmanuel Prouff. Linear repairing
codes and side-channel attacks. IACR TCHES, 2018(1):118–141, 2018.
https://tches.iacr.org/index.php/TCHES/article/view/835.

https://tches.iacr.org/index.php/TCHES/article/view/835

448 Redundant Code-based Masking Revisited

[CPR12] Jean-Sébastien Coron, Emmanuel Prouff, and Thomas Roche. On the use of
Shamir’s secret sharing against side-channel analysis. In CARDIS, volume
7771 of LNCS, pages 77–90. Springer, Heidelberg, 2012.

[CRZ13] Guilhem Castagnos, Soline Renner, and Gilles Zémor. High-order masking
by using coding theory and its application to AES. In Martijn Stam, editor,
14th IMA International Conference on Cryptography and Coding, volume
8308 of LNCS, pages 193–212. Springer, Heidelberg, December 2013.

[DDF19] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: From probing attacks to noisy leakage. Journal of Cryptology,
32(1):151–177, January 2019.

[DF12] Stefan Dziembowski and Sebastian Faust. Leakage-resilient circuits without
computational assumptions. In Ronald Cramer, editor, TCC 2012, volume
7194 of LNCS, pages 230–247. Springer, Heidelberg, March 2012.

[DFS19] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making
masking security proofs concrete (or how to evaluate the security of any
leaking device), extended version. Journal of Cryptology, 32(4):1263–1297,
October 2019.

[dHVdV+03] Jerry den Hartog, Jan Verschuren, Erik P. de Vink, Jaap de Vos, and
W. Wiersma. PINPAS: A tool for power analysis of smartcards. In SEC,
volume 250 of IFIP Conference Proceedings, pages 453–457. Kluwer, 2003.

[GM11] Louis Goubin and Ange Martinelli. Protecting AES with Shamir’s secret
sharing scheme. In Bart Preneel and Tsuyoshi Takagi, editors, CHES 2011,
volume 6917 of LNCS, pages 79–94. Springer, Heidelberg, September / Octo-
ber 2011.

[GMPO19] Si Gao, Ben Marshall, Dan Page, and Elisabeth Oswald. Share-slicing: Friend
or foe? IACR TCHES, 2020(1):152–174, 2019. https://tches.iacr.org/
index.php/TCHES/article/view/8396.

[GRO18] Joey Green, Arnab Roy, and Elisabeth Oswald. A systematic study of the
impact of graphical models on inference-based attacks on AES. In CARDIS,
volume 11389 of LNCS, pages 18–34. Springer, Heidelberg, 2018.

[GSF14] Vincent Grosso, François-Xavier Standaert, and Sebastian Faust. Masking
vs. multiparty computation: how large is the gap for AES? Journal of
Cryptographic Engineering, 4(1):47–57, April 2014.

[HRG14] Annelie Heuser, Olivier Rioul, and Sylvain Guilley. Good is not good enough
- deriving optimal distinguishers from communication theory. In Lejla Batina
and Matthew Robshaw, editors, CHES 2014, volume 8731 of LNCS, pages
55–74. Springer, Heidelberg, September 2014.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, Heidelberg, August 2003.

[KPP20] Matthias J. Kannwischer, Peter Pessl, and Robert Primas. Single-trace
attacks on Keccak. IACR TCHES, 2020(3):243–268, 2020. https://tches.
iacr.org/index.php/TCHES/article/view/8590.

https://tches.iacr.org/index.php/TCHES/article/view/8396
https://tches.iacr.org/index.php/TCHES/article/view/8396
https://tches.iacr.org/index.php/TCHES/article/view/8590
https://tches.iacr.org/index.php/TCHES/article/view/8590

N. Costes and M. Stam 449

[LPR+14] Victor Lomné, Emmanuel Prouff, Matthieu Rivain, Thomas Roche, and
Adrian Thillard. How to estimate the success rate of higher-order side-channel
attacks. In Lejla Batina and Matthew Robshaw, editors, CHES 2014, volume
8731 of LNCS, pages 35–54. Springer, Heidelberg, September 2014.

[Mas93] James L. Massey. Minimal codewords and secret sharing. In Proceedings
of the 6th Joint Swedish-Russian International Workshop on Information
Theory, pages 276–279, 1993.

[MM13] Amir Moradi and Oliver Mischke. On the simplicity of converting leakages
from multivariate to univariate - (case study of a glitch-resistant masking
scheme). In Guido Bertoni and Jean-Sébastien Coron, editors, CHES 2013,
volume 8086 of LNCS, pages 1–20. Springer, Heidelberg, August 2013.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis
attacks - revealing the secrets of smart cards. Springer, 2007.

[MOW17] David McCann, Elisabeth Oswald, and Carolyn Whitnall. Towards practical
tools for side channel aware software engineering: ’grey box’ modelling
for instruction leakages. In Engin Kirda and Thomas Ristenpart, editors,
USENIX Security 2017, pages 199–216. USENIX Association, August 2017.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting
Codes. North Holland, 1977.

[MS81] Robert J. McEliece and Dilip V. Sarwate. On sharing secrets and reed-
solomon codes. Commun. ACM, 24(9):583–584, 1981.

[OM07] Elisabeth Oswald and Stefan Mangard. Template attacks on masking -
resistance is futile. In Masayuki Abe, editor, CT-RSA 2007, volume 4377 of
LNCS, pages 243–256. Springer, Heidelberg, February 2007.

[PGS+17] Romain Poussier, Qian Guo, François-Xavier Standaert, Claude Carlet, and
Sylvain Guilley. Connecting and improving direct sum masking and inner
product masking. In CARDIS, volume 10728 of LNCS, pages 123–141.
Springer, Heidelberg, 2017.

[PR11] Emmanuel Prouff and Thomas Roche. Higher-order glitches free implemen-
tation of the AES using secure multi-party computation protocols. In Bart
Preneel and Tsuyoshi Takagi, editors, CHES 2011, volume 6917 of LNCS,
pages 63–78. Springer, Heidelberg, September / October 2011.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen,
editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 142–159. Springer,
Heidelberg, May 2013.

[RP12] Thomas Roche and Emmanuel Prouff. Higher-order glitch free implementa-
tion of the AES using secure multi-party computation protocols - extended
version. Journal of Cryptographic Engineering, 2(2):111–127, September
2012.

[SFRES18] Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth, and Rainer
Steinwandt. Extending glitch-free multiparty protocols to resist fault injection
attacks. IACR TCHES, 2018(3):394–430, 2018. https://tches.iacr.org/
index.php/TCHES/article/view/7281.

https://tches.iacr.org/index.php/TCHES/article/view/7281
https://tches.iacr.org/index.php/TCHES/article/view/7281

450 Redundant Code-based Masking Revisited

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612–613, November 1979.

[SVO+10a] François-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald,
Benedikt Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard.
The world is not enough: Another look on second-order DPA. In Masayuki
Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 112–129.
Springer, Heidelberg, December 2010.

[SVO+10b] Francois-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald,
Benedikt Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard.
The world is not enough: Another look on second-order DPA. Cryptology
ePrint Archive, Report 2010/180, 2010. http://eprint.iacr.org/2010/
180.

[TAL09] Céline Thuillet, Philippe Andouard, and Olivier Ly. A smart card power
analysis simulator. In CSE (2), pages 847–852. IEEE Computer Society,
2009.

[VGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert.
Soft analytical side-channel attacks. In Palash Sarkar and Tetsu Iwata,
editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 282–296.
Springer, Heidelberg, December 2014.

[vL99] Jacobus H. van Lint. Introduction to Coding Theory (Third Edition), vol-
ume 86 of Graduate Texts in Mathematics. Springer, 1999.

[WMCS20] Weijia Wang, Pierrick Méaux, Gaëtan Cassiers, and François-Xavier Stan-
daert. Efficient and private computations with code-based masking. IACR
TCHES, 2020(2):128–171, 2020. https://tches.iacr.org/index.php/
TCHES/article/view/8547.

[WSY+16] Weijia Wang, François-Xavier Standaert, Yu Yu, Sihang Pu, Junrong Liu,
Zheng Guo, and Dawu Gu. Inner product masking for bitslice ciphers and
security order amplification for linear leakages. In CARDIS, volume 10146
of LNCS, pages 174–191. Springer, Heidelberg, 2016.

http://eprint.iacr.org/2010/180
http://eprint.iacr.org/2010/180
https://tches.iacr.org/index.php/TCHES/article/view/8547
https://tches.iacr.org/index.php/TCHES/article/view/8547

	Introduction
	Preliminaries
	Masking Schemes and their Leakage
	Linear Codes

	The Theory of Code-based Masking
	Secret Sharing and Masking
	Equivalence of Code-based Masking Schemes
	Boolean and Quasi-Boolean Masking
	Frobenius-stable Interpolation Sets
	Polynomial Masking
	Revisited Inner Product Masking, Revisited

	Maximum Likelihood Distinguisher
	Measuring the Effect of Redundancy
	Frobenius and Quasi-Boolean Polynomial Masking
	``Normal'' Redundant Polynomial Masking

	Conclusion

