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Abstract.
Application of masking, known as the most robust and reliable countermeasure to
side-channel analysis attacks, on various cryptographic algorithms has dedicated
a lion’s share of research to itself. The difficulty originates from the fact that
the overhead of application of such an algorithmic-level countermeasure might not
be affordable. This includes the area- and latency overheads and the amount of
fresh randomness required to fulfill the resulting design’s security properties. There
are already techniques applicable in hardware platforms that consider glitches into
account. Among them, classical threshold implementations force the designers to use
at least three shares in the underlying masking. The other schemes, which can deal
with two shares, often necessitates the use of fresh randomness.
Here, in this work, we present a technique allowing us to use two shares to realize
the first-order glitch-extended probing secure masked realization of several functions,
including the S-box of Midori, PRESENT, PRINCE, and AES ciphers without any
fresh randomness.
Keywords: Side-Channel Analysis · Masking · Threshold Implementation · AES

1 Introduction
The rapid deployment of Internet of Things (IoT) necessitates physical security in addition
to analytical security of the underlying cryptographic primitives. This is due to the fact
that in the IoT scenarios the device is in hand and control of the legitimate users who
can play the role of an adversary. Among physical attacks, Side-Channel Analysis (SCA)
attacks [KJJ99, QS01] are considered as the most threatening attack vector, as often the
device cannot detect if its physical characteristics are being measured, e.g., its power
consumption. After the introduction of such attacks in the open literature, the relevant
scientific communities have dedicated a considerable body of research on understanding its
foundations and the development of defeating mechanisms. Due to their sound theoretical
basis, masking countermeasures have absorbed the attention of the researchers at most.
Based on secret-sharing schemes, the key-dependent intermediate values of the cipher are
randomized by applying a masking countermeasure, usually done at the algorithmic level.
In the most common scheme, Boolean masking [GP99], sensitive variables are split into
several shares, whose addition (binary XOR) results in the same original (unshared) value.

While it became almost known how to correctly apply masking schemes on software
implementations, their application on hardware designs was still an ambiguous process. It
has been repeatedly shown that thought-secure masked hardware implementations [Tri03,
OMPR05] exhibit exploitable leakages [MPO05, MME10]. This shortcoming is due to
not having atomic gates in hardware, leading to a phenomenon called glitches. Finally,
this issue has been theoretically addressed in [NRR06], where an implementation strategy
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is introduced, called Threshold Implementation (TI), later extended to higher orders
in [BGN+14a].

Security of masking schemes is commonly evaluated by the probing model [ISW03],
where the order of an attack is reflected by the number of probes simultaneously placed on
a device observing its intermediate signals. Although this model captures software imple-
mentations’ leakage, where operations have a sequential nature, the adversary gains more
information by probing a single signal in a hardware circuit due to the glitches. Therefore,
the model is extended to cover glitches (called glitch-extended probing model) [FGP+18].
In this model, a probe placed at the output of a gate is propagated backward to its inputs
and interpreted as several probes placed on all signals driving the gate. TI circuits [NRS11]
are indeed secure under the glitch-extended probing model as they maintain the security
in the presence of glitches.

Despite its sound theoretical basis, realizing the TI variant of non-linear functions is
not straightforward. Under the TI settings, a function with algebraic degree t should
be split into td + 1 shares to achieve security against dth order attacks. This leads to
high area overhead (and/or latency) for functions with a high algebraic degree due to a
high number of input shares. As an essential underlying assumption of masking schemes,
uniform sharing should also be achieved at the output of a masked (TI) function. It is,
however, not trivial to achieve this for every given function. Even a uniform TI with a
minimum number of input shares does not exist for some functions, e.g., 2-input AND
gate and Keccak non-linear function χ [BDN+13]. Nonetheless, this can be solved by
insertion of fresh masks (refreshing the sharing). However, if a uniform TI is found for
non-linear functions of a cipher, it does not require any fresh randomness. In this case,
the entire masked cipher can be implemented with td+ 1 shares, while only the primary
inputs (plaintext and key) should be presented in the shared form.

By introducing a new technique denoted as changing of the guards [Dae17], it is
shown that uniform sharing for a bijective S-box can be achieved by making use of
independent shares of the cipher state as fresh masks. This technique has been applied
on a 3-share implementation of Keccak non-linear function χ [Dae17], on a 4-share AES
S-box decomposed to cubic functions [WM18], and on a 3-share tower-field representation
of the AES S-box [Sug19]. All these implementations require fresh randomness just for the
first execution of the cipher. Subsequent executions can proceed without any fresh masks.

The td+ 1 requirement has been relaxed in [RBN+15, GMK16] by showing how to use
only d+1 shares when d-th order security is desired. Although this allows realizing masked
circuits with less area overhead, it mostly forces to use fresh randomness. Application of
such a methodology on AES led to 2-share masked designs reported in [CRB+16, GMK17],
requiring between 18 and 54 fresh mask bits per clock cycle.

As a side note, it has been tried to reduce the required fresh randomness of such
d + 1 hardware masking schemes. For example, a combination of the multiplication
algorithm in [BDF+17] and randomness optimization in [BBP+16] led to the scheme
presented in [GM17] which – compared to [GMK16] – reduces the number of fresh masks
for higher-order hardware implementations of the multiplication. There exist also activities
in reducing the latency of d+ 1 hardware masking schemes [GIB18], which even leads to a
higher number of required fresh masks.

1.1 Our Contributions
In this work, we provide techniques that allow us to realize d+1 hardware masking schemes
without any fresh masks for d = 1, i.e., only first-order secure implementations with two
shares. We start our study with a 2-input AND operation and show how to construct
its 2-share variant without any fresh randomness while achieving glitch-extended probing
security. As a side note, this has never been achieved/reported in state of the art. We
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generalize our strategy and provide a glitch-extended-probing-secure representation of
larger functions, including the S-boxes of Midori, PRESENT, PRINCE, and AES without
any fresh randomness. We would like to highlight that the aforementioned changing of the
guards is not used in our constructions, and they are the only ones reported so far in the
literature with this feature. Hardware platforms are our main target implementation basis.
However, this does not hinder our constructions to be used as a sequence of instructions to
run on a software platform. Our entire developments, including the source codes and the
HDL representation of the constructed S-boxes and full ciphers, are given in the github. In
addition to our simulations and FPGA-based practical investigations, we have evaluated
our constructions by the recently-introduced leakage verification tool SILVER [KSM20],
which is also available online.

2 Preliminaries
In this section, in addition to the notations, we give the preliminary knowledge necessary
and helpful to follow the rest of the paper. This includes the fundamentals of masking
in hardware and various state-of-the-art techniques to realize the masked variant(s) of a
given function in hardware.

2.1 Notations and Definitions
We denote binary random variables ∈ F2 with lower-case italic x, vectors ∈ Fn>1

2 with
upper-case italic X, j-th element in a vector X with superscripts xj , i-th share of a variable
with subscripts xi, coordinate functions with lower-case italic sans-serif f (.), functions with
larger output width by upper-case italic sans-serif F (.), and sets with calligraphic font F .

In an s-th order Boolean masking, the secret x is represented by s+1 shares (x0, . . . , xs)
in such a way that x = +

∀i

xi. The initial masking requires s independent and uniformly-

distributed masks m0, . . . ,ms−1 to form the shares as xi<s = mi and xs = x + +
∀i

mi.

Application of a binary linear function L(.) on X in a masked form can be easily achieved
by applying the same function on all shares as L(X) = +

∀i

L(Xi). This also holds for any

affine function A(X) = L(X) + C if the constant C is applied an odd number of times.
The challenge is how to apply a non-linear function F (.) in such a masked form.

2.2 Threshold Implementations
For simplicity, let us consider the case where the number of input and output shares are
the same. The masked variant of Y = F (X) receives input shares X0, . . . , Xs and provides
output shares Y0, . . . , Ys with X = +

∀i

Xi and Y = +
∀i

Yi. In first-order TI [NRS11], each

output share Yi is provides by a component function Fi(X0, . . . , Xi−1, Xi+1, . . . , Xs), where
at least one input share Xi is missing in its input list. This, referred to as non-completeness,
guarantees the leakage of Fi(.) to be independent of X. Further, for each value of X, giving
all possible sharing X0, . . . , Xs to the masked function leads to a set of Y0, . . . , Ys which
should be a uniform sharing of Y = F (X). Not fulfilling the uniformity would potentially
result in a leakage in subsequent function(s), which receives Y0, . . . , Ys as the shared input.

Classical TI defines the minimum number of input shares as td+ 1, where t stands for
the algebraic degree of the underlying function F (.) and d the desired degree of security.
This leads to have at least 3 input shares for the smallest non-linear function (t = 2) and
first-order security d = 1.

Achieving a uniform and non-complete TI becomes particularly more challenging for
functions with a high algebraic degree. Hence, it is usually tried to decompose the target

https://github.com/Chair-for-Security-Engineering/NullFresh
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function into smaller (preferably quadratic) functions and achieve masked variants of each
one separately [BNN+15]. This necessitates placing registers between each two consecutive
masked functions to avoid the propagation of glitches.

It is easy to achieve non-complete component functions, e.g., by following the direct
sharing technique [NRS11]. However, fulfilling the uniformity is not trivial, and even
not necessarily possible for every function. For example, the uniform TI of any 2-input
nonlinear function (e.g., an AND gate) with three input shares does not exist [NRS11]. In
such cases, by employing fresh randomness (fresh masks), the output shares are re-shared,
hence fulfilling the uniformity. This concept has been used in all state-of-the-art TI of the
AES S-box, e.g. [BGN+14b, MPL+11]. Note that changing of the guards [Dae17] relaxes
the necessity of having fresh masks at every clock cycle by using the input shares of an
S-box as the fresh masks for the next neighboring S-box(es), e.g., in [Sug19, WM18] for
the AES S-box.

2.3 Probing Security
Security of masking schemes is commonly evaluated by the probing security model [ISW03],
where the number of probes which the adversary can put on the intermediate signals
(variables) of the circuit (design) reflects the order of the attack [BDF+17, DDF14].
Compared to software implementations, where the operations are performed sequentially,
and each operation can be modeled as an atomic gate whose output changes once per
evaluation, hardware implementations are prone to glitches. In other words, the changes
(toggles) at a gate output can propagate to the further driven gates. It means that by
putting a probe on a gate output, the adversary not only observes its changes but also
obtains a fraction of changes on former gates that drive the probed gate. This initiated a
vast number of research on how to adjust the probing security model, considering glitches.
This has led to the introduction of glitch-extended probing model [FGP+18], where a
probe placed on a gate output is propagated backward and extended to multiple probes at
the inputs of the combinatorial circuit which drive the probed gate. Since we deal with
hardware implementations in this article, we consider the glitch-extended probing model
in our evaluations and assessments.

We further mainly focus on first-order security. Unless otherwise stated, we refer to a
first-order secure/vulnerable design by omitting the term ’first-order.’

2.4 Masking with d + 1 Shares
It has been shown in [RBN+15, GMK16] that it is not necessary to follow td+1 rule for the
number of input shares to construct a secure masked hardware implementation. Instead,
d-th order (glitch-extended probing) security can be achieved by d+ 1 input shares. This
can be done by dividing the given function into two register-isolated parts and introducing
fresh randomness. For example, for a 2-input AND gate x = f (a, b) with a0, a1, b0, b1 as
input shares and x0, x1 as output shares, we can write 4 component functions

f0(a0, b0, r) = a0b0 + r → x′0

f1(a0, b1) = a0b1 → x′1 x′0 + x′1 = x0

f2(a1, b0) = a1b0 → x′2 x′2 + x′3 = x1

f3(a1, b1, r) = a1b1 + r → x′3

, (1)

with r being a fresh mask. Note that the result of component functions are stored in
registers x′0 to x′3, and the part, which XORs the registers’ output to make the output
shares x0 and x1, is referred to as compression layer. Without any particular restrictions,
fresh mask r can be added either to f0 or f1 and either to f2 or f3. However, in Domain
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Table 1: Intermediate signals of Equation (2) for all possible input values.

a b a0 a1 b0 b1 x′0 x′1 4P (x′0, x′1) x′2 x′3 4P (x′2, x′3) x0 x1 4P (x0, x1)

0 0
0 0 0 0 0 0

(2,1,1,0)
0 0

(2,1,1,0)
0 0

(2,0,0,2)1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 1 1 1
1 1 1 1 0 1 1 0 1 1

0 1
0 0 0 1 0 0

(2,1,1,0)
0 1

(2,1,1,0)
0 1

(0,2,2,0)1 1 0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 0 1 0
1 1 1 0 0 0 1 0 0 1

1 0
0 1 0 0 0 0

(2,1,1,0)
0 0

(2,1,1,0)
0 0

(2,0,0,2)1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 1 0 1 1
1 0 1 1 0 1 0 1 1 1

1 1
0 1 0 1 0 0

(2,1,1,0)
0 0

(2,1,1,0)
0 0

(2,0,0,2)1 0 0 1 0 1 0 1 1 1
0 1 1 0 1 0 1 0 1 1
1 0 1 0 0 0 0 0 0 0

Oriented Masking (DOM) [GMK16], it is defined to be added on f1 and f2, i.e., the
component functions which receive input shares with different indices, i.e., a0 and b1 in f1.

It can be trivially seen that the application of the same technique on the function
x = f (a, b, c) = ab+ c does not require any fresh mask. Instead of r in Equation (1), c0 can
be added to f0 and c1 to f3. We have observed that the same holds for x = f (a, b) = ab+ b.
It means that we can write

f0(a0, b0) = a0b0 + b0 → x′0

f1(a0, b1) = a0b1 → x′1 x′0 + x′1 = x0

f2(a1, b0) = a1b0 → x′2 x′2 + x′3 = x1

f3(a1, b1) = a1b1 + b1 → x′3

(2)

which provides a uniform and first-order secure sharing of x = ab+ b. In order to show
its security under the glitch-extended probing model, we provide Table 1 presenting the
value of all intermediate signals for all possible input values. Since none of the component
functions fi∈{0,...,3}(.) receives both shares of an input signal (non-completeness), placing a
probe on each component function does not reveal any information. This can also be seen
in column x′0 of Table 1, that for all possible sharings of each input value a, b it is 1 only
once, and 0 three times. The same holds for x′1 to x′3. By placing a probe on an output
share, e.g., x0, the glitch-extended probing model extends it to two simultaneous probes
placed on x′0 and x′1. In column 4P (x′0, x′1), we show a factor of the joint probability of
such probes. It can be seen that independent of the input value a, b, the probes jointly see
two times (0, 0), once (1, 0), and once (0, 1). We refer to this as identical joint probability
distribution. Since the same is seen when a probe is placed on the other output share x1,
the design is first-order glitch-extended probing secure. Looking at the distribution of the
output shares P (x0, x1), it can be seen that for each input value a, b both possible output
sharing of x happens equally likely, which indicates the uniformity of this construction as
the sharing of ab+ b.

By representing the 2-input AND as āb+ b, with ā the inverse of a, we can apply the
same construction in Equation (2) and present the sharing of ā by (ā0, a1) or (a0, ā1). This
automatically leads to a glitch-extended probing secure and uniform sharing of the 2-input
AND gate. Note that the intermediate signals, distributions, and discussions given for
ab + b stay the same for āb + b. We would like to stress that it is the first time that a
secure 2-share masked AND gate without any fresh randomness is constructed.
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Following the classification in [BNN+15], six 4-bit quadratic classes are defined: Q4
4,

Q4
12, Q4

293, Q4
294, Q4

299, and Q4
300. Some constructions for the 2-share masked variant

of such bijections without fresh randomness are given in the appendix of [RBN+15].
We have observed that – in contrast to the other cases – the construction given for
Q4

300 : 01234589DC76BAFE1 is not secure. We just show the given construction for the 3rd
output bit z = h(a, b, c) = ab+ bc+ c as follows, where 6 component functions are defined.

h0(a0, b0, c0) = a0b0 + b0c0 + c0 → z′0

h1(a0, b1) = a0b1 → z′1

h2(b1, c0) = b1c2 → z′2 z′0 + z′1 + z′2 = z0

h3(a1, b0) = a1b0 → z′3 z′3 + z′4 + z′5 = z1

h4(b0, c1) = b0c1 → z′4

h5(a1, b1, c1) = a1b1 + b1c1 + c1 → z′5

(3)

Under the glitch-extended probing model, placing a probe on z0 is extended to three
simultaneous probes on z′0, z′1, and z′2. Simulating the intermediate signals shows that
the joint probability distribution P (z′0, z′1, z′2) is not identical for all input values a, b, c,
indicating its insecurity. We have also confirmed these findings using SILVER. The non-
uniformity of the 4-bit shared output of this construction is also reported in [KSM20].
The table of intermediate values and corresponding joint probability distributions of
Equation (3) is given in Appendix A.

3 Technique
Our findings with respect to the 2-share masked AND gate without any fresh randomness (in
Section 2) motivated us to look for generalizing the technique. As a result, we constructed
a generic procedure allowing us to find glitch-extended probing secure larger constructions
without any fresh masks. Below we give this procedure by focusing on small 2-input
coordinate functions and later extending it to larger functions.

3.1 2-input Quadratic Functions
The trick we used to build the secure 2-share AND gate with no fresh mask in Section 2.4
cannot be generalized to arbitrary functions. Therefore, we construct a general strategy.
Let us consider a constant-free arbitrary quadratic function with two inputs x = f (a, b), i.e.,
f (0, 0) = 0. Since its shared variant – in addition to any other linear term – has quadratic
terms a0b0, a0b1, a1b0, and a1b1, we have to use four component functions f0(a0, b0),
f1(a0, b1), f2(a1, b0), and f3(a1, b1). We follow the below steps; the search algorithm is also
given in Algorithm 1.

1. We start with making the set F0, including all possible 2-input constant-free coordi-
nate functions for f0(a0, b0) which have a0b0 in their Algebraic Normal Form (ANF),
and similarly for the other component functions. Apparently, the cardinality of each
set is 4.

2. Supposing that f0(.) and f1(.) are compressed to make an output share x0 (similar
to Equation (2)), in the second step, we search for tuples in F0 ×F1 which i) whose
outputs are jointly statistically independent of input a, b, and ii) their XOR (i.e., x0)
is a balanced function. The first condition is to achieve security in glitch-extended

1It is actually not the same as the one defined in [BNN+15] as Q4
300 : 0123458967CDEFAB, but they are

affine equivalent.
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Algorithm 1 Search for fresh-mask-free sharing of 2-input quadratic function
Input: f (a, b) . target function
Output: F0,1,2,3 :

{(
f0(a0, b0), f1(a0, b1), f2(a1, b0), f3(a1, b1)

)}
. component functions

1: F0 ← ∀ f0(a0, b0) : F2 × F2 7→ F2
2: F1 ← ∀ f1(a0, b1) : F2 × F2 7→ F2
3: F2 ← ∀ f2(a1, b0) : F2 × F2 7→ F2
4: F3 ← ∀ f3(a1, b1) : F2 × F2 7→ F2
5: F0,1 ← ∅
6: for (f0, f1) ∈ F0 ×F1 do
7: if ∃α;∀a, b;P

(
f0(a0, b0), f1(a0, b1)

)
= α then . identical joint distribution

8: if f0,1(a0, b0, b1) : f0(a0, b0) + f1(a0, b1) is balanced then
9: F0,1 ← F0,1 ∪ (f0, f1, f0,1)
10: end if
11: end if
12: end for
13: F2,3 ← ∅
14: for (f2, f3) ∈ F2 ×F3 do
15: if ∃α;∀a, b;P

(
f2(a1, b0), f3(a1, b1)

)
= α then . identical joint distribution

16: if f2,3(a1, b0, b1) : f2(a1, b0) + f3(a1, b1) is balanced then
17: F2,3 ← F2,3 ∪ (f2, f3, f2,3)
18: end if
19: end if
20: end for
21: F0,1,2,3 ← ∅
22: f ∗(a0, a1, b0, b1)← sharing f (a, b) . direct sharing
23: for (f0, f1, f0,1) ∈ F0,1 do
24: f ∗2,3(a1, b0, b1)← f ∗(a0, a1, b0, b1) + f0,1(a0, b0, b1)
25: if ∃(f2, f3, f2,3) ∈ F2,3 s.t. f2,3(a1, b0, b1) = f ∗2,3(a1, b0, b1) then
26: F0,1,2,3 ← F0,1,2,3 ∪

(
f0, f1, f2, f3

)
27: end if
28: end for

probing model, i.e., identical joint probability distribution, see Table 1 with respect to
P (x′0, x′1). The second condition is necessary to achieve uniformity [KSM20]. Those
tuples which fulfill both conditions are added to the set F0,1. The same is repeated
for the other two component functions f2(.) and f3(.) and the set F2,3 is made.

3. In the last step we need to find tuples in F0,1 ×F2,3 whose XOR makes a sharing
of x, i.e., x0 + x1 = x, i.e., the correctness property of TI [NRS11]. In order to
efficiently proceed in this step, we store the ANF of the XOR result of each tuple of
F2,3 (i.e., x1 = x′2 + x′3) in a searchable list (e.g., an indexed sorted linked list). By
selecting an element in F0,1, we first make the ANF of XOR of its tuples, which is
the ANF of x0 = x′0 + x′1. By replacing every variable a with a0 + a1 (resp. for b) in
the ANF of the given function x = f (a, b), we know what should be the ANF of its
sharing. By XORing these two ANFs, we can directly obtain the ANF of the desired
x1. Hence, we look into the aforementioned searchable list to check whether there is
a tuple in F2,3 with the desired ANF for x1. If so, the found component functions
make a correct, non-complete, uniform, and glitch-extended probing secure sharing
of x = f (a, b).

We should refer to the classical TI design process [NRS11], where by direct sharing, non-
completeness and correctness properties are fulfilled. Later, by the addition of correction
terms, it is tried to achieve a uniform sharing. In the above-expressed procedure, we first
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construct component functions that fulfill non-completeness and uniformity. Then, we
search for a combination that fulfills correctness.

Note that if the given function is not constant free, it should be first made so by
x = f (a, b) + f (0, 0). After constructing the secure sharing of x, the constant can be added
to just one of the component functions leading to a correct and secure sharing of f (.).

By applying this procedure on a 2-input AND gate, we found eight solutions, including
the one shown in Section 2.4. We should highlight that as given above, we considered a
configuration where component functions f0(.) and f1(.) are compressed to make an output
share x0. This is actually not a must, we can take another configuration where f0(.) and
f2(.) are compressed (resp. f1(.) and f3(.)). This leads to another set of 8 solutions for the
2-input AND. We provided all these solutions in the github. Note that having f0(.) and
f3(.) in a compressed layer does not lead to any solution.

3.2 3-input Cubic Functions

Here, we extend the procedure to arbitrary 3-bit cubic constant-free coordinate function
x = f (a, b, c). Due to its cubic term abc, we have to use 8 component functions

f0(a0, b0, c0), f1(a0, b0, c1), f2(a0, b1, c0), f3(a0, b1, c1),
f4(a1, b0, c0), f5(a1, b0, c1), f6(a1, b1, c0), f7(a1, b1, c1).

The first step is similar to that of the 2-input case, i.e., sets F0 to F7 are made, covering
all possible 3-input cubic coordinate functions corresponding to each component functions.
As a side note, each of such sets has 64 elements.

In the second step, we first suppose that component functions f0 to f3 are compressed
to provide the output share x0. We, hence, need to search for tuples in F0 ×F1 ×F2 ×F3
satisfying the conditions expressed in the second step in Section 3.1. The first condition,
i.e., identical joint probability distribution, helps to optimize the search process. That
is, if joint probability distribution P (x′0, x′1, x′2, x′3) is independent of inputs a, b, c, the
same holds for the joint probability distribution of every two and every three selection
of x′0, x′1, x′2, x′3. Therefore, we first look for tuples in F0 ×F1 fulfilling the identical joint
probability distribution condition. Afterward, the set is extended by expanding the tuples
by one more element ∈ F2 while still satisfying this condition. This is continued to have
tuples in F0 × F1 × F2 × F3. At this step, the second condition, i.e., balancedness, is
examined, and the set F0,1,2,3 is formed having the tuples which satisfy both conditions.
The same process is followed to construct the other set F4,5,6,7 including the tuples in
F4 ×F5 ×F6 ×F7.

The last step is identical to that explained as the third step in Section 3.1. In short,
the sorted list of ANF of the XOR result of elements in F4,5,6,7 and the ANF of the target
masked function help us to rapidly find the matching tuples in F0,1,2,3 and F4,5,6,7.

We applied this technique on 3-input AND function. To give an overview on the
complexity of the explained search process, each set F0,1,2,3 and F4,5,6,7 contains 5 120
tuples, and our program in C++ using a single CPU needs around 6 seconds to generate
10 368 constructions, each of which a glitch-extended probing secure and uniform sharing
of 3-input AND without any fresh randomness.

Similar to the 2-input case, there is no necessity to force component functions f0 to f3
to be compressed. The component functions can be arbitrarily divided into two parts, but
every division does not necessarily make a solution. In our investigations, we found 186 720
such secure constructions for the 3-input AND. Below, we give one of such constructions,
while our entire findings are provided in the github.

https://github.com/Chair-for-Security-Engineering/NullFresh
https://github.com/Chair-for-Security-Engineering/NullFresh
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f0(a0, b0, c0) = a0 + a0b0 + a0b0c0 → x′0

f1(a0, b0, c1) = a0 + a0b0 + a0c1 + a0b0c1 → x′1

f2(a0, b1, c0) = b1c0 + a0b1c0 → x′2

f3(a0, b1, c1) = c1 + a0c1 + b1c1 + a0b1c1 → x′3 x′0 + x′1 + x′2 + x′3 = x0

f4(a1, b0, c0) = a1 + a1b0 + a1b0c0 → x′4 x′4 + x′5 + x′6 + x′7 = x1

f5(a1, b0, c1) = a1 + a1b0 + a1c1 + a1b0c1 → x′5

f6(a1, b1, c0) = b1c0 + a1b1c0 → x′6

f7(a1, b1, c1) = c1 + a1c1 + b1c1 + a1b1c1 → x′7

(4)

3.3 4-input Cubic Functions
4-bit bijections are commonly used as S-boxes in lightweight block ciphers including
PRESENT [BKL+07], PRINCE [BCG+12], Midori [BBI+15], etc. The coordinate function
of such bijections can be at most cubic. Therefore, we explain below how to apply our
technique on an arbitrary constant-free 4-bit coordinate function x = f (a, b, c, d) with the
algebraic degree of at most 3.

We start with defining the component functions as follows.

f0(a0, b0, c0, d0), f1(a0, b0, c1, d1), f2(a0, b1, c0, d1), f3(a0, b1, c1, d0),
f4(a1, b0, c0, d1), f5(a1, b0, c1, d0), f6(a1, b1, c0, d0), f7(a1, b1, c1, d1). (5)

Not as a unique configuration, this allows us to realize the sharing of any (at most cubic)
4-bit function. In other words, these component functions support any cubic term. For
example, if the ANF of f (.) contains the term acd, each term of its sharing a0/1c0/1d0/1
fits to one of these component functions.

At the first step, we should make the sets F0 to F7 for each component function
respectively.

• If f (.) is cubic, we fill each Fi∈{0,...,7} with all possible constant-free cubic coordinate
functions whose cubic terms are exactly those of f (.). This is to guarantee that the
shared function fulfills the correctness property of TI.

• If f (.) is quadratic, each Fi is filled with all possible constant-free quadratic and
linear functions irrespective of the terms of f (.). In this case, we further add a
constant function fi(.) = 0 to Fi; this helps to cover the cases were we do not need
to use all 8 component functions.

• In case of a linear f (.), we obviously do not need to search for any constructions; f (.)
can be applied on each set of shares a0, b0, c0, d0 and a1, b1, c1, d1 independently.

The next second and the third steps are exactly identical to those given for 3-input cubic
functions in Section 3.2.

Here, an important point is with respect to the way the component functions are
defined. As stated, the configuration given in Equation (5) is not the only possible one.
It can be seen that shares of different variables are differently assigned to component
functions. We indeed found four different ways to do such assignments, shown below for
an exemplary input variable w.

f0 f1 f2 f3 f4 f5 f6 f7
1 w0 w0 w0 w0 w1 w1 w1 w1
2 w0 w0 w1 w1 w0 w0 w1 w1
3 w0 w1 w0 w1 w0 w1 w0 w1
4 w0 w1 w1 w0 w1 w0 w0 w1
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Input variables a, b, c, d can take any of such ways to be assigned to component functions.
However, it should be taken into account that the input variables which are jointly in a
non-linear term of the target function f (a, b, c, d) cannot similarly be assigned to component
functions. Otherwise, the correctness property of TI cannot be fulfilled. Based on our
observations, depending on the target function, several glitch-extended probing secure
and uniform solutions for the sharing of arbitrary (at most cubic) f (.) can be found by
changing the way the input shares are assigned to component functions. We deal with
several corresponding case studies in the next section.

4 Case Studies
This section provides a couple of case studies where we have applied our technique to
realize the 2-share secure implementation of different ciphers without any fresh masks.

4.1 Midori
As the first case study, we focus on Midori-64 [BBI+15], where a 4-bit S-box
F (a, b, c, d) : CAD3EBF789150246 is used. Note that the same S-box is used in the de-
sign of CRAFT [BLMR19]. Since each of its 4-bit coordinate functions is at most cubic,
we can easily apply the technique expressed in Section 3.3 to find solutions for uniform
and glitch-extended probing secure 2-share constructions for each coordinate function.
We have found 112 128, 32 256, 112 128, 17 346 048 solutions for each coordinate function
respectively. Our program running on a machine with 24 CPU cores and 96GB of RAM
required 115 minutes to generate all these solutions.

In the next step, we need to find a combination of these solutions (one for each
coordinate function), which are jointly uniform. As a side note, since no fresh mask is used,
the output sharing of different coordinate functions are not necessarily jointly uniform.
Since the number of possible combinations is very high, we should optimize the search
process. If four shared coordinate functions are jointly uniform, any two and any three
selection are also jointly uniform. Therefore, we can first find two jointly-uniform solutions
(for two component functions), then search for the third one to be jointly uniform with the
first two, and so on for the fourth component function. We have found millions of such
combinations that are jointly uniform, one of which is given in Appendix B. Note that
the second coordinate function of the Midori S-box y = g(.) is quadratic. Therefore, its
sharing has 4 component functions instead of 8 compared to the other shared coordinate
functions.

The component functions of different coordinate functions which receive the same
input shares can be combined in a single combinatorial circuit. For example, we refer
to f2(a0, b0, c1, d0), g0(a0, b0, d0), h1(a0, b0, c1, d0), and k2(a0, b0, c1, d0) in Appendix B. In
other words, a combinatorial circuit which receives a0, b0, c1, d0 can provide four outputs to
be individually stored in registers x′2, y′0, z′1, t′2. This neither violates the non-completeness
nor affects the glitch-extended probing security of the construction. Therefore, for the
sake of area efficiency, this factor can be considered when searching for a joint-uniform
combination of shared coordinate functions.

Figure 1 shows a general block diagram of our technique. Using these graphics, we
would like to stress that the output of the compression layer (x0/1, y0/1 in this case) cannot
be freely given to a linear/non-linear function. If the subsequent function makes use of
different output bits in a combinatorial circuit, e.g., x0 and y0, the glitch-extended probing
security model extends a probe on such a gate to all x′0, x′1, x′2, x′3 and y′0, y

′
1. Hence,

these signals should have an identical joint probability distribution independent of the
inputs a, b, c, d. This condition has not been considered when searching for combined
jointly-uniform shared coordinate functions. We have also examined this on the solutions
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Figure 1: A general block diagram of our constructions.
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Figure 2: 2-share masked round-based Midori-64 enc/dec without any fresh masks.

we found for Midori S-box. No solution can fulfill such a condition. Therefore, placing a
register after the compression layer is necessary if the subsequent function mixes different
output bits of the shared function. Note that such a register is not required when a fresh
mask is used for each coordinate function, e.g., in [GMK17, CRB+16].

Based on our construction and observations, we have designed a 2-share round-based
implementation of Midori-64 encryption/decryption function without any fresh masks.
The design architecture is shown in Figure 2, which is similar to that of [MS16a]. Since
the Midori’s MixColumns does not mix different output bits of any S-box, we did not
need to place a register after the compression layer, but it is placed at the input of the
S-box, i.e., the output of the MixColumns of the former cipher round. As a comparison to
state of the art, we are only aware of a 3-share classic TI design of the Midori-64, which is
also free of fresh masks, reported in [MS16a]. In this design, the S-box is decomposed to
two quadratic bijections, allowing to represent shared version of each one by a uniform
TI using three shares. Similar to our design, it has two register stages, hence the same
latency with respect to the number of clock cycles. Note that no key masking is used
in [MS16a]; hence, in order to provide a fair comparison, we also did not share the key
path in our Midori design. We refer to Table 2, where we report the performance figures of
our constructions compared to state of the art. Notably, our construction is slightly larger
than the 3-share version [MS16a]. This is due to having more registers at the output of
the component functions. Each S-box in our design needs 28 registers (see Appendix B),
while the 3-share uniform TI needs 12 registers. As an advantage, the initial masking of
the plaintext requires 64 mask bits in our design while it is 128 bits in the 3-share design.
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4.2 PRESENT
We applied the same technique on the PRESENT S-box [BKL+07]
F (a, b, c, d) : C56B90AD3EF84712. Since the process is exactly the same as that of Midori
S-box, we omit to re-explain the steps in detail. We found 551 424, 1 152, 5 417 472, and
1 152 uniform and glitch-extended probing secure solutions for its coordinate functions
respectively, in 107 minutes using the same machine expressed in Section 4.1. We further
found millions of jointly-uniform combined solutions (one for each coordinate function).
One of such solutions is given in Appendix C.

In order to compare our construction to state of the art, we have taken the design
of [PMK+11], where the S-box is decomposed in two quadratic bijections allowing to
achieve uniformity with three shares at each stage without any fresh masks. Therefore, we
could easily replace its S-box with our construction and change the number of shares to 2.
As given in Table 2, our design is smaller than that of [PMK+11] due to a reduction in
the number of shared state registers.

4.3 PRINCE
The application of our technique on PRINCE [BCG+12] is not as straightforward as the
former cases. PRINCE makes use of the S-box F (a, b, c, d) : BF32AC916780E5D4 and it
is inverse B732FD89A6405EC1 in both encryption and decryption procedures. Based on
the fact that the PRINCE S-box and its inverse are affine equivalent, a round-based
implementation using only the S-box and some affine functions has been introduced
in [MS16a]. The use of our S-box constructions in this strategy would lead to several register
stages, as explained in Section 4.1. Therefore, we followed another design architecture
shown in Figure 3, where both S-box and S-box inverse are implemented. However, their
compression layer is shared as at every cipher round, either the S-box or its inverse is used.

Application of our technique on the S-box led to 4 478 976, 17 346 048, 17 346 048, and
112 128 solutions for its coordinate functions, which took around 4 hours. For the S-box
inverse we have found 24 576, 10 106 880, 70 957 824, and 99 84 solutions in approximately
11.5 hours. Finding a jointly-uniform combination of these solutions is obviously challenging
as the number of possible combinations explodes. We have used one more trick to optimize
this search process. Let us focus on a single coordinate function y = f (a, b, c, d). In the
solutions found for this coordinate function, the ANF of the outputs of the compression
layer y0 = y′0 + y′1 + y′2 + y′3 and y1 = y′4 + y′5 + y′6 + y′7 are not unique. In other words,
there are several solutions with the same ANF for y0 and y1, in which the component
functions generating y′0 to y′7 are different. The component functions affect the uniformity
and glitch-extended probing security, while y0, y1 affect only the uniformity. Therefore, to
find a joint-uniform combination of the shared coordinate functions, we can just consider
those solutions that have a unique ANF for the shared output. In other words, we can
shrink the found solutions by considering only one solution for each ANF of y0, y1, and the
same for the other coordinate functions. Application of this strategy led to 2 688, 5 952,
5 952, and 1 536 such solutions for the S-box coordinate functions and 96, 2 880, 7 728, and
1 056 solutions for the coordinate functions of the S-box inverse.

We have noticed that neither for the S-box nor for the S-box inverse, there is a jointly-
uniform combination of the found solutions. It is noteworthy to mention that this is
not related to the cubic class to which the PRINCE S-box belongs. Putting some linear
bijections at its input and/or output can lead to combined solutions with joint uniformity.
As an example, by composing the S-box with A(x, y, z, t) = (x, y+ z, z, t), we found several
jointly-uniform combined solutions. However, we have to apply the inverse of A after the
compression layer, which necessitates a register stage in their between (see Section 4.1 and
Figure 3). Independent of this, we have found solutions for both S-box and its inverse. The
first, third, and fourth shared coordinate functions are jointly uniform, but not with the
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Figure 3: 2-share masked round-based PRINCE enc/dec without any fresh masks.

second coordinate function, although all are individually uniform. One of such solutions is
given in Appendix D and Appendix E. In the given solutions the corresponding component
functions of all coordinate functions receive the same set of input shares, i.e., f0(.), g0(.),
h0(.), and k0(.). The same holds for the S-box inverse. Therefore, a component function
for both S-box and S-box inverse is implemented, which receives an additional select signal
determining whether the component function of the S-box or its inverse should be given
as the output. In other words, the corresponding component functions of S/S−1 and the
subsequent multiplexer in Figure 3 are combined in a single module. This way, we could
optimize the implementation with respect to the area overhead.

In order to construct a secure implementation of the cipher, a single-bit fresh mask
can be applied to the second shared coordinate function. However, we refer to the cipher
structure in Figure 3 and highlight the specification of the PRINCE M ′-layer [BCG+12].
Every output bit of the M ′-layer is the XOR of its 3 input bits, which are the output
of different S-boxes. In other words, output bits of an S-box (resp. S-box inverse) are
never mixed in the M ′-layer. Therefore, as shown in Figure 3, we did not put a register
between the compression and M ′-layer. Further, since every shared coordinate function is
individually uniform, and as stated, 3 output bits of different S-boxes (with independent
sharing) are XORed to make a single bit output of the M ′-layer, sharing of every output
nibble of the M ′-layer (going to the next S-box/S-box inverse) becomes jointly uniform.
Hence, there is no need to use a fresh mask for the second shared coordinate function.

We are aware of two works dealing with masked hardware implementation of PRINCE.
In [MS16a], the S-box is decomposed to three quadratic bijections allowing to obtain its
uniform sharing with three shares without any fresh masks, i.e., three clock cycles per
encryption/decryption round. In [BKN19], the authors considered d+ 1 masking and did
not decompose the S-box, as we do in our construction. Each first-order masked S-box in
their design requires 12 fresh mask bits while using a form of mask reuse, the authors could
reduce the required fresh masks to 48 bits per clock cycle in a round-based implementation
with two clock cycles per cipher round. Our round-based implementation supporting both
encryption and decryption also has two register stages per cipher round but does not need
any fresh mask bits. Table 2 shows a comparison between the performance of these designs.
Since the key path was masked in [BKN19], but not in [MS16a], we provided both designs
with and without key masking enabling a more meaningful comparison.

4.4 AES
For the AES S-box, similar to several state-of-the-art works, e.g., [Can05, CRB+16, GMK17,
GMK16], we followed a tower-field approach for the inversion in GF (28). Apart from the
input and output isomorphisms, which have been taken from the Canright’s design [Can05],
Figure 4 depicts a block diagram of the inversion in GF (24)2. We presented the design
using four blocks, the middle one: inversion in GF (24), the last blocks: GF (24) multiplier,
and the first block: a combination of square-scale and GF (24) multiplier.
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4.4.1 Inverter

We start with the GF (24) inverter. We have taken F (a, b, c, d) : 0132ED8AF67C495B which
is affine equivalent to the cubic class C4

282 [BNN+15]. Application of the technique explained
in former sections led to 4 478 976, 5 417 472, 70 957 824, and 140 011 008 glitch-extended
probing secure and uniform solutions for its coordinate functions respectively. We also
found several jointly-uniform combined solutions leading to uniform and secure sharing of
the GF (24) inverter with two shares and no fresh masks. We give one of such solutions in
Appendix F.

4.4.2 Multiplier

The two multipliers as the last blocks of the GF (24)2 inverter (see Figure 4) are identical
8-bit to 4-bit quadratic functions. Therefore, we require four component functions for
each coordinate function to cover the quadratic terms. Considering a coordinate function
f (a, b, c, d, e, f, g, h), an important question is how to assign the input shares to the
component functions f0(.), . . . , f3(.). Taking a single input variable w into account, we can
assign its shares w0, w1 to the component functions as follows.

f0 f1 f2 f3
1 w0 w0 w1 w1
2 w0 w1 w0 w1
3 w0 w1 w1 w0

Similar to what expressed in Section 3.3, the shares of input variables which are jointly in a
non-linear term should be differently assigned to the component functions. It is important
to highlight that since the underlying module multiples two 4-bit inputs, its quadratic
terms have always a variable from 〈a, b, c, d〉 and the other one from 〈e, f, g, h〉. Therefore,
shares of a, b, c, d can be identically assigned to component functions, and the same for
shares of e, f, g, h. As an example, for the first coordinate function x = f (a, b, c, d) =
b+ d+ ae+ ce+ af + bf + cf + df + cg + ah+ bh, we can consider the following settings.

f0(a0, b0, c0, d0, e0, f0, g0, h0)
f1(a0, b0, c0, d0, e1, f1, g1, h1)
f2(a1, b1, c1, d1, e0, f0, g0, h0)
f3(a1, b1, c1, d1, e1, f1, g1, h1)

Considering all possible ways to assign the shares to the component functions, we have
found millions of uniform and glitch-extended probing secure solutions for each component
function. We further have easily found several solutions as their combination, which fulfill
the joint uniformity without any fresh masks. One of such solutions is given in Appendix G.
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Table 2: Performance figures of different implementations.
(using Synopsis Design Compiler, and UMC180 standard cell library, no compile_ultra)

Design No. of Key Fresh Masks Area Delay Latency
Shares Masking [bit] [GE] [ns] [cycles]

Midori [MS16a] 3 7 0 7297 4.00 32
Midori [this work] 2 7 0 7560 4.99 32
PRESENT [PMK+11] 3 7 0 2282 4.61 565
PRESENT [this work] 2 7 0 1819 4.59 565
PRINCE [MS16a] 3 7 0 9292 4.00 40
PRINCE [BKN19] 2 3 48 13185a 8.37 24
PRINCE [this work] 2 7 0 10668 5.92 24
PRINCE [this work] 2 3 0 11462 5.74 24
AES [WM18] 4 7 0b 7600 2804
AES [MPL+11] 3 3 48 11114 266
AES [BGN+14b] 3 3 44 9102 246
AES [BGN+15] 3 3 44 11221 246
AES [BGN+15] 3 3 32 8119 246
AES [Sug19] 3 3 0b 17100c 266
AES [GMK16] 2 3 28 7600 216
AES [GMK16] 2 3 18 7100 246
AES [CRB+16] 2 3 54 6681c 276
AES [UHA17] 2 7 64 6321d 219
AES [this work] 2 3 1 7136 6.25 246
AES [this work] 2 3 0 7707 6.25 246
AES [this work] 2 7 1 6247 5.74 246
AES [this work] 2 7 0 6818 5.74 246

a Synthesized by ourselves. Thanks to the authors providing their implementation.
b Using changing of the guards.
c Using NanGate 45.
d Using TSMC65.

4.4.3 Square-Scale-Multiplier

Having the uniform and glitch-extended probing secure construction for the GF (24)
inverter and the GF (24) multiplier, the remaining part is the first block (see Figure 4). We
intentionally combined the square-scale and the first multiplier to an 8 to 4-bit quadratic
function. This helps us to achieve uniformity. Otherwise, having a uniform shared
multiplier, we do not necessarily obtain a uniform sharing when it is XORed with the
square-scale module’s output, since the multiplier and the square-scale have common
inputs. Similar to what we have done for the multiplier in Section 4.4.2, we have found
several probing secure solutions, which are also jointly uniform. However, connecting all
these secure modules together based on the block diagram in Figure 4 does not necessarily
lead to a secure implementation. The problem is the multipliers at the last stage, which
receive the output of the GF (24) inverter as well as either 4-bit LSB of the primary input
P or its 4-bit MSB Q. Since the output sharing of the GF (24) inverter depends on the
sharing of the primary inputs, uniform sharing at the multipliers’ input is not guaranteed.
Therefore, sharing of the output of the GF (24) inverter should be jointly uniform with
sharing of P for the bottom multiplier, and jointly uniform with sharing of Q for the top
multiplier. Since our uniform shared GF (24) inverter is made without any fresh masks
(i.e., is a bijection), this condition should be fulfilled by the shared square-scale-multiplier.
In other words, output sharing of the square-scale-multiplier should be jointly uniform
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Figure 5: Our constructions for the shared inversion in GF (24)2 by 2 shares.

with P as well as with Q. We have added this condition to the search program when
looking for a combination of shared coordinate functions of the square-scale-multiplier,
which did not lead to any solution. Instead, we found two other alternatives:

• We found several solutions for the shared square-scale-multiplier, whose all four
shared outputs are jointly uniform. At the same time, their first three shared outputs
are jointly uniform with P as well as with Q. This means that we can make use of a
single-bit fresh mask to refresh the sharing of the remaining output. This allows us
to use only 1-bit fresh mask to achieve a glitch-extended probing secure GF (24)2

inversion. We give the details of such a shared square-scale-multiplier in Appendix H.
This construction is also shown in Figure 5(a), where every stage should be isolated
by means of registers.

• We found two distinct solutions for the shared square-scale-multiplier, each of which
with a jointly-uniform output sharing. One of such is jointly uniform with P and the
other one jointly uniform with Q. This implies instantiating two GF (24) inversion
modules, as shown in Figure 5(b), but allows realizing the shared GF (24)2 inversion
fully without any fresh masks. This construction for sure has a higher area overhead
compared to the former solution. The detail of such found solutions are given in
Appendix I and Appendix J. We would like to highlight that the non-linear terms in
these two constructions are similarly assigned to their component functions. This
allows us to combine every component function of one of the constructions with a
component function of another construction. In other words, a component function
is made, which generates two outputs: one for the square-scale-multiplier, which is
jointly uniform with P and one for the other square-scale-multiplier, which is jointly
uniform with Q. This is beneficial to reduce the area overhead of its implementation.

Note that in both above given solutions, the output sharing of the top multiplier is
jointly uniform. The same holds for that of the bottom multiplier, but they are not jointly
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uniform. In other words, our constructions are glitch-extended probing secure, but their
output cannot be given to the next function which mixed the output of the top and bottom
multipliers. This includes the output isomorphism (to convert from GF (24)2 to GF (28))
as well as the affine transformation of the AES S-box applied after the GF (28) inversion.

In order to solve this problem, and construct a secure AES encryption module, we
make use of the features of the AES MixColumns, which similar to the PRINCE M ′-layer
can overcome the joint non-uniformity issue. However, since the multiplication-by-2 and
multiplication-by-3 of the MixColumns combine different bits of each S-box output, we
divide the MixColumns in two parts. Let us recall the MixColumns operation, where a
4× 4 matrix is multiplied by a vector of four S-box outputs A,B,C,D. If we denote the
output of the GF (24)2 inversion of the corresponding S-boxes by A′, B′, C ′, D′ and the
composition of the output isomorphism and the affine transformation by OA(.), we can
write 

X
Y
Z
T

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2




OA(A′)
OA(B′)
OA(C ′)
OA(D′)

 , (6)

where X,Y, Z, T denote the MixColumns output (of a column). We divide this matrix
multiplication into two parts as

X
Y
Z
T

 =


2 0 0 3
3 2 0 0
0 3 2 0
0 0 3 2


︸ ︷︷ ︸

MC ′


1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1


︸ ︷︷ ︸

β


OA(A′)
OA(B′)
OA(C ′)
OA(D′)

 .

Since all elements of β are 0/1, we can move the application of OA(.) between these two
matrix multiplications. More precisely,

X
Y
Z
T

 = MC ′ •


OA(X ′)
OA(Y ′)
OA(Z ′)
OA(T ′)

 ,

X ′

Y ′

Z ′

T ′

 = β •


A′

B′

C ′

D′

 .
Since every row of β contains three 1s, and each bit of A′, B′, C ′, D′ has a uniform sharing,
and each S-box input has a uniform, and independent sharing, each byte of X ′, Y ′, Z ′, T ′
becomes jointly uniform. Therefore, application of OA(.) on X ′, Y ′, Z ′, T ′ would not lead
to any leakage. Note that X ′, Y ′, Z ′, T ′ should be stored in a register before the application
of OA(.). In other words, using this technique, the application of MixColumns needs two
clock cycles. We followed this strategy and constructed a masked serialized AES encryption
module with two shares without any fresh mask (resp. with 1-bit fresh mask), which is
explained in detail below.

4.5 AES Encryption
Our serialized AES encryption module, in which both variants of our masked GF (24)2

inversions can be plugged, requires 246 clock cycles to accomplish a full encryption. Figure 6
shows an overview of the datapath of the design. The state registers (resp. key registers)
are viewed as a 4 × 4 square array of bytes, and the byte located at row i and column
j is denoted as 4 × j + i. In the first 16 clock cycles, the key and plaintext are loaded
byte-wise to the module. Meanwhile, the AddRoundKey and the input isomorphism IA(.)
are performed, and the result is fed into the GF (24)2 inversion. Note that we have to
place a register between the IA(.) and the inversion. Otherwise, the first stage of the
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Figure 6: Our design of the serialized AES encryption.

GF (24)2 inversion violates the non-completeness property. The same has been applied
in [CRB+16, GMK17]. The next four cycles are spent on dedicating the IA(.) and inversion
to the key schedule procedure. When the last state byte comes out of the inversion
module, the ShifRows is applied, which is not shown in the figure for the sake of simplicity.
Afterward, the MixColumns operation is performed in parallel to the AddRoundKey and
IA(.) of the next encryption round. As mentioned in Section 4.4.3, OA(.) cannot be applied
right after the inversion. It is integrated into the MixColumns, which forces us to put
a register after the multiplication by β matrix to guarantee the non-completeness. The
same holds for the key schedule. In order to generate the round keys, the output of the
inversion is XORed with OA−1 (.) of the corresponding key byte followed by a register
to avoid glitches and any potential leakage. Then, OA(.) and corresponding RCON are
XORed to the registered result, which provides the correct next round key byte. In short,
each encryption round takes 23 cycles to finish the inversions and MixColumns entirely.

The state register contains the output of the GF (24)2 inversion (not the S-box), and
OA(.) is integrated into the MixColumns. Since the MixColumns is missing in the last cipher
round, we have to apply OA(.) after the last AddRoundKey to generate the ciphertext.
This is done by instantiating a dedicated OA(.) module separated by an output register,
which is enabled only when the encryption is terminated (see Figure 6 and a register
enabled by the Done signal). Hence, in the last round, the state is XORed with OA−1 (.)
of the round key and the result is loaded to the output register. Similar to the other
serialized AES designs, the ciphertext appears byte-wise at the output of the module. We
should point out that, in our design, many registers are placed right after a multiplexer.
This allows the synthesizer to make use of scan flip-flops, a technique commonly used in
the state of the arts.

As a comparison to similar works, we refer to Table 2. Notably, our designs outperform
3-share implementations [MPL+11, BGN+14b, BGN+15] in terms of area overhead and
required randomness with the same latency (# of clock cycles). Using changing of the
guards, a 4-share and a 3-share masked implementation with no fresh masks have been
introduced in [WM18] and [Sug19] respectively. The former has 11 times longer run-
time, and the latter has more than double area overhead compared to our designs. The
randomness complexity of our designs is the best among all 2-share implementations while
their area overhead is slightly larger than [CRB+16] and is almost the same compared to
the constructions presented in [GMK16], and smaller than [UHA17]. There is a mixture
of having and not having key masking in the designs mentioned above. Therefore, we
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provided two versions of our designs, one with the shared key state and another without,
indicated by a column in Table 2.

Comparison with changing of the guards. As stated, the technique introduced in [Dae17]
makes use of the incomplete shares of an independent state portion to remask the output
of a non-uniform shared non-linear function. More precisely, it is used to overcome the
non-uniformity issue when the shared non-linear function fulfills the non-completeness.
For example, in [Dae17, WM18, Sug19] the underlying masking scheme is td + 1, i.e.,
3 (resp. 4) shares for first-order secure realization of quadratic (resp. cubic) functions.
Therefore, the non-completeness property is trivially achieved by “direct sharing” [NRS11].
Note that uniform td+ 1 sharing of Midori, PRESENT and PRINCE S-boxes are realized
without any fresh randomness. Therefore, application of changing of the guards on such
implementations is neither necessary nor beneficial.

However, in our technique, which is a d + 1 scheme, we use 2 shares to achieve the
first-order security. We show how to fulfill the non-completeness property with 2 shares and
no fresh randomness, which – to the best of our knowledge – has not been reported before
so far. All former d+1 constructions reported in literature, require fresh randomness for the
sake of non-completeness not for uniformity. We should also highlight that application of
changing of the guards on 2-share implementations to nullify the required fresh randomness
does not seem trivial (or even possible). Based on this fact, to the best of our knowledge,
no 2-share implementation of any cipher has been reported in literature, where changing
of the guards is used. Therefore, in the comparison we provided in Table 2, we could not
compare any of our 2-share designs with a state-of-the-art implementation with 2 shares
and no fresh randomness.

5 Analysis

As stated, we have evaluated our constructions using SILVER [KSM20] confirming their
first-order security under the glitch-extended probing model. As a side note, we have not
considered maskVerif [BBC+19], which is a language-based verification tool. As a matter
of known issue, maskVerif has false-negative cases, i.e., it may report the insecurity of a
secure design. Based on our observation and experience, we faced these cases; mainly when
the given design does not use fresh masks. An example is given in [KSM20]. Since our
constructions’ goal is to avoid any fresh masks, we could not truly examine our designs by
maskVerif.

Since verification tools, including SILVER, can only deal with parts of the given
designs (i.e., gadgets), analyzing a full encryption/decryption module is still impossible.
Therefore, for the sake of completeness we conducted practical analysis by implementing
our constructions on an FPGA evaluation board and collecting power consumption traces.

5.1 Setup

We made use of a SAKURA-G board [SAK], where a Spartan-6 FPGA is embedded to host
cryptographic cores for practical SCA evaluations. We collected the power consumption
traces at a sampling rate of 500MS/s by monitoring the voltage drop over a 1Ω resistor
placed in the Vdd path, amplified by an on-board AC amplifier. During the measurements,
our designs running on the aforementioned FPGA were supplied by a stable and jitter-free
clock source at the frequency of 6MHz.
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Figure 7: Experimental analysis of our Midori encryption/decryption design.

5.2 Evaluation Technique

The fixed-versus-random t-test has been used in the state of the art to evaluate the
security of the masked implementations. As it is shown in [CEM18], such an analysis
at first order may lead to false-negative result due to the power distribution network
(also referred to as coupling effect), particularly if two shares are used, e.g., [BPG18]. In
other works like [SH18] several fresh mask bits are used to overcome this issue. Since
our constructions do not make use of any fresh masks, they are also prone to this issue.
Therefore, we conducted attacks to evaluate the robustness of our designs. In order to
be independent of any particular (hypothetical) leakage model, similar to [DMW18], we
performed Moments-Correlating DPA (MC-DPA) attacks [MS16b]. For the round-based
implementations (Midori and PRINCE) we performed profiling MC-DPA, where a set of
traces are used to extract the model based on the leakage of an S-box, and the attack
is performed on another set of traces on the same S-box module. This process examines
if the attacker finds out that the same key portion (nibble in these cases with a 4-bit
S-box) is used in both profiling and attack traces. For the serialized implementation (AES),
we performed collision MC-DPA by constructing the leakage model based on an S-box
calculation and conducting the attack on another S-box call. If successful, the attack
reveals the linear difference between the corresponding key portions (bytes in case of AES).
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Figure 8: Experimental analysis of our PRINCE encryption/decryption design.

We excluded our PRESENT design in these analyses since we just changed the S-box
design compared to [PMK+11], whose uniformity and glitch-extended probing security is
confirmed by SILVER.

5.3 Results
For each of the Midori and PRINCE designs and a fixed key, we collected 100 million
traces while the plaintext was selected randomly. The first 50 million traces were used to
extract first- and second-order models for each S-box input. We used the second 50 million
traces to conduct the first- and second-order MC-DPA attacks using the aforementioned
models. The corresponding results on an exemplary targeted S-box (nibble) are shown in
Figure 7 and Figure 8. The attacks confirm the first-order robustness of the designs, and
as expected, the second-order attacks can exploit the leakage. We observed that around
10 million traces are more than enough to recover the correct key candidate through
second-order moments. We further conducted the same attacks targeting the last round of
the cipher; the corresponding results, also shown in Figure 7 and Figure 8, are along the
same lines.

For the AES design, we also collected 100 million traces for random plaintexts. Due
to its serialized architecture, we could use the entire 100 million traces to extract first-
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Figure 9: Experimental analysis of our AES encryption design.

and second-order models associated to an S-box input, and use the same set of 100 million
traces to conduct the attack on another S-box call. The result of this procedure, which
reveals the XOR difference between the corresponding key bytes, is shown in Figure 9. Like
the former cases, the first-order attacks did not succeed while the second-order leakage
was exploited using around 10 million traces. Note that the presented results belong to
our design of the masked GF (24)2 inversion without fresh masks (see Figure 5(b) and
Table 2). Due to the similarity of the analysis results of our other design with a single-bit
fresh mask (Figure 5(a)) we omit representing the identical figures.

For the sake of completeness and to verify our setup, we repeated these attacks when
the initial masking is turned off, i.e., the designs are not changed, but the plaintext and
the key are given when the mask for initial sharing is set to 0. The result of identical
attacks on Midori and the AES is shown in Appendix K, indicating that 10 000 traces are
enough to exploit the first-order leakage.
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6 Discussions and Conclusions
In this work, we have presented a methodology that allows us to realize first-order 2-share
masked realization of non-linear functions without any fresh randomness. Considering
the common and reasonable glitch-extended probing model, where the effect of glitches in
hardware platforms is covered, we showed how to provide the first-order secure implemen-
tation of various ciphers, including Midori, PRINCE, PRESENT and AES. Compared to
state of the art – to the best of our knowledge – our designs are the only ones which i) use
two shares, and ii) require no fresh masks without employing changing of the guards.

Apart from these achievements, we should stress that our technique cannot trivially
be extended to higher orders, i.e., with larger number of shares than 2. Adjusting
our search algorithms may lead to a reduction in the number of required fresh masks,
but eliminating them entirely is unlikely possible. We further should mention that our
constructions (of small functions) not necessarily satisfy the requirements of being Non-
Interference (NI) [BBD+16], Strong Non-Interference (SNI) [BBD+16], or Probe-Isolating
Non-Interference (PINI) [CS20]. Therefore, they cannot be trivially composed to make
a secure circuit. Instead, uniform sharing of every gadget’s inputs should be carefully
examined in every composition.
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A Simulation of Masked Q4
300 of [RBN+15]

Table 3: Intermediate signals of the masked Q4
300 of [RBN+15] in Equation (3).

a b c a0 a1 b0 b1 c0 c1 z′0 z′1 z′2 8P (z′0, z′1, z′2) z′3 z′4 z′5 8P (z′3, z′4, z′5)

0 0 0

0 0 0 0 0 0 0 0 0

(3,2,0,1,1,0,0,1)

0 0 0

(3,0,1,0,2,1,0,1)

1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 1 1 0 1 0 1
0 0 0 0 1 1 1 0 0 0 0 1
1 1 0 0 1 1 1 0 0 0 0 1
0 0 1 1 1 1 0 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1

1 0 0

0 1 0 0 0 0 0 0 0

(3,2,0,1,1,0,0,1)

0 0 0

(3,0,1,0,2,1,0,1)

1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 1
1 0 1 1 0 0 1 1 0 0 0 0
0 1 0 0 1 1 1 0 0 0 0 1
1 0 0 0 1 1 1 0 0 0 0 1
0 1 1 1 1 1 0 0 1 1 1 1
1 0 1 1 1 1 1 1 1 0 1 0

0 1 0

0 0 0 1 0 0 0 0 0

(3,2,1,0,0,1,0,1)

0 0 0

(3,1,0,0,2,0,1,1)

1 1 0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 0 0 1 0 0
0 0 0 1 1 1 1 0 1 0 0 0
1 1 0 1 1 1 1 1 1 0 0 1
0 0 1 0 1 1 0 0 0 0 1 1
1 1 1 0 1 1 1 0 0 1 1 1

1 1 0

0 1 0 1 0 0 0 0 0

(3,2,1,0,0,1,0,1)

0 0 1

(3,1,0,0,2,0,1,1)

1 0 0 1 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0
1 0 1 0 0 0 1 0 0 0 0 0
0 1 0 1 1 1 1 0 1 0 0 1
1 0 0 1 1 1 1 1 1 0 0 0
0 1 1 0 1 1 0 0 0 1 1 1
1 0 1 0 1 1 1 0 0 0 1 1

0 0 1

0 0 0 0 0 1 0 0 0

(3,2,0,1,1,0,0,1)

0 0 1

(3,0,1,0,2,1,0,1)

1 1 0 0 0 1 0 0 0 0 0 1
0 0 1 1 0 1 0 0 0 0 1 0
1 1 1 1 0 1 1 1 0 1 1 1
0 0 0 0 1 0 1 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0
0 0 1 1 1 0 0 0 1 0 0 0
1 1 1 1 1 0 1 1 1 1 0 1

1 0 1

0 1 0 0 0 1 0 0 0

(3,2,0,1,1,0,0,1)

0 0 1

(3,0,1,0,2,1,0,1)

1 0 0 0 0 1 0 0 0 0 0 1
0 1 1 1 0 1 0 0 0 1 1 1
1 0 1 1 0 1 1 1 0 0 1 0
0 1 0 0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0 0
0 1 1 1 1 0 0 0 1 1 0 1
1 0 1 1 1 0 1 1 1 0 0 0

0 1 1

0 0 0 1 0 1 0 0 0

(3,2,1,0,0,1,0,1)

0 0 0

(3,1,0,0,2,0,1,1)

1 1 0 1 0 1 0 1 0 0 0 1
0 0 1 0 0 1 0 0 0 0 1 1
1 1 1 0 0 1 1 0 0 1 1 1
0 0 0 1 1 0 1 0 1 0 0 0
1 1 0 1 1 0 1 1 1 0 0 1
0 0 1 0 1 0 0 0 0 0 0 0
1 1 1 0 1 0 1 0 0 1 0 0

1 1 1

0 1 0 1 0 1 0 0 0

(3,2,1,0,0,1,0,1)

0 0 1

(3,1,0,0,2,0,1,1)

1 0 0 1 0 1 0 1 0 0 0 0
0 1 1 0 0 1 0 0 0 1 1 1
1 0 1 0 0 1 1 0 0 0 1 1
0 1 0 1 1 0 1 0 1 0 0 1
1 0 0 1 1 0 1 1 1 0 0 0
0 1 1 0 1 0 0 0 0 1 0 0
1 0 1 0 1 0 1 0 0 0 0 0



Aein Rezaei Shahmirzadi and Amir Moradi 333

B 2-share Masked Midori S-box without Fresh Masks

F (a, b, c, d) : CAD3EBF789150246

x = f (a, b, c, d) = b+ ac+ ad+ abc+ abd+ bcd

y = g(a, b, c, d) = a+ c+ ac+ ad+ cd

z = h(a, b, c, d) = 1 + a+ d+ ad+ abc+ abd+ bcd

t = k(a, b, c, d) = 1 + ab+ bd+ cd+ abd+ bcd

f0(a1, b0, c0, d0) = b0c0d0 + b0c0a1 + b0d0a1 → x′0
f1(a0, b0, c0, d1) = d1 + b0d1 + c0d1 + c0a0 + d1a0 + b0c0d1 + b0c0a0 + b0d1a0 → x′1
f2(a0, b0, c1, d0) = c1d0 + c1a0 + d0a0 + b0c1d0 + b0c1a0 + b0d0a0 → x′2
f3(a1, b0, c1, d1) = b0 + b0d1 + b0c1d1 + b0c1a1 + b0d1a1 → x′3
f4(a0, b1, c0, d0) = b1c0d0 + b1c0a0 + b1d0a0 → x′4
f5(a1, b1, c0, d1) = d1 + b1d1 + c0d1 + c0a1 + d1a1 + b1c0d1 + b1c0a1 + b1d1a1 → x′5
f6(a1, b1, c1, d0) = c1d0 + c1a1 + d0a1 + b1c1d0 + b1c1a1 + b1d0a1 → x′6
f7(a0, b1, c1, d1) = b1 + b1d1 + b1c1d1 + b1c1a0 + b1d1a0 → x′7

g0(a0, c0, d0) = a0 + c0 + d0 + a0c0 + a0d0 + c0d0 → y′0
g1(a0, b1, c1, d1) = b1 + d1 + a0c1 + a0d1 + c1d1 → y′1
g2(a1, c0, d1) = d1 + a1c0 + a1d1 + c0d1 → y′2
g3(a1, b1, c1, d0) = a1 + b1 + c1 + d0 + a1c1 + a1d0 + c1d0 → y′3

h0(a0, b0, c0, d1) = 1 + a0 + b0d1 + a0b0c0 + a0b0d1 + b0c0d1 → z′0
h1(a0, b0, c1, d0) = d0 + a0c1 + a0d0 + b0d0 + c1d0 + a0b0c1 + a0b0d0 + b0c1d0 → z′1
h2(a0, b1, c0, d0) = a0 + b1c0 + a0b1c0 + a0b1d0 + b1c0d0 → z′2
h3(a0, b1, c1, d1) = a0 + a0c1 + b1c1 + a0d1 + c1d1 + a0b1c1 + a0b1d1 + b1c1d1 → z′3
h4(a1, b0, c0, d0) = a1 + b0d0 + a1b0c0 + a1b0d0 + b0c0d0 → z′4
h5(a1, b0, c1, d1) = d1 + a1c1 + a1d1 + b0d1 + c1d1 + a1b0c1 + a1b0d1 + b0c1d1 → z′5
h6(a1, b1, c0, d1) = a1 + b1c0 + a1b1c0 + a1b1d1 + b1c0d1 → z′6
h7(a1, b1, c1, d0) = a1 + a1c1 + b1c1 + a1d0 + c1d0 + a1b1c1 + a1b1d0 + b1c1d0 → z′7

k0(a1, b0, c0, d0) = 1 + b0d0 + b0a1 + b0c0d0 + b0d0a1 → t′0
k1(a0, b0, c0, d1) = a0 + c0d1 + b0a0 + d1a0 + b0c0d1 + b0d1a0 → t′1
k2(a0, b0, c1, d0) = c1d0 + d0a0 + b0c1d0 + b0d0a0 → t′2
k3(a1, b0, c1, d1) = b0d1 + b0c1d1 + b0d1a1 → t′3
k4(a0, b1, c0, d0) = a0 + b1d0 + c0d0 + b1a0 + d0a0 + b1c0d0 + b1d0a0 → t′4
k5(a1, b1, c0, d1) = b1d1 + b1a1 + b1c0d1 + b1d1a1 → t′5
k6(a1, b1, c1, d0) = b1c1d0 + b1d0a1 → t′6
k7(a0, b1, c1, d1) = c1d1 + d1a0 + b1c1d1 + b1d1a0 → t′7

x′0 + x′1 + x′2 + x′3 = x0 x′4 + x′5 + x′6 + x′7 = x1

y′0 + y′1 = y0 y′2 + y′3 = y1

z′0 + z′1 + z′2 + z′3 = z0 z′4 + z′5 + z′6 + z′7 = z1

t′0 + t′1 + t′2 + t′3 = t0 t′4 + t′5 + t′6 + t′7 = t1
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C 2-share Masked PRESENT S-box without Fresh Masks

F (a, b, c, d) : C56B90AD3EF84712

x = f (a, b, c, d) = a+ c+ d+ bc

y = g(a, b, c, d) = b+ d+ bd+ cd+ abc+ abd+ acd

z = h(a, b, c, d) = 1 + c+ d+ ab+ ad+ bd+ abd+ acd

t = k(a, b, c, d) = 1 + a+ b+ d+ bc+ abc+ abd+ acd

f0(a1, b0, c0, d0) = c0 + d0 + a1 + b0c0 → x′0
f1(a1, b0, c1) = c1 + a1 + b0c1 → x′1
f2(a1, b1, c0) = a1 + b1c0 → x′2
f3(a0, b1, c1, d1) = d1 + a0 + b1c1 → x′3

g0(a1, b0, c0, d0) = b0a1 + b0c0a1 + b0d0a1 + c0d0a1 → y′0
g1(a0, b0, c0, d1) = d1a0 + b0c0a0 + b0d1a0 + c0d1a0 → y′1
g2(a0, b0, c1, d0) = c1 + b0c1 + b0d0 + c1d0 + c1a0 + b0c1a0 + b0d0a0 + c1d0a0 → y′2
g3(a1, b0, c1, d1) = b0 + c1 + b0c1 + b0d1 + c1d1 + b0a1 + c1a1 + d1a1 + b0c1a1+

b0d1a1 + c1d1a1 → y′3
g4(a0, b1, c0, d0) = b1 + d0 + a0 + b1c0 + b1d0 + c0d0 + b1a0 + b1c0a0 + b1d0a0+

c0d0a0 → y′4
g5(a1, b1, c0, d1) = d1 + b1c0 + b1d1 + c0d1 + d1a1 + b1c0a1 + b1d1a1 + c0d1a1 → y′5
g6(a1, b1, c1, d0) = c1a1 + b1c1a1 + b1d0a1 + c1d0a1 → y′6
g7(a0, b1, c1, d1) = a0 + b1a0 + c1a0 + d1a0 + b1c1a0 + b1d1a0 + c1d1a0 → y′7

h0(a1, b0, c0, d0) = 1 + b0a1 + c0a1 + b0d0a1 + c0d0a1 → z′0
h1(a0, b0, c0, d1) = a0 + b0a0 + c0a0 + d1a0 + b0d1a0 + c0d1a0 → z′1
h2(a0, b0, c1, d0) = b0d0 + c1d0 + b0d0a0 + c1d0a0 → z′2
h3(a1, b0, c1, d1) = c1 + a1 + b0d1 + c1d1 + d1a1 + b0d1a1 + c1d1a1 → z′3
h4(a0, b1, c0, d0) = a0 + b1a0 + c0a0 + d0a0 + b1d0a0 + c0d0a0 → z′4
h5(a1, b1, c0, d1) = c0 + d1 + a1 + b1a1 + c0a1 + b1d1a1 + c0d1a1 → z′5
h6(a1, b1, c1, d0) = d0 + b1d0 + c1d0 + d0a1 + b1d0a1 + c1d0a1 → z′6
h7(a0, b1, c1, d1) = b1d1 + c1d1 + b1d1a0 + c1d1a0 → z′7

k0(a1, b0, c0, d0) = 1 + b0a1 + b0c0a1 + b0d0a1 + c0d0a1 → t′0
k1(a0, b0, c0, d1) = d1 + b0c0 + b0d1 + c0d1 + d1a0 + b0c0a0 + b0d1a0 + c0d1a0 → t′1
k2(a0, b0, c1, d0) = c1a0 + b0c1a0 + b0d0a0 + c1d0a0 → t′2
k3(a1, b0, c1, d1) = b0 + c1 + a1 + b0c1 + b0d1 + c1d1 + b0a1 + c1a1 + d1a1+

b0c1a1 + b0d1a1 + c1d1a1 → t′3
k4(a0, b1, c0, d0) = d0 + b1a0 + b1c0a0 + b1d0a0 + c0d0a0 → t′4
k5(a1, b1, c0, d1) = d1 + b1c0 + b1d1 + c0d1 + d1a1 + b1c0a1 + b1d1a1 + c0d1a1 → t′5
k6(a1, b1, c1, d0) = c1a1 + b1c1a1 + b1d0a1 + c1d0a1 → t′6
k7(a0, b1, c1, d1) = b1 + c1 + d1 + a0 + b1c1 + b1d1 + c1d1 + b1a0 + c1a0 + d1a0+

b1c1a0 + b1d1a0 + c1d1a0 → t′7

x′0 + x′1 = x0 x′2 + x′3 = x1
y′0 + y′1 + y′2 + y′3 = y0 y′4 + y′5 + y′6 + y′7 = y1
z′0 + z′1 + z′2 + z′3 = z0 z′4 + z′5 + z′6 + z′7 = z1
t′0 + t′1 + t′2 + t′3 = t0 t′4 + t′5 + t′6 + t′7 = t1
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D 2-share Masked PRINCE S-box without Fresh Masks

F (a, b, c, d) : BF32AC916780E5D4 Remark: 〈x0, x1〉, 〈z0, z1〉, 〈t0, t1〉 are jointly uniform.

x = f (a, b, c, d) = 1 + c+ d+ ab+ bc+ ad+ cd+ abc

y = g(a, b, c, d) = 1 + ac+ bc+ bd+ abc+ bcd

z = h(a, b, c, d) = a+ d+ ab+ ad+ bd+ abd+ bcd

t = k(a, b, c, d) = 1 + b+ d+ bc+ cd+ abc+ abd+ acd

f0(a0, b0, c0, d1) = 1 + b0 + d1 + a0b0 + b0c0 + a0d1 + a0b0c0 → x′0
f1(a0, b0, c1, d0) = a0c1 + a0b0c1 → x′1
f2(a0, b1, c0, d0) = d0 + b1c0 + a0d0 + a0b1c0 → x′2
f3(a0, b1, c1, d1) = c1 + a0b1 + a0c1 + a0b1c1 → x′3
f4(a1, b0, c0, d0) = c0 + c0d0 + a1b0c0 → x′4
f5(a1, b0, c1, d1) = b0 + d1 + a1b0 + b0c1 + a1d1 + c1d1 + a1b0c1 → x′5
f6(a1, b1, c0, d1) = d1 + a1b1 + c0d1 + a1b1c0 → x′6
f7(a1, b1, c1, d0) = b1c1 + a1d0 + c1d0 + a1b1c1 → x′7

g0(a0, b0, c0, d1) = 1 + b0c0 + a0b0c0 + b0c0d1‘ → y′0
g1(a0, b0, c1, d0) = c1 + a0c1 + b0c1 + c1d0 + a0b0c1 + b0c1d0 → y′1
g2(a0, b1, c0, d0) = d0 + a0b1 + a0c0 + b1d0 + c0d0 + a0b1c0 + b1c0d0 → y′2
g3(a0, b1, c1, d1) = a0b1 + b1d1 + a0b1c1 + b1c1d1 → y′3
h4(a1, b0, c0, d0) = d0 + a1b0 + a1c0 + b0d0 + c0d0 + a1b0c0 + b0c0d0 → y′4
h5(a1, b0, c1, d1) = a1b0 + b0d1 + a1b0c1 + b0c1d1 → y′5
h6(a1, b1, c0, d1) = b1c0 + a1b1c0 + b1c0d1 → y′6
h7(a1, b1, c1, d0) = c1 + a1c1 + b1c1 + c1d0 + a1b1c1 + b1c1d0 → y′7

h0(a0, b0, c0, d1) = a0d1 + c0d1 + a0b0d1 + b0c0d1 → z′0
h1(a0, b0, c1, d0) = a0 + a0b0 + b0c1 + b0d0 + a0b0d0 + b0c1d0 → z′1
h2(a0, b1, c0, d0) = d0 + a0d0 + b1d0 + c0d0 + a0b1d0 + b1c0d0 → z′2
h3(a0, b1, c1, d1) = a0b1 + b1c1 + a0b1d1 + b1c1d1 → z′3
h4(a1, b0, c0, d0) = a1d0 + c0d0 + a1b0d0 + b0c0d0 → z′4
h5(a1, b0, c1, d1) = a1 + a1b0 + b0c1 + b0d1 + a1b0d1 + b0c1d1 → z′5
h6(a1, b1, c0, d1) = d1 + a1d1 + b1d1 + c0d1 + a1b1d1 + b1c0d1 → z′6
h7(a1, b1, c1, d0) = a1b1 + b1c1 + a1b1d0 + b1c1d0 → z′7

k0(a0, b0, c0, d1) = 1 + a0b0 + a0d1 + a0b0c0 + a0b0d1 + a0c0d1 → t′0
k1(a0, b0, c1, d0) = b0 + d0 + a0b0 + b0c1 + a0d0 + b0d0 + c1d0 + a0b0c1+

a0b0d0 + a0c1d0 → t′1
k2(a0, b1, c0, d0) = a0d0 + a0b1c0 + a0b1d0 + a0c0d0 → t′2
k3(a0, b1, c1, d1) = d1 + b1c1 + a0d1 + b1d1 + c1d1 + a0b1c1 + a0b1d1 + a0c1d1 → t′3
k4(a1, b0, c0, d0) = b0c0 + b0d0 + c0d0 + a1b0c0 + a1b0d0 + a1c0d0 → t′4
k5(a1, b0, c1, d1) = a1 + a1b0c1 + a1b0d1 + a1c1d1 → t′5
k6(a1, b1, c0, d1) = b1 + a1b1 + b1c0 + b1d1 + c0d1 + a1b1c0 + a1b1d1 + a1c0d1 → t′6
k7(a1, b1, c1, d0) = a1 + a1b1 + a1b1c1 + a1b1d0 + a1c1d0 → t′7

x′0 + x′1 + x′2 + x′3 = x0 x′4 + x′5 + x′6 + x′7 = x1
y′0 + y′1 + y′2 + y′3 = y0 y′4 + y′5 + y′6 + y′7 = y1
z′0 + z′1 + z′2 + z′3 = z0 z′4 + z′5 + z′6 + z′7 = z1
t′0 + t′1 + t′2 + t′3 = t0 t′4 + t′5 + t′6 + t′7 = t1
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E 2-shareMaskedPRINCES-box Inverse without FreshMasks

F (a, b, c, d) : BF32AC916780E5D4 Remark: 〈x0, x1〉, 〈z0, z1〉, 〈t0, t1〉 are jointly uniform.

x = f (a, b, c, d) = 1 + d+ ab+ bc+ cd+ abd+ acd

y = g(a, b, c, d) = 1 + ac+ bc+ bd+ cd+ abc

z = h(a, b, c, d) = a+ c+ ab+ ac+ bc+ bd+ abc+ abd

t = k(a, b, c, d) = 1 + a+ b+ ab+ ac+ bc+ cd+ abc+ acd+ bcd

f0(a0, b0, c0, d1) = 1 + d1 + a0c0 + b0d1 + a0b0d1 + a0c0d1 → x′0
f1(a0, b0, c1, d0) = a0 + d0 + a0b0 + c1d0 + a0b0d0 + a0c1d0 → x′1
f2(a0, b1, c0, d0) = c0 + a0c0 + c0d0 + a0b1d0 + a0c0d0 → x′2
f3(a0, b1, c1, d1) = a0 + b1 + a0b1 + b1d1 + a0b1d1 + a0c1d1 → x′3
f4(a1, b0, c0, d0) = b0 + c0 + a1c0 + b0c0 + a1d0 + a1b0d0 + a1c0d0 → x′4
f5(a1, b0, c1, d1) = b0 + c1 + a1b0 + a1c1 + b0c1 + b0d1 + c1d1 + a1b0d1 + a1c1d1 → x′5
f6(a1, b1, c0, d1) = a1 + a1b1 + a1c0 + b1c0 + b1d1 + c0d1 + a1b1d1 + a1c0d1 → x′6
f7(a1, b1, c1, d0) = a1 + b1 + c1 + a1c1 + b1c1 + a1d0 + a1b1d0 + a1c1d0 → x′7

g0(a0, b0, c0, d1) = 1 + a0 + c0 + b0c0 + a0d1 + c0d1 + a0b0c0 → y′0
g1(a0, b0, c1, d0) = a0 + b0c1 + a0d0 + c1d0 + a0b0c1 → y′1
g2(a0, b1, c0, d0) = d0 + a0c0 + a0d0 + c0d0 + a0b1c0 → y′2
g3(a0, b1, c1, d1) = b1 + a0c1 + b1c1 + a0d1 + c1d1 + a0b1c1 → y′3
h4(a1, b0, c0, d0) = c0 + a1b0 + a1c0 + a1d0 + b0d0 + a1b0c0 → y′4
h5(a1, b0, c1, d1) = a1b0 + a1c1 + a1d1 + b0d1 + a1b0c1 → y′5
h6(a1, b1, c0, d1) = b1 + a1b1 + b1c0 + a1d1 + b1d1 + a1b1c0 → y′6
h7(a1, b1, c1, d0) = d0 + a1b1 + a1d0 + b1d0 + a1b1c1 → y′7

h0(a0, b0, c0, d1) = a0 + c0 + a0b0 + a0d1 + a0b0c0 + a0b0d1 → z′0
h1(a0, b0, c1, d0) = a0b0c1 + a0b0d0 → z′1
h2(a0, b1, c0, d0) = a0b1 + a0c0 + b1c0 + b1d0 + a0b1c0 + a0b1d0 → z′2
h3(a0, b1, c1, d1) = c1 + d1 + a0c1 + b1c1 + a0d1 + b1d1 + a0b1c1 + a0b1d1 → z′3
h4(a1, b0, c0, d0) = b0c0 + b0d0 + a1b0c0 + a1b0d0 → z′4
h5(a1, b0, c1, d1) = d1 + a1b0 + a1c1 + b0c1 + a1d1 + b0d1 + a1b0c1 + a1b0d1 → z′5
h6(a1, b1, c0, d1) = a1b1 + a1c0 + a1d1 + a1b1c0 + a1b1d1 → z′6
h7(a1, b1, c1, d0) = a1 + a1b1c1 + a1b1d0 → z′7

k0(a0, b0, c0, d1) = 1 + b0 + a0b0 + b0c0 + a0d1 + b0d1 + a0b0c0 + a0c0d1 + b0c0d1 → t′0
k1(a0, b0, c1, d0) = c1d0 + a0b0c1 + a0c1d0 + b0c1d0 → t′1
k2(a0, b1, c0, d0) = b1 + a0c0 + b1c0 + c0d0 + a0b1c0 + a0c0d0 + b1c0d0 → t′2
k3(a0, b1, c1, d1) = a0 + a0b1 + a0c1 + a0d1 + b1d1 + a0b1c1 + a0c1d1 + b1c1d1 → t′3
k4(a1, b0, c0, d0) = a1c0 + a1b0c0 + a1c0d0 + b0c0d0 → t′4
k5(a1, b0, c1, d1) = a1 + d1 + a1b0 + a1c1 + b0c1 + a1d1 + b0d1 + c1d1 + a1b0c1+

a1c1d1 + b0c1d1 → t′5
k6(a1, b1, c0, d1) = d1 + a1b1 + a1d1 + b1d1 + c0d1 + a1b1c0 + a1c0d1 + b1c0d1 → t′6
k7(a1, b1, c1, d0) = b1c1 + a1b1c1 + a1c1d0 + b1c1d0 → t′7

x′0 + x′1 + x′2 + x′3 = x0 x′4 + x′5 + x′6 + x′7 = x1
y′0 + y′1 + y′2 + y′3 = y0 y′4 + y′5 + y′6 + y′7 = y1
z′0 + z′1 + z′2 + z′3 = z0 z′4 + z′5 + z′6 + z′7 = z1
t′0 + t′1 + t′2 + t′3 = t0 t′4 + t′5 + t′6 + t′7 = t1
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F 2-share Masked GF (24) Inversion without Fresh Masks
F (a, b, c, d) : 0132ED8AF67C495B

x = f (a, b, c, d) = a+ b+ d+ bc+ bd+ cd+ abc

y = g(a, b, c, d) = b+ c+ d+ ac+ bd+ abd+ acd

z = h(a, b, c, d) = c+ d+ bc+ cd+ acd+ bcd

t = k(a, b, c, d) = c+ d+ ad+ bd+ bcd

f0(a1, b0, c0, d1) = b0 + b0c0 + b0d1 + c0d1 + c0a1 + b0c0a1 → x′0
f1(a0, b0, c0, d0) = d0 + b0d0 + c0d0 + b0c0a0 → x′1
f2(a0, b0, c1, d0) = c1 + c1d0 + b0c1a0 → x′2
f3(a1, b0, c1, d1) = b0c1 + c1d1 + c1a1 + b0c1a1 → x′3
f4(a0, b1, c0, d1) = b1c0 + b1c0a0 → x′4
f5(a1, b1, c0, d0) = a1 + b1d0 + c0a1 + b1c0a1 → x′5
f6(a1, b1, c1, d0) = c1 + b1c1 + c1a1 + b1c1a1 → x′6
f7(a0, b1, c1, d1) = b1 + d1 + a0 + b1d1 + b1c1a0 → x′7

g0(a1, b0, c0, d0) = a1 + b0a1 + c0a1 + d0a1 + b0d0a1 + c0d0a1 → y′0
g1(a0, b0, c0, d1) = b0d1a0 + c0d1a0 → y′1
g2(a0, b0, c1, d0) = b0d0 + c1d0 + b0d0a0 + c1d0a0 → y′2
g3(a1, b0, c1, d1) = b0 + a1 + b0d1 + c1d1 + b0a1 + c1a1 + d1a1 + b0d1a1 + c1d1a1 → y′3
h4(a0, b1, c0, d0) = b1a0 + c0a0 + b1d0a0 + c0d0a0 → y′4
h5(a1, b1, c0, d1) = c0 + d1 + d1a1 + b1d1a1 + c0d1a1 → y′5
h6(a1, b1, c1, d0) = d0 + b1d0 + c1d0 + d0a1 + b1d0a1 + c1d0a1 → y′6
h7(a0, b1, c1, d1) = b1 + c1 + b1d1 + c1d1 + b1a0 + c1a0 + b1d1a0 + c1d1a0 → y′7

h0(a1, b0, c0, d0) = b0c0 + c0a1 + b0c0d0 + c0d0a1 → z′0
h1(a0, b0, c0, d1) = b0d1 + d1a0 + b0c0d1 + c0d1a0 → z′1
h2(a0, b0, c1, d0) = c1d0 + b0c1d0 + c1d0a0 → z′2
h3(a1, b0, c1, d1) = c1 + a1 + b0c1 + b0d1 + c1d1 + c1a1 + d1a1 + b0c1d1 + c1d1a1 → z′3
h4(a0, b1, c0, d0) = b1 + d0 + c0d0 + b1c0d0 + c0d0a0 → z′4
h5(a1, b1, c0, d1) = b1 + c0 + d1 + a1 + b1c0 + b1d1 + c0d1 + c0a1 + d1a1+

b1c0d1 + c0d1a1 → z′5
h6(a1, b1, c1, d0) = b1c1 + c1a1 + b1c1d0 + c1d0a1 → z′6
h7(a0, b1, c1, d1) = b1d1 + d1a0 + b1c1d1 + c1d1a0 → z′7

k0(a1, b0, c0, d0) = a1 + c0d0 + b0a1 + b0c0d0 → t′0
k1(a0, b0, c0, d1) = d1 + b0d1 + b0a0 + b0c0d1 → t′1
k2(a0, b0, c1, d0) = c1 + d0 + a0 + b0c1 + b0d0 + c1d0 + b0a0 + b0c1d0 → t′2
k3(a1, b0, c1, d1) = b0c1 + b0a1 + b0c1d1 → t′3
k4(a0, b1, c0, d0) = c0 + a0 + b1c0 + b1d0 + c0d0 + d0a0 + b1c0d0 → t′4
k5(a1, b1, c0, d1) = b1 + a1 + b1c0 + b1d1 + d1a1 + b1c0d1 → t′5
k6(a1, b1, c1, d0) = b1 + c1d0 + d0a1 + b1c1d0 → t′6
k7(a0, b1, c1, d1) = d1a0 + b1c1d1 → t′7

x′0 + x′1 + x′2 + x′3 = x0 x′4 + x′5 + x′6 + x′7 = x1
y′0 + y′1 + y′2 + y′3 = y0 y′4 + y′5 + y′6 + y′7 = y1
z′0 + z′1 + z′2 + z′3 = z0 z′4 + z′5 + z′6 + z′7 = z1
t′0 + t′1 + t′2 + t′3 = t0 t′4 + t′5 + t′6 + t′7 = t1
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G 2-share Masked GF (24) Multiplier without Fresh Masks

F (a, b, c, d, e, f, g, h) : 〈x, y, z, t〉

x = f (a, b, c, d, e, f, g, h) = b+ d+ ae+ ce+ af + bf + cf + df + cg + ah+ bh

y = g(a, b, c, d, e, f, g, h) = a+ b+ c+ d+ be+ de+ af + cf + dg + ah

z = h(a, b, c, d, e, f, g, h) = b+ c+ ae+ ce+ de+ af + bf + df + ag + dg + ch+ dh

t = k(a, b, c, d, e, f, g, h) = a+ b+ d+ be+ ce+ af + cf + df + bg + cg + dg + ch

f0(a0, b0, c0, d0, e0, f0, g0, h0) =d0 + a0e0 + c0e0 + a0f0 + b0f0 + c0f0 + d0f0+
c0g0 + a0h0 + b0h0 →x′0

f1(a0, b0, c0, d0, e1, f1, g1, h1) =b0 + e1 + a0e1 + c0e1 + a0f1 + b0f1 + c0f1 + d0f1+
c0g1 + a0h1 + b0h1 →x′1

f2(a1, b1, c1, d1, e0, f0, g0, h0) =d1 + a1e0 + c1e0 + a1f0 + b1f0 + c1f0+
d1f0 + c1g0 + a1h0 + b1h0 →x′2

f3(a1, b1, c1, d1, e1, f1, g1, h1) =b1 + e1 + a1e1 + c1e1 + a1f1 + b1f1 + c1f1 + d1f1+
c1g1 + a1h1 + b1h1 →x′3

g0(a0, b0, c0, d0, e0, f0, g0, h0)=a0 + b0 + b0e0 + d0e0 + a0f0 + c0f0 + d0g0 + a0h0 →y′0
g1(a0, b0, c0, d0, e1, f1, g1, h1)=c0 + d0 + f1 + b0e1 + d0e1 + a0f1 + c0f1 + d0g1+

a0h1 →y′1
g2(a1, b1, c1, d1, e0, f0, g0, h0)=b1 + c1 + d1 + b1e0 + d1e0 + a1f0 + c1f0 + d1g0+

a1h0 →y′2
g3(a1, b1, c1, d1, e1, f1, g1, h1)=a1 + f1 + b1e1 + d1e1 + a1f1 + c1f1 + d1g1 + a1h1 →y′3

h0(a0, b0, c0, d0, e0, f0, g0, h0)=b0 + a0e0 + c0e0 + d0e0 + a0f0 + b0f0 + d0f0+
a0g0 + d0g0 + c0h0 + d0h0 →z′0

h1(a0, b0, c0, d0, e1, f1, g1, h1)=c0 + g1 + a0e1 + c0e1 + d0e1 + a0f1 + b0f1+
d0f1 + a0g1 + d0g1 + c0h1 + d0h1 →z′1

h2(a1, b1, c1, d1, e0, f0, g0, h0)=b1 + a1e0 + c1e0 + d1e0 + a1f0 + b1f0 + d1f0+
a1g0 + d1g0 + c1h0 + d1h0 →z′2

h3(a1, b1, c1, d1, e1, f1, g1, h1)=c1 + g1 + a1e1 + c1e1 + d1e1 + a1f1 + b1f1+
d1f1 + a1g1 + d1g1 + c1h1 + d1h1 →z′3

k0(a0, b0, c0, d0, e0, f0, g0, h0)=a0 + b0e0 + c0e0 + a0f0 + c0f0 + d0f0 + b0g0+
c0g0 + d0g0 + c0h0 →t′0

k1(a0, b0, c0, d0, e1, f1, g1, h1)=b0 + d0 + h1 + b0e1 + c0e1 + a0f1 + c0f1+
d0f1 + b0g1 + c0g1 + d0g1 + c0h1 →t′1

k2(a1, b1, c1, d1, e0, f0, g0, h0)=a1 + c1 + d1 + b1e0 + c1e0 + a1f0 + c1f0+
d1f0 + b1g0 + c1g0 + d1g0 + c1h0 →t′2

k3(a1, b1, c1, d1, e1, f1, g1, h1)=b1 + c1 + h1 + b1e1 + c1e1 + a1f1 + c1f1+
d1f1 + b1g1 + c1g1 + d1g1 + c1h1 →t′3

x′0 + x′1 = x0 x′2 + x′3 = x1
y′0 + y′1 = y0 y′2 + y′3 = y1
z′0 + z′1 = z0 z′2 + z′3 = z1
t′0 + t′1 = t0 t′2 + t′3 = t1



Aein Rezaei Shahmirzadi and Amir Moradi 339

H 2-share Masked GF (24) Square-Scale-Multiplier
with 1-bit Fresh Mask, Jointly Uniform with P and Q

F (a, b, c, d, e, f, g, h) : 〈x, y, z, t〉

x = f (a, b, c, d, e, f, g, h) = a+ e+ ae+ be+ ce+ af + df + ag + cg + bh+ dh

y = g(a, b, c, d, e, f, g, h) = 1 + d+ h+ ae+ be+ de+ af + cf + df + bg + ah+ bh

z = h(a, b, c, d, e, f, g, h) = a+ b+ c+ d+ e+ f + g + h+ ae+ be+ ce+ de+ af+
cf + ag + bg + dg + ah+ ch+ dh

t = k(a, b, c, d, e, f, g, h) = b+ d+ f + h+ ae+ ce+ bf + df + ag + cg + dg + bh+ ch

f0(a0, b0, c0, d0, e0, f0, g0, h0) =b0 + c0 + d0 + f0 + a0e0 + b0e0 + c0e0 + a0f0+
d0f0 + a0g0 + c0g0 + b0h0 + d0h0 →x′0

f1(a1, b0, c1, d1, e1, f0, g1, h1) =b0 + d1 + f0 + g1 + a1e1 + b0e1 + c1e1 + a1f0+
d1f0 + a1g1 + c1g1 + b0h1 + d1h1 →x′1

f2(a0, b1, c0, d0, e1, f1, g1, h1) =a0 + c0 + d0 + e1 + f1 + g1 + a0e1 + b1e1 + c0e1+
a0f1 + d0f1 + a0g1 + c0g1 + b1h1 + d0h1 →x′2

f3(a1, b1, c1, d1, e0, f1, g0, h0) =a1 + d1 + e0 + f1 + a1e0 + b1e0 + c1e0 + a1f1+
d1f1 + a1g0 + c1g0 + b1h0 + d1h0 →x′3

g0(a0, b0, c0, d0, e0, f0, g0, h0)=1 + b0 + a0e0 + b0e0 + d0e0 + a0f0 + c0f0 + d0f0+
b0g0 + a0h0 + b0h0 →y′0

g1(a1, b0, c1, d1, e1, f0, g1, h1)=b0 + c1 + d1 + e1 + g1 + a1e1 + b0e1 + d1e1+
a1f0 + c1f0 + d1f0 + b0g1 + a1h1 + b0h1 →y′1

g2(a0, b1, c0, d0, e1, f1, g1, h1)=d0 + e1 + g1 + h1 + a0e1 + b1e1 + d0e1 + a0f1+
c0f1 + d0f1 + b1g1 + a0h1 + b1h1 →y′2

g3(a1, b1, c1, d1, e0, f1, g0, h0)=c1 + h0 + a1e0 + b1e0 + d1e0 + a1f1 + c1f1+
d1f1 + b1g0 + a1h0 + b1h0 →y′3

h0(a0, b0, c0, d0, e0, f0, g0, h0)=a0e0 + b0e0 + c0e0 + d0e0 + a0f0 + c0f0 + a0g0+
b0g0 + d0g0 + a0h0 + c0h0 + d0h0 →z′0

h1(a1, b0, c1, d1, e1, f0, g1, h1)=b0 + c1 + d1 + e1 + f0 + g1 + a1e1 + b0e1 + c1e1+
d1e1 + a1f0 + c1f0 + a1g1 + b0g1 + d1g1 + a1h1+
c1h1 + d1h1 →z′1

h2(a0, b1, c0, d0, e1, f1, g1, h1)=a0 + b1 + c0 + d0 + f1 + h1 + a0e1 + b1e1 + c0e1+
d0e1 + a0f1 + c0f1 + a0g1 + b1g1 + d0g1 + a0h1+
c0h1 + d0h1 →z′2

h3(a1, b1, c1, d1, e0, f1, g0, h0)=a1 + e0 + h0 + a1e0 + b1e0 + c1e0 + d1e0 + a1f1+
g0 + c1f1 + a1g0 + b1g0 + d1g0 + a1h0 + c1h0 + d1h0 →z′3

k0(a0, b0, c0, d0, e0, f0, g0, h0)=a0e0 + c0e0 + b0f0 + d0f0 + a0g0 + c0g0 + d0g0+
b0h0 + c0h0 + m →t′0

k1(a1, b0, c1, d1, e1, f1, g0, h1)=b0 + e1 + h1 + a1e1 + c1e1 + b0f1 + d1f1 + a1g0+
c1g0 + d1g0 + b0h1 + c1h1 →t′1

k2(a0, b1, c0, d0, e1, f1, g1, h1)=d0 + e1 + f1 + a0e1 + c0e1 + b1f1 + d0f1 + a0g1+
c0g1 + d0g1 + b1h1 + c0h1 →t′2

k3(a1, b1, c1, d1, e0, f0, g1, h0)=b1 + d1 + f0 + h0 + a1e0 + c1e0 + b1f0 + d1f0+
a1g1 + c1g1 + d1g1 + b1h0 + c1h0 + m →t′3

x′0 + x′1 = x0 x′2 + x′3 = x1 y′0 + y′1 = y0 y′2 + y′3 = y1
z′0 + z′1 = z0 z′2 + z′3 = z1 t′0 + t′1 = t0 t′2 + t′3 = t1
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I 2-share Masked GF (24) Square-Scale-Multiplier
without Fresh Masks, Jointly Uniform with P

F (a, b, c, d, e, f, g, h) : 〈x, y, z, t〉

x = f (a, b, c, d, e, f, g, h) = a+ e+ ae+ be+ ce+ af + df + ag + cg + bh+ dh

y = g(a, b, c, d, e, f, g, h) = 1 + d+ h+ ae+ be+ de+ af + cf + df + bg + ah+ bh

z = h(a, b, c, d, e, f, g, h) = a+ b+ c+ d+ e+ f + g + h+ ae+ be+ ce+ de+ af+
cf + ag + bg + dg + ah+ ch+ dh

t = k(a, b, c, d, e, f, g, h) = b+ d+ f + h+ ae+ ce+ bf + df + ag + cg + dg + bh+ ch

f0(a0, b0, c0, d0, e0, f0, g0, h0) =a0e0 + b0e0 + c0e0 + a0f0 + d0f0 + a0g0 + c0g0+
b0h0 + d0h0 →x′0

f1(a1, b1, c1, d1, e0, f0, g0, h0) =a1e0 + b1e0 + c1e0 + a1f0 + d1f0 + a1g0 + c1g0+
b1h0 + d1h0 + e0 + a1 →x′2

f2(a0, b0, c0, d0, e1, f1, g1, h1) =a0e1 + b0e1 + c0e1 + a0f1 + d0f1 + a0g1 + c0g1+
b0h1 + d0h1 + h1 + a0 →x′1

f3(a1, b1, c1, d1, e1, f1, g1, h1) =a1e1 + b1e1 + c1e1 + a1f1 + d1f1 + a1g1 + c1g1+
b1h1 + d1h1 + e1 + h1 →x′3

g0(a0, b0, c0, d0, e0, f0, g0, h0)=1 + a0e0 + b0e0 + d0e0 + a0f0 + c0f0 + d0f0+
b0g0 + a0h0 + b0h0 + e0 + c0 →y′0

g1(a1, b1, c1, d1, e0, f0, g0, h0)=a1e0 + b1e0 + d1e0 + a1f0 + c1f0 + d1f0 + b1g0+
a1h0 + b1h0 + e0 + h0 →y′2

g2(a0, b0, c0, d0, e1, f1, g1, h1)=a0e1 + b0e1 + d0e1 + a0f1 + c0f1 + d0f1 + b0g1+
a0h1 + b0h1 + c0 + d0 →y′1

g3(a1, b1, c1, d1, e1, f1, g1, h1)=a1e1 + b1e1 + d1e1 + a1f1 + c1f1 + d1f1 + b1g1+
a1h1 + b1h1 + h1 + d1 →y′3

h0(a0, b0, c0, d0, e0, f0, g0, h0)=a0e0 + b0e0 + c0e0 + d0e0 + a0f0 + c0f0 + a0g0+
b0g0 + d0g0 + a0h0 + c0h0 + d0h0 + f0 + h0 →z′0

h1(a1, b1, c1, d1, e0, f0, g0, h0)=a1e0 + b1e0 + c1e0 + d1e0 + a1f0 + c1f0 + a1g0+
b1g0 + d1g0 + a1h0 + c1h0 + d1h0 + e0 + g0 + d1 →z′2

h2(a0, b0, c0, d0, e1, f1, g1, h1)=a0e1 + b0e1 + c0e1 + d0e1 + a0f1 + c0f1 + a0g1+
b0g1 + d0g1 + a0h1 + c0h1 + d0h1 + e1 + g1 + h1+
a0 + b0 + c0 + d0 →z′1

h3(a1, b1, c1, d1, e1, f1, g1, h1)=a1e1 + b1e1 + c1e1 + d1e1 + a1f1 + c1f1 + a1g1+
b1g1 + d1g1 + a1h1 + c1h1 + d1h1 + f1 + a1 + b1 + c1 →z′3

k0(a0, b0, c0, d0, e0, f0, g0, h0)=a0e0 + c0e0 + b0f0 + d0f0 + a0g0 + c0g0 + d0g0+
b0h0 + c0h0 + f0 + a0 + b0 →t′0

k1(a1, b1, c1, d1, e0, f0, g0, h0)=a1e0 + c1e0 + b1f0 + d1f0 + a1g0 + c1g0 + d1g0+
b1h0 + c1h0 + h0 →t′2

k2(a0, b0, c0, d0, e1, f1, g1, h1)=a0e1 + c0e1 + b0f1 + d0f1 + a0g1 + c0g1 + d0g1+
b0h1 + c0h1 + a0 + d0 →t′1

k3(a1, b1, c1, d1, e1, f1, g1, h1)=a1e1 + c1e1 + b1f1 + d1f1 + a1g1 + c1g1 + d1g1+
b1h1 + c1h1 + f1 + h1 + b1 + d1 →t′3

x′0 + x′1 = x0 x′2 + x′3 = x1 y′0 + y′1 = y0 y′2 + y′3 = y1
z′0 + z′1 = z0 z′2 + z′3 = z1 t′0 + t′1 = t0 t′2 + t′3 = t1



Aein Rezaei Shahmirzadi and Amir Moradi 341

J 2-share Masked GF (24) Square-Scale-Multiplier
without Fresh Masks, Jointly Uniform with Q

F (a, b, c, d, e, f, g, h) : 〈x, y, z, t〉

x = f (a, b, c, d, e, f, g, h) = a+ e+ ae+ be+ ce+ af + df + ag + cg + bh+ dh

y = g(a, b, c, d, e, f, g, h) = 1 + d+ h+ ae+ be+ de+ af + cf + df + bg + ah+ bh

z = h(a, b, c, d, e, f, g, h) = a+ b+ c+ d+ e+ f + g + h+ ae+ be+ ce+ de+ af+
cf + ag + bg + dg + ah+ ch+ dh

t = k(a, b, c, d, e, f, g, h) = b+ d+ f + h+ ae+ ce+ bf + df + ag + cg + dg + bh+ ch

f0(a0, b0, c0, d0, e0, f0, g0, h0) =a0e0 + b0e0 + c0e0 + a0f0 + d0f0 + a0g0 + c0g0+
b0h0 + d0h0 →x′0

f1(a0, b0, c0, d0, e1, f1, g1, h1) =a0e1 + b0e1 + c0e1 + a0f1 + d0f1 + a0g1 + c0g1+
b0h1 + d0h1 + a0 + e1 →x′1

f2(a1, b1, c1, d1, e0, f0, g0, h0) =a1e0 + b1e0 + c1e0 + a1f0 + d1f0 + a1g0 + c1g0+
b1h0 + d1h0 + d1 + e0 →x′2

f3(a1, b1, c1, d1, e1, f1, g1, h1) =a1e1 + b1e1 + c1e1 + a1f1 + d1f1 + a1g1 + c1g1+
b1h1 + d1h1 + a1 + d1 →x′3

g0(a0, b0, c0, d0, e0, f0, g0, h0)=1 + a0e0 + b0e0 + d0e0 + a0f0 + c0f0 + d0f0+
b0g0 + a0h0 + b0h0 + a0 + g0 →y′0

g1(a0, b0, c0, d0, e1, f1, g1, h1)=a0e1 + b0e1 + d0e1 + a0f1 + c0f1 + d0f1 + b0g1+
a0h1 + b0h1 + a0 + d0 →y′1

g2(a1, b1, c1, d1, e0, f0, g0, h0)=a1e0 + b1e0 + d1e0 + a1f0 + c1f0 + d1f0 + b1g0+
a1h0 + b1h0 + g0 + h0 →y′2

g3(a1, b1, c1, d1, e1, f1, g1, h1)=a1e1 + b1e1 + d1e1 + a1f1 + c1f1 + d1f1 + b1g1+
a1h1 + b1h1 + d1 + h1 →y′3

h0(a0, b0, c0, d0, e0, f0, g0, h0)=a0e0 + b0e0 + c0e0 + d0e0 + a0f0 + c0f0 + a0g0+
b0g0 + d0g0 + a0h0 + c0h0 + d0h0 + b0 + d0 →z′0

h1(a0, b0, c0, d0, e1, f1, g1, h1)=a0e1 + b0e1 + c0e1 + d0e1 + a0f1 + c0f1 + a0g1+
b0g1 + d0g1 + a0h1 + c0h1 + d0h1 + a0 + c0 + h1 →z′1

h2(a1, b1, c1, d1, e0, f0, g0, h0)=a1e0 + b1e0 + c1e0 + d1e0 + a1f0 + c1f0 + a1g0+
b1g0 + d1g0 + a1h0 + c1h0 + d1h0 + a1 + c1 + d1+
e0 + f0 + g0 + h0 →z′2

h3(a1, b1, c1, d1, e1, f1, g1, h1)=a1e1 + b1e1 + c1e1 + d1e1 + a1f1 + c1f1 + a1g1+
b1g1 + d1g1 + a1h1 + c1h1 + d1h1 + b1 + e1 + f1 + g1 →z′3

k0(a0, b0, c0, d0, e0, f0, g0, h0)=a0e0 + c0e0 + b0f0 + d0f0 + a0g0 + c0g0 + d0g0+
b0h0 + c0h0 + b0 + e0 + f0 →t′0

k1(a0, b0, c0, d0, e1, f1, g1, h1)=a0e1 + c0e1 + b0f1 + d0f1 + a0g1 + c0g1 + d0g1+
b0h1 + c0h1 + d0 →t′1

k2(a1, b1, c1, d1, e0, f0, g0, h0)=a1e0 + c1e0 + b1f0 + d1f0 + a1g0 + c1g0 + d1g0+
b1h0 + c1h0 + e0 + h0 →t′2

k3(a1, b1, c1, d1, e1, f1, g1, h1)=a1e1 + c1e1 + b1f1 + d1f1 + a1g1 + c1g1 + d1g1+
b1h1 + c1h1 + b1 + d1 + f1 + h1 →t′3

x′0 + x′1 = x0 x′2 + x′3 = x1 y′0 + y′1 = y0 y′2 + y′3 = y1
z′0 + z′1 = z0 z′2 + z′3 = z1 t′0 + t′1 = t0 t′2 + t′3 = t1
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K Attack Results with PRNG off

(a) Midori, 1st-order profiling MC-DPA,
first round, 10 000 traces

(b) AES, 1st-order collision MC-DPA,
first round, 10 000 traces

Figure 10: Experimental analysis with initial masking turned off.
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