
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 1, pp. 279–304. DOI:10.46586/tches.v2021.i1.279-304

Side-Channel Analysis of the Xilinx Zynq
UltraScale+ Encryption Engine

Benjamin Hettwer1,2, Sebastien Leger1, Daniel Fennes2, Stefan Gehrer3 and
Tim Güneysu2

1 Robert Bosch GmbH, Corporate Sector Research, Stuttgart, Germany
{benjamin.hettwer,sebastien.leger}@de.bosch.com

2 Ruhr University Bochum, Bochum, Germany
{daniel.fennes,tim.gueneysu}@rub.de

3 Robert Bosch LLC, Pittsburgh, USA
stefan.gehrer@bosch.com

Abstract. The Xilinx Zynq UltraScale+ (ZU+) is a powerful and flexible System-on-
Chip (SoC) computing platform for next generation applications such as autonomous
driving or industrial Internet-of-Things (IoT) based on 16 nm production technol-
ogy. The devices are equipped with a secure boot mechanism in order to provide
confidentiality, integrity, and authenticity of the configuration files that are loaded
during power-up. This includes a dedicated encryption engine which features a
protocol-based countermeasure against passive Side-Channel Attacks (SCAs) called
key rolling. The mechanism ensures that the same key is used only for a certain
number of data blocks that has to be defined by the user. However, a suitable choice
for the key rolling parameter depends on the power leakage behavior of the chip and
is not published by the manufacturer. To close this gap, this paper presents the first
publicly known side-channel analysis of the ZU+ encryption unit. We conduct a
black-box reverse engineering of the internal hardware architecture of the encryption
engine using Electromagnetic (EM) measurements from a decoupling capacitor of
the power supply. Then, we illustrate a sophisticated methodology that involves
the first five rounds of an AES encryption to attack the 256-bit secret key. We
apply the elaborated attack strategy using several new Deep Learning (DL)-based
evaluation methods for cryptographic implementations. Even though we are unable
to recover all bytes of the secret key, the experimental results still allow us to provide
concrete recommendations for the key rolling parameter under realistic conditions.
This eventually helps to configure the secure boot mechanism of the ZU+ and similar
devices appropriately.
Keywords: Side-Channel Attacks, Deep Learning, Bitstream Encryption, Key Rolling

1 Introduction
Side-Channel Attacks (SCAs) have been a known threat to embedded systems for more
than 20 years [KJJ99]. They provide a modern way of attacking cryptographic implemen-
tations of mathematical sound algorithms by exploiting information leaks via, e.g., power
consumption or Electromagnetic (EM) emanations. While the discovery of SCAs was a
nightmare for the smart card industry in early times, they are nowadays also considered
by a broader range of hardware manufacturers due to numerous published attacks against
commercial devices [EKM+08, KOP09, LDMPT15, OP11]. In particular, the bitstream
decryption engine of several Field Programmable Gate Array (FPGA) device families
have been successfully broken in the last years. For example, Moradi et al. performed

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-07-15 Accepted: 2020-09-15 Published: 2020-12-03

https://doi.org/10.46586/tches.v2021.i1.279-304
mailto:benjamin.hettwer@de.bosch.com, sebastien.leger@de.bosch.com
mailto:daniel.fennes@rub.de, tim.gueneysu@rub.de
mailto:stefan.gehrer@bosch.com
http://creativecommons.org/licenses/by/4.0/

280 Side-Channel Analysis of the Xilinx Zynq UltraScale+ Encryption Engine

a black-box analysis of the Xilinx Virtex-4 and Virtex-5 bitstream encryption mecha-
nism [MKP12]. They first reverse engineered the internal architecture of the AES-256
implementation and then mounted several Correlation Power Analysis (CPA) attacks
with a 232-bit key hypothesis to recover the last two round keys. A couple of Graphical
Processing Units (GPUs) have been used to speed up the calculations. Later, the same
research group showed that the attack complexity can be reduced to 28 by following a
dedicated measurement procedure (i.e. fixing certain ciphertext bytes to a constant value)
[MS16]. As the same bitstream decryption module is integrated in a range of FPGA
families from the 5, 6 and 7 series, the presented attack can be applied against a large
number of Xilinx devices.

Knowledge of the bitstream encryption key enables an attacker to copy, reverse engineer
or manipulate Intellectual Property (IP) which have potentially cost several hundred
person-years of development time. Because of that and in light of the aforementioned
attacks, Xilinx integrated two protocol-based countermeasures into their current SoC
device generation called Zynq UltraScale+ (ZU+) in order to increase the resistance
against SCAs. The hardware root of trust secure boot mode uses RSA authentication
before decrypting the configuration file to prevent adversaries from chosen-input attacks.
Additionally, key rolling limits the number of encryptions that are performed under a given
key [ZU19]. This involves that the configuration image is divided into several chunks, and
each chunk is encrypted with a unique secret. Keys for successive data blocks are stored
in previous data chunks. There is a trade-off between configuration time and security
as fewer encryption operations per key provide higher SCA protection but also increase
the bitstream size [ZU17a]. However, Xilinx does not give a concrete statement about
the maximum amount of data that can be encrypted by a single key to be secure against
certain kinds of SCAs. Users of the device therefore face the problem to set the key rolling
parameter to a value that fits their requirements without knowing any internals of the
AES-256 encryption unit (e.g. the leakage behaviour). This poses a potential security
issue for systems that include ZU+ devices.

1.1 Contribution

In this work, we assess the side-channel leakage of the encryption unit of the Xilinx ZU+
and provide a recommendation for the key rolling security parameter. We perform a
black-box reverse engineering of the hardware architecture of the embedded Advanced
Encryption Standard (AES) module by using CPA with known secret. Next, we present
an attack procedure that allows to extract the 256-bit key involving the first five AES
rounds. Finally, we demonstrate the application of our attack procedure using an enhanced
version of the DL-based correlation optimization scheme introduced at CHES 2019 [RQL18].
Although we are not able to recover all bytes of the AES-256 key in our experiments, we
can provide concrete numbers about the remaining attack complexity. As a consequence of
our results, we are able to suggest a suitable range of parameter values for the key rolling
countermeasure that takes security concerns as well as device boot time into account.

1.2 Structure of the Paper

In Section 2 we introduce the preliminaries of our paper. Section 3 covers related work. In
Section 4 we explain our measurement setup and present the reverse engineered hardware
architecture of the AES encryption engine. In Section 5 we show a generic way to recover
all bytes of the 256-bit AES key. In Section 6 we present and discuss our DL-based attacks.
Based on the results, Section 7 gives a recommendation for a parametrization of the key
rolling countermeasure. Section 8 concludes the paper.

B. Hettwer, S. Leger, D. Fennes, S. Gehrer, T. Güneysu 281

2 Preliminaries
This section covers the basics about FPGA security, SCA countermeasures of the ZU+,
and DL-based attacks.

2.1 FPGA Security
FPGAs are powerful and flexible reconfigurable devices, which are mostly based on volatile
Static Random-Access Memory (SRAM) technology. The configuration file (i.e. bitstream)
must be loaded at each power-up phase of the device. Protection of the bitstream
against duplication, manipulation, and/or reverse engineering is very important. FPGA
manufacturers provide security mechanisms such as encryption and authentication to
ensure confidentiality and authenticity of the IP. In this work we focus on the bitstream
encryption mechanism of the ZU+, which is relevant for IP protection.

The bitstream is encrypted with the AES encryption algorithm in a trusted environment
and decrypted inside the FPGA at boot time to ensure the plain bitstream is not available
outside the FPGA. This mechanism relies on a secret AES key, which is securely stored in
the FPGA. The Xilinx ZU+ SoC provides an AES-256 hardware based encryption engine
used to decrypt the bitstream at boot time. For more information, we refer the reader to
the ZU+ reference manual [ZU19].

2.2 Side-channel Protections of the Xilinx Zynq UltraScale+
A way to narrow down an adversary’s opportunities for analyzing the device’s secret key is
the usage of authenticated de-/encryption. The schematic overview of the authenticated
decryption flow of the Xilinx ZU+ platform is given in Figure 1a [ZU19]. This authentication
mechanism is based on public key authentication (RSA) and guarantees that the hardware
encryption engine only operates on authenticated data and not on any random data
provided by the attacker. This mitigates chosen-input SCAs and restricts the capabilities
of an adversary to collect arbitrary side-channel information.

Furthermore, the Xilinx ZU+ provides a protocol based SCA countermeasure called key
rolling. SCAs rely on the measurement of many different encryption operations using the
same cryptographic secret (key). These measurements are called traces. Depending on the
Signal-to-Noise Ratio (SNR) of the measurements and the leakage model, the minimum
number of traces required to extract the key will vary. If the attacker is not able to record
this minimum number of traces, she will not be able to extract the secret key. With key
rolling, the bitstream is divided into smaller chunks. Each chunk is encrypted with its
own key by the Xilinx development tool (i.e. Vivado) and stored in external memory on
the device as illustrated in Figure 1b. The initial key is stored on-chip in eFUSE(s) or
Battery-Backed Random-Access Memory (BBRAM), while keys for each successive chunk
are encrypted (wrapped) in the previous ciphertext chunks. It is crucial to select a chunk
size that is smaller than the minimum number of traces for a SCA. In general, fewer AES
encryption operations per key offer greater security but increase the bitstream size and
therefore configuration time. More details about the key rolling mechanism can be found
in the reference manual [ZU19]. All assumptions and models presented within this work
are based on the employment of these two countermeasures: bitstream authentication and
key rolling.

2.3 AES-GCM
The ZU+ uses the AES-256 algorithm [MVM09] in Galois Counter Mode (GCM) [Dwo07]
for bitstream encryption. In GCM mode, a single key is used for encryption and authenti-
cation. We focus on the encryption part of the GCM. A 96-bit Initialization Vector (IV) is

282 Side-Channel Analysis of the Xilinx Zynq UltraScale+ Encryption Engine

Signature
Authentication Temporary Buffer

PUBLIC KEY
(eFUSE)*

AES-256 EngineSECRET KEY
(eFUSE or BBRAM)

BITSTREAM
(Encrypted)

O
k
to

decrypt

BITSTR
EA

M
(Encrypted)

B
IT

ST
R
EA

M
(U

nencrypted)

* HASH of Public Key

To Configuration
Memory

Never decrypts
unauthenticated

data!

(a)

Original
Bitstream

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Chunk n

...

Break
into n
chunks

Chunk 1
+ Key 1

Chunk 2
+ Key 2

Chunk 3
+ Key 3

Chunk 4
+ Key 4

Chunk n

...

Encrypt
with n
unique
keys

Flash
Software (Xilinx Vivado)

= Plaintext = Ciphertext

(b)

Figure 1: SCA countermeasures of the of the Xilinx ZU+: (a) asymmetric authentication
of the configuration data (bitstream), (b) key rolling.

randomly chosen and concatenated with a 32-bit Counter (CTR). This vector is encrypted
using AES in Electronic Code Book (ECB) mode. After each encryption, the counter is
incremented. The result of the AES-CTR is used as a key stream and added (bitwise
XORed) with the plaintext or ciphertext to encrypt or decrypt information. Therefore,
although the configuration data is actually decrypted during power-up, the AES engine
itself is only used in encryption mode. We perform the side-channel analysis on the CTR
part of the algorithm, because the secret key is only used in this part. Note that in
the ZU+, the complete AES-GCM including counter incrementation is implemented in
hardware [ZU19].

2.4 Neural Networks for Side-Channel Analysis
In recent years there has been a growing interest in neural networks having several layers of
neurons stacked upon each other, which are commonly referred to as Deep Neural Networks
(DNNs) [GBC16]. They represent a particular powerful type of Machine Learning (ML)
and are the privileged choice for supervised classification tasks. This means, the DNN is fed
with training examples from a data set consisting of input data vectors (i.e. features) and
associated outcome measurement (i.e. label). The goal is to find a suitable relationship in
order to map new inputs from the test set to the correct label. Note that such a setting is
similar to profiling and attack phase in classical Template Attacks (TAs) [CRR03]. There
have been a large number of publications about DNNs for SCA which make primarily use
of two type of ML models: Multi-Layer Perceptrons (MLPs) and Convolutional Neural
Networks (CNNs) [CDP17, HGG18, HGG20, MPP16, PSB+18, RQL18, Tim19]. Because
of space restrictions we refer the reader to [GBC16] for an excellent introduction into
DNNs.

3 Related Work
SCAs on older Xilinx devices have been described by Moradi et al. [MKP12, MS16]. For
the first time, a CPA with 32-bit key hypothesis has been successfully implemented on
GPUs. Our target, the ZU+, has a completely different AES accelerator implementation:
hardware enforced GCM instead of CBC mode and four pipelined rounds instead of one

B. Hettwer, S. Leger, D. Fennes, S. Gehrer, T. Güneysu 283

round only. Moreover, due to the asymmetric authentication, a chosen data or IV attack
is not possible in our attacker model.

Lauren De Meyer describes an attack on AES in CTR mode which has similarities
with our work [DM19]: a large part of the state vector is constant when a limited number
of traces is available. To retrieve the complete key and the nonce, four AES rounds
are involved. However, the targeted implementation is software based, so that almost
all intermediate steps leak with a Hamming Weight (HW) behavior. In our case, four
pipelined rounds are implemented in hardware and the nonce/IV is known.

Colin O’Flynn et al. describes a non-invasive side-channel measurement method on
decoupling capacitors which we use in our work too [OC13]. With this method, the
magnetic field generated by small capacitors close to the chip is recorded.

F-secure found a logical vulnerability in the encryption-only boot mode of the ZU+ [F-S19].
As the execution address of the bootloader is not checked, a Return Oriented Program-
ming (ROP) attack may be possible. In our work, we assume that the hardware root
of trust is used, so that this kind of attack is not possible. Note that the IV is not
authenticated in encryption-only mode. Therefore, a straightforward SCA with chosen
initialization vector can be performed (e.g. by using CPA).

Recently, Ender et al. found a logical vulnerability in some 6. and 7. series Xilinx
FPGAs, which allows to recover the plain bitstream - but not the key [EMP20]. The
attack is based on AES-CBC Mode malleability, non-zeroing of some specific registers and
non-authentication of the bitstream before decryption. In our case, AES-GCM is used and
the bitstream is authenticated before decryption so that this vulnerability does not apply.

4 Side-Channel Measurements and Leakage Model
In this section, we introduce our measurements setup used to reverse engineer the hardware
architecture of the AES-256 engine of the ZU+.

4.1 Assumptions

We are analyzing a security architecture that makes proper use of most security features
provided by the ZU+ platform. Our security analysis relies on the following assumptions:

• An attacker cannot use the AES engine of the target device with chosen data (cipher-
text, plaintext or IV). This can be enforced by secure boot and RSA authentication
with hardware root of trust. Therefore, an attacker can only measure the decryption
phase of an authenticated bitstream or other authenticated software items. The
(initial) decryption key can be selected from different sources such as BBRAM or
eFUSE depending on the authenticated boot image header [ZU19].

• An attacker has only access to the ciphertext data of the bitstream which is stored in
external, non-volatile memory. Plaintext remains secret, as the decrypted bitstream
is directly used to configure the programmable logic.

• An attacker can record one specific bitstream decryption multiple times by performing
a device reset. Thus, several traces related to the same operations can be recorded
and averaged in order to increase the SNR.

• Since there is no masking countermeasure in the AES core itself, we do not aim to
exploit higher-order leakage but only consider first-order leakage for the analysis.

284 Side-Channel Analysis of the Xilinx Zynq UltraScale+ Encryption Engine

(a) (b)

Figure 2: Decapsulated chip of the Xilinx ZU+ (a) and placement of the probe next to
the decoupling capacitor (b)

4.2 Measurement Setup
Examples of side-channel leakage vectors are the power consumption or EM of an Integrated
Circuit (IC). For our experiments, we performed EM measurement with local probes
because it is almost completely non-invasive. Our target platform is the Xilinx ZU+
evaluation board ZCU 102 with 16 nm technology. The device itself is packaged with the
flip-chip technique and we only need to remove the metal cap on the chip in order to
have access to the silicon die (see Figure 2a). First, we measured the EM emanations on
the silicon die itself. However, this measurement technique led to a very poor SNR. We
believe this is due to the silicon thickness. Similar to the technique proposed by O’Flynn
et al. [OC13], we placed our probe directly over the on-package decoupling capacitor
involved in the AES power rail (VCCPSINTLP) as shown in Figure 2b. This technique
leads to a much better SNR. Our measurement setup includes a Langer EMV probe ICR
HV 500-75 placed on an ICS105 4-axis positioning system and a Picoscope 6404 with
anti-aliasing low-pass filter. We have not used an external amplifier besides the one that
is integrated in the probe. The sampling rate of the oscilloscope was set to 625 MS/s
using a bandwidth of 500 MHz. We use averaging with a factor of 250 to improve the
SNR. That means, 250 traces with same inputs are recorded but only the average of the
traces is kept for analysis. Moreover, a GPIO is used to synchronize the traces and trigger
the oscilloscope. This signal is not available in a real setup but simple techniques such as
pattern matching [MOP10] can be applied for realignment. We set the frequency of the
AES to about 48 MHz. A plot of an averaged EM trace covering 256 encryptions can be
found in Figure 11 in the Appendix. Generally, the quality of the utilized measurement
setup can be considered very high and comes with low noise.

4.3 AES Hardware Architecture
We assumed a round-based AES implementation from the timing behavior of the core. We
correlated the traces with the input and output values of the AES encryption, which proofed
our assumption to be correct (i.e. one encryption takes 14 clock cycles). Then, we tried
different leakage models typical for AES hardware implementations using a varying number
of pipeline stages and registers (1, 2, 3, 4) in a trial and error manner. We found that a
correlation peak is visible for a certain register (e.g. register A in Figure 3) using the output
of the same round (e.g. round 1) for encryption: i⊕ (i+ 1), (i+ 1)⊕ (i+ 2), (i+ 2)⊕ (i+ 3),
but not for: (i+ 3)⊕ (i+ 4). The next correlation on the same register occurs for round 5.
Thus, we can assume an architecture with four complete (i.e. 128-bit wide) AES rounds
implemented in parallel and state registers between the rounds as shown in Figure 3.

At each clock cycle the four state registers are leaking information in a Hamming
Distance (HD) way: a register bit leaks information at a certain point in time if this bit is
toggling, i.e. the D input and Q output of the register are changing.

B. Hettwer, S. Leger, D. Fennes, S. Gehrer, T. Güneysu 285

Round Reg.
A

Round
(*)

Reg.
B Round Reg.

C Round

M
U
X Reg.

D

DOUT

DIN

Figure 3: Presumable AES architecture of the analyzed hardware IP. Four rounds are
processed in parallel, each result is stored in one of four state registers before passed to
the next round.

For each register (Reg.A to Reg.D in Figure 3), the power leakage can be summarized
to:

l = HW[ROUNDn(IV‖Yi)⊕ ROUNDn(IV‖Yi+1)] (1)

Where:
• l: Leakage

• ROUNDn: State of register in AES round number n (0 to 13 in AES-256)

• HW: Hamming Weight

• IV: Initialization vector for AES-GCM (96 bit)

• Yi: Counter value of the GCM after i iterations, that is being concatenated with
the IV (32 bit)

5 Leakage Model Exploitation
Due to the GCM mode of the AES-256 engine and the leakage model presented earlier is it
not possible to extract all 32 key bytes by attacking the first two AES round only. Instead,
we discovered a way to extract the complete key involving the first five AES rounds. It
will be presented in the following.

5.1 GCM- and Hardware-specific attributes
SCAs against AES are usually performed on the first or last rounds because of the diffusion
layer (i.e Mix Columns). Since we only have access to the AES-ECB input (IV and CTR)
in our attack scenario, we focus on the first few rounds. Our HD leakage model involves
two consecutive block encryptions. In GCM or CTR mode, the only difference between
two consecutive AES-ECB input vectors is the counter value. This counter consists of
four bytes, the least significant byte changes at each incrementation (CTR0, see Figure 4).
The second byte is only changing every 28 = 256 encryptions (CTR1); the third byte is
changing after 216 = 65536 encryptions (CTR2), and the fourth byte is changing every 224

encryptions (CTR3).
In standard side-channel analysis, it is assumed that the data is randomly distributed

which is obviously not the case here: only one byte (least significant byte of counter) out
of the 16 input vector bytes is changing at each encryption and is leaking information.
This is why only one key byte can be extracted when focusing on the first AES round. In
order to extract the remaining key bytes, more rounds have to be considered.

286 Side-Channel Analysis of the Xilinx Zynq UltraScale+ Encryption Engine

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

IV IV IV CTR

IV IV IV CTR

IV IV IV CTR

IV IV IV CTR

= = IV11...IV0 CTR3...CTR0

KS

AK

k0
0

k0
5

k0
10

k0
15

k0

z0
0

z0
5

z0
10

z0
15

Reg0

SB SR MC
Round 1

KS

AK

k1
0

k1
1

k1
2

k1
3

k1

z1
0

z1
5

z1
10

z1
15

Reg1

SB SR MC
Round 2

KS

AK

k2
0

k2

z2
0

Reg2

SB . . .

Figure 4: Sketch of AES-ECB with plaintext as used in this AES-GCM implementation.
Each round ends with the state register Regi, i.e., Round 1 ends after adding subkey k1 and
storing the result in Reg1. The changes when only CTR0 increases every encryption are
highlighted in red. Abbreviations used: AK = Add Round Key, SB = S-Box (Substitution
Box), SR = Shift Row, MC = Mix Columns.

5.2 First Round
The goal in first AES round is to extract the key byte associated with the least significant
counter byte (15th byte of first subkey K0

15, highlighted red in the upper left corner of
Figure 4). We can define the leakage associated with register Reg1 in Figure 4 as:

l1 = HW [ROUND1(IV ‖Yi)⊕ROUND1(IV ‖Yi+1)] (2)

We focus on the first state byte (z1
0). The same principle applies for the state bytes 5,

10 and 15 modified during the first round.

l10 =HW [k1
0 ⊕ 2× SB(z0

0(IV ‖Yi))⊕ 3× SB(z0
5(IV ‖Yi))

⊕ 1× SB(z0
10(IV ‖Yi))⊕ 1× SB(z0

15(IV ‖Yi))
⊕ k1

0 ⊕ 2× SB(z0
0(IV ‖Yi+1))⊕ 3× SB(z0

5(IV ‖Yi+1))
⊕ 1× SB(z0

10(IV ‖Yi+1))⊕ 1× SB(z0
15(IV ‖Yi+1))]

(3)

Where kin is the subkey i with index n, SB the byte substitution (S-Box) operation, and
× is the Galois Field multiplication used in the mix column operation. This is achieved by
a left multiplication with the matrix:

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 (4)

B. Hettwer, S. Leger, D. Fennes, S. Gehrer, T. Güneysu 287

Since the IV values corresponding to the input bytes 0 to 11 are constant, we can
reduce the leakage term to:

l10 = HW [SB(z0
15(IV ‖Yi))⊕ SB(z0

15 ⊕ (IV ‖Yi+1))]
= HW [SB(k0

15 ⊕ (IV ‖Yi))⊕ SB(k0
15 ⊕ (IV ‖Yi+1))]

(5)

k0
15 can be recovered using a SCA with 8-bit hypothesis space.

5.3 Second Round
Goal of the analysis for this round is to calculate some constants related to the subkey
bytes k2

i , i = 0, . . . , 15. With this information the next (third) round can be analyzed. We
define the leakage for the second round in the register Reg2 in Figure 4 to:

l2 = HW [ROUND2(IV ‖Yi)⊕ROUND2(IV ‖Yi+1)] (6)

Again, we focus on the first state byte (z2
0). The same principle applies for all other

bytes.

l20 = HW [k2
0 ⊕ 2× SB(z1

0(IV ‖Yi))⊕ 3× SB(z1
5(IV ‖Yi))

⊕ 1× SB(z1
10(IV ‖Yi))⊕ 1× SB(z1

15(IV ‖Yi))
⊕ k2

0 ⊕ 2× SB(z1
0(IV ‖Yi+1))⊕ 3× SB(z1

5(IV ‖Yi+1))
⊕ 1× SB(z1

10(IV ‖Yi+1))⊕ 1× SB(z1
15(IV ‖Yi+1))]

(7)

The Least Significant Byte (LSB) of the counter (i.e. byte 15 of the AES input vector)
is changing after each encryption; the second counter byte (i.e. byte 14 of the AES input
vector) is changing each 256 encryptions (i.e. stays the same for 255 encryptions), and so
on that:

• In 255 of 256 cases: (IV ‖Yi)14 = (IV ‖Yi+1)14

• In (2562 − 1)/2562 cases: (IV ‖Yi)13 = (IV ‖Yi+1)13

• In (2563 − 1)/2563 cases: (IV ‖Yi)12 = (IV ‖Yi+1)12

Moreover, all IV bytes (0 to 11) are constant. Therefore, we can approximate the
leakage to:

l20 ≈ HW [2× SB(z1
0(IV ‖Yi))⊕ 2× SB(z1

0(IV ‖Yi+1))] (8)

z1
0(IV ‖Yi) =k1

0 ⊕ 2× SB((IV ‖Yi)0 ⊕ k0
0)⊕ 3× SB((IV ‖Yi)5 ⊕ k0

5)
⊕ 1× SB((IV ‖Yi)10 ⊕ k0

10)⊕ 1× SB((IV ‖Yi)15 ⊕ k0
15)

(9)

We merge all constants (including the key byte) into one constant byte α0, so that:

z1
0(IV ‖Yi) = α0 ⊕ 1× SB((IV ‖Yi)15 ⊕ k0

15) (10)

The leakage is now:

l20 ≈ HW [2× SB(α0 ⊕ 1× SB((IV ‖Yi)15 ⊕ k0
15))

⊕2× SB(α0 ⊕ 1× SB((IV ‖(Yi+1)15 ⊕ k0
15))]

(11)

288 Side-Channel Analysis of the Xilinx Zynq UltraScale+ Encryption Engine

We know k0
15 from the first round analysis. The AES input is known too, so that we

can extract the constant α0 (one byte) using an attack with 256 hypotheses. Extending
the analysis to all columns of the second round, three further constants α1 to α3 can be
extracted using the same technique:

α0 = k1
0 ⊕ 2× SB((IV ‖Yi)0 ⊕ k0

0)
⊕ 3× SB((IV ‖Yi)5 ⊕ k0

5)
⊕ 1× SB((IV ‖Yi)10 ⊕ k0

10)
(12)

can be extracted with byte 0 to byte 3 of the output of round 2.

α1 = k1
1 ⊕ 1× SB((IV ‖Yi)0 ⊕ k0

0)
⊕ 2× SB((IV ‖Yi)5 ⊕ k0

5)
⊕ 3× SB((IV ‖Yi)10 ⊕ k0

10)
(13)

can be extracted with byte 12 to byte 15 of the output of round 2.

α2 = k1
2 ⊕ 1× SB((IV ‖Yi)0 ⊕ k0

0)
⊕ 1× SB((IV ‖Yi)5 ⊕ k0

5)
⊕ 2× SB((IV ‖Yi)10 ⊕ k0

10)
(14)

can be extracted with byte 8 to byte 11 of the output of round 2.

α3 = k1
3 ⊕ 3× SB((IV ‖Yi)0 ⊕ k0

0)
⊕ 1× SB((IV ‖Yi)5 ⊕ k0

5)
⊕ 1× SB((IV ‖Yi)10 ⊕ k0

10)
(15)

can be extracted with byte 4 to byte 7 of the output of round 2.

5.4 Third Round
Goal of the analysis of the third round is to extract 16 constants related to the subkey bytes,
which enables to calculate the input vector values of the fourth round for 256 consecutive
AES encryptions. The leakage for the third round is (byte 0 only, first column):

l30 ≈ HW [k3
0⊕2× SB(z2

0(IV ‖Yi))⊕ 3× SB(z2
5(IV ‖Yi))

⊕1× SB(z2
10(IV ‖Yi))⊕ 1× SB(z2

15(IV ‖Yi))
⊕k3

0 ⊕ 2× SB(z2
0(IV ‖Yi+1))⊕ 3× SB(z2

5(IV ‖Yi+1))
⊕1× SB(z2

10(IV ‖Yi+1))⊕ 1× SB(z2
15(IV ‖Yi+1))]

(16)

z2
0(IV ‖Yi) = k2

0⊕2× SB(z1
0(IV ‖Yi))⊕ 3× SB(z1

5(IV ‖Yi))
⊕1× SB(z1

10(IV ‖Yi))⊕ 1× SB(z1
15(IV ‖Yi))

(17)

The other terms can be calculated similarly. We now take a set of 256 consecutive
traces, in which only the counter LSB (byte 15) is changing such that z1

n(IV ‖Yi) is
constant for n = 0...14. Again, we concatenate the constant terms into γ0 and rewrite
z2

0(IV ‖Yi) into:

B. Hettwer, S. Leger, D. Fennes, S. Gehrer, T. Güneysu 289

z2
0(IV ‖Yi) =γ0 ⊕ 2× SB(z1

0(IV ‖Yi))
=γ0 ⊕ 2× SB(α0 ⊕ SB((IV ‖Yi)15 ⊕ k0

15))
(18)

γ0 = k2
0 ⊕ 3× SB(z1

5(IV ‖Yi))
⊕ 1× SB(z1

10(IV ‖Yi))
⊕ 1× SB(z1

15(IV ‖Yi))
(19)

The three other terms of l30 can be rewritten in the same manner with three new
constants γ5, γ10 and γ15. As far as the three remaining columns of the third round (i.e. l34
to l315) are concerned, 12 other constants γn, n = 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14 are created
in the same way. Since we know z0

15 from the first round and all αn, n = 0...3 constants
from the second round, we can extract the 16 γn, n = 0...15 constants with four SCAs
using a 32-bit hypothesis, one on each column of the third round.

At the end of the third round analysis, we are able to calculate the output state vector
of this round for 256 consecutive AES input vectors depending only on the corresponding
subkey k3

n, n = 0...15. Here we show it for the first byte as an example:

z3
0(IV ‖Yi) = k3

0 ⊕ 2× SB(z2
0(IV ‖Yi))⊕ 3× SB(z2

5(IV ‖Yi))
⊕ 1× SB(z2

10(IV ‖Yi))⊕ 1× SB(z2
15(IV ‖Yi))

(20)

Alternatively, in extended form:

z3
0(IV ‖Yi) = k3

0 ⊕ 2× SB(γ0 ⊕ 2× SB(α0 ⊕ 1× SB((IV ‖Yi)15 ⊕ k0
15)))

⊕ 3× SB(γ5 ⊕ 1× SB(α3 ⊕ 2× SB((IV ‖Yi)15 ⊕ k0
15)))

⊕ 1× SB(γ10 ⊕ 2× SB(α2 ⊕ 3× SB((IV ‖Yi)15 ⊕ k0
15)))

⊕ 1× SB(γ15 ⊕ 1× SB(α1 ⊕ 1× SB((IV ‖Yi)15 ⊕ k0
15)))

(21)

In this way, we know the input vector values of the fourth round for 256 consecutive
AES inputs (e.g. for the first 256 AES computations), depending only on the corresponding
subkey.

5.5 Fourth / Fifth Round
Knowing the input vectors of the fourth round, four (one for each column) SCAs with
32-bit hypothesis can be performed on this round in order to extract the complete subkey
k3
n, n = 0...15. In the same manner, the next subkey k4

n, n = 0...15 can be extracted using
the fifth round. Knowing two consecutive subkeys enables the calculation of the AES-256
key.

290 Side-Channel Analysis of the Xilinx Zynq UltraScale+ Encryption Engine

6 Attacks
In this section, we present the experimental setup used to test our attack model and discuss
the results.

6.1 Data Set
Our base data set is composed of 200 000 traces (after averaging) with random keys and
IVs. Using more traces (e.g. 300 000 traces or even more) gave no improvements in our
experiments. 75 % of the data set has been used for training/profiling, 24 % for validation
(i.e. to measure the performance on unseen traces), and 1 % as attack traces. Please note
that we use random keys and IVs to create as much toggling entropy as possible for the
profiling, and to perform the key recovery with several different key values. Our attack
model requires to extract the 256-bit AES key with at most 256 encryptions. Therefore,
we acquired traces with the EM emanations of 256 successive AES-GCM encryptions
(counter values 0 to 255) according to Section 4.2. Thus, for the rest of the paper one
trace corresponds to 256× 250 AES operations due to our averaging pre-processing. Each
trace contains 15 625 sample points which represents approximately 1200 clock cycles. We
checked the traces using CPA and known leakage hypothesis. The correlation coefficients
ρ between 50 000 traces and our leakage model (i.e. 32 bits of the state) are shown in
Table 1. Please note that because the correlation values vary for different counter values, we
performed the correlation for ten different counter pairs per round leakage and calculated
the mean correlation. It becomes clear that the leakage of later rounds is more difficult to
exploit than the leakage of the first round. For example, the correlation for round three is
roughly halved compared to round one. We assume this is because the algorithmic noise
is higher due to the inherent parallelism of the investigated AES-GCM implementation,
and the fact that more state bytes toggle in round three (and later) than in the first two
rounds as illustrated in Figure 4.

Table 1: Mean correlations for the leakages corresponding to Section 5
Round 1 Round 2 Round 3 Round 4 Round 5

Correlation ρ 0.153 0.117 0.078 0.070 0.073

6.2 Baseline
As a first step, we have tried to recover the AES key using a combination of Linear
Discriminant Analysis (LDA) pre-processing and CPA. LDA is an established method to
increase the SNR by projecting the traces into a smaller dimension which maximizes the
intra-class variance [BGH+15]. For each counter value (i.e. leakage), we selected 50 sample
points from the traces. The location of these samples has been determined earlier by
correlation with known key. We selected 50 points since a peak in the correlation analysis
takes roughly the same amount of samples. As mentioned in the previous paragraph, our
traces cover encryptions using a CTR value from zero to 255. The remaining 15 input
bytes (IV + three bytes of CTR) remain static. However, due to the pipeline structure
of the AES engine with four rounds processed in parallel, only three-quarter of the CTR
values produce exploitable leakage starting from CTR = 3. This is because the registers
are filled with values from round i + 3 for every fourth clock cycle, which produces a
non-exploitable HD leakage. Thus, there are only 256× 3

4 − 2 = 190 encryptions that can
be effectively used for the attack per round. An individual LDA model has been fit on the
reduced (training) traces for each CTR leakage and for each round. From a computational
point of view, this might not the best solution but no realignment is needed by following

B. Hettwer, S. Leger, D. Fennes, S. Gehrer, T. Güneysu 291

this strategy. Next, the LDA models have been used to compress the attack traces into a
single data point per leakage. Finally, ten independent CPA attacks have been performed
with the optimized attack set (attack traces have been randomly picked).

We have applied two different power leakage models: The regular HD as described in
Section 4.3 and a Linear Regression (LR) model (aka stochastic approach) proposed by
Schindler et al. [SLP05]. As evaluation metric we have used the well-known Key Guessing
Entropy (KGE). The KGE – also known as key rank – refers to the amount of key guesses
that have to be made in order to get a correct key byte while having a fixed amount of
attack traces [SMY09]. We show the number of traces to achieve a KGE smaller or equal
to one in Table 2. From there, it can be observed that only the attacks in the first round
were successful. The attacks against later rounds failed due to the significant lower SNR
as discussed in Section 6.1. Since conventional state-of-the art methods are not enough
for our target, we decided to change our strategy and move to sophisticated DL attack
methods. These are described in the upcoming.

Table 2: Attack results for baseline methods (# traces for KGE ≤ 1)
Round 1 Round 2 Round 3 Round 4 Round 5

CPA-LDA (HD model) 170 - - - -
CPA-LDA (LR model) 130 - - - -

6.3 Methodology
We perform our DL-based evaluation based on the Correlation Optimization (CO) scheme
introduced by Robyns et al. [RQL18] at CHES 2019. It is shortly introduced in the
following before we present two extensions to the original CO scheme.

6.3.1 Correlation Optimization

The basic idea of CO is to teach a DNN to produce an encoding of the input data (i.e. the
traces) that maximizes the Pearson correlation with a hypothetical power consumption
(i.e. the leakage l in this paper). It can therefore be considered as an extension of classical
CPA with an additional profiling/learning phase. Key component of CO is the correlation
loss function LCO(l, θ) that computes the correlation coefficient between the leakage and
the encoding θ produced by the DNN over a batch of D traces. It is defined as:

LCO(l, θ) = 1− cov(l, θ)
σlσθ + ε

= 1−
∑D
i=1[(li − l̄)(θi − θ̄)]√∑D

i=1(li − l̄)2∑D
i=1(θi − θ̄)2 + ε

(22)

where ε denotes a small number to prevent division by zero. Note that the batch size D
has to be larger than in a classification setting in order to receive an appropriate amount
of correlation (e.g. 512). Once the training process has been finished, the DNN is used to
create optimized encoding of the attack traces to perform a regular CPA.

We chose the CO attack due to several reasons: First, our leakage model requires to
extract the secret key within 256 encryptions. This makes the problem a good candidate for
a profiled SCA using TAs or DNNs. Second, a 32-bit hypothesis is needed in round three
and later which requires evaluating more than four billion key guesses. The CO scheme
automatically encodes the samples of a trace into a single value such that it can be directly
used for 32-bit CPA running on a GPU. We also experimented with DNNs in a standard
classification mode using the categorical cross-entropy loss function and Gaussian TAs as
done by many researchers before (see Section 2.4). However, we achieved less promising
results because of the large imbalance in the data set. Since we use a 32-bit HD power

292 Side-Channel Analysis of the Xilinx Zynq UltraScale+ Encryption Engine

leakage model as shown in Section 5, some classes are very sparsely represented in the
data set, due to the binomial distribution produced by the HW function. Even advanced
re-balancing methods such as Synthetic Minority Oversampling Technique with Edited
Nearest Neighbor (SMOTE) [PHJ+18] could not improve the classification accuracy as
needed. Therefore, we believe that the CO approach is a suitable method to assess the
SCA resistance of the ZU+ encryption engine.

6.3.2 Bitwise Correlation Loss

The first extension to the the regular CO scheme is based on bitwise correlations. Instead
of applying the HW to the XOR of the values that are stored in consecutive clock cycles
in a register, the bit flips are directly used as leakage labels lbit. Consequently, the total
loss is calculated by combining the correlations for each bit to:

LCO−BIT (lbit, θbit) =
B∑
i=1
|LCO(lbit, θbit)(i)| (23)

where B denotes the number of bits in the leakage vector (32 in our case). Note that all
leakage bits have a corresponding encoding θ

(i)
bit that is produced by the DNN. Therefore,

the complexity of the DNN model is slightly increased but we can take advantage of the
individual leakage of each flip-flop in the registers similar to a multi-bit CPA [DPRS11].

6.3.3 Weighted-Bit Correlation Loss

The second extension we propose is related to the stochastic approach by Schindler et
al. and a bit-dependent leakage model [SLP05]. Although the regular HD model already
leads to a very good approximation of the power consumption of a cryptographic hardware
implementation, it can be further improved. The output capacitances and thus the power
consumption of individual bits is different, due to varying wire lengths between the cells
processing and storing the data [MOP10]. In order to account for this effect, some weighting
coefficients ci can be given to each bit. Assuming that R is a B-bit register with an input
RD and a registered output RQ, the weighted-bit leakage lW−BIT can be defined as:

lw−bit = η +
B∑
i=1

ci × (RQ⊕RD) = η +
B∑
i=1

ci × l(i)bit (24)

wherein η refers to a non-data dependent noise factor. LR is used in the stochastic
model to derive the coefficients (see baseline attack in Section 6.2). In our approach, we let
the DNN learn the coefficients. When comparing Equation (24) with the basic structure of
a DNN [GBC16], one can notice that lW−BIT can be approximated by a perceptron with
linear activation function using lbit as input, the weights wi, i = 1, . . . , B as coefficients ci,
and η as bias term. Thus, we have defined a single-neuron MLP that receives the bitwise
labels and outputs lw−bit, which is then used in the loss function instead of the HD labels
(l in Equation (22)). A schematic overview is given in Figure 5. Such a weighted-bit
correlation optimization (CO −W −BIT) can be considered as an approach that creates
optimized encodings not only for the power traces, but also for the leakage hypothesis in
order to enhance the correlation coefficient of a CPA.

6.4 DNN Models
Two DNN models are used for the analysis: an MLP with 2 hidden layers, and a CNN
composed of 3 blocks with alternating Convolutional (CONV) and Pooling (POOL) op-
erations preceded by an additional dense layer. The basic architectures of the networks
have been inspired by related work [HGG20, KPH+19, RQL18], while fine-tuning of the

B. Hettwer, S. Leger, D. Fennes, S. Gehrer, T. Güneysu 293

DNN
(e.g. CNN)

Bit
Conversion

Correlation

x

l

θ

l1bit
l2bit

lBbit

...

c1

c2...
Σ lw−bit

cn

η

Figure 5: Correlation optimization using a small MLP to approximate the bitwise weighting
coefficients for the leakage l, while the power traces x are encoded by a DNN. During
training, the correlation loss according to (22) is used to update the weights of both
networks in parallel.

hyperparameters has been done with Bayesian optimization using the Tree-structured
Parzen Estimator (TPE) algorithm [BBBK11]. The exact model configurations along
with hyperparameters search space can be found in the Appendix of the paper. As a
preprocessing step for the MLP, we standardized all traces to have zero mean and unit
variance. In all experiments, we trained the networks using Adam optimizer and a learning
rate of 0.001 for CNNs and 0.0001 for MLPs. The batch size parameter D has been set to a
value of 256. We have implemented our attack framework in Python using the open-source
DL frameworks Keras [C+15] and TensorFlow [AAB+15]. Training of the DNN models
has been performed on two Nvidia Tesla V100 GPUs.

A straightforward approach is to build an individual DNN model for every leaking
operation, i.e., training 190 different networks. During key recovery, the same attack trace
is given to all models to receive optimized encodings. The advantage of this model-per-
counter setting as shown in Figure 6a is that shorter traces can be used. Only the sample
points corresponding to the counter value is necessary to train one network. An example of
such a trace segment is shown in Figure 12 in the Appendix. Using smaller traces reduces
the training time significantly. Nevertheless, it can take roughly one to day to train 190
networks on a high-end GPU for a single round attack.

An alternative method is to use a single output-per-counter model that produces the
encodings for all leaking operations at once as illustrated in Figure 6b. Such a network is
more complex in terms of trainable parameters since the complete traces are used as input
and the output dimension is increased from one to 190. However, it only has to be trained
for a single time. A third method is to train a single DNN model using segmented traces,
which outputs the encodings for three leaking operations per input as shown in Figure 6c.
This is possible since the leakage of three consecutive counters occurs within a very small
period (three clock cycles). The triple-output-model is a hybrid of the two aforementioned
approaches and combines the advantage of fast training time and reasonable complexity.

We implemented and evaluated all three models using the regular CO loss function as
defined in Equaiton (22). For the multi-output models, the correlation loss is calculated
for every DNN output individually and eventually summed up (i.e. in Figure 6c, the loss
is calculated using three outputs while in Figure 6b, 190 outputs are used.) Furthermore,
we tested the bitwise correlation loss (Section 6.3.2) as well as the weighted-bit loss
(Section 6.3.3) in combination with the model-per-counter method.

294 Side-Channel Analysis of the Xilinx Zynq UltraScale+ Encryption Engine

DNN-1

DNN-2

DNN-190

...

x
(1)
seg

x
(2)
seg

x
(190)
seg

θ1

θ2

θ190

(a) Individual model per counter

DNNx

θ1
θ2

θ190

...

(b) Output per counter model

DNN... ...

x
(1)
seg x

(2)
seg x

(63)
seg

θ1

θ2

θ3

θ4

θ5

θ6

θ188

θ189

θ190

(c) Triple output model

Figure 6: Approaches to attack the ZU+ encryption engine. In the model-per-counter
setting (a), the traces are split up in several segments xseg representing the leakages of a
single counter value. For each counter, an individual DNN is created to produce optimized
encodings θ. The output-per-counter model (b) is fed with complete traces and outputs
all encodings in a single pass. Furthermore, the triple-output-model (c) receives trace
segments corresponding to three counter leakages and outputs the respective encodings.

6.5 Results
The attack complexity differs between the different AES rounds as shown in Section 5. In
the following, we present in detail the methodology and results of each round.

6.5.1 First Round

We know from Section 5.2 that we are only able to extract key byte fifteen in the first
round. The KGE for the considered models and loss functions are illustrated in Figure 7.
Each curve has been calculated by determining the mean KGE over ten randomly chosen
traces from the attack set. As stated before, each trace contains 256 AES encryptions but
only 190 of them can be used for the attack. Some of our models are still able to recover
the fifteenth key byte even under such restricted conditions.

Figure 7 shows that the multi-output models (gray and dark green curves denoted as
ALL-CTR and 3-CTR) are generally outperformed by the model-per-counter approaches.
However, the difference is smaller with the CNN than with the MLP. This is because
CNNs are more effective to extract features from larger input dimensions than MLPs.
Comparing the different loss functions, it becomes clear that the bitwise-correlation loss
(CO-BIT) and the weighted-bit correlation (CO-W-BIT) obtain the best KGE among
all attacks and successfully reveal the correct key byte with less than 50 encryptions on
the CNN model. Please note that these results are substantially better than the baseline
attacks presented in Section 6.2.

The training times for the two model types are given in Table 3. For the triple-output
model we divided 5000 of our profiling traces – each containing 15 625 sample points – into

B. Hettwer, S. Leger, D. Fennes, S. Gehrer, T. Güneysu 295

0 50 100 150
Encryptions

0

50

100

150

K
ey

R
an

k
CO
CO-BIT
CO-W-BIT
All-CTR
3-CTR

(a) MLP

0 50 100 150
Encryptions

0

50

100

150

K
ey

R
an

k

CO
CO-BIT
CO-W-BIT
All-CTR
3-CTR

(b) CNN

Figure 7: Attack results for the first round

63 overlapping segments with 300 sample points. Each segment contains the leakage for
three counters. Therefore, the model was trained with 5000× 63 = 315 000 examples. The
MLPs require less time to iterate completely over the training data set (i.e. an epoch), as
they contain less trainable parameters than the CNNs.

For some approaches, however, the CNN models converge faster than the MLP. We
stopped the training process after the validation loss has not decreased for more than 20
epochs.1 This led to varying training times per model. Comparing the timing overhead
for the different loss functions, one can notice that the CO-BIT approach takes longest as
a correlation is calculated for each leakage bit individually. The multi-output models are
very efficient in terms of training time since they only require training of a single model.
However, their attack performance – especially with the MLP – is not as good as using an
individual model per counter.

Table 3: Training times comparison
CO CO-BIT CO-W-BIT All-CTR 3-CTR

Number of training traces 200 000 200 000 200 000 200 000 315 000
Input layer size 200 200 200 15625 300
Time per epoch (MLP/CNN) 3s/9s 10s/15s 5s/11s 55s/86s 42s/80s
Total training time (MLP/CNN) 7.3h/18.5h 29.3h/26h 14.5h/20.6h 3h/1.5h 0.5h/1.2h

6.5.2 Second Round

The aim for the second round attack is to extract four 8-bit constants (α0, . . . , α3) that are
needed to calculate the leakage of round three. The attack complexity is the same as in the
first round. However, the algorithmic noise is higher as discussed earlier in the paper. The
increased noise level leads to a lower correlation and thus to a worse KGE compared to the
attacks in the first round. Nevertheless, several techniques are able to extract the alphas
using 190 encryptions with a KGE smaller than two as shown in Figure 8. The CNN using
the weighted-bit loss function and the triple-output CNN perform best among the attacks,
followed by the CO-Bit models. This demonstrates the benefit of our proposed extensions
of the classical CO approach. The multi-output networks that predict the leakage of all
counter values only reach a mean key rank of 50 with the CNNs and even higher with the
MLP. For this reason, we do not consider this approach for the attacks against later AES
rounds.

1We have not used learning rate decay since the ADAM optimizer intrinsically handles learning rate
optimization [KB14]

296 Side-Channel Analysis of the Xilinx Zynq UltraScale+ Encryption Engine

0 50 100 150
Encryptions

0

50

100

150

K
ey

R
an

k
CO
CO-BIT
CO-W-BIT
All-CTR
3-CTR

(a) MLP

0 50 100 150
Encryptions

0

50

100

150

K
ey

R
an

k

CO
CO-BIT
CO-W-BIT
All-CTR
3-CTR

(b) CNN

Figure 8: Attack results for the second round

6.5.3 Third Round

In the third round, 16 gamma constants γn, n = 0...15 related to the third round key have
to be extracted. This is done by four attacks, each using a 32-bit hypothesis due to the
mix columns operation. The complexity to recover the gamma constants is therefore much
higher than recovering the alphas in the round before, i.e., the range of possible values is
increased from 256 to more than four billion candidates.

In order to parallelize the calculation of the correlation between the encoded traces
and the hypothetical leakage guesses, we ran the attacks on GPU using the Nvidia CUDA
framework [Coo12]. By using CUDA, the recovery phase was reduced from several weeks
to roughly 6 h. However, since the SNR is even smaller than in the second round, none of
the attack methods have been able to recover the gammas using 190 encryptions. The
remaining KGE has been in a range of a few thousand and several million.

During the training phase, we noticed a mean validation loss of 0.835 for the CO-W-BIT
approach. The mean correlation coefficient can thus be calculated to: 1− 0.835 = 0.165.
Although the correlation is more than twice as high as with a standard correlation attack
(i.e. 0.078 according to Section 6.1), it is not sufficient for a recovery of the gammas with
190 encryptions. According to the rule of thumb given by Mangard et al. [MOP10], the
number of required traces for a successful attack nA can be roughly estimated to:

nA ≈
28
ρ2 . (25)

, if |ρ ≤ 0.2|. We thus believe that at least 1000 encryptions are needed in our attack setup
to recover the gammas with sufficient certainty.

6.5.4 Fourth/Fifth Round

The attacks in the fourth and fifth round directly target the corresponding subkeys. As
in the round before, four 32-bit attacks are necessary to extract all 16 subkey bytes of a
round. We were again not able to perform a successful key recovery within 256 consecutive
encryptions (with 190 effective leakages). However, if an attacker would be able to recover
the gamma constants in round three with a high probability, more encryptions than only
256 can be used for the attack against round four and five. This is because the round keys
are static over all encryptions under the same AES-256 key, while the gammas from round
three (and also the alphas from round two) are only stable for 256 consecutive encryptions.
Therefore, an attacker can just repeat the attacks against the second and third round to
extract multiple sets of alphas and gammas (e.g. ten sets) and use them to have more

B. Hettwer, S. Leger, D. Fennes, S. Gehrer, T. Güneysu 297

0 1 2 3 4
Key hypothesis ×109

0.00

0.05

0.10

C
or

re
la

ti
on

ρ

Figure 9: Result for the CNN attack against one column of the fourth round key using
19 000 encryptions. The correct subkey hypothesis is shown in red.

traces in round four. In order to demonstrate this, we acquired a smaller second data set
of 2000 traces (i.e. covering 2000× 256 = 51 200 encryptions) using a static AES key. We
trained the CNN with bit-dependent leakage model (CO-W-BIT) on the training data set
composed of 200 000 traces with random keys. Then, we used this model to perform ten
independent 32-bits attacks against one column of the fourth round key, each time using
100 randomly chosen traces (i.e. having 19 000 effective encryptions) from the data set
with static key. The absolute correlation values over a subset of the 232 = 4 294 967 296
key guesses for a single attack are illustrated in Figure 9. The correlation plots for the
other nine attacks look very similar. In general, the maximum correlation for the correct
key hypothesis has been around 0.1. This means that approximately 3000 encryptions are
needed to extract the fourth round key according to Equation (25). The same technique
has been applied to extract the fifth round key, producing similar results. The MLP and
the other correlation techniques (CO, CO-BIT, 3-CTR) produced a slightly worse maximal
correlation coefficient. We omit the corresponding plots due to space limitations.

7 Recommendation for Key Rolling Parameter
The actual value of the key rolling parameter (i.e. how many bitstream blocks are encrypted
under the same key) has a major impact on the size of the configuration image and the
boot time of the ZU+. Figure 10 shows the scaling of the bitstream size and boot time
with varying key rolling parameters. An unencrypted bitstream of the ZU9EG/EC device
series has a size of roughly 26.5 MB. Selecting a key rolling value of 100 or higher increases
the encrypted bitstream size by not more than 4 %, which means that approximately
1.7 million AES operations are performed during boot-up. A value of eight doubles the
bitstream size. The boot time for different configuration sizes can be estimated using
an Excel macro provided by Xilinx [ZU17b]. The corresponding values for a ZU9EG/EC
device using QSPI dual boot with enabled RSA authentication and bitstream encryption
are also plotted in Figure 10. From there, one can notice that the boot time scales linear
with the configuration size, i.e., a key rolling value of five increases the boot-up time by
more than 400 %, while values larger than 40 impact the boot-up the by less than 10 %.

We know from the previous section that a complete extraction of the key has not been
successful within 256 encryptions. Thus, a straightforward choice would be to set the key
rolling parameter to a value of around 200. However, the fifteenth key byte k0

15 could
be recovered with less than 50 encryptions in the attacks on the first round. We also
demonstrated that extraction of the alpha constants in the second round is possible with
less than 190 encryptions. By extracting four different sets of alphas (i.e. 16 constants),
an equation system with 15 variables can be solved. This allows to extract information

298 Side-Channel Analysis of the Xilinx Zynq UltraScale+ Encryption Engine

5 15 25 35 45 55 65 75 85 95
Encryptions per key

1

2

3

4

5

O
ve

rh
ea

d
×

Bitstream size
Boot time (ZU9EG/EC)

Figure 10: Normalized bitstream size and boot time for different key rolling values. The
numbers have been calculated using the scripts provided at [ZU17a] and [ZU17b].

about seven key bytes (k0
0, k

0
5, k

0
10, k

1
0, k

1
1, k

1
2, k

1
3).2 In round three, we have not been able

to recover the gamma constants using traces that contain 190 encryptions. However, it
might be possible with an advanced version of the CO scheme or another DL-based attack.
Approximately 3000 traces were necessary to extract the forth and the fifth round key.

Please note that we have used a single ZU+ device for profiling and attack in our setup.
Our analysis can thus be considered as a worst-case scenario since in an actual attack,
the profiling has to be done on another device with disabled secure boot. This can lead
to portability issues when the leakage behaviour of the profiling and target device differs
too much. There are several reasons that can cause differences in the power consumption
such as aging, slight differences in the resistance and/or capacitance of a circuit due to
the manufacturing process, etc. [RBA20]. However, there have been proposed a number
of techniques in literature that can deal with portability problems to lower the effect of
diverging profiling and attack devices (e.g. [BCH+20, CK14, ZSX+20]). Because of that,
we believe that our results still give a realistic view of an adversary’s capabilities.

We recommend a key rolling parameter between 20 and 30 after considering all aspects
mentioned above and given our assumptions described in Section 4.1. On the one hand,
this range gives a considerable security margin against current and future attacks, as we
required almost twice as many traces to recover any information about the secret key.
On the other hand, it introduces a practically overhead in terms of configuration size
(20−30 %) and boot time (15−25 %). A key rolling parameter range of 20 to 30 represents
therefore a reasonable trade-off between security and usability.

8 Conclusion
In this paper we performed a black-box side-channel analysis of the Xilinx ZU+ AES-256
engine, which is used to decrypt the configuration image (bitstream) when the device
boots. While the AES core does not have any SCA countermeasures, the ZU+ is equipped
with a key rolling mechanism which enforces a limit on the number of data blocks that are
encrypted and decrypted under the same key. Xilinx does provide only limited information
on how to choose a secure key rolling parameter. The goal of our analysis was to find
suitable parameters by attacking the AES engine using state-of-the-art approaches that
require a minimal amount of attack traces.

We found that a straightforward extraction of the complete 256-bit key is not possible
because of the pipelining structure of the AES engine and the asymmetric authentication
of the configuration data. Instead, an adversary needs to mount an attack against the first
five AES rounds with only 256 consecutive encryptions. We presented several DNN-based

2Please note four bitstreams encrypted under the same key and with different IVs have to be available
in order to recover those values

B. Hettwer, S. Leger, D. Fennes, S. Gehrer, T. Güneysu 299

methods to exploit the found leakage model. Although none of them has been able to
recover the complete AES-256 key, information about eight key bytes can be extracted by
our attacks. However, we believe that future works can manage to break the full AES-256
key within 256 encryptions. A possible way might be to combine the leakage of several
rounds to improve the SNR, or to apply a SAT solver that derives the remaining key bytes
using partial information extracted from the trace set as proposed recently by Gohr et
al. [GJS20]. In order to be protected against state-of-the-art and upcoming attacks, we
suggest to set the key rolling parameter to a value between 20 and 30.

Acknowledgements
The authors would like to thank the anonymous reviewers as well as the shepherd for their
valuable comments. This work was supported in parts by the German Federal Ministry of
Education and Research (BMBF) under grant agreement number 16KIS0606K (SecRec).

References
[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems, 2015. Software available from tensorflow.org.

[BBBK11] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algo-
rithms for Hyper-Parameter Optimization. In Proceedings of the 24th In-
ternational Conference on Neural Information Processing Systems, NIPS’11,
page 2546–2554, Red Hook, NY, USA, 2011. Curran Associates Inc.

[BCH+20] Shivam Bhasin, Anupam Chattopadhyay, Annelie Heuser, Dirmanto Jap,
Stjepan Picek, and Ritu Ranjan Shrivastwa. Mind the portability: A warriors
guide through realistic profiled side-channel analysis. 2020. https://www.
ndss-symposium.org/wp-content/uploads/2020/02/24390-paper.pdf.

[BGH+15] Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Damien Marion, and
Olivier Rioul. Less is more. In Tim Güneysu and Helena Handschuh, editors,
Cryptographic Hardware and Embedded Systems – CHES 2015, pages 22–41,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[C+15] François Chollet et al. Keras. https://keras.io, 2015.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional Neural
Networks with Data Augmentation Against Jitter-Based Countermeasures,
pages 45–68. Springer International Publishing, Cham, 2017.

[CK14] Omar Choudary and Markus G. Kuhn. Template attacks on different devices.
In Emmanuel Prouff, editor, Constructive Side-Channel Analysis and Secure
Design, pages 179–198, Cham, 2014. Springer International Publishing.

https://www.ndss-symposium.org/wp-content/uploads/2020/02/24390-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24390-paper.pdf
https://keras.io

300 Side-Channel Analysis of the Xilinx Zynq UltraScale+ Encryption Engine

[Coo12] Shane Cook. CUDA Programming: A Developer’s Guide to Parallel Comput-
ing with GPUs. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1st edition, 2012.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks. In
Burton S. Kaliski, çetin K. Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, pages 13–28, Berlin, Heidel-
berg, 2003. Springer Berlin Heidelberg.

[DM19] Lauren De Meyer. Recovering the CTR-DRBG state in 256 traces. 2020:37–65,
Nov. 2019.

[DPRS11] Julien Doget, Emmanuel Prouff, Matthieu Rivain, and François-Xavier Stan-
daert. Univariate Side Channel Attacks and Leakage Modeling. Journal of
Cryptographic Engineering, 1:123–144, 2011.

[Dwo07] Morris Dworkins. Recommendation for Block Cipher Modes of Opera-
tion: Galois/Counter Mode (GCM) and GMAC - NIST Special Publication
800-38D. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=
51288, 2007.

[EKM+08] Thomas Eisenbarth, Timo Kasper, Amir Moradi, Christof Paar, Mahmoud
Salmasizadeh, and Mohammad T. Manzuri Shalmani. On the Power of Power
Analysis in the Real World: A Complete Break of the KeeLoq Code Hopping
Scheme. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008,
pages 203–220, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[EMP20] Maik Ender, Amir Moradi, and Christof Paar. The Unpatchable Silicon: A
Full Break of the Bitstream Encryption of Xilinx 7-Series FPGAs. In 29th
USENIX Security Symposium (USENIX Security 20), Boston, MA, August
2020. USENIX Association.

[F-S19] Security advisory: Xilinx ZU+ Encrypt Only Secure Boot by-
pass. https://github.com/f-secure-foundry/advisories/blob/
master/\Security_Advisory-Ref_FSC-HWSEC-VR2019-0001-Xilinx_ZU%
2B-Encrypt_Only_Secure_Boot_bypass.txt, 2019.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[GJS20] Aron Gohr, Sven Jacob, andWerner Schindler. Efficient Solutions of the CHES
2018 AES Challenge Using Deep Residual Neural Networks and Knowledge
Distillation on Adversarial Examples. Cryptology ePrint Archive, Report
2020/165, 2020. https://eprint.iacr.org/2020/165.

[HGG18] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Profiled Power Analysis
Attacks Using Convolutional Neural Networks with Domain Knowledge. In
Selected Areas in Cryptography - SAC 2018 - 25th International Conference,
Calgary, AB, Canada, August 15-17, 2018, Revised Selected Papers, pages
479–498, 2018.

[HGG20] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Deep Neural Network
Attribution Methods for Leakage Analysis and Symmetric Key Recovery.
In Kenneth G. Paterson and Douglas Stebila, editors, Selected Areas in
Cryptography – SAC 2019, pages 645–666, Cham, 2020. Springer International
Publishing.

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=51288
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=51288
https://github.com/f-secure-foundry/advisories/blob/master/ \ Security_Advisory-Ref_FSC-HWSEC-VR2019-0001-Xilinx_ZU%2B-Encrypt_Only_Secure_Boot_bypass.txt
https://github.com/f-secure-foundry/advisories/blob/master/ \ Security_Advisory-Ref_FSC-HWSEC-VR2019-0001-Xilinx_ZU%2B-Encrypt_Only_Secure_Boot_bypass.txt
https://github.com/f-secure-foundry/advisories/blob/master/ \ Security_Advisory-Ref_FSC-HWSEC-VR2019-0001-Xilinx_ZU%2B-Encrypt_Only_Secure_Boot_bypass.txt
http://www.deeplearningbook.org
https://eprint.iacr.org/2020/165

B. Hettwer, S. Leger, D. Fennes, S. Gehrer, T. Güneysu 301

[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. arXiv e-prints, page arXiv:1412.6980, Dec 2014.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis,
pages 388–397. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[KOP09] Timo Kasper, David Oswald, and Christof Paar. EM Side-Channel Attacks
on Commercial Contactless Smartcards Using Low-Cost Equipment. In
Heung Youl Youm and Moti Yung, editors, Information Security Applications,
pages 79–93, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Han-
jalic. Make Some Noise. Unleashing the Power of Convolutional Neural
Networks for Profiled Side-channel Analysis. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2019(3):148–179, May 2019.

[LDMPT15] J. Longo, E. De Mulder, D. Page, and M. Tunstall. SoC It to EM: ElectroMag-
netic Side-Channel Attacks on a Complex System-on-Chip. In Tim Güneysu
and Helena Handschuh, editors, Cryptographic Hardware and Embedded Sys-
tems – CHES 2015, pages 620–640, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

[MKP12] Amir Moradi, Markus Kasper, and Christof Paar. Black-Box Side-Channel
Attacks Highlight the Importance of Countermeasures. In Orr Dunkelman,
editor, Topics in Cryptology – CT-RSA 2012, pages 1–18, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[MOP10] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards. Springer Publishing Company,
Incorporated, 1st edition, 2010.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
Cryptographic Implementations Using Deep Learning Techniques, pages 3–26.
Springer International Publishing, Cham, 2016.

[MS16] Amir Moradi and Tobias Schneider. Improved Side-Channel Analysis Attacks
on Xilinx Bitstream Encryption of 5, 6, and 7 Series. In François-Xavier Stan-
daert and Elisabeth Oswald, editors, Constructive Side-Channel Analysis and
Secure Design, pages 71–87, Cham, 2016. Springer International Publishing.

[MVM09] Frederic P. Miller, Agnes F. Vandome, and John McBrewster. Advanced
Encryption Standard. Alpha Press, 2009.

[OC13] Colin O’Flynn and Zhizhang Chen. A Case Study of Side-Channel Analysis
Using Decoupling Capacitor Power Measurement with the OpenADC. In
Joaquin Garcia-Alfaro, Frédéric Cuppens, Nora Cuppens-Boulahia, Ali Miri,
and Nadia Tawbi, editors, Foundations and Practice of Security, pages 341–
356, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[OP11] David Oswald and Christof Paar. Breaking Mifare DESFire MF3ICD40:
Power Analysis and Templates in the Real World. In Bart Preneel and
Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems –
CHES 2011, pages 207–222, Berlin, Heidelberg, 2011. Springer Berlin Heidel-
berg.

302 Side-Channel Analysis of the Xilinx Zynq UltraScale+ Encryption Engine

[PHJ+18] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The Curse of Class Imbalance and Conflicting Metrics with
Machine Learning for Side-channel Evaluations. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2019(1):209–237, Nov. 2018.

[PSB+18] Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, and Cecile
Dumas. Study of Deep Learning Techniques for Side-Channel Analysis
and Introduction to ASCAD Database. Cryptology ePrint Archive, Report
2018/053, 2018. https://eprint.iacr.org/2018/053.

[RBA20] Unai Rioja, Lejla Batina, and Igor Armendariz. When similarities among
devices are taken for granted: Another look at portability. In Abderrahmane
Nitaj and Amr Youssef, editors, Progress in Cryptology - AFRICACRYPT
2020, pages 337–357, Cham, 2020. Springer International Publishing.

[RQL18] Pieter Robyns, Peter Quax, and Wim Lamotte. Improving CEMA using
Correlation Optimization. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2019(1):1–24, Nov. 2018.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A Stochastic Model for
Differential Side Channel Cryptanalysis. In Josyula R. Rao and Berk Sunar,
editors, Cryptographic Hardware and Embedded Systems – CHES 2005, pages
30–46, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[SMY09] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A Unified Frame-
work for the Analysis of Side-Channel Key Recovery Attacks. In Antoine
Joux, editor, Advances in Cryptology - EUROCRYPT 2009, pages 443–461,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[Tim19] Benjamin Timon. Non-Profiled Deep Learning-based Side-Channel attacks
with Sensitivity Analysis. 2019:107–131, Feb. 2019.

[ZSX+20] F. Zhang, B. Shao, G. Xu, B. Yang, Z. Yang, Z. Qin, and K. Ren. From
homogeneous to heterogeneous: Leveraging deep learning based power analy-
sis across devices. In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pages 1–6, 2020.

[ZU17a] AR 65528 - UltraScale Encryption - How do I estimate my bitstream size
when using the Rolling Keys feature? https://www.xilinx.com/support/
answers/65528.html, 2017.

[ZU17b] AR 67475 - Zynq UltraScale+ MPSoC Boot Times Estimation. https:
//www.xilinx.com/support/answers/67475.html, 2017.

[ZU19] Zynq UltraScale+ Device Technical Reference Manual UG1085 (v2.1).
https://www.xilinx.com/support/documentation/user_guides/
ug1085-zynq-ultrascale-trm.pdf, 2019.

https://eprint.iacr.org/2018/053
https://www.xilinx.com/support/answers/65528.html
https://www.xilinx.com/support/answers/65528.html
https://www.xilinx.com/support/answers/67475.html
https://www.xilinx.com/support/answers/67475.html
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf

B. Hettwer, S. Leger, D. Fennes, S. Gehrer, T. Güneysu 303

A Network Parameters

Table 4: Network configuration of CNN
Layer Type Hyperparameters
Trace Input -

Batch Normalization -
Convolution 1D filters=8, filter length=3, activation=SeLU

Batch Normalization -
Max-Pooling pool length=2, strides=2
Dropout PDrop = 0.2

Convolution 1D filters=16, filter length=2, activation=SeLU
Batch Normalization -

Max-Pooling pool length=2, strides=2
Dropout PDrop = 0.2

Convolution 1D filters=32, filter length=3, activation=SeLU
Batch Normalization -

Max-Pooling pool length=2, strides=2
Dropout PDrop = 0.2
Flatten -
Dense neurons=20, activation=SeLU

Batch Normalization -
Dropout PDrop = 0.2

Table 5: Network configuration of MLP
Layer Type Hyperparameters
Trace Input -

Dense neurons=10, activation=SeLU
Dropout PDrop = 0.4
Dense neurons=15, activation=SeLU

Dropout PDrop = 0.4

Fine-tuning of the DNNs involved the number of neurons per fully-connected layer [1, 100],
dropout rate [0.1, 0.9], choice of optimizer (adam, rmsprop, sgd), learning rate, activation
function (SeLU, ReLU, tanh, sigmoid). Furthermore, we tested different batch size values
(128, 256, 512, 768, 1024) for the training and got the smallest loss using a value of 256.

304 Side-Channel Analysis of the Xilinx Zynq UltraScale+ Encryption Engine

B Trace

0 2000 4000 6000 8000 10000 12000 14000 16000

Samples

−3000000

−2000000

−1000000

0

1000000

2000000

3000000

A
m

p
li
tu

d
e

Figure 11: Plot of averaged EM trace covering 256 consecutive AES encryptions. Complete
traces are used for the output-per-counter model illustrated in Figure 6b.

0 25 50 75 100 125 150 175 200

Samples

−2000000

−1000000

0

1000000

2000000

3000000

A
m

p
li
tu

d
e

Figure 12: Segment of EM trace as used for the model-per-ctr approach described in
Figure 6a.

	Introduction
	Contribution
	Structure of the Paper

	Preliminaries
	FPGA Security
	Side-channel Protections of the Xilinx Zynq UltraScale+
	AES-GCM
	Neural Networks for Side-Channel Analysis

	Related Work
	Side-Channel Measurements and Leakage Model
	Assumptions
	Measurement Setup
	AES Hardware Architecture

	Leakage Model Exploitation
	GCM- and Hardware-specific attributes
	First Round
	Second Round
	Third Round
	Fourth / Fifth Round

	Attacks
	Data Set
	Baseline
	Methodology
	DNN Models
	Results

	Recommendation for Key Rolling Parameter
	Conclusion
	Network Parameters
	Trace

