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Abstract. The bit-sliding paper of Jean et al. (CHES 2017) showed that the smallest-
size circuit for SPN based block ciphers such as AES, SKINNY and PRESENT can
be achieved via bit-serial implementations. Their technique decreases the bit size
of the datapath and naturally leads to a significant loss in latency (as well as the
maximum throughput). Their designs complete a single round of the encryption in
168 (resp. 68) clock cycles for 128 (resp. 64) bit blocks. A follow-up work by Banik
et al. (FSE 2020) introduced the swap-and-rotate technique that both eliminates this
loss in latency and achieves even smaller footprints.
In this paper, we extend these results on bit-serial implementations all the way to
four authenticated encryption schemes from NIST LWC. Our first focus is to decrease
latency and improve throughput with the use of the swap-and-rotate technique. Our
block cipher implementations have the most efficient round operations in the sense
that a round function of an n-bit block cipher is computed in exactly n clock cycles.
This leads to implementations that are similar in size to the state of the art, but have
much lower latency (savings up to 20 percent). We then extend our technique to 4-
and 8-bit implementations.
Although these results are promising, block ciphers themselves are not end-user
primitives, as they need to be used in conjunction with a mode of operation. Hence,
in the second part of the paper, we use our serial block ciphers to bootstrap four active
NIST authenticated encryption candidates: SUNDAE-GIFT, Romulus, SAEAES and
SKINNY-AEAD. In the wake of this effort, we provide the smallest block-cipher-based
authenticated encryption circuits known in the literature so far.
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1 Introduction
The number of applications that rely on standard cryptographic primitives to establish a
secure communication channel grow larger each day. Given the large variety of platforms
these applications are run by, the available device resources spread to a large spectrum. In
this spectrum, those applications related to IoT, sensor networks, RFID, vehicle-to-vehicle
communication suffer from having tight security budgets. They hence rely on the future
promise by an emerging field, that is lightweight cryptography, where new standards of
primitives that are cheaper in terms of hardware footprint, energy, power and latency
are anticipated. NIST’s ongoing standardization process for lightweight cryptography
(NIST LWC) clearly reflects the vivid effort in this domain. The candidates, 32 of which
are elected for the second round, provide new designs for an authenticated encryption
primitive, with the final goal of attaining security and lightweightness at the same time.
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Table 1: The list of second-round NIST LWC candidates that are based on block ciphers.
GIFT refers to the original block cipher from [BPP+17], and GIFT∗ refers to the version
that assumes different ordering of the input bits and the key [BCI+19, BBP+19].
Candidate Primary Alternative

cipher size (block+key) cipher size (block+key) cipher calls
COMET AES 128+128 CHAM, Speck 64/128+128 enc
ESTATE TweAES 128+128 TweGIFT 128+128 enc+dec
ForkAE ForkSKINNY 128+288 ForkSKINNY 64/128+192/256/288 enc+dec
GIFT-COFB GIFT∗ 128+128 - - enc
HYENA GIFT 128+128 - - enc
LOTUS-AEAD TweGIFT 64+128 - - enc
mixFeed AES 128+128 - - enc
Pyjamask Pyjamask 128+128 Pyjamask 96+128 enc
Romulus SKINNY 128+384 SKINNY 128+256/384 enc
SAEAES AES 128+128 - - enc
Saturnin Saturnin 256+256 - - enc
SKINNY-AEAD SKINNY 128+384 SKINNY 128+256/384 enc
SUNDAE-GIFT GIFT∗ 128+128 - - enc

Lightweight metric. In the crypto community, the definition of security is defined with
rigor, generally by resorting to algorithmic games. However, the term lightweight does not
hold up to the same precision.

First, there is a question of which metric should be prioritized. In practice, each appli-
cation is most concerned about the particular implementation aspect of the cryptographic
primitive that conflicts with its own tight-budget. For battery-powered sensors, the energy
spent per encrypted bit is a matter of priority, and directly determines how long the battery
lasts. Sometimes, multiple metrics must be taken into consideration. As an example, an
RFID device might prioritize power, but at the same time its silicon area footprint is also
crucial.

Secondly, there is a question of how to quantify this metric. This is highly dependent
on how the scheme is implemented, e.g. as an application-specific integrated circuit (ASIC),
on a field-programmable gate array (FPGA) or programmed to a microprocessor. This
further depends on the specific details. For instance, the transistor size of the cell library
in ASIC plays a key role in area, power consumption as well as the response time of the
gates.

In this paper, the term lightweight refers to the combination of both the area (in
terms of gate-equivalence GE) and the latency (in terms of clock cycles) of an architecture
realized as an ASIC. We believe that these two metrics are most easily reproducible, in
the sense that given two implementations A and B, there is a methodological and fair
approach to decide which one performs better1. In our implementations, we prioritize
both area and latency. Therefore, our goal is to remain in the same area budget (or have
further reductions if possible) of the ultra-small (i.e. 1/4/8-bit-datapath) implementations
and reduce the latency (i.e. the number of clock cycles) as much as possible.

Reducing latency is an important goal, as it directly translates into a throughput gain,
as well as a reduction in the energy consumption2. Given the variety of application profiles,
it is worth noting that the ideal goal from an implementation standpoint is to lower the
cost in one or few metrics so that the design is sufficient to meet the expectation of most
(if not all) applications.

Mode of operations. Among the active second round candidates, 13 out of 32 are based
1GE measurements are not perfectly reliable across different technology libraries. For fairness, we

compare GE-sizes of two implementations A and B synthesized in the same technology library.
2The energy consumption is lower, if we assume that the power consumption remains same. This holds

true for most of our implementations.
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on block ciphers. These candidates simply design a mode of operation around a given
block cipher to function as an authenticated encryption scheme. From Table 1, note that:

• 4 candidates use either the standard or a tweaked version of AES as the primary
choice. These are COMET, ESTATE, mixFeed, SAEAES [GJN19, CDJ+19a, CN19,
NMMaS+19].

• 3 candidates use either the standard or a forked version of SKINNY as the primary
choice. These are ForkAE, Romulus, SKINNY-AEAD [ALP+19, IKMP19, BJK+19].

• 2 candidates use either the standard or a tweaked version of 128-bit variant of GIFT.
Namely, ESTATE uses the tweaked version of GIFT as an alternative choice [CDJ+19a],
whereas HYENA uses the original version [CDJN19, BPP+17]. Besides these two,
LOTUS-AEAD also employs a tweaked 64-bit variant of GIFT [CDJ+19b, BPP+17].

• 2 candidates use GIFT∗. These two candidates are GIFT-COFB and SUNDAE-
GIFT [BCI+19, BBP+19]. The difference between GIFT∗ and GIFT is that the
former assumes a different indexing of the input and output bits. We denote their
modified version with GIFT∗, as it leads to a significant difference from a design and
implementation perspective (but remains equivalent in terms of cryptanalysis).

• Pyjamask and Saturnin are the exceptions to the popular approach, as they bring their
own dedicated block cipher designs into the standardization [GJK+19, CDL+19].

Given the modular approach taken by these candidates, one can pose the two following
questions, which relates directly to their lightweight performance: (1) How lightweight is
the block cipher employed at the core? (2) What is the cost of the surrounding mode of
operation? Our work and results respond to these two significant questions.
Bottleneck of storage. Most low-area implementations of SPN-based block ciphers
eventually face a bottleneck of storage, quite similar to the fashion in which they are
observed in hash functions [BLP+08]. Namely, all implementations (except those that
are fully unrolled) need to store the key and the cipher state during the encryption
operation. For a block cipher with `b-bit block and `k-bit key, this typically requires the
use of `b + `k flip-flops. More concretely, the area-cost of storing 256-bit corresponds
to 1088 GE, 832 GE and 1451 GE for the cell libraries UMC 90 nm, STM 90 nm and
NanGate 45 nm respectively. It naturally follows that for the smallest implementations
of AES (resp. SKINNY-128-128, GIFT), the 73% (resp. 83%, 69%) of the circuit is due to
merely D flip-flops [JMPS17, BPP+17]. Therefore, the state-of-the-art ultra-small ASIC
implementations of block ciphers contain mostly storage elements, and space for further
area optimizations is limited. We take this as an indicator that we should divert our focus
to the other aspects of the circuit while remaining in the same area budget.

1.1 Area, Latency and Energy
Serialized implementations generally have poor energy efficiency as explained in [BBR15].
There are two principal reasons for this:

• These circuits generally require larger latency than round-based circuits. For example,
Atomic-AES [BBR16], which closely follows the design by Moradi et al. [MPL+11],
has a datapath of 8 bits, occupies around 2060 GE, and requires 226 clock cycles to
execute one block of AES encryption. The latency is twentyfold compared to 11 clock
cycles it takes for the round-based circuit to do the same, but it occupies around 4
times less area than the round-based circuit, as the latter costs 8000 GE. Due to
this, the byte-serial circuit takes around 7-8 times more energy than a round-based
circuit (allowing for some variations due to circuit design and the choice of the CMOS
library).
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• Any serialized circuit is required to perform many more register write operations.
A round-based circuit overwrites its internal register 11 times, once per clock cycle,
with intermediate round output. Consider on the other hand any byte-serial circuit
(or more specifically the Atomic-AES circuit). A simple operation

b0, b1, . . . , b15 −→ b1, . . . , b15, S(b0 ⊕ k0)

which basically rotates the state by one byte, and substitutes the least significant
byte with the output of the AddRoundkey and S-box on the byte b0, requires an
entire register overwrite. As is obvious, this needs to be done at least 15 more times
for each byte bi and then again 4 times for the MixColumns operation for each of
the 10 rounds. Since each register write requires finite energy, it is obvious that the
energy budget shoots up in the process. The energy consumption proportionally
increases the more we try to reduce the length of the datapath. Therefore, a bit-serial
datapath would by a similar logic, be even more expensive energy-wise.

However, this logic does not extend to power consumption, as power is the time
derivative of energy and essentially the rate of energy spent per unit of time. The fewer
number of gates a circuit consists of, it is more often the case that its power footprint
becomes smaller. As a consequence, serialized circuits should not be used in situations
where energy efficiency is a prime concern, but can still be favored in scenarios where
power is the target metric. For example, for battery-driven devices energy consumption is
a top priority, whereas for applications like medical implants and passive RFID tags (that
typically do not use the latest CMOS technology), power consumption is very important.
In implantable devices, power is a more crucial metric, as the wearer certainly can not
tolerate any rise in operating temperature as a side effect of high power consumption over
a number of cycles. Although energy is an important metric, our research direction is
directed towards these applications that cannot ignore area and power constraints.

There is ample scope for optimization, in an engineering sense, that allows us to strive
to design better circuits, no matter how narrow the scope to do so might initially seem.
Again, let us go to the example of Atomic-AES, which is a byte-serial circuit that spends
21 cycles to execute one AES round computation. It is well known that Atomic-AES uses
only one S-box circuit. It is not feasible to design an AES circuit with a single S-box
that completes a round in less than 20 clock cycles. This is obvious, since one AES round
requires 20 S-box accesses per round (16 in the substitution layer and 4 in the key update).
In this respect, the Atomic-AES circuit is close to optimum in terms of latency. Now, one
way to convert a byte-serial circuit to bit-serial could be to chain the flip-flops in each
byte register sequentially, so that it takes 8 clock cycles instead of 1 to transfer one byte
of information. This way, the conversion of the Atomic-AES circuit into bit-serial would
require 21× 8 = 168 cycles to execute one AES round. Is it possible to actually achieve
this circuit (or do better)? This question was already answered affirmatively by Moradi
et al. [JMPS17], which constructed a circuit that performed one AES round in 168 clock
cycles. What is the lowest possible number of cycles in which we can hope to do one AES
round in a bit-serial circuit? A little thinking will tell us that we can not possibly do it in
fewer than 128 cycles, which is the block size of AES, since each bit in the state needs to
be rotated around the state pipeline at least once, and this requires 128 clock cycles. One
of the things we investigate in this paper is whether it is possible to attain this minimum.

1.2 Motivation
In comparison to their 8-bit (or even 32/128-bit) counterparts, bit-serial implementations
offer lower throughput, as they execute only single bit of operation in each clock cycle
[JMPS17, BBR17, BBRV20]. Then, one might wonder whether this latency loss is justified
for the sake of reducing area, and whether these designs will see industrial applications. Let
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us elaborate on that point briefly, and explain our motivation to further pursue 1-bit-serial
implementation techniques.

Even though the silicon fabrication process makes progress each year, some of the
applications lag behind in catching up with the newer smaller-size transistor technologies,
mostly because of the costs involved in establishing the fabrication process. While the
smallest-size transistors see a rather short time to catch up with the market for personal
computers and smartphones, this is not true for many low-cost devices, which prioritize
the price. These devices mainly include those that are bought in bulk quantities such
as electronic identity or public transportation cards, electronic event tickets etc. More
concretely, take MIFARE brand of products by NXP Semiconductors as an example. Among
this series, MIFARE Ultralight is sold as the most cost-effective product, because the cost
of system ownership as well as the individual card prices are the lowest. These devices are
protected with 32-bit passwords against malicious writes, and use 3DES + CBC to achieve
authentication through a shared secret key [MIFb, MIFa]. Enabling up-to-date lightweight
symmetric cryptography, in particular an authenticated encryption scheme with low-area
footprint on these platforms is of great importance, because they are used by thousands, if
not millions, of people. The correct application and engineering of cryptography on these
devices would fix some of the previous design flaws [GdKGM+08, dKGHG08].

Also note that one of the benefits of bit/byte-serial circuits with respect to area
reduction is that the circuit requires fewer number of scan flip-flops (which is typically
larger than a flip-flop without scan functionality) to construct. However, consider design
for testability (DFT) features like scan chains which, when incorporated in a circuit, would
require all flip-flops to have the scan functionality in order to accommodate the scan-chain
path. In spite of this, serialized circuits have remained popular in the literature and
has been employed in numerous papers. Why is this so? Note that for most libraries
the compiler implements a scan flip-flop as a multiplexer (MUX) with a simple flip-flop
(without reset). So in this context, reducing the number of scan flip-flops is really equal to
reducing the extra MUXes needed in the circuit. If a scan-chain DFT functionality is still
incorporated on top of it, then every flip-flop used in the circuit will require an additional
input port (along with a MUX), irrespective of whether it was designed as a scan flip-flop
or normal flip-flop, to accommodate the scan chain used for testing. Therefore including
DFT will always increase the area of the circuit by around n 2-input MUXes (where n is
the number of storage bits in the circuit), irrespective of the number scan flip-flops in the
circuit without DFT. This is the reason why reduction of the number of scan flip-flops is
done in many papers in the community and it remains popular.

It should also be noted that, for most of the aforementioned applications, bit-serial
implementations can provide sufficient throughput. For instance, our bit-serial authenti-
cated encryption implementations have maximum throughput of roughly 4-10 Mbit/s in a
rather old STM 90 nm library, which reaches up to 90-145 Mbit/s in a newer NanGate
15 nm library. This throughput already exceeds the communication bandwidth of these
low-cost devices. And lastly, the goal of our effort is to discover new techniques that
can also be applied to 4/8-bit implementations. In that regard, we also provide 4/8-bit
implementations that are small but better in terms of latency compared to previous work.

Comparison with Related Work: Two previous papers that immediately evokes
comparison with our work are [JMPS17, BBRV20]. The former was the first paper to
propose a 1-bit datapath implementation of AES, PRESENT and SKINNY family. However
none of the implementations reported in this paper achieved a latency per round figure
equal to the block size of the underlying block cipher. One of the reasons for this is
that they approach the entire round function as a monolithic entity, i.e. all the algebraic
operations in the round were completed in the time period allotted for the round. Large
amount of the engineering in this paper is devoted towards investigating what happens if
we flirt with these boundaries by executing some operations of round i in the time period
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allotted to round i + 1 while maintaining correct functionality. As it turns out, when
we do this efficiently, we can limit latency per round (in clock cycles) to the block size
and that is exactly the mathematical challenge we faced in this work. To make things
clearer, note that [JMPS17] reports a bit-serial implementation of AES which completes a
round in 168 cycles. 128 clock cycles are used to rotate bits across the state pipeline and
perform AddRoundKey and SubBytes operations simultaneously. Precisely 8 cycles are
used for ShiftRows and 32 more for MixColumns. However, we observed that we could
be more flexible in the scheduling of operations, which is to say neither do we have to
wait for the AddRoundKey and SubBytes operation to be completed on the entire 128-bit
state to begin ShiftRows, nor wait for the ShiftRows to complete to begin MixColumns.
When a group of bits in the state have undergone AddRoundKey and SubBytes, we can
already begin ShiftRows on those bits immediately and the same holds for the scheduling
of MixColumns vis-à-vis ShiftRows. In the process of developing this technique, we find
that not all operations of a round is finished in the time allocated for the round, and
so we improvise and try to get them done in the next round, while trying to maintain
functionality at all times.

A preliminary version of the aforementioned technique was applied by Banik et al.
specifically to the permutation layers of GIFT-64 and PRESENT, but without generalization
to other family of block ciphers [BBRV20]. The previous work does not make it clear how
to generalize the technique to implementations of higher-bit datapaths, nor how to extend
it to other family of block ciphers. However as we will describe in Section 3, our approach
takes the idea further from bit-serial to arbitrary-size datapath in a seamless fashion. In
other words, from the bit-serial implementation the circuit designer is able to infer how to
both physically assemble and schedule operations of the circuit of higher-size datapath.

Contributions. In the first part of the paper, we provide 1/4/8-bit-serial architectures
for the popular 128-bit block size variants of the block ciphers AES, SKINNY, GIFT∗ and
GIFT, which are popular among NIST candidates. Our implementations can be employed
by 10 candidates out of 13 listed in Table 1. Our approach has the following benefits, and
the detailed comparison with the state of the art is summarized in Table 2:

• In terms of circuit area, each of our block cipher implementations is an evident
contender to be the smallest implementation.

• Each implementation fully utilizes both the state and the key pipelines. With 1-bit
datapath, each round consisting of 128-bit is executed exactly in 128 clock cycles.
This ensures that we get the maximum throughput from 1-bit-serial implementation.
This leads to an approximately 20% reduction in latency (in clock cycle units) over
the circuits reported by the previous work [JMPS17, BPP+17] (note that the AES,
SKINNY, GIFT circuits in these papers report a latency of 168, 168, 160 cycles per
round respectively). Our circuit design is novel in the sense that both pipelines are
continuously active.

• With 8-bit datapath, each round consisting of 128 bits is executed exactly in 16 clock
cycles. This leads to a roughly 20% reduction in latency over the circuits reported in
[JMPS17, BBR16] (note that the AES, SKINNY, GIFT circuits in these papers report
a latency of 21, 21, 20 cycles per round respectively).

• Each implementation respects the standard ordering of input and output bits. We do
not make a non-standard assumption on the ordering of the bits to reduce the area and
latency. Namely, we ensure that an implementation from our paper is readily usable
from a NIST LWC candidates without having to modify and deal with the ordering
the bits. Some implementations of AES, e.g. [MPL+11, JMPS17, BBR16, BBR17],
assume that plaintext and the key is arranged in a row major fashion (which we call
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Table 2: The comparison of our work with the state of the art in terms of latency, area,
power and energy. The measurements respect to the use of the same library and clock
frequency, NanGate 45 nm and UMC 90 nm for AES, SKINNY and STM 90 nm for GIFT∗.
For fair comparison, all power figures are measured at frequencies reported in the original
papers [JMPS17, BPP+17]. aIt has been estimated in [MPL+11] that converting a non-
standardized to a standardized circuit requires an additional 20 MUXes. The area figures
in this row is obtained by adding the area of 20 MUXes to the figures in the previous row.
bGIFT∗ refers to the slightly modified version of GIFT used in SUNDAE-GIFT [BBP+19].

Area (GE) Power (µW) Latency (cycles) Energy (nJ/128-bit)
Block cipher NanGate 45 UMC 90 NanGate 45 UMC 90 round total NanGate 45 UMC 90 Ref.

@ 100 KHz @ 100 KHz @ 100 KHz @ 100 KHz
AES (standard) 1974 1600 102.4 0.55 128 1408 1441.8 7.7 this work, Sec. 4
AES (non-standard) 1982 1596 100.2 0.67 168 1776 1779.6 11.9 [JMPS17]
AES (standardized)a 2029 1641 - - 168 1904 [JMPS17]
SKINNY-128-128 1748 1355 87.7 0.43 128 5248 4602.0 22.6 this work, Sec. 5
SKINNY-128-128 1740 1363 86.7 0.56 168 6976 6045.4 39.1 [JMPS17]
SKINNY-128-256 2502 1927 125.0 0.62 128 6272 7837.5 38.9 this work, Sec. 5
SKINNY-128-256 2501 1937 123.5 1.15 168 8448 10432.4 97.2 [JMPS17]
SKINNY-128-384 3263 2518 162.8 0.82 128 7296 11877.2 59.8 this work, Sec. 5
SKINNY-128-384 3260 2508 160.0 1.55 168 9920 15875.0 153.8 [JMPS17]

STM 90 UMC 90 STM 90 UMC 90 STM 90 UMC 90
@ 10 MHz @ 10 MHz @ 10 MHz @ 10 MHz

GIFT 1215 1531 51.8 51.3 128 5248 27.2 26.9 this work, Sec. A
GIFT 1213 - 40.3 - 160 6528 26.3 [BPP+17]
GIFT∗ b 1108 1332 49.8 48.7 128 5248 26.1 25.5 this work, Sec. 6

non-standard), even though the original specification of AES assumes a column-major
arrangement [NIS01].

• We avoid techniques such as clock-gating, which might sometimes result in timing
inconsistencies during synthesis phase and cost additional circuit area. This also
brings the additional benefit of being compatible with the recently introduced
glitch-resistant security model [BGI+18]. This paper provides framework for formal
verification of masked designs in the presence of glitches and is thus a very useful
tool to have for implementors. However, the model used in the paper assumes
that all registers are triggered by a perfectly synchronized clock signal. In the case
of clock-gating, this assumption does not hold, because gated clock has variable
delay in comparison to the main clock source. Thus when our techniques are used
to produce masked implementations by simply duplicating the combinatorial and
storage circuitry, it has the added advantage of conforming to this security model,
which would make it easier for the circuit designer to formally verify the security of
the circuit in the presence of glitches.

In the second part of the paper, we direct our attention to implementation of four
AE schemes, one for each block cipher: SUNDAE-GIFT (1201 GE), SAEAES (1350 GE),
Romulus (2399 GE) and SKINNY-AEAD (3589 GE). We have chosen these candidates,
because the mode of operation part of the circuit has the minimal storage requirement,
thus leading to very compact implementations. To the best of our knowledge, these are
the smallest block-cipher-based authenticated encryption schemes reported so far in the
bit-serial and 4/8-bit-serial configurations. In Table 3, we summarize the synthesis figures
for the multi-bit implementations and similarly, Table 4 tabulates the synthesis figures for
our AEAD constructions under the same technology library. The measurements for other
libraries can be found in Section 7.5. The source code of our implementations are also
publicly available [git, c4s].
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Table 3: The comparison of our work with regards to 8-bit-serial AES, SKINNY and 4-bit-
serial GIFT state-of-the-art implementations. aThe number of clock cycles is incorrectly
reported for the 128-bit version of GIFT in [BPP+17] (and confirmed by the authors). We
report the rectified figures for the respective implementation. bGIFT∗ refers to the slightly
modified version of GIFT used in SUNDAE-GIFT [BBP+19].

Area (GE) Power (µW) Latency (cycles) Energy (nJ/128-bit)
Block cipher STM 90 UMC 180 STM 90 UMC 180 round total STM 90 UMC 180 Ref.

@ 10 MHz @ 100 KHz @ 10 MHz @ 100 KHz
AES (standard) 1785 - 104.5 - 16 176 1.84 - this work, Sec. 4.6
AES (non-standard) - 2400 - 3.7 21 226 - 8.36 [MPL+11]
AES (non-standard) 2060 - 130.1 - 23 246 - 3.2 [BBR17]
SKINNY-128-128 1326 - 62.4 - 16 656 4.10 - this work, Sec. 5
SKINNY-128-128 1638 - 79.1 - 21 840 6.64 - [BPP+17]
SKINNY-128-128 - 1840 - - 21 872 - - [BJK+16]
SKINNY-128-256 1880 - 90.5 - 16 784 7.10 - this work, Sec. 5
SKINNY-128-256 - 2655 - - 21 1040 - - [BJK+16]
SKINNY-128-384 2431 - 119.6 - 16 912 10.9 - this work, Sec. 5
SKINNY-128-384 - 3474 - - 21 1208 - - [BJK+16]
GIFT a 1455 - 79.7 - 33 1352 10.78 - [BPP+17]
GIFT∗ b 1430 - 61.4 - 32 1312 8.06 - this work, Sec. 6

Table 4: Synthesis figures for the implemented bit-serial AEAD schemes using the STM
90 nm process. Energy and throughput figures are based on the processing of 1024 bits of
plaintext and 128 bits of associated data.

Area Power Latency Energy Ref.
(GE) (µW @ 10 MHz) (cycles) (nJ/1152-bit)

SUNDAE-GIFT 1-bit 1201 50.1 92544 463.6 Sec. 7.1
SUNDAE-GIFT 4-bit 1587 63.9 23136 147.8 Sec. 7.1
SAEAES 1-bit 1350 77.2 24448 188.7 Sec. 7.2
SAEAES 8-bit 1940 108.0 3056 33.0 Sec. 7.2
Romulus-N1 1-bit 2399 98.1 64647 634.2 Sec. 7.3
Romulus-N1 8-bit 2912 114.0 8080 92.6 Sec. 7.3
SKINNY-AEAD 1-bit 3589 134.3 72960 979.9 Sec. 7.4
SKINNY-AEAD 8-bit 3783 149.0 9856 146.9 Sec. 7.4

2 Preliminaries
Notation. We denote the set of integers {a, a + 1, . . . , b} with [a, b]. Furthermore, we
define (a, b) = [a, b] \ {a, b}, (a, b] = [a, b] \ {a} and [a, b) = [a, b] \ {b}. [n] is a shorthand
for [0, n]. The bit string concatenation is denoted with ||.

Pipelines. In a circuit, a bit-serial pipeline is a series of flip-flops that are arranged in
a way that allows the stored value to be shifted in a fixed direction, one bit position at
each clock cycle. In mathematical terms, an n-bit pipeline can be denoted with a series
of 1-bit variables FF0,FF1, . . . ,FFn−1 that supports two main operations: shift and swap.
This corresponds to flip-flops in circuit, and we simply write FF to represent this series.
The two operations could be better explained with the following algorithmic descriptions,
which take the previous state FF and returns the updated state FF′:

shift(FF, bin):
1: FF′n−1 ← bin
2: FF′i−1 ← FFi for i ∈ [1, n)
3: bout ← FF0
4: return (FF′, bout)

swapu,v(FF):
1: FF′i ← FFi for i ∈ [0, n) \ {u, v}
2: FF′u ← FFv

3: FF′v ← FFu

4: return FF′

Here, the shift operation additionally takes a new bit to be loaded into the first flip-flop
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FFn−1 of the pipeline, and outputs the bit at the last flip-flop FF0
3. The swap operation

on the other hand, which we simply refer with a tuple (u, v) hereafter, only swaps the
contents of FFu and FFv without touching the other values.

What makes these two operations special is that (1) bit-sliding implementations already
contain a pipeline, hence a shift operation is already available, and (2) a swap operation
(u, v) can be implemented by replacing two regular flip-flops with two scan flip-flops, which
brings only small cost to the circuit in terms of area footprint. However, it must be noted
that u and v values must be hard coded into the swap operation, as the positions of scan
flip-flops are fixed. Therefore, each distinct (u, v) swap brings extra small cost.

An interesting observation is that given any single swap operation (u, v) (with u 6= v
and gcd(u− v, n) = 1) and the shift operation, one could execute an arbitrary permutation
over n bits through a finite invocations of shift and swap operations, as pointed out by
Banik et al. [BBRV20]. Therefore, in theory, one could implement the permutation layer
of any block cipher through a single fixed swap operation, as long as the correct sequence
of shift and swap calls are made by the controller circuit. However, this approach would
take a large number of shift calls, hence would lead to unrealistically many number of
clock cycles. A good approach therefore is to add few other swap operations to strike a
balance between the circuit size and the reasonable latency.

Color Coding. In the following, we make extensive use of colors to mark the swap
positions in a register pipeline, as shown in Figure 1. This figure should be interpreted as
a legend for the rest of the figures in this paper. Let us briefly explain the meaning of the
color coding with respect to both functionality and cost. Let `FF and `MUX denote the areas
of a simple flip-flop (without reset functionality) and a 2-input multiplexer respectively.
As shown in Figure 1, a white box denotes a simple flip-flop and occupies area equal to
`FF. Any box that contains n different colors represents a flip-flop that can accept n+ 1
input bits, one of which is latched on the flip-flop in the next rising clock edge, depending
on some select signal. All such instances cost `FF + n× `MUX units of silicon area (unless
the technology library has a dedicated cell implementation for this primitive).

FFx

D flip-flop

FFy

FFx

FFy

FFx+1

FFy+1

FFx+1

FFy+1

Figure 1: The color legend for interpreting circuit figures. White boxes denote a regular
D flip-flop, a single-colored box is used for 2-input scan flip-flop and an n-color flip-flop
denotes an (n + 1)-input flip-flop. Two boxes that share a color mean that they are
interconnected and therefore they can swap their input bits.

3The indexing might come as counter intuitive at the first sight. However, if we load the bit sequence
b0, b1, . . . , bn−1 to the pipeline in given order, after n shift calls, each FFi stores exactly bi.
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3 Generic Approach
An SPN-based block cipher generally consists of three layers of operation in a round: key
addition, substitution and a linear operation. The linear layer is often a combination of a
permutation function and a matrix multiplication. For example in AES, the permutation
function is the ShiftRows operation and matrix multiplication is done by the MixColumns
operation. In the context of lightweight circuits, we can further classify these operations
into 2 broad classes: (1) swap-based and (2) replacement-based. In AES, for example, the
SubBytes and MixColumns operations can be seen as replacement-based operations, since
they take a finite portion of the AES state and replace them with new data block of equal
length. ShiftRows can be seen as a swap-based operation because it essentially swaps
some bits at two different locations of the state vector. Our technique, for implementing
an SPN-based block cipher, then consists of finding a good and short sequence of swap
operations that corresponds to the swap-based operation, and interleave them with the
replacement-based operations.

In particular, let us look at AES as an example. At the byte level, the ShiftRows is a
permutation over the set [0, 15] which can be formulated as

(1, 13, 9, 5) ◦ (2, 10) ◦ (6, 14) ◦ (3, 7, 11, 15)

Given that the AES byte order is b0, b1, . . . , b15, the above notation means that after
ShiftRows, b1 is moved to location 13, b13 is moved to location 9 etc. Note that each
of the k-cycles correspond to a particular row of the AES state and they commute with
each other, so the order of their execution is irrelevant. The above expression can be
decomposed further as

[(9, 13) ◦ (5, 9) ◦ (1, 5)] ◦ (2, 10) ◦ (6, 14) ◦ [(11, 15) ◦ (7, 15) ◦ (3, 15)]

What does this tell us? First is that, since for all the swaps (x, y) listed above, we have
y − x ≡ 0 (mod 4), so the permutation is special and of type 4 as per the definition by
Banik et al. [BBRV20, Definition 1].

Let us turn our attention to the first 4-cycle which decomposes as (9, 13) ◦ (5, 9) ◦ (1, 5)
(note that these swaps no longer commute). We will show how to implement this 4-cycle
in 16 clock intervals. Let us choose to implement the (11, 15) swap in the circuit for this
purpose, for which we place scan-flip-flop-based byte registers in locations 10 and 14 as
shown in Figure 2. The only reason we chose these locations was that they are 4 places
apart. Later it would be easy to see that we could have chosen any 2 locations (x, x+ 4)
for this purpose.

The first task is to execute (1, 5). We do the rotate operation, denoted by r, a total of
6 times on the circuit, and so that bits arrive to positions shown in Figure 2(b). We now
invoke the scan functionality so that in the next cycle bytes 1, 5 would be in positions
10 and 14 as shown in Figure 2(c). Note that in doing so we effectively execute the
permutation θ = r ◦ (11, 15). The next swap to be executed is (5, 9), which corresponds to
b1 ↔ b9 in the current state. By rotating 3 more times, we reach to the state in Figure 2(d),
where the bytes b1, b9 are in place to be swapped in the next cycle. After executing θ at
this point, we reach to the state in Figure 2(e). The final swap to be performed is (9, 13),
which as per the previous logic is swapping bytes b1 ↔ b13. Again it is easy to see that
performing θ ◦ r3 over the next 4 cycles gives us the position in Figure 2(g), where all the
bytes have now been swapped as required. We perform the rotate operation once more
to get the position in Figure 2(h), where all bytes are back to the original position and
the ShiftRows operation has been executed on the 1st row. In effect the permutation we
performed is r ◦ θ ◦ r3 ◦ θ ◦ r3 ◦ θ ◦ r6, which takes 16 cycles. Note that if we had chosen
any other swap location of the form (x, x+ 4), it would still be possible to do the above
sequence of operations. For example if we had chosen the swap (9, 13) instead of (11, 15),
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Figure 2: The contents of pipeline (a) initially, (b) after r6, (c) after θ ◦ r6, (d) after
r3 ◦ θ ◦ r6, (e) after θ ◦ r3 ◦ θ ◦ r6, (f) after r3 ◦ θ ◦ r3 ◦ θ ◦ r6, (g) after θ ◦ r3 ◦ θ ◦ r3 ◦ θ ◦ r6,
(g) finally after r ◦ θ ◦ r3 ◦ θ ◦ r3 ◦ θ ◦ r6. Note the numbers in blue denote the byte
index, i.e corresponds to bi, and the subscripts in red denote the fixed register positions.
As explained in Figure 1, the yellow boxes denote the byte registers implemented with
scan flip-flops. Cyan and black arrows denote whether the operation θ or r is executed
respectively.
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we would need to execute θ′ ◦ r3 ◦ θ′ ◦ r3 ◦ θ′ ◦ r8, where θ′ = r ◦ (9, 13). This already takes
17 cycles and so all the bytes will be indeed swapped correctly, but not return to their
original positions as before. Conceptually this means that if the AES round is executed in
16 cycles, then a few of the swap operations of the current round would take place in the
next round, and we would have to tailor the other operations in the pipeline accordingly.

Following the same logic, let us now try to do the swaps (2, 10) ◦ (6, 14) of the next
row. This time, let us choose two swap locations 8 places apart, in particular (5, 13). The
above swaps commute and so can be done in any order, so let us do (2, 6) first. After
r13, the bytes b2, b6 are in place for swapping, and in the next cycle we execute the scan
functionality to perform α = r ◦ (5, 13). After 3 more cycles of r, the bytes b6, b14 are in
place, and then we execute α again. Thus by executing α ◦ r3 ◦ α ◦ r13, we have again
already spent 18 cycles. As explained before, this indicates that at this point, the bytes
have again been correctly swapped in terms of their relative order in the pipeline and that
in terms of data flow in the circuit, some of the swaps of the current AES round overflow
into the next round.

The third set of swaps for the final row is (11, 15) ◦ (7, 15) ◦ (3, 15). We can construct
this sequence with 3 different swap locations also at distances 4, 8 and 12 apart. Let us
choose the swaps (11, 15), (5, 13) as before and (2, 14) as the additional swap location. We
have to execute (3, 15) first, therefore we rotate once to bring the bytes b3 and b15 in place
and then execute β = r ◦ (2, 14). We will now use the swap locations (11, 15), (5, 13), which
have already been used to do swaps in the previous 2 rows. At this point b7 and after
the previous swap b3 are already in place and so we execute α on the location (5, 13) by
invoking its scan functionality. For the last remaining swap (11, 15), we have to wait till
b11 returns to location 11, which requires 13 more rotations after which we can invoke θ.

Putting it together. We have just put together a set of swap sequences that enable the
execution of the AES ShiftRows operation. We looked at each row separately and so it is
conceivable that the swap sequences be performed one after the other, thereby requiring
a little over 48 cycles. But in the interest of latency, we wish to do them in 16 and if
required within a few cycles of the next round. Since the k-cycles in each row that we
executed commute with each other, the swaps can actually be executed concurrently. That
is, following the above example, we

1. invoke scan functionality on the swap location (2, 14) at clock cycle 1 (assuming we
start with cycle 0);

2. invoke scan functionality on the swap location (5, 13) at clock cycles 2, 13, 17;

3. invoke scan functionality on the swap location (11, 15) at cycle 6, 10, 14, 16.

The point is that since the k-cycles commute, we execute the swaps concurrently on the
given locations in 18 continuous cycles (numbered 0 to 17) and still achieve the ShiftRows
functionality (this roughly follows from [BBRV20, Lemma 7]). Indeed it is a matter of a
simple arithmetic exercise to see that the arrangement of bytes obtained after executing
the above sequence of swaps concurrently in 18 cycles results in ShiftRows off by 2 extra
rotations.

We have seen that we can execute AES ShiftRows and more generally any permutation
of type 4, by judiciously choosing swap locations at distances 4, 8, 12 and tailoring the swap
sequences around it. What about the other operations like SubBytes and MixColumns?
That is where the engineering challenge lies. Since these are substitution type operations,
they have to be accommodated in the pipeline preferably when the scan functionalities of
the registers are not being invoked. There are of course precedence issues a designer would
have to deal with, for example, the SubBytes and ShiftRows in any round must precede
the MixColumns. Can this technique be applied to other block ciphers in general? For
block ciphers that employ some kind of byte/nibble/word-based swap operations in their
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permutation function, the answer is affirmative. For example, SKINNY has a permutation
function given by

(4, 5, 6, 7) ◦ (9, 11) ◦ (8, 10) ◦ (12, 15, 14, 13).

This is a permutation of type 1, and has a similar form with AES, so it takes modest effort
to construct it using swaps, in the same fashion explained above. For block ciphers such
as GIFT that employ bit-based permutation function, the technique becomes slightly more
involved.

From byte to bit-serial. When we reduce the datapath to 1 bit, we can no longer swap
2 bytes in one cycle and it would take exactly 8 cycles for every byte swap. At the bit
level, ShiftRows of AES is essentially the composition of the following permutations over
the set [0, 127] for all k ∈ [0, 7]:

(8+k, 104+k, 72+k, 40+k)◦(16+k, 80+k)◦(48+k, 112+k)◦(24+k, 56+k, 88+k, 120+k)

As it can be seen from this expansion, at the bit level, everything scales by a factor of
8. At the byte level, we used the sequence r ◦ θ ◦ r3 ◦ θ ◦ r3 ◦ θ ◦ r6 to execute 4-cycle
(1, 13, 9, 5) with the swap located at (11, 15). At the bit level, let us choose the swap
locations (88, 120), located 32 places apart. Using the same logic as before, it is easy to see
that r8 ◦ θ8

1 ◦ r24 ◦ θ8
1 ◦ r24 ◦ θ8

1 ◦ r48 can realize
⋃7

k=0(8 + k, 104 + k, 72 + k, 40 + k), where
θ1 = (88, 120) ◦ r (with

⋃
denoting the composition operation). Similarly by choosing

swap locations that are 64 and 96 places apart, we can permute the other rows using the
same multiplicity by 8 principle. Similarly the SKINNY permutations can be designed for
the bit-serial datapath with swap locations 8, 16 and 24 places apart.

4 AES
For the rest of this section, we assume familiarity with the round function and the key
scheduling algorithms of AES [NIS01]. Our circuit simply consists of the following circuits
in the main hierarchy: (1) a state pipeline, (2) a key pipeline, (3) a controller, (4) a shared
S-box.

4.1 State Pipeline
The state in our design uses the following components/techniques:

• nibble-level MixColumns circuit introduced by Jean et al. [JMPS17],

• the smallest known AES S-box “bonus” from Maximov and Ekdahl [ME19].

Given that state and key bits are stored in a pipelined fashion, one can easily notice
that AddRoundKey can be performed without much hassle as long as each of the state
and key pipelines produces the correct bit per clock cycle. Hence, the main challenges on
the state pipeline part is to (1) execute all SubBytes, ShiftRows, MixColumns operations
simultaneously, (2) complete the operations in 128 clock cycles, while (3) following the
standard ordering of bits for the plaintext and the key. Below, we first describe each layer
separately, and show how we can fuse them into one operation that executes over the state
pipeline continuously.

4.2 ShiftRows with Swaps
Assume that the 128-bit pipeline is defined in the same fashion as in Section 2, i.e. the bits
are loaded into FF127 and they are flushed out by FF0. We use three swap operations to
execute the ShiftRows layer: (80, 112), (56, 120) and (25, 121). The timetable for scheduling



252 The Area-Latency Symbiosis: Towards Improved Serial Encryption Circuits

row: 1 1 5 9 D 15 9 D 15 9 D 15 9 D

2 6 A E 26A E 2 6A E

3 7 B F 37 BF F 7B 3

row: 2

row: 3

Figure 3: The transition diagram for rows 1, 2, 3; where the colored cells denote the
recently modified values. Note that there are three distinct swap operations, with distance
0, 1 and 2 cells in-between.

these swaps are given in Table 5. Below, we explain how we came up with these swap
sequences and the mechanism in which they work for shifting rows correctly.

For simplicity, let us forget about the pipeline and shift operations for the moment,
and focus on the nature of ShiftRows in the 16-byte state. We try to express ShiftRows in
terms of byte swaps. Suppose that the values contained in the state are the hexadecimal
characters 0, 1, . . . ,F. Considering the standard byte arrangement for loading the initial
data [NIS01], row 0 contains the values 0, 4, 8,C; row 1 contains the values 1, 5, 9,D etc.
We then devise a sequence of swap operations over the rows 1, 2, 3 to perform ShiftRows.
Our three distinct swaps are denoted with distinct colors in Figure 3. This figure shows
the movement of the bytes as they arrive to their final position implied by ShiftRows.

We point out two important observations: (1) each byte-swap operation can be executed
by a bit-swap circuit through 8 consecutive calls interleaved by shift operations, (2) the
swap operations denoted with the same color can actually be executed by a single swap
operation as long as it is enabled in the correct clock cycle. Therefore, the choice of swaps
and the timetable in Table 5 are straightforward extensions of this example into the 128-bit
state pipeline.

Table 5: The timetable of operations for bit-serial AES encryption.
pipeline operation active cycles

state swap (80, 112) [56, 64) ∪ [88, 96) ∪ [120, 127] ∪ [8, 16)
swap (56, 120) [88, 96) ∪ [120, 127] ∪ [0, 8)
swap (25, 121) {127} ∪ [0, 6]
load S-box {8k + 7 : k ∈ [0, 15]}

load Mix Col. [32, 40) ∪ [64, 72) ∪ [96, 104) ∪ [0, 8)

key swap (96, 128) [0, 8)
swap (40, 72) [56, 64)
load S-box {112} ∪ {120} ∪ {0} ∪ {8}
key XOR [0, 96)
add RC (lookup table)

To help understand how the structure helps perform the ShiftRows operation, we note
that since the pipeline is always active, the shift operation is performed in every clock
cycle. To additionally perform the swap 80↔ 112, in any clock cycle, we need to place
scan flip-flops at locations 79 and 111 (and wire the output of 80 to the input of 111; wire
the output of 112 to the input of 79) as is shown in Figure 4. So assuming that the bits
indexed 0 to 127 enter the pipelines through the location 127, at clock cycle k ≤ 127, the
pipeline stores exactly k bits. For instance, in the 56-th clock cycle, the bits indexed 8, 40
are at locations 80, 112 respectively. Enabling swaps for cycles 56 to 63 therefore swaps
bits 8, . . . , 15 with 40, . . . , 47, which are essentially bytes indexed by 1 and 5. It can be
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verified without difficulty that performing the same swap in cycles [88, 96) actually swaps
bytes 1 and 9. This exactly follows the explanation in Section 3 using (80, 112) as swap
locations instead of (88, 120). Similarly the same swap in cycles [120, 127) swaps bytes
1 with 13, which completes the ShiftRows operation on row 1. It is not too difficult to
verify that the other swaps at cycles as listed in Table 3 faithfully perform the remaining
ShiftRows operations.

4.3 The Nibble MixColumns
The nibble MixColumns was introduced by Jean et al. [JMPS17]. The multiplication
over a single column is completed over 8 clock cycles, updating each nibble at a time. To
simplify, we first represent a single column of bytes as 8 vertical nibble vectors as below.
Namely, from the pipeline given in Figure 4, the vectors Mi are defined for 0 ≤ i ≤ 7 as
below:

Mi :=


FFi

FFi+8
FFi+16
FFi+24

 R(M0) :=


FF8
FF16
FF24
FF0


The nibble MixColumns architecture employs an additional set of 4 flip-flops to help
with the serialized computation of this functionality. Define the vector M8 to denote
this additional internal 4-bit storage this architecture employs. During its 8 clock cycle
operation, these flip-flops are used to keep the value of the leftmost bit of each one of the
four bytes. We define a function upward rotation R that rotates the elements in a given
vertical matrix by one position, as exemplified above. The circuit essentially performs
the following sequence of operations to derive the new value of Mi for each i = 0, 1, . . . , 7,
starting from i = 0 respectively:

• if i = 0, store M8 ←M0 before any of the following computation,

• update Mi ← R(Mi)⊕R2(Mi)⊕R3(Mi)⊕Mi+1 ⊕R(Mi+1),

• if i ∈ {3, 4, 6}, further update Mi ←Mi ⊕M8 ⊕R(M8).

In other words, at each clock cycle, based on the internal 7-bit counter, we can execute
a single slice of the previous computation. In total, it takes 8 clock cycles for a single
column, and 32 clock cycles for the whole MixColumns layer. This serial circuit can be
realized with 8 XOR, 8 NAND gates and 4 flip-flops (see Figure 1 of [JMPS17]).

4.4 Combined State Pipeline
In the controller, the circuit contains an 11-bit counter to keep both the round (4-bit) and
the phase (7-bit). We split this counter into two parts and refer to them respectively by
variables 0 ≤ round ≤ 10 for the upper 4-bit and 0 ≤ count ≤ 127 for the lower 7-bit.

In contrast to previous work [JMPS17], we follow the standard ordering of bits in our
implementation. That is given a plaintext and a key, the bits are loaded into the circuit
starting from the leftmost bits, and following the natural order [NIS01]. This becomes a
crucial aspect of a block cipher implementation, if it is meant to be used in a mode of
operation that needs to comply with a fixed standard.

At the beginning of its operation, the 11-bit counter is reset to zero. During initialization,
i.e. round = 0, the white-colored MUXes in Figure 4 are configured so that the next bit s
of the state is received from the input port PT but after the XOR is performed with KEY,
which is also being loaded at the same time. For round > 0, we select the state bit to be
loaded from the exit of the state pipeline.
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Figure 4: The state (above) and key (below) pipelines of AES-128 encryption with colored
scan flip-flops. S-box output ports are denoted with S0||S1|| . . . ||S7.

SubBytes. Meanwhile, we proceed with executing the SubBytes layer, by enabling the S-
box at every 8-th cycle. More precisely, the S-box is configured to take FF121,FF122, . . . ,FF127
and s as input, and the scan flip-flops FF120, . . . ,FF127 are instructed to load the output
from the S-box if count mod 8 = 7.

ShiftRows. Starting from count = 56, the swap operations become active. Many of the
bits need to make a couple of jumps before they are located into their ultimate positions
implied by ShiftRows, as demonstrated in Figure 3. Hence, position-wise, many bits
are incorrectly located and look garbled as they pass through flip-flops FF24, . . . ,FF120.
Nonetheless, as soon as they exit the last swap position FF24, they are guaranteed to be
in their final position. See Table 5 to notice that the last swap operation executed on a
layer actually happens when count = 15 in the next round. In other words, performing
ShiftRows over the i-th state uses the last 72 cycles of the round i and the first 16 cycles
of the round i+ 1, and it is not aligned with the counter round itself .

MixColumns. The input ports to the nibble MixColumns circuit are flip-flops FFi for
i ∈ {0, 1, 8, 9, 16, 17, 24, 25}, and the output ports are input to the exit MUX of the pipeline
and FF7,FF15,FF23 respectively. The MixColumns of round i is performed at round = i+ 1
and it is active during 0 ≤ count mod 32 ≤ 7, except the last round where MixColumns
must be skipped.

Resolving overlaps. Note that there are two clock cycles, i.e. count values, during which
two operations modify the same FF simultaneously in Table 5. First, at clock cycle 127
both S-box and swap (25, 121) attempts to overwrite FF120. Here, the operation precedence
is given to the S-box (as SubBytes comes before ShiftRows), meaning that the leftmost
output bit of the S-box is fed to the swap operation (instead of FF120). A second overlap
occurs when count = 3, as MixColumns circuit attempts to read FF25 before its value
is updated correctly by the swap (25, 121). Here, the precedence is given to the swap
operations, meaning that the output of the swap operation is fed as input to MixColumns
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circuit (instead of FF25).

4.5 Key Pipeline
Suppose that K0,K1, . . . ,K15 represent the key bytes of a particular round. Then the
next round key sequence K16, . . . ,K31 is computed as follows:

K16 K20 K24 K28
K17 K21 K25 K29
K18 K22 K26 K30
K19 K23 K27 K31

←

K0 K4 K8 K12
K1 K5 K9 K13
K2 K6 K10 K14
K3 K7 K11 K15

⊕


S(K13)⊕ RC K16 K20 K24
S(K14) K17 K21 K25
S(K15) K18 K22 K26
S(K12) K19 K23 K27


where RC denotes the round constant byte.

In summary, the first column requires special treatment, because it involves S-box calls,
and the remaining three columns can be updated smoothly (by simply XORing with a
neighboring bytes). In particular, one can notice the disarrangement in the update of
the first column, as it takes the current last columns bytes with a downward rotation (by
one byte). If we implement this in a straightforward fashion by updating each byte when
they arrive to position 0, we would have to choose the input of the S-box either from the
position 13 (for computing K16, K17, K18) or 9 (for computing K19). This means that
we would have to put an extra 8-bit MUX to choose which value needs to be fed to the
S-box. Instead, we decided to temporarily move the byte K12 to position 13 before it is
fed to S-box, and then return back to its original position after the S-box operation is
done. Therefore the pipeline performs the following operations in sequence:

• In the first 8 clock cycles, we activate the swap (96, 128) so that the key byte K12 is
temporarily moved such that it comes after K15. Here, FF128 actually refers to the
new key bit that is about to be loaded into the key pipeline. With this operation,
the key pipeline contains K13,K14,K15,K12, in given order. Hence, it respects the
order they are being used to update the first key column.

• In clock cycles 112, 120 (of the current round) and 0, 8 (of the next round); the S-box
is used by the key pipeline. During these cycles, the S-box reads K13,K14,K15,K12
from FF120, . . . ,FF127 in given order. The output from the S-box is XORed with
FF16, . . . ,FF23 and the result is loaded into FF15, . . . ,FF22.

• The round constant is added as the bit FF24 is loaded into FF23. We use a lookup
table to decide when the round constant bit is enabled. In total, this bit is enabled
16 times during the whole encryption.

• During the clock cycles [56, 64), we activate the swap (40, 72) to return K12 back to
its original relative position. Hence the internal ordering of the bytes becomes K12,
K13,K14,K15 again.

• For the rest of the key bits, we handle the key scheduling by activating FF31 ←
FF0 ⊕ FF32 during the clock cycles [0, 96).

Table 6 tabulates the synthesis results for this AES circuit under 5 different standard cell
libraries.
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Table 6: Synthesis figures for the AES-128 encryption-only circuits.
Library Area Power (µW) Latency (cycles) Energy Throughput

(µm2) (GE) @ 10 MHz round total (nJ/128-bit) (Mbit/s)
1-bit

STM 90 nm 5562.6 1267 73.6 128 1408 10.4 13.44
UMC 90 nm 5016.8 1600 65.2 128 1408 9.2 12.53
TSMC 90 nm 4692.2 1663 56.1 128 1408 7.9 14.50
NanGate 15 nm 441.8 2247 18.4 128 1408 2.6 293.89
NanGate 45 nm 1575 1974 143 128 1408 20.1 45.87

8-bit
STM 90 nm 7838.0 1785 104.5 16 176 1.84 112.96
UMC 90 nm 6917.2 2206 85.6 16 176 1.51 115.60
TSMC 90 nm 6361.0.2 2256 68.9 16 176 1.21 121.89
NanGate 15 nm 564.2 2870 23.1 16 176 0.42 2160.68
NanGate 45 nm 2022.9 2535 192.4 16 176 3.38 376.94

4.6 8-bit Datapath
As already stated, there are several implementations of AES with a byte-serial datapath
that can execute one AES round in 21 cycles [MPL+11, BBR16]. Since it is not possible
to implement the circuit in less than 20 cycles if the number of S-boxes is limited to one,
this represents a close-to-optimal latency for this datapath. However, note that these two
circuits adopt a non-standard, row first arrangement of bytes. One of our goals therefore
was to design a circuit that uses standard byte ordering. Since there already exists a
21-cycles-per-round circuit that achieves close to optimal latency, we did not attempt to
design one that also achieves 20 cycles per round. Instead, we focus on an implementation
that closely matches our bit-serial circuit, and achieves one round in 16 cycles, by using 2
S-box circuits4.

Since this circuit closely resembles the bit-serial circuit, all the calculations of swap
locations and the time intervals when the swap functionality is invoked basically scale by
a factor of 8. It is best to summarize it using the following salient points:

• The circuit has 32 byte-registers Reg0 to Reg15 and Key0 to Key15, and we use the
following swap operations to implement ShiftRows: (a) (9, 13) in cycles 7, 11, 15, 0,
(b) (6, 14) in cycles 11, 15, 0, and (c) (2, 14) in cycle 0.

• We use a {0, 1}32 → {0, 1}32 MixColumns circuit for this implementation. We chose
to use the MixColumns implementation with 92 XOR gates from Maximov [Max19],
which has the lowest gate count known in the literature. The operation is performed
in cycles 0, 4, 8, 12. The inputs are taken from the byte registers in the first column
and written in registers 1, 2, 3, 15 in the order from MSB to LSB. This closely
resembles the bit-serial circuit.

• The key addition and S-box are done in every cycle.

• The key pipeline uses the swaps (11, 15) in cycle 0 and (4, 8) in cycle 7. The column
addition in the key update is done by calculating Key3 ← Key0⊕ Key4, in cycles 0 to
11.

Table 6 tabulates the synthesis results for the 8-bit circuit for the same 5 different standard
cell libraries.

4Note that theoretically, it ought to be possible to implement an AES round in 10 cycles with 2 S-boxes,
but we found that it would be difficult to design a pipeline for such a circuit using low gate count. Such
implementation would require many multiplexers to arrange the component operations in place and would
increase the area significantly.



Fatih Balli, Andrea Caforio and Subhadeep Banik 257

Table 7: The timetable of operations for bit-serial SKINNY-128-384 encryption circuit.
pipeline operation active cycles

state swap (112, 120) [112, 120) ∪ [120, 127] ∪ [0, 8) ∪ [64, 72)
swap (104, 120) [64, 72) ∪ [88, 96) ∪ [96, 104)
swap (96, 120) [64, 72)
load S-box {8k : k ∈ [0, 15]}
rc addition. (lookup table + LFSR)
load Mix Col. [0, 32)

tweakey 1,2,3 swap (56, 120) [72, 127] ∪ [0, 8)
swap (48, 56) [120, 127]
swap (24, 56) [112, 120) ∪ [120, 127] ∪ [0, 8)
swap (8, 24) [120, 127] ∪ [0, 8) ∪ [24, 32)

tweakey 2 swap (0, 1) [0, 6] ∪ [8, 14] ∪ [16, 22] ∪ [24, 30] ∪ [32, 38] ∪ [40, 46] ∪ [48, 54] ∪ [56, 62]
LFSR XOR {8k : k ∈ [0, 7]}

tweakey 3 LFSR (8-bit) {8k : k ∈ [0, 7]}

5 SKINNY
SKINNY provides six different variants [BJK+16]. In this paper, we consider the variants
that are used by NIST LWC candidates, i.e. these are the members with 128-bit block
size, as given in Table 1. In these variants, the tweakey size is variable, i.e. it can consists
of 128z bits for z = 1, 2, 3. For the remainder of the paper, we refer to these three versions
by SKINNY-128-128, SKINNY-128-256 and SKINNY-128-384 respectively.

SKINNY is quite similar to AES in design, but it employs more lightweight operations
for the round function. Prominently, S-box and MixColumns can be realized with much
smaller circuitry compared to AES. The round function consists of SubCells, AddConstants,
AddRoundTweakey, ShiftRows, MixColumns. For the finer details of these layers, we refer
the reader to the original SKINNY paper [BJK+16].

Our design follows a similar architecture to that of AES. The circuit simply consists of
the following parts in the main hierarchy: (1) a state pipeline (which includes a dedicated
S-box), (2) a key pipeline, (3) a controller. Below, we will explain the 1-bit implementation,
and modifying the circuit into 8-bit implementation is quite straightforward.

5.1 Combined State Pipeline
In the controller, the circuit contains an 13-bit counter to keep both the round (6-bit) and
the phase (7-bit). We split this counter into two parts and refer to them respectively by
variables 0 ≤ round ≤ 56 for the upper 4-bit and 0 ≤ count ≤ 127 for the lower 7-bit.

Because SKINNY is already designed with hardware-friendliness in mind, we load the bits
into the circuit starting from the leftmost bits, by following the standard [BJK+16]. In our
implementations the key blocks and the plaintext are loaded simultaneously and completed
in 128 cycles. This applies to all three versions of SKINNY-128-128, SKINNY-128-256,
SKINNY-128-384.

At the beginning of its operation, the 13-bit counter is reset to zero. Then during
initialization, i.e. round = 0, the plaintext is loaded through 1-bit input port, and the key
is loaded through z-bit input port into their respective pipelines without modification.
Each tweakey block has its own dedicated input port. These ports are denoted with PT
(for plaintext) and KEY1, KEY2, KEY3 for the tweakey. Below, we describe the layers of
operations executed on the state pipeline, in an order observed by the incoming bits.

SubCells. SubCells layer is executed by enabling the S-box at every 8-th cycle. More
precisely, the S-box is configured to read FF120,FF121, . . . ,FF127 as input, and the scan flip-
flops FF119, . . . ,FF126 are instructed to be loaded with the S-box output if count mod 8 = 0.
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SKINNY encryption.



Fatih Balli, Andrea Caforio and Subhadeep Banik 259

AddConstants. The round constants are added right after the S-box operation. An
XOR gate is placed between FF119 and FF120, and the round constant bit rc is added. We
use a 7-bit LFSR circuit (not shown in the figure) to produce the round constant bit.

AddRoundTweakey. The key bits are added at the same position with the round
constant bit, i.e. between FF119 and FF120. In order to synchronize this with the key
pipeline, the key bits k0, k1, k2 are read from FF120 of the key pipeline. The key addition
is active during 8 ≤ count < 72. This corresponds to adding the first half of each tweakey.

ShiftRows. This layer is executed with 3 swap operations, similar to AES, and the
timetable of swaps are given in Table 7. Position-wise, bits are incorrectly located and
look garbled as they pass through flip-flops FF95, . . . ,FF119, but as soon as they exit the
last swap position FF95, they are guaranteed to be in their final position.

MixColumns. The input ports to the nibble MixColumns circuit are flip-flops FFi for
i ∈ {0, 32, 64, 96}, and the output ports are input to the exit MUX of the pipeline and
FF31,FF63,FF95 respectively. The MixColumns is active during the first 32 clock cycles of
a round.

Resolving overlaps. Note that during clock cycles 64 ≤ count < 72 three swaps
(112, 120), (104, 120), (96, 120) are active at the same time and overlap at the same flip-flop
FF120. The order of execution here is (96, 120), (104, 120) and (112, 120) respectively.

5.2 Key Pipeline
SKINNY can have up to three blocks of tweakey, referred to as TK1, TK2, TK3 [BJK+16].
The key schedule algorithm is quite similar in all three key blocks. More precisely, suppose
that K0,K1, . . . ,K15 represent the key bytes of a particular tweakey block. Then the next
round key sequence K16, . . . ,K31 is computed as follows:

K16 K17 K18 K19
K20 K21 K22 K23
K24 K25 K26 K27
K28 K29 K30 K31

←

Li(K9) Li(K15) Li(K8) Li(K13)
Li(K10) Li(K14) Li(K12) Li(K11)
K0 K1 K2 K3
K4 K5 K6 K7


where the operation Li are 8-bit permutations given below:

L1(x7||x6||x5||x4||x3||x2||x1||x0) := x7||x6||x5||x4||x3||x2||x1||x0

L2(x7||x6||x5||x4||x3||x2||x1||x0) := x6||x5||x4||x3||x2||x1||x0||(x7 ⊕ x5)
L3(x7||x6||x5||x4||x3||x2||x1||x0) := (x0 ⊕ x6)||x7||x6||x5||x4||x3||x2||x1

Therefore, our key pipelines do the following operations in sequence. First, we swap the
first and the last eight bytes by using the swap (56, 120). Then we perform the local byte
permutations on the upper half (i.e. the first 8 bytes) of the key through swaps (48, 56),
(24, 56), (8, 24). Finally we apply the 8-bit permutation L2 through another swap (0, 1)
for TK2, and a dedicated 8-bit LFSR circuit for L3 in TK3.

The 8-bit implementation is in fact simpler than 1-bit, because circuitry such as LFSR,
S-box are already compatible with the datapath size. We only need to add extra gates for
swaps, e.g. extend each single swap into byte swap, and duplicate circuit for MixColumns.
The timetable is also updated so that each consecutive activity in 8 clock cycles are
squeezed into one. Table 8 tabulates the synthesis results for the 1/8-bit circuit for 5
different standard cell libraries.
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Table 8: Synthesis figures for the SKINNY encryption-only circuits.
Library Area Power (µW) Latency (cycles) Energy Throughput

(µm2) (GE) @ 10 MHz round total (nJ/128-bit) (Mbit/s)
SKINNY-128-128 1-bit

STM 90 nm 4697.7 1070 51.47 128 5248 27.0 12.51
UMC 90 nm 4249.3 1355 52.08 128 5248 27.3 10.72
TSMC 90 nm 4022.6 1425 47.12 128 5248 24.7 14.36
NanGate 15 nm 391.7 1992 15.89 128 5248 8.3 258.45
NanGate 45 nm 1394.9 1748 122.06 128 5248 64.1 38.77

SKINNY-128-128 8-bit
STM 90 nm 5820.6 1326 62.44 16 656 4.1 71.02
UMC 90 nm 5233.2 1669 61.38 16 656 4.0 58.52
TSMC 90 nm 4812.2 1706 51.67 16 656 3.4 72.69
NanGate 15 nm 453.1 2304 18.62 16 656 1.2 979.38
NanGate 45 nm 1617.8 2022 146.17 16 656 9.6 209.08

SKINNY-128-256 1-bit
STM 90 nm 6642.7 1513 75.30 128 6272 47.2 11.93
UMC 90 nm 6043.9 1927 75.70 128 6272 47.5 10.52
TSMC 90 nm 5730.9 2030 69.25 128 6272 43.4 14.36
NanGate 15 nm 561.0 2853 22.99 128 6272 14.4 232.6
NanGate 45 nm 1996.9 2502 175.28 128 6272 109.9 38.13

SKINNY-128-256 8-bit
STM 90 nm 8252.9 1880 90.47 16 784 7.1 59.64
UMC 90 nm 7463.7 2380 88.64 16 784 6.9 43.27
TSMC 90 nm 6864.1 2434 75.21 16 784 5.9 60.42
NanGate 15 nm 658.5 3350 27.19 16 784 2.1 1033.79
NanGate 45 nm 2338.7 2923 211.66 16 784 16.6 166.14

SKINNY-128-384 1-bit
STM 90 nm 8631.5 1966 99.36 128 7296 72.5 8.25
UMC 90 nm 7895.7 2518 99.73 128 7296 72.8 9.94
TSMC 90 nm 7465.2 2645 91.38 128 7296 66.7 14.82
NanGate 15 nm 733.7 3732 30.22 128 7296 22.0 211.46
NanGate 45 nm 2603.6 3263 229.10 128 7296 167.2 38.77

SKINNY-128-384 8-bit
STM 90 nm 10674.2 2431 119.60 16 912 10.9 50.84
UMC 90 nm 9670.6 3084 116.40 16 912 10.6 38.61
TSMC 90 nm 8896.9 3155 99.29 16 912 9.1 68.41
NanGate 15 nm 859.5 4372 35.72 16 912 3.3 744.33
NanGate 45 nm 3060.3 3825 277.45 16 912 25.3 143.14

6 GIFT∗

We will be focusing our efforts on the bit-sliced design of the GIFT block cipher, as utilized
in the NIST LWC candidates GIFT-COFB and SUNDAE-GIFT [BCI+19, BBP+19]. We
denote it by GIFT∗ as it differs from the original construction in the way data bits are
organized (the implementation of the regular GIFT circuit is given in Appendix A). In this
variant, the cipher state is reordered and interpreted as a two-dimensional array, i.e. four
32-bit segments S0, S1, S2, S3 such that


S0
S1
S2
S3

 =


s3 s7 . . . s127
s2 s6 . . . s126
s1 s5 . . . s125
s0 s4 . . . s124

 ,
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Table 9: Bit-sliced GIFT∗ permutation where index 0 is the rightmost bit of a row segment.
Following the notation by SUNDAE-GIFT proposal, the bit identified by j moves to the its
new position denoted in Si after application of the permutation [BBP+19].
Index 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S0 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0
S1 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1
S2 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2
S3 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3

where s0s1 . . . s127 are the state bits. In this ordering, s3 becomes the most significant bit
of S0 and s127 becomes its least significant bit. The 4-bit S-box is applied column-wise
and the permutation layer consists of four independent row-wise permutations as shown in
Table 9.

In contrast, the key state is not reordered and remains unchanged with respect to the
regular GIFT∗ specification, i.e.

K0 || K1
K2 || K3
K4 || K5
K6 || K7

 =


k0 k1 . . . k31
k32 k33 . . . k63
k64 k65 . . . k95
k96 k97 . . . k127

 ,
where k0k1 . . . k127 are the key bits. The key schedule consists of two 16-bit internal
rotations and an external rotation that spans the entire state. More specifically, K6 is
rotated 2 positions to right, K7 is rotated 12 position to the right and the entire key state
is rotated concurrently by 32 positions to the right.[

K0,K1,K2,K3,K4,K5,K6,K7
]
←
[
K6 � 2,K7 � 12,K0,K1,K2,K3,K4,K5

]
.

In each round, 64 bits of the key are mixed into the cipher state as follows

S2 = S2 ⊕ U
S1 = S1 ⊕ V,

where U = K2 || K3 and V = K6 || K7. Alongside the round keys, in each round there
is also a 6-bit (c5, c4, c3, c2, c1, c0) round constant that is added to the state and updated
such that

S3 = S3 ⊕ 0x800000XY,

where XY = 00c5c4c3c2c1c0.

6.1 1-Bit Datapath
In this section, we present our 1-bit swap-and-rotated GIFT∗ architecture in which each
round function computation is performed in exactly 128 cycles.

6.1.1 State Pipeline

The bit-wise nature of both the GIFT∗ and GIFT permutation complicates matters in a
swap-and-rotate setting, since each state bit needs to be moved to its designated position
individually. As a consequence, a simple solution with few swaps as devised for the AES
ShiftRows procedure, detailed in Section 4.2 is not achievable.

Nevertheless, the GIFT∗ permutation can be partitioned into three layers each can be
generated with three separate swaps, thus, in total, we allocate nine swaps.
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Figure 6: 128-cycle, bit-serial GIFT∗ round function implementation using nine swaps.

1. (FF31,FF30), (FF31,FF28), (FF31,FF29).

2. (FF28,FF24), (FF28,FF26), (FF28,FF26).

3. (FF22,FF4), (FF22,FF10), (FF22,FF16).

Due to the column-wise application of the substitution layer in GIFT∗, the S-box ports
in the state pipeline are FF31, FF63, FF95 and FF127 which are active during the cycles 96
to 127. A graphical depiction of the GIFT∗ state pipeline is given in Figure 6.

6.1.2 Key Pipeline

The bit-sliced interpretation of GIFT∗ significantly simplifies how the 64-bit round keys are
extracted in each round since they are now mixed into a continuous stretch of the cipher
state. For this we can assume, without loss of generality, that the master key K is loaded
in the following order as to simplify the swapping algorithm.

K =


K0 || K1
K6 || K7
K2 || K3
K4 || K5

 ,
In this scenario, the 64-bit round keys K2||K3||K6||K7 are added to the block cipher states
during the cycles 32 to 96.

The swap sequence for the GIFT∗ key schedule is partitioned into four phases.

Phase 1 (Rotating the state). We rotate the entire key state by 64 positions to the
left. This operation can be achieved with a single swap during 64 active cycles. Preferably,
the transformation should occur concurrently with the addition of the round key into the
cipher state, i.e. we allocate FF0 and FF64 to perform the rotation during the cycles 32 to
96.

Phase 2 (Swapping the precedence). To achieve a full emulation of the 96-bit
rightward rotation of the key schedule, it is further necessary to swap the precedence of
the utilized round key halves, i.e. K2||K3 and K6||K7. This again only requires a single
swap during 32 cycles and can be performed subsequently to the first phase, hence we
allocate FF0 and FF96 for this second phase.

Phase 3 (Rotating K6). This transformation can been seen as a 14-bit leftward rotation
that can be achieved by composing three leftward rotations of magnitude 8, 4, and 2. The
position and the interval of those three swaps can be chosen relatively freely, as K6||K7



Fatih Balli, Andrea Caforio and Subhadeep Banik 263

Table 10: The timetable of operations for bit-serial GIFT∗ encryption.
pipeline operation active cycles
state swap (31, 30) {8k + 7 : k ∈ [0, 15]}

swap (31, 28) {8k + 5 : k ∈ [0, 15]} ∪ {8k + 7 : k ∈ [0, 15]}
swap (31, 29) {8k + 5 : k ∈ [0, 15]}
swap (28, 24) {0, 1, 42, 43, 50, 51, 58, 59, 66, 67, 104, 105, 112, 113, 120, 121}
swap (28, 26) {6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}

∪{34, 35, 72, 73, 80, 81, 88, 89, 96, 97}
swap (28, 22) {74, 75, 82, 83, 90, 91, 98, 99}
swap (22, 4) {2, 3, 34, 35, 66, 67, 98, 99}
swap (22, 10) {4, 5, 26, 27, 36, 37, 58, 59, 68, 69, 90, 91, 100, 101, 122, 123}
swap (22, 16) {6, 7, 18, 19, 28, 29, 38, 39, 50, 51, 60, 61, 70, 71}

∪{82, 83, 92, 93, 102, 103, 114, 115, 124, 125}
key addition [32, 96)
rc addition (lookup table)
load S-box [96, 128)

key swap (64, 128) [32, 96)
swap (32, 128) [96, 128]
swap (96, 100) [32, 44)
swap (84, 92) [44, 52)
swap (76, 78) [52, 66)
swap (96, 100) [48, 60)

is not a part of the current round key, as long as they occur after the second phase has
terminated. To simplify the matter, we chose to perform them back-to-back during the
cycles 32 and 66. More concretely, the 4-bit rotation is done during the cycles 32 to 44
using a swap at register FF95 and FF99. Subsequently, we perform the 8-bit rotation during
cycles 44 to 52 with the registers FF83 and FF91, followed by the 2-bit rotation during
cycles 52 to 66 using the registers FF75 and FF77.

Phase 4 (Rotating K7). Phase 3 is followed by a 4-bit leftward rotation of K7 that is
congruent to the 12-bit rightward rotation of the specification. This necessitates a single
swap of size 4 for which we can reuse the same swap as utilized in phase 3, i.e. FF99 and
FF95 during the cycles 48 to 60.

A summary of both the key schedule and round function swaps is tabulated in Table 10.
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6.2 4-Bit Datapath
Analogous to the bit-serial implementation presented in the previous section, we now
describe the 4-bit-serial architecture that completes execution of a round in 32 clock cycles.

6.2.1 State Pipeline

The 4-bit state pipeline is unlikely to be achieved by simple swaps and a concurrent
rotation as the substitution layer overwrites 4 non-adjacent bits FF31, FF63, FF95, FF127
(see Figure 6). Then it follows that the swaps performing the permutation must necessarily
be placed in the most significant quarter of the state pipeline and each 32-bit row of the
state has to be permuted in only 8 cycles. Furthermore since we employed 9 swaps, i.e. 18
scan flip-flops, in the bit-serial construct, we need at the least four times this amount in
the 4-bit case . This makes at least 72 MUXed flip-flops which significantly complicates
the placement of swaps.

A second difficulty arises due to the fact that the pipeline rotates four positions at a
time, thus the S-box taps are not constant but move further down the pipeline with every
clock cycle, requiring a significant number of multiplexers to differentiate the different
taps.

In order to circumvent those complexities, we chose to equip the entire 128-bit state
with scan flip-flops and execute the permutation in the last cycle of the round while using
4 S-boxes in parallel to substitute 16 bits of the state during the cycles 24 to 31. Note that
a single GIFT∗ S-box can be synthesized in fewer than 20 GE, thus the overhead of using
four units is marginal and possibly still smaller than using multiplexers for the moving
S-box taps.
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Figure 8: 4-bit GIFT∗ state pipeline. Registers are marked in yellow.

6.2.2 Key Pipeline

The 4-bit key pipeline can be seamlessly adapted from the 1-bit counterpart by simply
turning the single-bit swaps into nibble swaps, following the generic technique from
Section 3. As we had 5 swaps in the single-bit version we now have 4× 5 = 20 swaps, i.e.
40 scan flip-flops. In Table 11, we list the synthesis results for our 1-bit and 4-bit GIFT∗
circuits.

In addition to these encryption circuits, the decryption circuits for all these block
ciphers are also easy to construct. Most of the AEAD modes we implement are inverse-
free, therefore encryption-only circuits are sufficient for these candidates. However for a
complete discussion, we present some ideas on decryption in Appendix B.
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Table 11: Synthesis figures for 1-bit and 4-bit GIFT∗ encryption-only circuits.
Library Area Power (µW) Latency (cycles) Energy Throughput

(µm2) (GE) @ 10 MHz round total (nJ/128-bit) (Mbit/s)
1-bit

STM 90 nm 4863.5 1108 48.7 128 5248 25.5 9.09
UMC 90 nm 4410.8 1332 49.8 128 5248 26.1 9.77
TSMC 90 nm 4176.5 1480 45.1 128 5248 23.7 12.51
NanGate 15 nm 402.3 2047 15.4 128 5248 8.1 178.92
NanGate 45 nm 1432.1 1791 122.3 128 5248 64.2 29.82

4-bit
STM 90 nm 6280.5 1430 61.4 32 1312 5.1 8.98
UMC 90 nm 5779.7 1779 60.9 32 1312 4.4 7.73
TSMC 90 nm 5135.6 1819 50.8 32 1312 4.3 9.73
NanGate 15 nm 481.5 2449 17.1 32 1312 1.9 166.14
NanGate 45 nm 1704.5 2130 152.9 32 1312 13.9 28.72

7 AEAD
As standalone block ciphers are not ready-to-use primitives, and hence they are usually
wrapped in a mode of operation. In this section, we investigate four NIST LWC candidates
which are bootstrapped via the improved 1-bit (and 4/8-bit) implementations of AES,
SKINNY and GIFT∗ presented in the previous sections. Namely, these candidates are
SUNDAE-GIFT, SAEAES, Romulus and SKINNY-AEAD [BBP+19, NMMaS+19, IKMP19,
BJK+19]. For all four schemes, we report the hitherto smallest block-cipher-based authen-
ticated encryption circuits in the literature.

The choice of these four particular candidates in our work is influenced by the obser-
vation that the area of a block cipher is determined, to a large extent, by the amount
of storage elements, rather than how lightweight the round operations are. This is more
evident when one compares SKINNY-128-384, whose round function comprises lightweight
operations, to AES, whose S-box and MixColumns circuits are significantly larger. The
former is much larger, only because it requires large number of flip-flops to store the key.

Because an authenticated encryption scheme produces a tag besides the ciphertext
blocks, it is natural to expect a particular value that is initialized at the beginning and
updated repetitively after processing each new block of data. We refer to this value as
the running state. The running state is eventually used to compute the tag, so that all
blocks contribute to its value. From the area perspective, an important question is whether
storing the running state requires an extra register or not. For the chosen candidates, the
running state is actually not a separate value, but rather it is passed between consecutive
encryption calls. In other words, we can use the state register inside the block cipher to
keep this value temporarily until the next encryption starts. It is precisely the reduction
in the storage area that yields the impressive area results for the four candidates.

In the special case of Romulus, which actually defines six different variants, we decided
to implement two members, the primary member N1 and its sibling N3 that is likely to
cost the smallest area in ASIC circuit. Romulus-N1 is larger than Romulus-N3, because
the latter favors the smaller SKINNY-128-256, while its other nonce-based siblings all use
SKINNY-128-384.

Another important detail about our AEAD implementations, which directly concerns
the hardware API, is that we assume the padding is done a priori to the AEAD call. In
other words, our implementations leave padding task to the caller, and assume that the
associated data and message bits are well aligned with the block boundaries. This is in
contrast to the CAESAR Hardware API, which assumes the padding as the responsibility
of the circuit [HDF+16]. Hence, our reported area figures should be carefully interpreted,
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if one happens to compare them with other implementations which contain the padding
circuit. AEAD mode of operations generally treat the last, empty or partial blocks specially
through some allocated bits in the domain separator. Hence, when assuming that the
associated data and message are properly chopped into blocks and passed to the circuit,
information lost during the padding must also be passed along. In our lightweight API,
we use few input signals to indicate if the current data block must be specially processed,
e.g. whether the current data block is the last block of associated data, or a padded block.
The input and output ports of our hardware API are defined in the following way and can
be scaled for both 1/4/8-bit inputs:

• input_wire CLK, RST: System clock and active-low reset signals.

• input_vector KEY, NONCE: Key and nonce ports through which key/nonce are
introduced in the circuit in chunks of 1/4/8 bits.

• input_vector DATA: Unified data port from which both associated data and regular
plaintext blocks are loaded into the circuit in chunks of 1/4/8 bits.

• input_wire EAD, EPT: Single-bit signals that indicate whether there are no asso-
ciated data blocks (EAD) or no plaintext blocks (EPT). Both signals are supplied
with the reset pulse and remain stable throughout the computation.

• input_wire LBLK, LPRT: Single-bit signals that indicate whether the currently
processed block is the last associated data block or the last plaintext block (LBLK),
and also whether it is partially filled (LPRT). Both signals are supplied alongside
each data block and remain stable until the next block is fed to the circuit.

• output_wire BRDY, ARDY: Single-bit output signals that indicate whether the
circuit has finished processing a data block and a new one can be supplied on
the following rising clock edge (BRDY) or the entire AEAD computation has been
completed (ARDY).

• output_wire CRDY, TRDY: Single-bit output signals that indicate whether the CT
and TAG ports will have meaningful ciphertext and tag values starting from the
following rising clock edge.

• output_vector CT, TAG: Separate ciphertext and tag ports, via which the output
is available in chunks of 1/4/8 bits.

7.1 SUNDAE-GIFT
The SUNDAE-GIFT AEAD scheme was proposed by Banik et al. and is based on the
SUNDAE mode of operation, featuring GIFT∗ block cipher at its core [BBP+19, BBLT18].
It is a bare-bones construction that does not require any additional registers aside the
ones used within the block cipher. After the encryption of the init vector, each data block
is mixed into the AEAD state between the encryption calls. A field multiplication over
GF (2128) is applied after the last associated data has been added to the state. The same
multiplication is also performed for the last message block. The multiplication is either
×2 when the last AD or message block has been padded or ×4 whenever the last blocks
are complete without any padding. More formally, the multiplication ×2 is encoded as a
byte-wise shift and the addition of the most significant byte into other bytes of the state
such that if B0||B1|| . . . ||B15 represents the 16 bytes of the intermediate AEAD state (with
B0 being the most significant byte), we have that

2× (B0||B1|| . . . ||B15) = B1||B2|| . . . B10||B11 ⊕B0||B12||B13 ⊕B0||B14||B15 ⊕B0||B0,
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and 4× (B0||B1|| . . . ||B15) = 2× (2× (B0||B1|| . . . ||B15)). The tag is produced after pro-
cessing all AD and message blocks and the ciphertext blocks are generated by reprocessing
the message blocks afterwards. A schematic of the SUNDAE-GIFT is depicted in Figure 9.

EK EK × EK EK ×

EK EK EK

T CT1 CTm

M1 Mm

Mm||10∗M1ADa||10∗AD1X||0124

b b bb b b

b b b

Figure 9: The high-level overview of SUNDAE-GIFT, which depicts the processing of m
message and a associated data blocks. X denotes a 4-bit parameter, whose value depends
on the length of the nonce and whether there are no AD or message blocks.

The simplicity of SUNDAE-GIFT can be exploited in a bit-serial implementation to
attain a circuit with very low overhead in terms of area. In fact, except for the slight
increase in the control logic, the sole addition to the GIFT∗ circuit presented in Section 6
is the field multiplication.

The multiplier can be achieved with two swaps (one for ×2, another for ×4) and one
XOR gate. More concretely, we allocate 128 rounds for the multiplication ×2 and ×4
during which the block cipher round function and key swaps are disabled. In other words,
while the ciphertext bits exit the last round function computation, we swap FF120 and FF0
during the cycles 8 to 127 which rotates the state by 8 positions to the left. Similarly, FF112
and FF0 are swapped during the cycles 16 to 127 in order to execute the 16-bit rotation.
Hence, in the worst case, we require 2× 128 = 256 additional cycles for multiplications.
In terms of latency, each new encryption call is loaded with the new plaintext, while the
ciphertext bits of the previous computation exit the pipeline. As a consequence the very
first encryption operates over 41× 128 = 5248 cycles, while the remaining encryption each
take 40× 128 = 5120 cycles.

The 1-bit version of SUNDAE-GIFT can seamlessly be amended to a 4-bit datapath
design by changing the bit swaps to nibble swaps. After synthesis, the resulting SUNDAE-
GIFT architecture is the smallest authenticated encryption circuit at around 1200 GE for
the STM 90 nm process, which is only a 8 percent larger compared to the bit-serial GIFT∗
implementation presented in Section 6.

7.2 SAEAES
The SAEAES AEAD scheme was proposed by Naito et al. [NMMaS+19] and uses the AES
block cipher as the underlying encryption core. The SAEAES document proposes a number
of parameters according to which the mode can be operated, but the primary candidate
among them is SAEAES128-64-128, which implies a key size of 128 bits, message/AD
blocks of 64 bits and a tag size of 128 bits. This effectively makes the primary mode of
rate 1/2, since 2 block cipher calls are required per 128 bits of message/AD. However, the
mode requires no additional state other than those required in the calculation of the block
cipher encryption and so a very compact implementation is possible.

We only summarize the details regarding the 1-bit implementation, as transforming it
to 8-bit follows the generic technique outline in Section 3. A high-level description of the
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Figure 10: The high-level overview of SAEAES, which depicts the processing of m message
and a associated data blocks.

mode of operation is presented in Figure 10. It is easy to see that this mode of operation
does not require additional storage other than the ones required in the block cipher. From
a circuit designer’s point of view, it is not difficult to implement the mode, as the only
real challenge is to ensure that at the beginning of a particular encryption operation the
circuit feeds the correct input vectors to the block cipher circuit, which are as follows:

• Inpi = ADi||064 ⊕ EK(Inpi−1) or AD1 (if i = 1) during the associated data processing
stage, where Inpi is the i-th input to the block cipher.

• Inpa = ADa||const64 ⊕ EK(Inpa−1) for the last AD block, where const64 denotes a
64-bit constant.

• IV = N ⊕ 012611 ⊕ EK(Inpa) before the processing of the plaintext begins, where
012611 corresponds to the number 3 encoded as 128-bit string and N denotes the
nonce.

• Inp′i = Mi ⊕ EK(Inp′i−1) during the plaintext processing stage, where Inp′i is the i-th
input to the block cipher during plaintext processing. It can also be seen that Inp′i is
also incidentally the i-th ciphertext block, and the tag is simply the outcome of the
final encryption call that the mode performs.

A bit-wise AES encryption core produces output 1 bit per clock cycle during the last
128 cycles of the encryption operation. Since we are using no additional storage blocks,
the output bits, once produced, need to be XORed with the appropriate input signal and
concurrently fed back to the block cipher as the input of the following encryption call.
Essentially cycles 1281 to 1408 not only produce the output of the i-th encryption but
also serve as the input period for the (i+ 1)-th encryption. Thus one needs to exercise
some more fine-grained control over the circuit, to ensure that the block cipher circuit is
able to perform the dual role during cycles 1281 to 1408. This effectively means that all
encryption calls except the first requires 1280 cycles. Hence, in order to process a AD and
m plaintext chunks of 64 bits each, the circuit requires a+m+ 1 encryption calls which
leads to 1408 + 1280× (a+m) cycles.

7.3 Romulus
Romulus is an AEAD scheme designed by Iwata et al. [IKMP19], and uses the SKINNY
family of block ciphers. In this work, we provide implementations for two members
Romulus-N1 (both 1-bit and 8-bit) and Romulus-N3 (1-bit only). The former is the primary
candidate of the family that employs SKINNY-128-384 whereas the latter is the lightest
among them because it employs SKINNY-128-256.

In order to reduce the number of block cipher calls, and make use of the large tweakey
space, that is 384 bits for the primary member, Romulus makes 1/2 block cipher call per
associated data block, and 1 block cipher call per message block. Romulus-N1 member
admits 128-bit key, 128-bit nonce, variable-length message chopped into 128-bit blocks, and
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produces 128-bit tag. In terms of input parameter sizes, the difference in Romulus-N3 is
that it uses 96-bit nonce. An interesting design choice regarding Romulus is that associated
data blocks can have alternating size based on which member is chosen. For example, with
Romulus-N3, for some integer i, AD2i−1 blocks are 128-bit, and AD2i blocks are 96-bit. In
order to ease notation and the description, one can actually treat AD2i−1||AD2i as a single
224-bit block, assuming that the original padding is preserved during this conversion. In the
case of Romulus-N1, things are much simpler, because all associated data blocks are fixed
to 128 bits. Figure 11 describes the three phases a full AEAD operation passes through,
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Figure 11: The high-level view of Romulus-N1, which depicts the processing of 2a associated
data andmmessage blocks. L denotes the 56-bit LFSR that counts the number of processed
blocks, and d denotes a single byte domain separator followed by 064.

namely processing of (1) associated data, (2) nonce and (3) message blocks. Below, we
first explain Romulus-N3 and the crucial details regarding its 1-bit implementation, and
give the differences for Romulus-N1 later.

During associated data phase, each combined 224-bit AD2i−1||AD2i block is processed
with a single block cipher call EK. For each of these SKINNY-128-256 calls, the plaintext
is AD2i−1, and the tweakey is concatenation of 24-bit counter5, 8-bit domain separator,
96-bit AD2i block and the 128-bit key K. The output from the block cipher is treated
as the running state, and XORed with each new AD2i−1 block. Once all AD2i−1||AD2i

combined blocks are processed, the running state is encrypted by using the nonce N itself
as a part of the tweakey. We refer to this as processing of the nonce. During the message
phase, for each of the 128-bit message blocks, the running state and the message block
Mi are passed through ρ function defined below. Essentially ρ acts as XOR in the lateral
direction, hence the running state is XORed with the message blocks as before. Once all
message blocks are processed, the final block cipher output is passed through ρ with 0128

to produce the tag. ρ(S,M) = (S′, C) is defined as S′ ← S ⊕M and C ← G(S)⊕M . For
each byte, G performs the following operation:

G(x7||x6||x5||x4||x3||x2||x1||x0) := (x0 ⊕ x7)||x7||x6||x5||x4||x3||x2||x1

It is then clear how we can use 1-bit-serial SKINNY-128-256 to realize Romulus-N3.
Except for the computation of the ciphertext blocks through ρ, we can simply reuse the
state pipeline of SKINNY-128-256 to store the running state. In order to compute G, we
use two external 7-bit buffer pipelines, which keeps the copy of the last 7 bits that exit the
state pipeline and the last 7-bit of message block which is being fed to the circuit. This
leads to 7 clock cycle of delay in between the time a message block is fed and the time the
ciphertext bits become available. This similarly applies to the tag as well, hence the delay
of 7 clock cycles must be considered during latency calculation. As a concrete example,
the circuit would process 2× 224 bits of associated data and 1× 128 bits of message as
follows:

• During the first 128 cycles, the key K, and the first associated data block AD1 are
loaded simultaneously. Starting from the clock cycle 32, 96-bit AD2 is also being

524-bit counter is defined with regards to a LFSR (see [IKMP19]), and counts the number of block
cipher calls during a phase.
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loaded6. After loading is complete, the circuit becomes busy for 47 rounds (for
SKINNY-128-256 encryption), i.e. this takes 47× 128 clock cycles. At the last clock
cycle, the circuit signals that it is ready for receiving the next data block, which
can be either AD3 or M1, depending on whether there are more associated data
blocks to process. For the sake of this example, we assume there are 224 more bits
of associated data to process.

• For the following 128 cycles, the state pipeline XORs its content with AD3, and
initiates the first round of encryption simultaneously. Again, the key is reloaded
starting from cycle 0 and AD4 is also loaded starting from clock cycle 32. The circuit
becomes busy for 47 rounds to compute the encryption. At the last cycle, the circuit
signals that the key and the nonce must be reloaded the following round.

• The running state is encrypted, i.e. the state pipeline reloads its own content and
starts encryption. No data block needs to be loaded, but the key and the nonce must
be loaded simultaneously. Since nonce and 96-bit AD blocks are using the exact same
positions in the tweakey, the nonce is loaded starting from clock cycles 32. After 47
rounds, the circuit signals that the next data (i.e. message) block can be loaded.

• The message block is loaded, which happens simultaneously with reloading of the key.
The nonce also follows the key with 32 clock cycles delay, as before. The ciphertext
bits become available with 7 clock cycles of delay. The circuit again takes 47 rounds
to perform the final encryption.

• A final ρ operation is performed with the running state and the 0128 vector. The tag
becomes available with 7 clock cycles delay.

As for 1-bit-serial implementation of Romulus-N1, the steps taken by the state machine is
precisely same. As for differences, however, (1) the invoked block cipher is SKINNY-128-384,
(2) all associated data blocks are 128-bit, hence loading for even and odd-numbered
associated data blocks (as well as nonce) starts and ends at the same clock cycles, (3)
and the block counter is defined as 56-bit LFSR (instead of 24-bit). Moving towards 8-bit
implementation is also quite straightforward, with the only difference being the removal of
the 7 clock latency caused by ρ function. Since it operates on the byte level, it is realized
as a fully combinatorial circuit.

According to the 1-bit implementation of Romulus-N1, processing 1 AD blocks and 8
message blocks takes (1 + 8)× 56× 128 + 128 + 7 clock cycles. The additional 128 clock
cycles are incurred due to the delay of loading/flushing the pipelines, and the 7 clock
cycle is due to the execution delay of ρ. As for 8-bit implementation, the clock cycles are
amended as (1 + 8)× 56× 16 + 16.

7.4 SKINNY-AEAD
SKINNY-AEAD relies on the ΘCB3 mode of operation [KR11] and uses the heaviest SKINNY
variant, i.e. SKINNY-128-384, as the core block cipher. ΘCB3 requires the addition of three
auxiliary registers that store intermediate values during the computation; a 128-bit register
denoted by Auth that accumulates the encrypted AD block, a second 128-bit register Σ
that holds the summation of all message blocks and finally a 64-bit LFSR block counter L.
Both the 1-bit and 8-bit version of SKINNY-AEAD can be instantiated without any further
modifications to the serial SKINNY-128-384 cores.

6According to Romulus-N3 specification, the last 96 bits of TK1 should receive nonce/associated data
blocks. The leftmost 32 bits of TK1 are reserved for the counter and the domain separator.
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Figure 12: The high-level view of SKINNY-AEAD. The block counter L, a domain separator
d, the nonce N and the encryption key K together make up the 384-bit tweakey. The
encryption of the zero string is only performed when the last message block is incomplete.

7.5 Synthesis Results

Candidate Datapath Area Power(µW) Latency Energy Throughput
(µm2) (GE) @ 10 MHz (cycles) (nJ/1152-bit) (Mbit/s)

STM 90 nm

SUNDAE-GIFT 1-bit 5273.9 1201 50.1 92544 463.6 4.48
SUNDAE-GIFT 4-bit 6969.8 1587 63.9 23136 147.8 13.76
SAEAES 1-bit 5938.0 1350 77.2 24448 188.7 6.13
SAEAES 8-bit 8534.9 1940 108.0 3056 33.0 55.14
Romulus-N1 1-bit 10534.8 2399 98.1 64647 634.2 4.91
Romulus-N1 8-bit 12783.8 2912 114.6 8080 92.6 33.24
Romulus-N3 1-bit 7812.7 1780 79.1 55431 438.5 5.92
SKINNY-AEAD 1-bit 15756.1 3589 134.3 72960 979.9 5.04
SKINNY-AEAD 8-bit 16606.7 3783 149.0 9856 146.9 37.16
Grain-128AEAD7 1-bit 9576.6 2181 102.0 1664 17.0 331.78
Grain-128AEAD 4-bit 11378.8 2592 104.0 416 4.3 1320.47
Grain-128AEAD 8-bit 14324.4 3263 106.0 208 2.2 2614.78

UMC 90 nm

SUNDAE-GIFT 1-bit 4729.9 1508 51.1 92544 472.9 4.67
SUNDAE-GIFT 4-bit 6109.7 1948 63.5 23136 146.9 13.01
SAEAES 1-bit 5329.6 1700 95.0 24448 232.3 9.52
SAEAES 8-bit 8094.0 2581 103.9 3056 31.7 55.56
Romulus-N1 1-bit 9683.2 3088 103.7 64647 670.4 4.80
Romulus-N1 8-bit 11696.5 3730 118.5 8080 95.7 30.02
Romulus-N3 1-bit 7155.6 2282 81.6 55431 452.3 6.31
SKINNY-AEAD 1-bit 14567.5 4645 143.1 72960 1044.1 3.68
SKINNY-AEAD 8-bit 15161 4834 155.0 9856 152.8 23.42
Grain-128AEAD 1-bit 7354.7 2345 91.4 1664 15.2 354.96
Grain-128AEAD 4-bit 9006.6 2872 94.4 416 3.9 1239.87
Grain-128AEAD 8-bit 11255.1 3589 100.0 208 2.1 2456.68

Table 12: Synthesis figures for selected AEAD Schemes in STM 90 nm and UMC 90 nm
libraries. Energy and throughput are based on 1024 bits of plaintext and 128 bits of AD.

7The 1/4/8-bit Grain-128AEAD implementations were taken from [SHSK19] and re-synthesized.
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Candidate Datapath Area Power(µW) Latency Energy Throughput
(µm2) (GE) @ 10 MHz (cycles) (nJ/1152-bit) (Mbit/s)

TSMC 90 nm

SUNDAE-GIFT 1-bit 4444.6 1576 45.9 92544 424.8 5.37
SUNDAE-GIFT 4-bit 5640.6 2000 52.1 23136 120.5 12.73
SAEAES 1-bit 4942.7 1751 56.9 24448 139.1 7.11
SAEAES 8-bit 6895.1 2452 70.2 3056 21.5 61.88
Romulus-N1 1-bit 9019.0 3198 95.3 64647 616.1 6.99
Romulus-N1 8-bit 10552.3 3742 100.8 8080 81.4 39.30
Romulus-N3 1-bit 6658.8 2361 74.0 55431 410.2 9.31
SKINNY-AEAD 1-bit 13554.6 4807 122.5 72960 893.8 6.84
SKINNY-AEAD 8-bit 13943.4 4944 137.0 9856 135.0 35.96
Grain-128AEAD 1-bit 7509.0 2663 87.4 1664 14.5 452.21
Grain-128AEAD 4-bit 8763.6 3108 93.1 416 3.9 1375.49
Grain-128AEAD 8-bit 13943.4 4944 95.9 208 2.0 2627.79

NanGate 15 nm

SUNDAE-GIFT 1-bit 426.6 2170 15.9 92544 147.1 84.80
SUNDAE-GIFT 4-bit 541.4 2754 19.5 23136 45.1 279.33
SAEAES 1-bit 464.3 2362 18.8 24448 46.0 142.21
SAEAES 8-bit 606.7 3086 24.9 3056 7.6 1119.93
Romulus-N1 1-bit 882.3 4488 32.1 64647 207.5 73.89
Romulus-N1 8-bit 1012.9 5152 36.8 8080 29.7 566.54
Romulus-N3 1-bit 650.8 3310 25.0 55431 138.6 152.46
SKINNY-AEAD 1-bit 1323.5 6732 46.0 72960 335.6 75.29
SKINNY-AEAD 8-bit 1381.2 7025 32.0 9856 31.5 530.80
Grain-128AEAD 1-bit 631.4 3211 20.4 1664 3.4 3143.97
Grain-128AEAD 4-bit 732.5 3726 20.6 416 0.9 11003.88
Grain-128AEAD 8-bit 914.7 4652 21.3 208 0.4 21127.46

NanGate 45 nm

SUNDAE-GIFT 1-bit 1527.9 1910 130.3 92544 1205.8 14.13
SUNDAE-GIFT 4-bit 1871.3 2339 168.2 23136 389.1 49.98
SAEAES 1-bit 1653.5 2067 148.8 24448 363.8 21.20
SAEAES 8-bit 2190.2 2745 205.5 3056 62.8 186.27
Romulus-N1 1-bit 3103.4 3879 265.5 64647 1716.4 17.17
Romulus-N1 8-bit 3566.0 4458 311.9 8080 252.0 99.25
Romulus-N3 1-bit 2304.1 2880 199.0 55431 1103.1 19.82
SKINNY-AEAD 1-bit 4784.0 5980 408.4 72960 2979.7 15.21
SKINNY-AEAD 8-bit 4793.3 5992 410.8 9856 404.9 94.46
Grain-128AEAD 1-bit 2584.4 3231 214.0 1664 35.6 1082.35
Grain-128AEAD 4-bit 2958.5 3698 237.1 416 9.9 4001.41
Grain-128AEAD 8-bit 3609.1 4511 288.1 208 6.0 7545.52

Table 13: Low-latency synthesis figures for selected AEAD Schemes in TSMC 90 nm,
NanGate 15nm and 45nm libraries. Energy and throughput are calculated for processing
1024 bits of plaintext and 128 bits of AD.

7.6 Discussion
To conclude the section, let us take a look back at the main results of this paper. The
synthesis results of AES, SKINNY and GIFT∗ are summarized in Tables 6, 8, 11 respectively
(for 5 standard cell libraries). For each of the 3 block ciphers, we see that in the bit-serial
mode, the area occupied by the circuits is very close to the total area required by the storage
elements (for the state and key registers). For AES, the area is only slightly higher since it
has an 8-bit S-box and a reasonably heavyweight MixColumns circuit. But for the other
ciphers that have relatively lightweight S-box and linear layer, the purely combinatorial
circuit elements occupy only around 10% of the total silicon area. Additionally, we are able
to reduce the round latency to match precisely the block size of the underlying block cipher.
Note that it is not possible to have an implementation that has lower round latency in
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clock cycles than the block size of the cipher, because for a bit-serial circuit of SPN-based
ciphers, all the state bits must be rotated across the pipeline. Therefore, this represents
the optimal trade-off spot in the area-latency curve, as far as SPN-based block ciphers
are concerned. For implementations with higher-bit datapaths, the area only marginally
grows, mainly because the number of MUXes and XOR gates required in the circuit needs
to be multiplied by the length of the datapath the circuit aims to achieve.

An interesting research direction is to extend our results to Feistel-based block ciphers.
Note that the SIMON/SPECK family of block ciphers were mainly designed to achieve this
optimal trade-off point, since the state update of these ciphers can simply be described
using rotate and a few bit-wise AND/XOR operations [BSS+13]. Nevertheless, not all
Feistel ciphers in the literature are designed with this specific goal in mind. It would be
interesting to see how a block cipher like PICCOLO can be re-engineered at the circuit
level to achieve the best possible area and latency figures [SIH+11].

Tables 12 and 13 tabulate synthesis results we obtained for all the individual modes of
operation that we investigated in this paper. SUNDAE-GIFT and SAEAES are essentially
rate 1/2 modes that need 2 block cipher calls for every 128-bit message block. Note that
for these two, the underlying block ciphers admit 128-bit key, and they require exactly 256
flip-flops to store the key and the state. Thus in a sense, minimalism of the core block
cipher comes at the cost of having to execute 2 block cipher calls per 128-bit message block.
On the other hand, the rate 1 modes, which require only 1 block cipher call per block
of message, such as Romulus and SKINNY-AEAD employ SKINNY-128-384. They take
advantage of the large (384-bit) tweakey space to accommodate nonce, domain separator,
and counter for each block cipher invocation. However, for SKINNY-128-384, this comes at
the cost 512 flip-flops for both the state and the tweakey. This results in an interesting
latency and area trade-off, and gives further insights on the nature of these designs.

8 Conclusion
Bit-serial implementations of block ciphers and authenticated encryption schemes provide
the smallest known implementations, because they reduce the number of gates on the
datapath, such as MUXes, XOR gates etc. In this paper, we implemented compact
bit-serial implementations of the three block ciphers, which save around 20% in latency
when compared to the state of the art, with the added advantage that we do not alter
the standard arrangement of the bits as recommended in their specifications. We further
generalize our bit-serial architectures to multi-bit datapaths. In the wake of this endeavor,
we obtain constructions that are readily usable in any mode of operation that uses them as
an underlying encryption primitive. As a proof of concept, we implement four lightweight
AEAD schemes from NIST LWC project that also turn out to be the most compact
implementations of these schemes reported in the literature.
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A GIFT
The regular GIFT specification is significantly harder to transform into a low-latency
swap-and-rotate circuit due to the fact that the round key bits are not added to cipher
state in a continuous stretch. Namely, if U = K5||K4 and V = K1||K0 represent the 64-bit
round key, then its individual bits are mixed into the state S as follows,

s4i+2 = s4i+2 ⊕ ui, s4i+1 = s4i+1 ⊕ vi, ∀i ∈ {0, . . . , 31}.

By reordering the key bits in a manner such that the bits of U and V exit the pipeline
during the correct cycles, we can reuse the rotation techniques to obtain a key schedule
with 6 different swaps. On the other hand, we can recall the intuition for the state pipeline
from Section 6.1.1, in order to generate the swap sequence for the GIFT round function.
The summary of all GIFT key schedule and round function swaps are tabulated in Table 15.

Table 14: Synthesis figures for the bit-serial GIFT encryption circuit.
Library Area Power (µW) Latency (cycles) Energy Throughput

(µm2) (GE) @ 10 MHz round total (nJ) (Mbit/s)
STM 90 nm 5334.3 1215 51.3 128 5248 26.9 7.35
UMC 90 nm 4801.2 1531 51.8 128 5248 27.2 6.32
TSMC 90 nm 4507.3 1597 45.9 128 5248 24.1 8.61
NanGate 15 nm 430.5 2190 16.1 128 5248 8.4 146.92
NanGate 45 nm 1528.4 1915 131.8 128 5248 69.2 23.34

B Cost of Decryption
Some of the AEAD schemes in the NIST LWC [nis] do require the inverse, i.e. the
decryption functionality, of block ciphers as well. Therefore let us also assess the cost of
implementing the combined encryption and decryption circuit for the three block ciphers:

• For AES, the challenge really comes in arranging the order of operations, these are
namely inverse MixColumns, inverse ShiftRows and inverse SubBytes. Note that the
inverse ShiftRows is also a special permutation of type 4, and a swap sequence can be
constructed in the same way as described in Section 3. Furthermore, in order to avoid
adding more MUXes to the circuit, we can reuse the same swap locations as much
as possible from the encryption. Hence, the cost of implementing inverse ShiftRows
is small, other than the control logic required to generate the swap signals. The
inverse MixColumns operation is perhaps the most difficult operation to implement
in this setting. It is well known that MixColumns matrix M used in AES has the
property that M3 = M−1. Hence if we want to implement multiplication by M−1

without any extra gates, then it would be necessary make three full rotations in the
state pipeline until the MixColumns operation is completed (this is the approach
tried out in [BBR17, JMPS17]). This invariably comes with a latency penalty. If
we do not want to impose a latency penalty, we must pay with extra gate area: by
accommodating 2 additional MixColumns circuits one after the other. This comes
with an additional area penalty of 100–120 GE, but makes it possible to complete
the decryption round in 128 clock cycles. Implementing a combined circuit for the
forward and inverse S-box also requires at most 50 GE [ME19]. The inverse key
schedule can be implemented without much additional logic as already explained in
[BBR16].

• For SKINNY, which also has the similar structure with AES, the costs are considerably
smaller. Inverse ShiftRows is again easily implemented with the techniques described



278 The Area-Latency Symbiosis: Towards Improved Serial Encryption Circuits

Table 15: The timetable of operations for bit-serial GIFT encryption.
pipeline operation active cycles
state swap (39, 71) [0, 8) ∪ [8, 16) ∪ [16, 24) ∪ [121, 128)

swap (38, 22) [0, 9] ∪ [58, 73] ∪ [122, 127]
swap (98, 110) [10, 13] ∪ [34, 37] ∪ [54, 57] ∪ [74, 77] ∪ [98, 101] ∪ [118, 121]
swap (109, 85) [7, 10] ∪ [51, 54] ∪ [71, 74] ∪ [115, 118]
swap (108, 72) [4, 7] ∪ [68, 71]

∪{34, 35, 72, 73, 80, 81, 88, 89, 96, 97}
swap (121, 117) {16k + 5 : k ∈ [0, 15]} ∪ {16k + 13 : k ∈ [0, 15]} ∪ {16k + 15 : k ∈ [0, 15]}
swap (122, 114) {16k + 1 : k ∈ [0, 15]} ∪ {16k + 3 : k ∈ [0, 15]}
swap (123, 111) {16k + 1 : k ∈ [0, 15]}
swap (22, 4) {2, 3, 34, 35, 66, 67, 98, 99}
swap (22, 10) {4, 5, 26, 27, 36, 37, 58, 59, 68, 69, 90, 91, 100, 101, 122, 123}
swap (22, 16) {6, 7, 18, 19, 28, 29, 38, 39, 50, 51, 60, 61, 70, 71}

∪{82, 83, 92, 93, 102, 103, 114, 115, 124, 125}
key addition {4k + 1 : k ∈ [0, 31]} ∪ {4k + 2 : k ∈ [0, 31]}
rc addition (lookup table)
load S-box {4k + 3 : k ∈ [0, 31]}

key swap (120, 128) {4k : k ∈ [3, 16]} if round mod 4 = 0
{4k − 1 : k ∈ [3, 16]} if round mod 4 = 1
{4k + 1 : k ∈ [3, 16]} if round mod 4 = 2
{4k − 2 : k ∈ [3, 16]} if round mod 4 = 3

swap (112, 128) {1} ∪ {4k − 2 : k ∈ [5, 16] ∪ [21, 32]} if round mod 4 = 0
{4k : k ∈ [5, 16] ∪ [21, 31]} if round mod 4 = 1

{1} ∪ {4k − 1 : k ∈ [5, 16] ∪ [21, 32]} if round mod 4 = 2
{4k + 1 : k ∈ [5, 16] ∪ [21, 31]} if round mod 4 = 3

swap (1, 128) {4k : k ∈ [1, 31]} if round mod 4 = 0
{0} if round mod 4 = 1

{4k + 2 : k ∈ [0, 31]} if round mod 4 = 3
swap (1, 33) {4k + 1 : k ∈ [0, 7]} if round mod 4 = 0

{4k + 3 : k ∈ [0, 7]} if round mod 4 = 1
{4k + 2 : k ∈ [0, 7]} if round mod 4 = 2
{4k : k ∈ [1, 8]} if round mod 4 = 3

swap (4, 5) {4k : k ∈ [0, 31]} if round mod 4 = 0
swap (2, 3) {4k : k ∈ [0, 31]} if round mod 4 = 3

in Section 3. For this cipher, the S-box and MixColumns circuit are extremely
lightweight, and so the forward and inverse function can be implemented without
any significant area costs. The inverse tweakey update functions at all the 3 levels
are simple byte-based LFSR updates and permutations, and can be instantiated with
only a few multiplexers.

• For GIFT∗, both the swaps in the round function and the key schedule are partitioned
in layers that are executed one after another (see Section 6.1). This means the
decryption can be performed by simply inverting the order of the swap layers. The
main overhead comes therefore in the form of the additional inverse S-box which can
be synthesized with fewer than 20 GE.
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