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Abstract. Fault Injection (FI) attacks have become a practical threat to modern
cryptographic implementations. Such attacks have recently focused more on exploita-
tion of implementation-centric and device-specific properties of the faults. In this
paper, we consider the parallel between SCA attacks and FT attacks; specifically, that
many FI attacks rely on the data-dependency of activation and propagation of a fault,
and SCA attacks similarly rely on data-dependent power usage. In fact, these are so
closely related that we show that existing SCA attacks can be directly applied in a
purely FI setting, by translating power FI results to generate FI ‘probability traces’
as an analogue of power traces. We impose only the requirements of the equivalent
SCA attack (e.g., knowledge of the input plaintext for CPA on the first round), along
with a way to observe the status of the target (whether or not it has failed and
been “muted” after a fault). We also analyse existing attacks such as Fault Template
Analysis in the light of this parallel, and discuss the limitations of our methodology.
To demonstrate that our attacks are practical, we first show that SPA can be used
to recover RSA private exponents using FI attacks. Subsequently, we show the
generic nature of our attacks by performing DPA on AES after applying FI attacks to
several different targets (with AVR, 32-bit ARM and RISC-V CPUs), using different
software on each target, and do so with a low-cost (i.e., less than $50) power fault
injection setup. We call this technique Fault Correlation Analysis (FCA), since we
perform CPA on fault probability traces. To show that this technique is not limited
to software, we also present FCA results against the hardware AES engine supported
by one of our targets. Our results show that even without access to the ciphertext
(e.g., where an FI redundancy countermeasure is in place, or where ciphertext is
simply not exposed to an attacker in any circumstance) and in the presence of light
jitter, FCA attacks can successfully recover keys on each of these targets.

Keywords: Fault Injection - Fault Propagation - Correlation Power Analysis -
Side-Channel Analysis

1 Introduction

The physical security of efficient cryptographic implementations — in particular, protection
against side-channel analysis and fault injection attacks — has become more challenging
than merely preventing attacks on the security of the algorithms themselves. Many modern
embedded devices are equipped with cryptographic hardware cores, and the nature of
such devices means that they are physically accessible to the adversary. This means that
low-cost practical physical attacks on such targets are becoming increasingly relevant.
Such attacks have become a real concern for some parties due to the dramatic increase in
the usage of embedded devices for mobile applications (such as banking), IoT, and home
entertainment.
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Side-Channel Attacks (SCA) [Koc96, KJJ99, CRR03] and Fault Attacks (FA) [BS97]
are the most widely explored classes of such physical attacks. SCA involves the passive
exploitation of the relationship between leakage — such as power usage or electromagnetic
(EM) signals — and the operations (Simple Power Analysis, or SPA) or data (Differential
Power Analysis, or DPA) [KJJ99] performed on a device, typically to recover a private
key being used in a computation. Brier et al. [BCO04] introduced an improved DPA-like
method called Correlation Power Analysis (CPA), which continues to be a serious threat
to the confidentiality of cryptographic keys in modern devices. Another important SCA
technique is the use of Template Attacks [CRRO03] (TA), which enhance attacks such as
SPA and CPA with the use of statistical modeling. This is performed in two stages: first
profiling, and then matching. An attacker uses a device under their control to create a
‘profile’ of a sensitive device, a process which may take a substantial amount of time/effort.
They can then ‘match’ this profile to measurements taken from a victim’s device, to quickly
perform cryptographic attacks with minimal effort. We refer to such attacks as profiled, to
distinguish them from non-profiled attacks such as standard SPA/CPA.

The other major class of physical attacks — fault attacks — are active in nature. An
attacker injects faults — which we will refer to as Fault Injection (FI) — in an attempt to
actively influence or control the state of the target device. For example, when applied to
cryptographic computations, an attacker may want to corrupt intermediate state which
involves the secret key. If faults can be injected which cause bias in such intermediate
state, it may be possible to use either analysis of the algorithm or statistical analysis to
reduce the entropy of this key [BS97]. One standard fault attack is called Differential
Fault Analysis (DFA) [BDL97], which allows recovery of private keys by analyzing errors
induced in the last rounds of a block cipher, such as AES [Gir05, AMT13].

Developers of modern embedded devices often implement countermeasures to protect
the secret keys used in sensitive cryptographic computations, especially in the context of
devices which are physically accessible to adversaries. In the context of FI, detection-type
countermeasures are the most common ones, which use some kind of redundancy (e.g.,
in time or space) to detect faults, and then react by suppressing or randomizing the
output [KKT05, GMJK14]. One alternative is to perform the computation in a way which
results in random output in the event of an error, rather than explicitly detecting faults;
this is known as an infective countermeasure [TBM14].

Research has shown that there is a relationship between SCA and some FI attacks.
Fault Sensitivity Analysis (FSA) [LSGT10, MMP™11] proposes varying the intensity of
applied faults to detect the threshold at which an observable error occurs. Specifically,
FSA focuses on clock glitching, reducing the clock period until a successful setup-time
violation occurs. The authors propose that the obtained fault sensitivity (FS) at that
point provides information about the critical path delay (CPD), and that since the CPD
is data-sensitive, it reveals information about the data being processed at the time of the
glitch. Although FSA is an active FI-based attack, in many ways it is closer to passive
side-channel attacks such as power analysis, rather than existing fault attacks such as
DFA. For example, the leakage model used in FSA depends on the specific implementation
of cryptographic components such as the S-box in AES; this is similar to the way SCA
attacks depend on such implementation-specific leakage modelling, as opposed to attacks
such as DFA which attack the underlying algorithm.

More recent research [LEDT13, GAS14] explores the relationship between fault sensi-
tivity (FS) and power consumption. Based on FPGA experiments, the paper [LED"13]
confirms a high correlation between the power consumption and the FS, and even presents
a successful key recovery using the FS profile as the leakage model for power consumption.
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1.1 Contributions

In this paper, we further investigate this relationship. We argue that existing attacks based
on classic side-channels (such as SPA or CPA) are directly applicable to fault injection
attacks, by using the observed distribution of successful faults at a certain time as a
proxy of the power usage of the target at that time. Such attacks can be performed
without access to ciphertext, and even without knowledge about whether or not encryption
was successful. Specifically, we present a method for turning Fault Injection results into
‘probability traces’, based on the ratio of observed faults from an FI attack.

We demonstrate that standard side channel attacks can be directly applied to the
resulting traces, using real-world targets rather than simulations. As a basic example,
we show that SPA can be performed on results of an FI attack against a software imple-
mentation of RSA running on real hardware. We refer to this technique as Simple Fault
Analysis (SFA). Subsequently, to demonstrate the strength of our attacks, we present
Fault Correlation Analysis, which uses a standard CPA attack to successfully recover
keys from several different targets running different software implementations of AES.
We show that our approach can also use other distinguishers, such as non-profiled Linear
Regression Analysis (LRA) [LPR13], or even ‘model-less’ attacks such as ’correlation
enhanced collision attacks’ [MME10].

We show that FI probability traces can be generated even with restricted feedback
from the target, focusing on two different classification methods: one based on successes,
which requires the ability to observe whether a cryptographic operation was successful,
and another based on “mutes”, which requires only the ability to observe whether or
not the device has failed and no longer responds. We successfully recover private keys
on the majority of our targets using both of these categorizations. Note that existing
ciphertext-based fault detection methods are not easily replaced using mutes, due to causes
of mutes beyond data/computation-dependent faults.

We illustrate that by using voltage FI, we can perform our experiments with inexpensive
equipment; our experiments use a low-end FPGA as a glitching device, at a cost of less
than $50. We require only access to a trigger or an alternative synchronization mechanism;
we do not need foreknowledge of the key or even details such as the target’s clock speed,
nor do we require access to power traces.

We allow FI attacks to be performed in an unsupervised fashion by first collecting
raw results during the FI campaign and later performing post-processing when creating
traces (by ‘bucketing’ the results). We observe that our approach requires a relatively
large number of faults. However, our experiments treat targets as black boxes in many
ways. In particular, our attacks do not need spatial accuracy, nor knowledge of the specific
implementation of the target.

Furthermore, we do not require control of the clock input, which allows us to leave
clock conditioning hardware such as Phase-locked Loops (PLL) enabled on our targets; we
run our targets at standard clock speeds. Our experiments using a UART-based trigger
add further jitter. We also use a wide range of voltage FI parameters, and perform FI
campaigns over a lengthy time period (in particular, our FCA attacks against software
cover at least the entire first AES round).

Many previous FI papers assume a high level of attacker control, where glitches
are injected at a precise (known) clock cycle, using a precisely-chosen narrow ranges of
parameters. Although we have not performed experiments in such controlled settings, we
show that more specific timing significantly reduces the number of required faults.

Finally, we show that FCA can be used to recover several key bytes from the hardware
AES engine on one of our targets, despite our use of FI attack parameters aimed to cause
glitches in specific software instructions. We argue that the exposed leakage is present only
when those instructions are executed, implying the hardware engine leakage is encoded in
our software FI results.
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1.2 Related Work

There are many existing FI attacks on cryptographic algorithms that require access to the
output ciphertexts. As discussed, DFA [BDL97, Gir05] is the most famous of such attacks,
combining observations of observed output errors along with knowledge of the cause of the
error. Over the more than 20 years since the development of DFA, it has been applied to
various cryptographic primitives using many different types of FI.

When an attacker does not have access to (faulty) output ciphertext, either due to
countermeasures or due to the protocol design, such attacks can no longer be performed.
The information available to an attacker is then reduced to observing whether or not
ciphertext is returned, allowing them to determine only whether a fault was detected.

Some recent attacks, such as Fault Sensitivity Analysis (FSA), still work in this setting.
As discussed, FSA increases the ‘fault intensity’ (for example, shortening the length of a
clock glitch) until a difference is observed (e.g., incorrect output). An attacker can then
make use of a fault model (e.g., HW of S-box input) to perform an attack without the
need for faulty ciphertexts. An extension called collision FSA [MMPT11] uses the fault
model combined with correlation enhanced collision side channel attacks. This combination
removes the need to define a precise fault model and can break the masking countermeasure.
However, both FSA and collision FSA require the attacker to be able to target the exact
clock cycle used for the operation of interest, and rely on control of the target’s clock
to perform clock glitching. FCA does not have such requirements, and allows the fault
parameters to vary over fairly large ranges rather than using a fixed fault intensity.

Differential fault intensity analysis (DFIA) [GYTS14] employs both fault intensity and
faulty values as the observables for statistical analysis. It calculates changes in ‘error values’
of faulty ciphertexts, on the basis that a slight change in the intensity only results in a
small change in the error under a correct key assumption. However, the DFTA attack can
be defeated by detection-based FI countermeasures, since it requires access to ciphertext.
Both FSA and DFIA techniques require that plaintext input can be repeatedly encrypted
using different intensity values, which is a limitation for attacks on nonce-based ciphers.

Blind Fault Analysis (BFA) [GYTS14] proposes an FI attack which does not require
direct access to the ciphertext and even the plaintext. The secret key is found by recovering
the Hamming weight of the intermediate states of two sequential rounds, which is possible
if the attacker can learn the number of different results of tampered encryptions performed
for the same unknown plaintext and that is only possible assuming a particular fault
model. Namely, multiple bit-reset (or bit-set) needs to be possible. This attack is not
effective against detection-based FI countermeasures, and the authors do not perform an
experimental evaluation.

Statistical Ineffective Fault Analysis (SIFA) [DEK™18, DMMP19] changed the widely
regarded belief that fault attacks require access to faulty ciphertexts. If encryption is
successful after a fault has been injected, then the fault had no effect on the computation — it
was an ‘ineffective fault’ — and so an attacker can conclude that the intermediate value must
have remained unchanged (e.g., be zero). SIFA shows that if an adversary has the power
to inject a sufficient number of precise faults, the ability to observe these ineffective faults
(which result in correct ciphertexts) can be exploited for an attack. However, the described
SIFA attack requires brute-forcing 32-bit key chunks, which involves significant effort. SIFA
is an improvement and combination of two older attacks which rely on access to the output
ciphertext: the Statistical Fault Attack [FJLT13] and the Ineffective Fault Attack [Cla07].
In a slightly different setting, Persistent Fault Analysis (PFA) [ZLZ"18, PZRB19] also
presents an attack which is similar to SIFA. The Safe-Error-Attack (SEA) [SJ00] is similar
to SFA, but attacking public key cryptography rather than a cipher using symmetric keys.

Dobraunig et al. [DEG'18] show that SIFA can also be used to defeat the masking
countermeasure, using clock glitching to present a practical evaluation which requires only
a single fault per execution. They also argue that the ability to inject precise, reliable
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faults is not required, a theme we further explore in our work.

Fault Intensity Map Analysis (FIMA) [RAD19b] builds on and generalizes DFTA and
biased-based techniques, such as SIFA. It combines the biased distribution of correct
ciphertexts under a correct key hypothesis with the variation of data distribution with
fault intensity to reduce the number of faults required to recover a secret key. FIMA with
neural network key distinguisher (FIMA-NN) [RAD19b, RAD19a] builds upon this, using
a neural network to rank key candidates. FIMA has similar disadvantages to SIFA: it
requires the ciphertext, and requires guessing 32-bit chunks of the key.

Most recently, Saha et al. [SBR'20] introduced Fault Template Attacks (FTA), which
also exploit the fact that the activation and propagation of a fault is data-dependent.
These attacks can be applied even in the presence of countermeasures against FI and SCA;
in particular, when masking is present. FTA is applicable even if the fault injection is made
at the middle rounds of a block cipher, and it also works in a known-plaintext scenario.
Their attack is performed using electromagnetic FI (EM-FI), and a practical evaluation
is performed only on PRESENT. It relies on both reproducible attacks at specific points
(temporal accuracy) and the ability to inject faults at multiple fault locations (spatial
accuracy). Their analysis of AES is performed on a simulation, presumably due to the
relatively high complexity: a successful attack would require EM-FI to be performed using
at least 15 different locations. Furthermore, it is a profiled approach, and portability of
the resulting template from one device to another was not discussed.

We believe that FTA benefits from the localization effect similar to the localized
SCA Template Attack. Essentially, both types of attacks collect signals corresponding
to sensitive intermediate variables. After unmasked intermediates are recovered they
can be combined to obtain the secret key. Therefore, we suggest that FTA corresponds
to a localized EM SCA Template Attack, similarly to how our attacks (SFA and CFA)
correspond to SPA and CPA.

Table 1 presents a high-level comparison of many of these attacks, including our own.

1.3 Structure of the paper

Section 2 introduces some background material and concepts required to understand the
fault injection technique described in this paper. Subsequently, we describe our attack
method in detail in Section 3. Section 4 describes the details of our experimental setup.
In Section 5, we support our claims by presenting and evaluating results from practical
experiments. Finally, we provide a discussion of some strengths and weaknesses of our
approach in Section 6, together with some potential future directions.

2 Prerequisites

Our proposed attacks have several prerequisites, which we will discuss in this section:

First, an attacker must be able to inject faults into the target — they must be able to
perform Fault Injection. In this paper, we only consider voltage FI; we briefly discuss
alternatives below.

Second, these faults must be injected at a time relative to a known event (a “trigger”).
A certain amount of jitter can be tolerated, generally at the cost of requiring more
attempts. However, an attacker does not require knowledge of precisely which operations
are performed at which point in time.

Finally, we need a way to classify the outcome of a FI attempt — we must be able to
distinguish attempts which do not cause changes in behaviour from those that do.

Since we build on SCA attacks, specific SCA attacks may impose additional require-
ments. For instance, they may require access to input or output of the cryptographic
operation (plaintext or ciphertext), or they may require chosen input.
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Table 1: Comparison of various Fault Injection Attacks.
Attacked Main Target Pro-| FI FI Comment
Algorithm filed | det.”| Type
DFA [BDL97, | Various No | No | Various| Requires ciphertext. Last
Gir05] + more rounds attack.
SAE [SJ00] Sim.: RSA, ElGa- | No | Yes | N/A Requires ciphertext correctness
mal info. Any round attack. Can
attack symmetric.
FSA [LSG'10, | Plain AES No | Yes | clock Requires ciphertext correctness
LED%13, (FPGA) FI info. Last rounds.
GAS14]
Collision FSA Masked AES No | Yes | clock Requires ciphertext correctness
[MMP*11] (FPGA) FI info and timing info of the S-
Boxes (SCA). Last rounds.
DFIA [GYTS14, | Plain AES No | No | clock Requires Ciphertext. Last
GYS15] (FPGA), sim.: FI rounds.
PRESENT, LED
BFA [GYTS14] | Sim.: SPNs, inc. | No | No | N/A Requires ciphertext correctness
AES info. Any round attack.
SIFA [GYTS14, | protected AEST, [ No | Yes | clock Requires ciphertext, and guess-
DEGT1S, Keyak and Ketje FI ing 32-bits of the last round key.
DMMP19] (FPGA), masked Last rounds.
AES, HW AES en-
gine (ATXmega)
PFA [ZLZ718, | DMR AES No | Yes | clock Requires ciphertext. Last
PZRB19] (FPGA, cache), FI rounds.
sim.: masked AES
FIMA, FIMA- | sim.: ASCON, No | Yes | N/A Like SIFA, so it has the poten-
NN [RAD19b, | AES tial to break masking, but also
RAD19a] guesses 32-bits of the key.
FTA [GYTS14] | PRESENT, sim.: | Yes | Yes | EM- Requires ciphertext correctness
AES FI information.
Attacks from | Plain AES and | No | Yes | voltage | No ciphertext needed, mute de-
this work (part.: | RSA (SW), HW FI tection is sufficient. Collision

SFA and FCA)

AES
(ATXmega)

engine

FCA might work against mask-
ing but it is not confirmed.

x ‘FI det.” denotes the detection type of FI countermeasure;
T denotes AES protected with the infective countermeasure [TBM14].
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2.1 Fault Injection

Fault Injection, sometimes referred to as glitching, is the act of introducing glitches in the
operating environment of a target with the intent to introduce faults. These glitches can
be introduced by various means, such as by controlling the voltage supply of a target, with
electromagnetic pulses (EM-FI), controlling the clock of the target, or using a laser.

For effective and repeatable attacks, the attacker requires control over not just the
glitch, but also over which operation is attacked. Precisely targeting an operation requires
the target and the attacking device to be synchronised, so that the attacker knows when
to inject the glitch into the target. This synchronization is achieved by “triggering” the
glitching device (much like an oscilloscope) at a specific point in time; the actual glitch
injection is typically performed after a further delay, injecting the glitch at a specific time
after the trigger.

During experiments, this trigger can be implemented by using an I/O pin on the target,
which software running on the target sets high before starting the operation of interest.
This allows synchronisation to be achieved up to the resolution of the update speed of the
I/0 pin logic on the target. Such convenient situations may, however, be impossible to
achieve in a real-world environment. One alternative is instead to trigger based on other
attacker-observable behavior, such as communication protocols or power traces; some of our
experiments trigger on the serial communication with the device. In both cases timing is
not entirely predictable; in our attacks, we consider this as a a source of measurement noise.

2.2 Countermeasures

Many countermeasures have been proposed to protect cryptographic keys against FI attacks.
One of the most common classes is detection-type countermeasures, which detect a fault
via some redundant computation (time, space, or information redundancy), and then react
by either muting or randomizing the output [KKT05, GMJK14, KJAT18, PCMC16].

Another related class is infective countermeasures [TBM14, PCM15], which avoid the
need for explicit detection redundancy by performing the cryptographic computation in
such a a way that the output becomes deliberately randomized when errors occur.

Other countermeasures can be useful for mitigating both SCA and FI attacks, such
as random delays [CCDO00, TB07]. Some countermeasures intended for SCA can also
mitigate FI attacks; examples include shuffling the execution order of independent opera-
tions [HOMO06, RPD09], and masking [Mes01, ISW03, NRRO6].

Finally, as a general defense against FI, some high-risk targets may trade reliability
for security, disabling themselves (or access to their keys) if they detect that an FI attack
may be being performed.

2.3 Fault Detection

We propose that the probability of a fault is dependent on the data being processed by a
device, as argued by previous work [LSG'10], as well as the operation being performed.
This difference in fault behaviour is what we exploit in this paper. Specifically, we
hypothesize that the probability of a fault is correlated with the power consumed by the
specific operations and data being processed. When considering software implementations,
the classic side-channel leakage model is that this is correlated with the Hamming weight
of the data being processed.

We want to categorize the results of injected glitches based on whether or not the
injected glitch caused a fault in the target. However, an attacker cannot directly observe
whether or not a fault has occurred; to estimate the probability that a fault has occurred,
we must rely on the observable results.
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Specifically, an attacker must be able to guess whether or not a fault has occurred
based on the the observed behavior of a device. For this purpose, we group this observed
behavior into three basic categories. If a device fails to respond, we categorize the result
of the glitch as a a “mute”; essentially, we assume the device or implementation has failed.
If a device returns with an incorrect response, we categorize the result as a “corruption”.
Otherwise, we consider the device to have been unaffected by the glitch. In practice,
there are more complex cases (such as reboots, and other unexpected responses); we defer
discussion of those details to later in our paper.

As a concrete example of such behavior, consider an attacker performing FI on software
AES running on a microcontroller. If the microcontroller no longer responds after the
glitch, we consider that a mute. If corrupted output is returned, we consider it a corruption.
Otherwise, nothing special has happened, and we assume it was uninfluenced by the glitch.

An attacker’s ability to clearly distinguish these categories depends on the specifics
of the implementation of the target implementation. To accommodate this, we will use
two different probability groupings in the remainder of our paper: success-probability and
mute-probability.

In the success-probability case, we consider the probability of successful operation.
This means that glitches resulting in either a corruption or a mute are classified as faults.
Note that an attacker does not need to be able to distinguish between these cases, which
means this categorization can be used with targets using redundancy countermeasures.
This model is used in FSA and Differential Behaviour Analysis [RMO7].

In the mute-probability case, we consider only the probability of mutes. This can be
useful where an attacker is unable to distinguish corruptions from successful operations.

Note that neither of these cases requires access to the (corrupted) ciphertext. In
situations where the same plaintext input can be repeatedly encrypted, access to the
ciphertext provides us with additional information, which allows an attacker to choose the
used model. These two categorizations are practical and apply as-is to a range of targets,
with no need for specific knowledge of how an algorithm is implemented. We discuss how
they are distinguished in practice in Section 4.7. For our experiments, we found that our
parameter selection excluded potentially-ambiguous behaviors (in particular, reboots) this
also allows us to rule out brownout detectors as the source of the leakage; see Section 4.6.

3 Constructing traces from faults

The intuitive description of our attack is simple; we turn observed faults from fault injection
attempts into a probability for a fault at a given point in time, and by repeating this
at different points in time, into ‘probability traces’. We can see the practicality of this
approach by comparing traces taken from a hardware target (a RISC-V CPU) running the
first round of AES. Figure 1 shows fault injection results presented using a bar chart (with
each bar representing the number of mutes in the respective time period), while Figure 2
shows the actual power usage during the same period, as measured by an oscilloscope.

It is clear that the same distinctive pattern of power usage is visible in both traces.
As we will show in Section 5.1, we can see that Simple Power Analysis attacks can be
performed based solely on these FI results.

The effect of unsynchronized clocks can be clearly seen in Figure 1. Although our
voltage fault injection device and the target are aligned by a trigger (on the left side of
the chart), the potential misalignment between our real-world target’s clock (driven by
an independent clock source) and our hardware glitcher’s clock increases as time passes
(towards the right side of the chart). As with SCA, this misalignment increases the number
of required attempts, but does not prevent our attacks from succeeding.
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Figure 1: Bar chart of the mutes in the first round of RISC-V AES.

12000

10000

2000

000000 000002 000004 000006 000008 000010 000012 000014

r

|

52 20.05 40.05 60.05 80.05 100.1 1201

Figure 2: Oscilloscope power measurement of the first round of RISC-V AES.

We hypothesize that other attacks from the side channel world, such as Correlation
Power Analysis, Linear Regression Analysis and Power Collision Attacks [MME10], could
also be used on such probability traces. In this work we show that this is indeed possible
when attacking software running on a variety of hardware targets, focusing on performing
CPA on such traces.

3.1 Data collection

We have, in effect, transformed a voltage fault injection device into a 1-bit sampling
oscilloscope. Obtaining full power traces imposes the same restrictions as when using
an actual low-resolution sampling oscilloscope; we must be able to repeat the same
computation multiple times. Specifically, for each identical computation (e.g., encryption
of a specific plaintext with the same key), we must apply multiple faults at the same point
in time, and then repeat that for different points in time.

In a real-world attack, the input data may not be fully controlled or repeatable. In
such circumstances, the partitioning method could be applied [LPR13], creating traces
corresponding to specific input bytes rather than specific inputs.

No matter the method used to group input, by repeatedly applying faults at the same
point in time relative to an operation and observing the ratio of their results, we obtain
an estimate for the probability of a fault occurring at that point in the computation. We
then perform this process at different points in time; the specific points (and the number
of points) where data must be collected depends on the desired resolution and length of
the probability trace. Similarly, the number of faults needed at a specific point depends
on the desired precision of the fault probability.

We discuss the challenges of selecting appropriate parameters in Section 4.6.

3.2 Trace construction

Once we have obtained the fault injection results discussed in the previous section, the
next step is to convert them into traces. For each input (whether partitioned or not), our
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results consist of a set of fault probabilities, one at each point in time. A naive conversion
can be performed by simply converting each point in time to a single point on a trace.

Our FI attacks are designed to produce noisy results, and the resulting data is sparse
on the time domain, since we do not attack specific known points in time, but distribute
our attempts across a relatively large time period. We perform two post-processing steps
to improve these results, after which they can be directly used as if they were standard
power traces.

The first step involves ‘bucketing’ the results, which can be seen as analogous to
oversampling when collecting actual power traces. We divide the attack period into
‘buckets’ of equal duration, and calculate the combined fault probability using all attempts
which were performed during the time period corresponding to each bucket. The number
of buckets defines the length of the resulting trace, much like the choice of sample rate
when using an oscilloscope. Increasing the number of buckets reduces the number of faults
which are placed in each bucket, which means that more faults are needed in total to
achieve the same resolution.

The second step performs a simple low-pass transformation to remove aliasing due
to leakage being spread across two adjacent buckets. In our experiments, we achieve
this by inserting an additional sample between the samples from every pair of buckets,
representing the combined probability for both buckets.

Since these post-processing steps are applied after the FI results have been collected,
they can be repeated to create improved traces without the need to repeat the experiment.
Typically, we choose an arbitrary bucket size to generate an initial set of traces, and then ad-
just these post-processing parameters to improve correlation before performing an attack.

4 Practical Implementation

To applying the attack we have described in practice, we will use a voltage fault injection
device attacking some hardware targets running varied software. In this section, we first
describe such a device and other details of our experimental setup, and then describe
details of the target hardware and software we will use to produce the results in Section 5.

4.1 Device

To inject glitches we use a custom built, inexpensive glitching device built around a
cheap low-cost FPGA (the Lattice iCE40). We have made the PCB design and all source
code (including FPGA bitstream and scripts) publicly available at https://github.com/
noopwafel/iceglitch. The total cost of our setup (including FPGA, components, and
all targets) is less than $50.

The device generates a glitch of arbitrary length at a given delay after a trigger input,
by using an analog switch to change the output voltage connected to the target. For the
purposes of this paper, the device offers four parameters; the length of the glitch (with a
resolution of less than 1ns), the delay between the trigger and the glitch (with a resolution
of about 5ns), and the baseline and glitch voltage (both 9-bit values with a range between
0 and 3.3V).

4.2 Experiment layout

Figure 3 shows a schematic of a setup. The voltage supply to the target’s microcontroller
is provided by the glitching device. The target’s UART is connected to a PC via USB to
serial adapter. The trigger input to the glitching device is either an MCU GPIO pin or a
MCU Rx line, the schematic shows the MCU Rx line scenario.
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Figure 3: Schematic of the setup

4.3 Target programs

The target MCUs run a program which receives commands over UART. For example,
one command receives input which is then encrypted with AES, and then the output is
returned. Receiving the output is not strictly necessary for the attack. However, collecting
this data allows us to test different fault models.

The program sends a boot message after the device has been reset. This allows
classifying glitches which cause resets and those that cause the target to mute or become
unresponsive.

4.4 Fault synchronization

Our experiments use two methods to synchronize the target with our glitching device.
The first trigger method requires the target to pull a GPIO pin high when starting
the calculation (e.g., AES encryption). However, this is unrealistic in many settings;
we also evaluate a second method, where we trigger using the last byte of serial input.
Synchronizing on serial line in this way results in more jitter; note that contrary to SCA,
this cannot be resolved in post-processing, since alignment is not possible.

4.5 Targets

We used three different hardware targets in our experiments; details can be seen in
Table 2. We attempted to choose widely-available platforms to allow our work to be easily
reproduced. The ARM Cortex-M3 target is an unmodified STM32 board typically sold as
the “Black Pill”. The RISC-V target is a Sipeed Longan Nano board. The AVRS target is
a small custom PCB containing only a Xmega32adu chip, pins to expose I/O and power,
and the programming interface; we use the internal oscillator rather than an external
crystal. We removed decoupling capacitors from the targets to increase their susceptibility
to voltage FI. No special power cuts were created; power was supplied using pre-existing
power pins on all targets.

Table 2: Overview of target hardware.

Architecture ‘ Microcontroller ‘ Clock speed
ARM Cortex-M3 STM32F103C8T6[stm] 72MHz
RISC-V RV32IMAC gd32v{f103cb[gd3] 108MHz
AVRS Xmega32adu[xme] 32MHz

Details of the software we ran on these targets is provided in Table 3. On the RISC-
V platform and the Cortex-M3, we run a simple implementation of AES written in C.



Albert Spruyt, Alyssa Milburn and Lukasz Chmielewski 203

On the Cortex-M3, we also evaluate an optimized implementation of AES written in
assembly. [SS16] Finally, on the AVRS platform, we use the AES/RSA code provided by
AVR-Crypto-Lib.

Table 3: Hardware/software configurations for experiments.

Hardware Software | Triggering method
ARM Cortex-M3 Simple AES[sim)] UART(Rx) trigger
ARM Cortex-M3 Schwabe AES[SS16] UART (Rx) trigger
RISC-V RV32IMAC Simple AES[sim)] GPIO trigger
AVRS avr-cryptoLib AES[avr] GPIO trigger
AVRS avr-cryptoLib RSA[avr] GPIO trigger

4.6 Parameter selection procedure

Before we can perform our attack, we need to identify two things: the time window in
which to attack (corresponding to the delay between the trigger and the fault injection),
and the parameters to use when injecting the fault.

Previous attacks have used a power trace collected using an oscilloscope to identify the
relevant time window. For example, if the goal is to attack the first round of AES, this
window would be the period between a trigger event and the second round of AES. Our
attack instead uses a probability trace generated using FI, such as the one in Figure 1,
which also allows us to identify the relevant window.

Once we have identified a window of interest, we perform a characterization step,
injecting a large number of faults across the window using a broad range of parameters.
Typically, we choose a voltage range from 0V up to the normal operating voltage of the
target, and a glitch length ranging from 10ns up to hundreds of nanoseconds. This gives
us an overview of the target’s behaviour when subjected to FI. We then narrow down
the parameters until we have an approximate mix of 50% mutes and 50% non-mutes
(much like [MMP*11]), and have excluded regions of the parameter space which always
produce the same result and thus have no variance. We also exclude regions which result
in significant numbers of resets of the target, avoiding any potential interactions with
brownout detection.

If the parameters are narrowed down too far, effects similar to clipping or attenuation
occur. The probability of fault is dependent on the operation performed, not just the data.
This dependency on the operation or time can again be seen in Figure 1. Since our FI
campaigns can take a significant amount of time to complete, and we do not perform them
in a controlled environment, we must also ensure that any temperature variations will not
cause such clipping artifacts.

Table 4: FI parameter ranges used in our evaluation.

Target | Delay (s) | Glitch voltage (V) | Length (ns)
ARM Simple AES 0.001 - 10e-05 1.5-2.35 170-180
ARM Schwabe AES | 7.1e-05 - 8.1e-05 1.5-2.3 18-200
RISC-V Simple AES 0.0001 - 10e-05 1.4-2.1 50-100
AVRS8 AES 1e-06 - 10e-06 1.83-2.02 550-700

For our evaluation, we chose a relatively wide range of parameters, with the exception
of the ARM Simple AES target, where we limited the glitch length to a somewhat smaller
window. When performing an actual attack, it would be possible to narrow these parameters
much further. The specific parameters we used are shown in Table 4. We supply these
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numbers to provide the reader with a general idea of the ranges involved, but note that
the delay (the time between the trigger and the glitch) depends on the trigger being used,
and that the effect of glitches on the target can also depend heavily on the details of the
glitching setup/hardware.

Once we have a suitable range of parameters, we can begin the actual FI campaign.
When injecting faults, we randomly select parameters from these ranges using a uniform
distribution. This reduces the biasing effect of, for instance, temperature or previous
attempts.

4.7 Classification of outputs

As described in Section 2, the FI attempts need to be categorized. In our experiments, we
extend the categorization to reflect the actual responses from our targets.

We receive these responses from our target and discern five classes of behaviour: normal,
mute, reboot, corruption, and other. If the target no longer responds, we classify the
fault as a ‘mute’; if the target reboots (returns boot messages), then we classify it as a
‘reboot’. If the expected behavior occurs (for example, the device returns correct results
of an encryption being returned or a valid signature), we classify it as ‘normal’; if an
unexpected response is received (such as a response which has more or fewer bytes than
expected), we classify it as ‘other’. Finally, since the response contains the ciphertext and
we can repeat inputs, we can easily determine the correct ciphertext for any given input,
which allows us to classify responses with incorrect ciphertext as ‘corruption’.

Since we know the keys used in our experiments, we can also simply use the key to
determine the correct ciphertext. An attacker in the field would not need to know the
ciphertext, only be able to observe that it was corrupted; if an attacker cannot do so, they
are limited to the mute model.

We group the classes according to the desired model: for the success-probability model
we group the correct AES outputs vs the rest. For the mute probability model we group
the corrupted and normal outputs vs the rest. In this way we can compare the difference
in model accuracy using the same datasets.

5 Results

5.1 Simple Fault Analysis on RSA

To demonstrate the generic nature of our attack, we will first demonstrate a proof-of-concept
attack which shows that Simple Power Analysis (SPA) can be applied to FI probability
traces. We use the AVRS8 target from Table 2, and the RSA code from avr-crypto-lib.
In our tested configuration, this uses Montgomery modular multiplication, without CRT.
The relevant command decrypts a single fixed message with a (short) secret key, and then
prints a message. Only the mute probability model is possible, since failed decryptions do
not lead to different behavior.

0000 0001 0002 0003 0004

Figure 4: Results from glitching RSA, with individual key bits color-coded according to
the operation (and thus the value of the key bit).
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We performed an attack over a period of 3 hours, covering 5ms of time after a GPIO
trigger (reducing jitter for this example), which is pulled high immediately before the
modular exponentiation. During this period of time, the first 52 bits of the key are used.
The results can be seen in Figure 4. The different patterns of the square and multiply
operations are clearly visible, allowing the key bits to be read directly from the figure.

5.2 Fault Correlation Analysis on AES

We performed a long-running FI campaign on each of the targets from Table 3. For
each attempt, we instructed the target to perform AES encryption, with input randomly
selected from a set of 1000 plaintexts. During each attempt, we injected a glitch using
(uniformly) randomly-selected parameters derived from our characterization results, as
discussed above. We recorded the parameters, the observed input and the observed output
in a database.

This experimental setup allowed us to explore different classification models, and their
accuracy, based on the same data. By using our knowledge of the input, output and key,
we can classify different behaviours accurately. We can then choose which classification
model to apply by selecting different groupings of classes. In this way, we can generate
traces corresponding to success-model and mute-model, using results from only a single FI
campaign.

Attacking the FCA traces is performed with a standard Hamming Weight CPA attack
[BCOO04]. Specifically, we attack the S-box output during the first round, using JLsca’s [jls]
implementation of CPA (AesSboxAttack).

Key rank evolution plots for all targets are shown in Figure 5. The X axis shows the
number of attempts used, rather than the number of traces used as is customary when
performing CPA. The total number of attempts includes all attempts: normal, mutes,
corrupted, reboots and other. As we are primarily interested in the non-profiled case we
also include attempts which are in time intervals which do not contribute to the attack.

Table 5: Fault attempts needed for full key recovery, using either mutes or success, both
with and without profiling.

Target ‘ success ‘ prof success ‘ mutes ‘ prof mutes
ARM Simple-AES 0.714M 39K 95M 5.1M
ARM Schwabe AES 40M 2.3M 74M 4.6M
RISC-V Simple-AES 19M 2.6M 31M 7.5M
AVRS8 Avr-crypto-lib AES 14M 800K | N/A* N/A*

* only 14 key bytes were recovered during our experiment

Table 5 shows the number of attempts which are needed for full key recovery for the
different targets. The results are presented for two models: being able to distinguish
faulty outputs, and not being able to distinguish faulty outputs. Additionally, the table
also contains the amount of faults which would be required for a repeat, profiled attack —
specifically, if only the time intervals which contributed to key recovery were attacked. We
believe that further profiling, together with optimization of the Fault injection parameters,
would further reduce the required attempts.

As stated in Section 4.6 we selected glitch parameters which would give a good
distribution over the entire length of the trace. We believe tailoring the parameters per
attacked interval could reduce the amount of noise at these points.

These results show that classifying faults based on success rather than mutes is a
superior approach. However, using mutes is still a realistic option.
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On targets where the mute model is extremely poor, it is still possible to recover keys
with a sufficient number of attempts; in the case of the AVR8 we terminated our data
collection before complete key recovery. However, convergence of the remaining key bytes
can be seen in Figure 5.

These results also clearly show that, on a pure software target, our approach is able to
overcome sources of noise such as misclassification and jitter, given sufficient attempts.

Finally, we also attempted to apply two non-CPA attacks to the same data. First, we
used non-profiled Linear Regression Analysis (LRA) [LPR13] using the implementation
provided by JLsca. Using success-probability traces, we successfully recovered the full key
for all our targets. Secondly, we wrote an implementation of a ‘model-less’ correlation-
enhanced collision attack [MME10] in Python. When attacking the first two key bytes
using the success-probability traces, we successfully recovered the correct key bytes on 2 of
our targets (AVR8 and ARM simple-AES).

5.3 Hardware AES

The previous section has established that our attack is feasible on software implementations,
where cryptographic operations run on the same processor that is responsible for the input
and output of data. In this section, we show that the attack can still be applied even if a
dedicated hardware engine performs the cryptographic operation, rather than software
running on the processor.

5.3.1 Attacking Xmega AES

Our Xmega (AVRS8) target contains a hardware AES engine, which has previously been
shown to be vulnerable to a CPA attack by Kizhvatov [Kiz09]. We hypothesize that we
can perform the attack in the same manner as before. However, the attack is complicated
because the processor core is in the same power plane as the AES engine, but the processor
needs to remain running during encryption so that it can eventually return the output.

As the paper describes, the leakage from this engine indicates that AES operations are
performed on a single byte at a time, presumably to optimize the number of gates. The
leakage consists of the Hamming distance (HD) between pairs of intermediate states; to
attack a key byte, we assume that we know the previous key byte, and then use CPA to
recover the value of the next key byte. We first replicated this attack using power traces
from an oscilloscope; a portion of such a trace is shown in Figure 6. We found that the
first-round pre-sbox leakage is stronger after applying a ShiftRows permutation; the key
byte numbers referred to below are after such a permutation has been applied.

Figure 6: Oscilloscope power measurement during encryption with hardware AES engine.

We attempted to duplicate Kizhvatov’s attack by applying FCA in the same way as
our attacks on the software targets. Although the implementation of the CPA attack itself
differs significantly from the software attacks described above — we attack the Hamming
distance between internal states, rather than the Hamming weight of individual states —
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this only affects the actual SCA attack performed on the probability traces, and not the
FI attack nor the generation of the traces.

5.3.2 Results

!

Figure 7: Probability trace showing iterations of software polling loop.

We use the example code supplied by the chip vendor, which repeatedly checks the
contents of a register to see if the engine has finished, in a loop which we will refer to as the
“polling loop”. During characterization, we selected FI parameters which resulted in early
exits from this loop, which we determined by checking for all-zero output. This means that
our attack parameters are optimized for faults in software, and not the hardware engine.

key byte 6
key byte 11
key byte 16

rank

100 -

50 -

250 500 750 1000
#traces

Figure 8: Key rank evolution for hardware AES engine FCA attack.

We performed 236 million fault injection attempts, for 1000 plaintext inputs, resulting
in 236k attempts being used to generate each probability trace. At first glance, the
resulting probability traces — an example for one input is shown in Figure 7 — appear to
reflect the power usage of the software polling loop, rather than the hardware AES engine.
As expected, since we are optimizing our faults to attack the software, these probability
traces differ significantly from the oscilloscope power traces.

However, the power usage of the hardware engine is also present in these traces, allowing
us to apply our SCA attack using the success-probability model, and obtain key bytes.
We successfully recover (rank 1) the 6th and 16th key bytes, and obtain a high rank for
the 11th key byte (see Figure 8), but fail to recover any of the other key bytes. Similarly,
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we saw HD correlation for only some input byte pairs: specifically, 4+5, 9410 and 14+15.
Again, we saw no significant correlation for other input byte pairs.

Figure 9: Hardware AES engine input byte pair correlation (4+5, 9+10, 14415), with
oversampled probability trace showing corresponding iterations of software polling loop.

Upon inspection, we saw that our compiler produced a polling loop which takes 5 cycles
for each iteration; it seems that only one of the instructions in our loop was susceptible
to the FI parameters we were using, and the power usage of the hardware engine is only
reflected in our trace when that instruction is executing. This can be seen in Figure 9,
where a small section of the probability trace (showing iterations of the polling loop) is
shown alongside the input byte correlation spikes.

5.3.3 Discussion

This proof-of-concept attack targeting early exits from the software polling loop demon-
strates that FCA can be successfully applied to leakage from hardware engines. We have
shown that the power usage of the hardware engine is encoded in the probability traces,
despite the fact our underlying FI attack parameters are chosen to cause glitches in software
instructions.

By analysing the corrupted outputs in more detail, using our knowledge of the key,
we can distinguish a number of other cases. We see that there are a number of cases
in which there appears to be corruption which could be explained by single byte faults
before and after the first and second and even the third mix column. In total, this group
represents approximately 2.5% of all results. The majority of corrupted outputs contain a
large number of 0 bytes. We additionally see evidence of memory dumps.

Considering a wider range of behavior (such as the above) during the characterization
stage, rather than only early exits, would allow more points within the polling loop to be
attacked, and thus more key bytes to be recovered. Leakage of other intermediate values
could also be used to attack any remaining key bytes.

6 Discussion

The nature of our attack requires a large number of fault injection attempts; calculating a
fault probability ratio for a given point in time necessarily requires multiple attempts, this
must be repeated for multiple points in time. For attacks such as CPA where different
inputs are required, this in turn must be entirely repeated for each input. As discussed
in Section 4.6, our evaluation used a large range of parameters; further tuning of these
parameters will reduce the number of attempts required in an actual attack. Despite this,
we showed that a profiled attack against Simple AES running on the ARM Cortex-M3
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target can recover the key with fewer than 50K attempts, despite the inherent jitter caused
by triggering on the UART traffic.

Since our success probability classification does not require the attacker to observe the
contents of the corrupted ciphertext, only the fact that a fault was successful in modifying
the operation, countermeasures involving redundant checks are ineffective. To attack
targets protected with an infective countermeasure, the input must be repeatable and the
output must be available [DEK 18, DMMP19]

Targets which are protected using random delays can also be attacked; however the
number of required attempts will increase, which could render the attack infeasible. The
intuition is that the probability traces will behave as power traces which are heavily
averaged without any synchronization. The leakage will thus be spread over multiple
samples and be combined with noise.

We do not expect masked implementations, which do not exhibit first order leakage,
to be vulnerable to our attack. Again, the intuition is that the ‘probability traces’
behave similarly to power traces which have been averaged before a higher-order sample-
combination operation has been performed. However, the probability of a fault may be
dependent on both the processed intermediate and the mask at the same time, in which
case squaring the samples could be effective. This would heavily depend on the method
and shape of the injected glitch. Designing a second order FCA that would effectively
work against masking would be interesting future work.

Our evaluation was performed using power fault injection, which can be performed
with a low-cost setup without the need to disable PLLs. Previous related work, such as
SIFA and FTA, have used other glitching techniques, namely clock glitching and EM-FI.
Our Xmega hardware AES engine attack could be repeated using EM-FI with the probe
above the crypto engine; a related attack was performed in FTA [SBR™20]. This way, the
CPU usage should be minimally affected and the FI traces would reflect mainly the engine.
Similarly, the SIFA paper [DEK 18] attacks the same hardware engine using ineffective
faults and clock glitching. Although both of these attacks differ significantly from our
approach, these papers show that both EM-FI and clock glitching can be effectively used
against the same hardware, and it would be interesting future work to attempt to apply
FCA using these other techniques.

Generally, it would be easier for an attacker to perform classic power side channel attacks
on a target, since they are simpler than our approach. One potential future path of investi-
gation involves using software-activated faults, which do not require additional equipment.
In recent years, these have demonstrated against high-profile targets such as TrustZone
(CLKSCREW [TSS17], VoltJockey [QWLQ19]) and Intel CPUs (VOLTpwn [KFG*20],
Plundervolt [MOG™20]). Finally, we also believe our work could be extended to apply
other existing power or EM SCA attacks against other ciphers.

7 Conclusion

We have presented a general technique for performing FI attacks and classifying their
results, resulting in ‘probability traces’ which allow us to apply existing side-channel
attacks to the resulting probability traces. Specifically, we demonstrated that we can
perform Simple Fault Analysis to obtain RSA key bits, by applying SPA to probability
traces. Similarly, we demonstrated that we can perform Correlation Fault Analysis to
obtain private AES keys, by applying CPA to probability traces.

We investigated two different classification models, assigning probabilities based on the
ratios of either mutes, or successes. Although the success model appears to be superior
and results in considerably faster key convergence, we have also shown that the mute
model can be applied in situations where information about the success of cryptographic
operations is not available to an attacker.
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We demonstrated successful attacks against cryptographic libraries running on three
different hardware targets, focusing on CPA against AES, but including the LRA distin-
guisher, collision attacks and even SPA attacks on RSA. We also presented proof-of-concept
results which recover key bytes from a real-world hardware engine, where leakage from
intermediate states appears to be part of the power dependency when attacking software
instructions running at the same moment in time.

These results show that the relationship between FI and SCA attacks is strong enough
that we can successfully apply standard, unmodified SCA attacks to the results of FI
campaigns on real-world hardware.
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