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Abstract. Masking is a very common countermeasure against side channel attacks.
When combining Boolean and arithmetic masking, one must be able to convert
between the two types of masking, and the conversion algorithm itself must be
secure against side-channel attacks. An efficient high-order Boolean to arithmetic
conversion scheme was recently described at CHES 2017, with complexity independent
of the register size. In this paper we describe a simplified variant with fewer mask
refreshing, and still with a proof of security in the ISW probing model. In practical
implementations, our variant is roughly 25% faster.
Keywords: Side-channel countermeasure · high-order masking · Boolean to arithmetic
conversion · ISW security proof

1 Introduction
The masking countermeasure. Masking with random values is a well known and
effective countermeasure against side-channel attacks. Every variable x in the circuit can
be masked into x′ = x⊕ r, where r is a random value with the same bitsize as x. When
the two shares x′ and r are manipulated separately, any first-order attack is thwarted
because every intermediate variable considered separately has the uniform distribution.
However a second-order attack combining the two shares x′ and r can still be feasible in
practice, though it usually requires a much greater amount of side-channel acquisitions;
see for example [OMHT06].

To prevent first order attacks, Boolean masking can be naturally extended to n shares,
where every variable x in the circuit is written as:

x = x1 ⊕ · · · ⊕ xn

In that case, a side-channel countermeasure should be resistant against any t-th order
attack, in which the side-channel information from at most t < n variables is combined.
More precisely, it should have a proof of security in the t-probing model introduced by
Ishai, Sahai and Wagner [ISW03]. In this model, the adversary can probe at most t
wires in the circuit, and should not learn anything about the secret inputs. It was shown
in [ISW03] that any circuit C can be transformed into a new circuit C ′ of size O(t2 · |C|)
that is secure against t probes, using n ≥ 2t+ 1 shares.

Boolean vs arithmetic masking. Boolean masking is well adapted for algorithms
that have Boolean operations only, such as AES. However for algorithms that combine
Boolean and arithmetic operations (such as IDEA [LM90], RC6 [CRRY99], XTEA [NW97],
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SPECK [BSS+13] and SHA-1 [NIS95]), it can be advantageous to use arithmetic masking
to protect the arithmetic operations, and switch between Boolean and arithmetic masking
whenever necessary. Obviously the conversion algorithm itself must be secure against
side-channel attacks. More precisely, starting from a Boolean masking with n shares xi

such that:
x = x1 ⊕ x2 ⊕ · · · ⊕ xn

one must compute n arithmetic shares Ai such that:

x = A1 +A2 + · · ·+An (mod 2k)

without leaking information about x. In general all arithmetic operations are performed
modulo 2k for some fixed integer k; for example, k = 32 in SHA-1.

The first conversion algorithms between Boolean and arithmetic masking secure against
first-order attacks were described by Goubin in [Gou01]. Goubin’s first-order Boolean to
arithmetic conversion is very efficient with complexity independent of the register size k.
This is based on a surprising property of the function

ψ(x, y) = (x⊕ y)− y (mod 2k)

Although it contains an arithmetic operation, the function is affine in y with respect to
the xor; see [Gou01] for a proof. The other direction (from arithmetic to Boolean) is less
efficient with complexity O(k); this was later improved to O(log k) in [CGTV15]; however
the O(log k) complexity hides a larger constant, and in practice for k = 32 the number of
operations is similar.

For security against high-order attacks (i.e. with n shares), the first conversion al-
gorithms were described in [CGV14], with complexity O(n2 · k) for n shares and k-bit
addition in both directions, with a proof of security in the ISW model. As in Goubin’s
first-order case, the complexity can be improved to O(n2 · log k) using the same technique
as in [CGTV15]; however for k = 32 this does not really improve the practical efficiency.

Recently, an efficient high-order Boolean to arithmetic conversion algorithm was
described in [Cor17c], with complexity independent of the register size k (as in Goubin’s
first-order algorithm), following an approach initiated by Hutter and Tunstall in [HT16].
The conversion algorithm has a security proof in the ISW model; in contrast, the original
algorithm described in [HT16] had no such security proof, and quite unsurprisingly, a
third-order attack was described in [Cor17c] for any number of shares n; the updated
Hutter-Tunstall algorithm is also vulnerable to a similar third-order attack.1

Although the complexity of the new algorithm is O(2n), in practice for small values of n
it is at least one order of magnitude more efficient than [CGV14,CGTV15]. We summarize
in Table 1 the complexities of Boolean to arithmetic conversions in both directions, for
first-order attacks, and for high-order attacks.

Our contribution. In this paper we describe a simplified variant of the Boolean to
arithmetic conversion algorithm from [Cor17c], with fewer mask refreshing, and still with a

1 The attack against [HT16], version posted on 02-Mar-2018, works as follows. We only look at Step
1, which computes the variable ω = x + (α ⊕ r1 ⊕ · · · ⊕ rn) + (µ1 ⊕ · · · ⊕ µn−1) with the intermediate
variable ζ = (x+ (α⊕ r1 ⊕ · · · ⊕ rn)) ⊕ (µ1 ⊕ · · · ⊕ µn−1) which is computed in (26). We also have the
intermediate variable f = (x′ ⊕ γ1 ⊕ α) + γ1 which is computed in (24), where x′ = x⊕ r1 ⊕ · · · ⊕ rn.

We probe the 3 intermediate variables ω, ζ and f . Letting R = α⊕r1 ⊕· · ·⊕rn and U = µ1 ⊕· · ·⊕µn−1,
we obtain ω = x + R + U , ζ = (x + R) ⊕ U and f = (x ⊕ R ⊕ γ1) + γ1. It is easy to check that for
uniformly distributed γ1, R and U , the triple (ω, ζ, f) leaks information about the secret x; intuitively this
is because the pair (ω, ζ) leaks information about x+R, while f leaks information about x⊕R, so the
combination leaks information about x. This gives a 3rd order attack that works for any n. In particular,
in the authors’ explicit 3rd-order algorithm (Alg. 3), the variables ω, ζ and f correspond to the variables
v63, v52 and v29 respectively.
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Table 1: Complexities of Boolean to arithmetic conversions in both directions, for first-order
attacks, and for high-order attacks.

Direction First-order High-order
complexity complexity

Goubin’s algorithm B → A O(1) -
[Gou01] A → B O(k) -

[CGV14] B → A - O(n2 · k)
A → B

[CGTV15] B → A - O(n2 · log k)
A → B O(log k)

[Cor17c] B → A - 14 · 2n +O(n)
This paper B → A - 10 · 2n +O(n)

proof of security in the ISW probing model. As illustrated in Figure 1, our new conversion
algorithm is simpler than [Cor17c]: it still makes two recursive calls to the same conversion
algorithm C at order n − 1, but performs only a single mask refreshing R instead of 3;
moreover it does not use a compression function F . The asymptotical complexity of our
variant is still O(2n), that is exponential in the number of shares n and independent of
the register size k. More precisely, the number of operations is 10 · 2n +O(n), instead of
14 · 2n +O(n) in [Cor17c]. In section 7, we describe a practical implementation of our new
algorithm, showing that for small n it is still one order of magnitude faster than [CGV14],
and roughly 25% more efficient than [Cor17c].

R ψ R F C +

R F C

x D

(a) The original countermeasure from [Cor17c].

R ψ C +

C

x D

(b) Our new countermeasure.

Figure 1: The sequence of operations in the Boolean to arithmetic conversion algorithm.

Source code. A proof-of-concept implementation of our high-order conversion algorithm,
using the C language, is available at:

https://pastebin.com/WKnNyEU8

https://pastebin.com/WKnNyEU8
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2 Security Definitions
The ISW probing model. The theoretical study of securing a circuit against an
adversary who can probe a fraction of its wires was initiated by Ishai, Sahai and Wagner
[ISW03]. They showed how to transform any circuit of size |C| into a circuit of size
O(|C| · t2) secure against any adversary who can probe at most t wires. The construction
is based on secret-sharing every variable x into n shares with x = x1 ⊕ · · · ⊕ xn, and
processing the shares in a way that prevents a t-limited adversary from learning any
information about the initial variable x, for n ≥ 2t+ 1.

The ISW approach for proving security against an adversary who can probe at most t
probes is based on simulation. The goal is to show that any set of t probes in the circuit
can be perfectly simulated without the knowledge of any of the original (non-masked)
input variables of the initial circuit; in particular, for a block-cipher, such simulation can
be performed without knowing the secret key. This implies that probing those t wires is
not going to help the adversary, since he could simulate those t probes by himself.

A proof in the ISW model usually proceeds as follows: given any set of t probes, one
constructs iteratively a subset I of indices of the input shares xi that are sufficient to
simulate the t probes. If we can ensure that |I| < n, then only a proper subset of the input
shares is required for the simulation. Then if the shares xi are initially generated in such
a way that any n− 1 subset of shares are uniformly and independently distributed, the
simulation can be performed without knowing the original variable x.

t-SNI Security. Recently, a refined security definition under the ISW probing model was
introduced in [BBD+16], called t-SNI security. The t-SNI security definition enables to
prove that a gadget can be used in a full construction with n ≥ t+ 1 shares only, instead of
n ≥ 2t+ 1 in the original ISW security proof. The main advantage of the t-SNI approach is
that it enables modular security proofs, by first considering the t-SNI security of individual
gadgets and then composing them in a more complex construction. In this paper, the
security of our Boolean to arithmetic conversion algorithm will be proven under the t-SNI
definition, as in [Cor17c].

We recall below the t-NI and t-SNI security notions introduced in [BBD+16]. We
consider a gadget taking as input a single n-tuple (xi)1≤i≤n of shares, and outputting a
single n-tuple (yi)1≤i≤n. Given a subset I ⊂ [1, n], we denote by x|I all elements xi such
that i ∈ I.

Definition 1 (t-NI security). Let G be a gadget taking as input (xi)1≤i≤n and outputting
the vector (yi)1≤i≤n. The gadget G is said t-NI secure if for any set of tc ≤ t intermediate
variables, there exists a subset I of input indices with |I| ≤ tc, such that the tc intermediate
variables can be perfectly simulated from x|I .

Definition 2 (t-SNI security). Let G be a gadget which takes as input n shares (xi)1≤i≤n

and outputs n shares (yi)1≤i≤n. The gadget G is said to be t-SNI secure if for any set of
tc probed intermediate variables and any subset O ⊂ [1, n] of output indices, such that
tc + |O| ≤ t, there exists a subset I ⊂ [1, n] of input indices which satisfies |I| ≤ tc, such
that the tc intermediate variables and the output variables y|O can be perfectly simulated
from x|I .

The difference between the t-NI and t-SNI security notions is that in the t-SNI definition
the upper-bound on the size of the input subset I does not depend on the number of
output shares |O| that must be simulated. As shown in [BBD+16], if several gadgets are
t-SNI secure, then the composition of those gadgets remains t-SNI secure. Moreover the
t-SNI security notion enables to prove the security of a full construction for n > t + 1
shares, instead of n > 2t+ 1 in the original ISW security proof.
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3 Existing Boolean to Arithmetic Conversion Algorithms
3.1 Goubin’s First-order Conversion
We first recall Goubin’s first-order algorithm for conversion from Boolean to arith-
metic masking [Gou01]. The algorithm is based on the affine property of the function
Ψ(x, r) : F2k × F2k→ F2k

Ψ(x, r) = (x⊕ r)− r (mod 2k)

More precisely, we have for any x, r1, r2 ∈ F2k :

Ψ(x, r1 ⊕ r2) = x⊕Ψ(x, r1)⊕Ψ(x, r2) (1)

In the remaining of this paper, all additions and subtractions are performed modulo 2k for
some fixed parameter k, so we omit the mod 2k. Moreover we grant higher precedence to
xor than addition, so we simply write Ψ(x, r) = x⊕ r − r.

Goubin’s Boolean to arithmetic conversion is based on the affine property of ψ, see (1).
Given as input two Boolean shares x1, x2 such that

x = x1 ⊕ x2

we can write from the definition of Ψ and from (1):

x = (x1 ⊕ x2 − x2) + x2 = Ψ(x1, x2) + x2

=
[(
x1 ⊕Ψ(x1, r ⊕ x2)

)
⊕Ψ(x1, r)

]
+ x2

where r ← {0, 1}k is a randomly generated value. One can therefore compute the arithmetic
share:

A←
(
x1 ⊕Ψ(x1, r ⊕ x2)

)
⊕Ψ(x1, r)

which eventually gives two arithmetic shares of x, as required:

x = A+ x2 (mod 2k)

We note that the above Boolean to arithmetic conversion algorithm is quite efficient as it
requires only a constant number of operations, independent of k. Moreover it is easy to
see that the above algorithm is secure against first-order attacks, because the left term
x1⊕Ψ(x1, r⊕x2) is independent of x2 (thanks to the mask r), and the right term Ψ(x1, r)
is also independent from x2; eventually the arithmetic share A is uniformly distributed
when x2 is uniformly distributed.

3.2 The High-Order Boolean to Arithmetic Conversion Algorithm from
[Cor17c]

A high-order Boolean to arithmetic conversion algorithm was recently described at CHES
2017 [Cor17c], with a security proof in the ISW model for n ≥ t+ 1. The algorithm can
be seen as a generalization of Goubin’s algorithm to any order, still with a complexity
independent of the register size k. The algorithm takes as input n Boolean shares xi such
that

x = x1 ⊕ · · · ⊕ xn

and using a recursive algorithm computes n arithmetic shares Di such that

x = D1 + · · ·+Dn (mod 2k)
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As illustrated in Fig. 2 the algorithm is recursive and makes two recursive calls to the
same algorithm C with n− 1 inputs. The algorithm works as follows. One first performs
a mask refreshing R, while expanding the xi’s to n + 1 shares. One obtains, from the
definition of the Ψ function:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn+1

= (x1 ⊕ · · · ⊕ xn+1 − x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= Ψ(x1, x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

From the affine property of the Ψ function, the left term can be decomposed into the xor
of n shares Ψ(x1, xi) for 2 ≤ i ≤ n+ 1, where the first share is (n ∧ 1) · x1 ⊕Ψ(x1, x2):

x = (n ∧ 1) · x1 ⊕Ψ(x1, x2)⊕Ψ(x1, x3)⊕ · · · ⊕Ψ(x1, xn+1) + x2 ⊕ · · · ⊕ xn+1

We obtain that x is the arithmetic sum of two terms, each with n Boolean shares; this
corresponds to the two branches in Fig. 2. One then performs a mask refreshing R on
both branches, and then a compression function F that simply xors the last two shares,
so there remains only n − 1 shares on both branches. One can then apply the Boolean
to arithmetic conversion C recursively on both branches, taking as input n− 1 Boolean
shares (instead of n), and outputting n− 1 arithmetic shares; we obtain:

x =
(
A1 + · · ·+An−1

)
+
(
B1 + · · ·+Bn−1

)
Eventually it suffices to do some additive grouping to obtain n arithmetic shares as output,
as required:

x = D1 + · · ·+Dn (mod 2k)

R ψ R F C +

R F C

x D
n n + 1

n

n

n

n

n− 1

n− 1 n− 1

n− 1

n

Figure 2: The sequence of gadgets in the Boolean to arithmetic conversion algorithm
from [Cor17c].

As illustrated in Fig. 2, the algorithm starts with n Boolean shares, then expands to
n+ 1 shares; only n shares are used in the bottom branch, while the Ψ gadget on the upper
branch decreases to n shares. On both branches the compression function F decreases to
n− 1 shares in order to apply the algorithm recursively. Thus, on the whole, when calling
Cn the number of shares follows the sequence:

Cn : n→ n+ 1→ n→ n− 1

and Cn−1 is recursively called with n− 1 shares.
In this paper, our main contribution is to simplify the above Boolean to arithmetic

conversion algorithm with the more compact sequence:

Cn : n+ 1→ n

As illustrated in Fig. 3, our new recursive algorithm Cn takes as input n+ 1 shares (instead
of n) and recursively calls Cn−1 with n shares on both branches, and eventually outputs n
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arithmetic shares after some arithmetic grouping. Actually we rely on the Ψ function to
decrease the number of shares by one; therefore the previous compression function F is
not necessary anymore, and we only need a single mask refreshing instead of 3. Finally, to
obtain an algorithm that converts from n Boolean shares (instead of n+ 1 as input of Cn)
to n arithmetic shares, it suffices to initially fix xn+1 = 0 as input. We describe our new
algorithm in more details in the next section, and we show that it achieves the same level
of security as the original algorithm, namely t-SNI security with n = t+ 1 shares.

R ψ C +

C

x D
n + 1 n + 1

n

n n− 1

n− 1

n

Figure 3: The sequence of gadgets in our new Boolean to arithmetic conversion algorithm.

4 Improved High-order Conversion from Boolean to Arith-
metic Masking

In this section, we describe our improved high-order Boolean to arithmetic conversion
algorithm. We first describe a recursive algorithm Cn which, given n+ 1 Boolean shares
as input, output n arithmetic shares. Then as mentioned previously, to convert from n
Boolean shares instead of n+ 1, it suffices to initially let xn+1 = 0.

4.1 The new Algorithm
Our recursive algorithm Cn takes as input n+ 1 Boolean shares xi such that:

x = x1 ⊕ · · · ⊕ xn+1

and outputs n arithmetic shares Di such that

x = D1 + · · ·+Dn (mod 2k)

For n = 1, the algorithm takes as input two shares x1 and x2 and simply outputs
D1 = x1 ⊕ x2. We now assume that n ≥ 2; see Fig. 3 for an illustration of the algorithm.

1. We first perform a mask refreshing of the n+ 1 shares xi’s, so that we obtain the
following n+ 1 shares:

y1, . . . , yn+1 ← RefreshMasksn+1(x1, . . . , xn+1)

See below for the definition of the RefreshMasks algorithm. We can write:

x = y1 ⊕ y2 ⊕ · · · ⊕ yn+1

= y2 ⊕ · · · ⊕ yn+1 + (y1 ⊕ · · · ⊕ yn+1 − y2 ⊕ · · · ⊕ yn+1)
= y2 ⊕ · · · ⊕ yn+1 + Ψ(y1, y2 ⊕ · · · ⊕ yn+1)

2. Thanks to the affine property of Ψ, this gives:

x = y2 ⊕ · · · ⊕ yn+1 + (n ∧ 1) · y1 ⊕Ψ(y1, y2)⊕ · · · ⊕Ψ(y1, yn+1)

Therefore, we let z1 ← (n ∧ 1) · y1 ⊕Ψ(y1, y2) and zi ← Ψ(y1, yi+1) for all 2 ≤ i ≤ n.
This gives:

x = y2 ⊕ · · · ⊕ yn+1 + z1 ⊕ · · · ⊕ zn (2)
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3. We perform two recursive calls to the Boolean to arithmetic conversion algorithm
Cn−1:

A1, . . . , An−1 ← Cn−1
(
y2, . . . , yn+1

)
B1, . . . , Bn−1 ← Cn−1

(
z1, . . . , zn

)
This gives from (2):

x = A1 + · · ·+An−1 +B1 + · · ·+Bn−1

4. We reduce the number of arithmetic shares from 2n − 2 to n by some additive
grouping as in [Cor17c], letting Di ← Ai +Bi for 1 ≤ i ≤ n− 2, and Dn−1 ← An−1
and Dn ← Bn−1. This gives as required the n arithmetic shares as output:

x = D1 + · · ·+Dn (mod 2k)

This completes the description of the recursive algorithm. Note that our recursive algorithm
takes as input n+ 1 Boolean shares xi and outputs n arithmetic shares Di. To convert
from n Boolean shares only, we simply let xn+1 = 0. Formally, we obtain the following
algorithm.

Algorithm 1 High-order Boolean to Arithmetic Conversion
Input: x1, . . . , xn

Output: D1, . . . , Dn such that x1 ⊕ · · · ⊕ xn = D1 + · · ·+Dn (mod 2k)
1: D1, . . . , Dn ← Cn(x1, . . . , xn, 0)
2: return D1, . . . , Dn

Algorithm 2 Cn: Recursive high-order Boolean to Arithmetic Conversion (n + 1 → n
shares)
Input: x1, . . . , xn+1
Output: D1, . . . , Dn such that x1 ⊕ · · · ⊕ xn+1 = D1 + · · ·+Dn (mod 2k)

1: if n = 1 then
2: return D1 ← x1 ⊕ x2
3: end if
4: y1, . . . , yn+1 ← RefreshMasks(x1, . . . , xn+1)
5: z1 ← (n ∧ 1) · y1 ⊕Ψ(y1, y2)
6: for i = 2 to n do
7: zi ← Ψ(y1, yi+1)
8: end for
9: A1, . . . , An−1 ← Cn−1(y2, . . . , yn+1)

10: B1, . . . , Bn−1 ← Cn−1(z1, . . . , zn)
11: for i = 1 to n− 2 do
12: Di ← Ai +Bi

13: end for
14: Dn−1 ← An−1
15: Dn ← Bn−1
16: return D1, . . . , Dn

Theorem 1 (Completeness). Algorithm 1, when taking x1, . . . , xn as input, outputs
D1, . . . , Dn such that x1 ⊕ · · · ⊕ xn = D1 + · · ·+Dn (mod 2k).
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Algorithm 3 RefreshMasks
Input: x1, . . . , xn

Output: y1, . . . , yn such that y1 ⊕ · · · ⊕ yn = x1 ⊕ · · · ⊕ xn

1: y1 ← x1
2: for i = 2 to n do
3: ri ← {0, 1}k

4: yi ← xi ⊕ ri

5: y1 ← y1 ⊕ ri . y1,i = x1 ⊕
⊕i

j=2 rj

6: end for
7: return y1, . . . , yn

Proof. The proof is straightforward from the above description. Since Algorithm 1 runs
the recursive Cn algorithm with xn+1 = 0, it suffices to prove the completeness of Cn. The
completeness property clearly holds for n = 1. Assuming that completeness holds for n− 1
shares, we obtain:

n∑
i=1

Di =
n−1∑
i=1

Ai +
n−1∑
i=1

Bi =
n+1⊕
i=2

yi +
n⊕

i=1
zi =

n+1⊕
i=2

yi + Ψ
(
y1,

n+1⊕
i=2

yi

)
=

n+1⊕
i=1

yi =
n+1⊕
i=1

xi

and therefore completeness of Cn holds for n shares.

4.2 Complexity Analysis
Time Complexity. We denote by Tn the number of operations of the Cn algorithm,
with n + 1 input shares and n output shares. Since C1 is a single xor, we have T1 = 1.
The complexity of RefreshMasks with n+ 1 shares is 3(n+ 1)− 3 = 3n operations. The
computation of the Ψ function requires 2 operations, and as in [Cor17c], we assume that
computing (n ∧ 1) · y1 ⊕ Ψ(y1, y2) requires 5 operations, which gives a total of 2n + 3
operations. Finally, the additive grouping requires n− 2 operations. We obtain:

Tn = [3 · n] + [2 · n+ 3] + 2 · Tn−1 + [n− 2]
= 2 · Tn−1 + 6 · n+ 1

which gives:
Tn = 10 · 2n − 6 · n− 13 ,

compared to Tn = 14 · 2n − 12 · n − 21 in [Cor17c]. Therefore, the complexity of our
algorithm is still exponential in n, but with an expected speed-up factor of 29% for large
n, compared to [Cor17c].

Note that the complexity of our algorithm is O(2n), instead of O(n2 · k) in [CGV14].
However for small values of n our conversion algorithm is still one order of magnitude more
efficient than [CGV14]; see Table 2 for a comparison with existing algorithms; for [CGV14]
we use the same operation count as estimated in [Cor17c], for k = 32 bits. Concrete
implementation results will be further given in Section 7.

Memory Complexity. Along with the n+ 1 input shares, the algorithm requires 2n+ 1
other shares yi and zi’s, 2 (n− 1) shares Ai and the Bi, and finally n output shares Di for
a total of 5n− 1 shares (excluding the input shares). As the two recursive calls are done
sequentially, we add the memory consumption of a single call to Cn−1. Denoting Mn the
memory consumption of Cn, we obtain:

Mn = 5n− 1 +Mn−1



Luk Bettale, Jean-Sébastien Coron and Rina Zeitoun 31

Table 2: Operation count for Boolean to arithmetic conversion algorithms, up to security
order t = 12, with n = t+ 1 shares. For the Hutter-Tunstall algorithm we have written 36
operations instead of 31 to include the generation of 5 randoms.

B → A conversion Security order t

1 2 3 4 5 6 8 10 12
Goubin [Gou01] 7
Hutter-Tunstall [HT16] 36
CGV, 32 bits [CGV14] 2 098 3 664 7 752 10 226 14 698 28 044 39 518 56 344
Coron [Cor17c] 55 155 367 803 1 687 7 039 28 519 114 511
Our algorithm (Section 4.1) 49 123 277 591 1 225 5 053 20 401 81 829

with M1 = 1. This gives:

Mn = 1 +
n∑

i=2
(5i− 1) = 5

2n
2 + 3

2n− 3

which is quadratic in the number of shares n.
Note that if the algorithm Cn computes its result in place, the input shares xi can be

used to store successively yi, then Ai, then Di. Only n additional shares zi are required.
They are also used to store the Bi as the recursive call to Cn−1 also performs in place. In
this context, the memory complexity is reduced to

Mn = n+Mn−1 = n (n+ 1)
2 .

Random Generation. We denote by Rn the number of random generations performed
within the Cn algorithm. Since the Cn algorithm executes a RefreshMasks with n+ 1 shares,
which requires the generation of n random values, and then recursively calls Cn−1 twice,
we have:

Rn = n+ 2 ·Rn−1

where R1 = 0 since C1 only performs a xor. This gives the following complexity for Rn:

Rn = 3 · 2n−1 − n− 2 ,

which is also exponential in the number of shares, but about 50% smaller than in [Cor17c]
for which Rn = n+ 2 · (n− 1) + 2 ·Rn−1 with R2 = 2, which gives Rn = 3 · 2n − 3 · n− 4;
see Table 3 for a comparison.

Table 3: Number of random generations for Boolean to arithmetic conversion algorithms
from [Cor17c] and this paper, up to security order t = 12, with n = t+ 1 shares.

B → A conversion Security order t

1 2 3 4 5 6 8 10 12
Previous algorithm [Cor17c] 2 11 32 77 170 359 1505 6107 24533
Our algorithm (Section 4.1) 2 7 18 41 88 183 757 3059 12273

5 Security Proof of Algorithm 1
We prove that our new algorithm achieves the same level of security as the previous
algorithm in [Cor17c], namely t-SNI security with n = t+ 1 shares, that is (n− 1)-SNI
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x1 x2 · · · xi · · · xn

r2

...
ri

...
rn

y1 y2 · · · yi · · · yn

Figure 4: The RefreshMasks algorithm, with the randoms ri accumulated on the first
column.

security. This means that the algorithm with n shares is secure against an adversary with
at most n− 1 probes. Furthermore, the t-SNI property allows to compose the algorithm
in a larger construction, without decreasing the security order.

Theorem 2 (t-SNI of Algorithm 1). Let (xi)1≤i≤n be the input and let (Di)1≤i≤n be the
output of the Boolean to arithmetic conversion Algorithm 1. For any set of tc intermediate
variables and any subset O ⊂ [1, n] with tc + |O| < n, there exists a subset I of input
indices such that the tc intermediate variables as well as D|O can be perfectly simulated
from x|I , with |I| ≤ tc.

The rest of the section is devoted to the proof of Theorem 2.

5.1 Properties of RefreshMasks
In this section we first recall some security properties of the RefreshMasks algorithm for
proving Theorem 2; we refer to [Cor17c] for the proof of lemmas 1, 2, 3, 4 and 5 below; we
then prove an additional lemma. The following lemma shows that when RefreshMasks is
not probed, any subset of n−1 output shares yi is uniformly and independently distributed;
see Fig. 4 for an illustration of RefreshMasks.

Lemma 1. Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output of RefreshMasks.
Any subset of n− 1 output shares yi is uniformly and independently distributed.

The following lemma shows that when RefreshMasks is not probed, the distribution of
the n output shares yi’s can be perfectly simulated from the knowledge of x1 ⊕ · · · ⊕ xn

only; that is, the knowledge of the individual shares xi’s is not required.

Lemma 2. Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output of RefreshMasks.
The distribution of (yi)1≤i≤n can be perfectly simulated from x1 ⊕ · · · ⊕ xn.

The following lemma shows that RefreshMasks achieves the (n− 1)-NI property in a
straightforward way. Namely it is easy to show that any tc probes in RefreshMasks can be
perfectly simulated from the knowledge of x|I , with |I| ≤ tc.

Lemma 3 (t-NI of RefreshMasks). Let (xi)1≤i≤n be the input of RefreshMasks and let
(yi)1≤i≤n be the output. For any set of t < n intermediate variables, there exists a subset
I of input indices such that the tc intermediate variables can be perfectly simulated from
x|I , with |I| ≤ tc.

The following lemma is a refinement of the basic t-NI property of RefreshMasks; namely
it shows that a slightly better bound on |I| can be obtained if we assume that y1 is among
the probed variables. Note that in this paper we consider a RefreshMasks algorithm where
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the randoms are accumulated on x1, instead of xn in [Cor17c], and therefore we must
assume that y1 is among the probed variables, instead of yn. The improved bound will be
required to prove the t-SNI property of Algorithm 1. Namely the adversary can probe for
example tc of the variables zi = Ψ(y1, yi+1), whose simulation then requires the knowledge
of tc + 1 variables yi; thanks to the stronger bound, since y1 is always among the variables
to be simulated, this requires the knowledge of only tc input shares xi (instead of tc + 1),
as required for the t-SNI bound.
Lemma 4 ([Cor17c]). Let x1, . . . , xn be the input of a RefreshMasks where the randoms
are accumulated on x1, and let y1, . . . , yn be the output. Let tc be the number of probed
variables, with tc < n. If y1 is among the probed variables, then there exists a subset I
such that all probed variables can be perfectly simulated from x|I , with |I| ≤ tc − 1.

The following lemma is similar, except that we consider an adversary with tc = n
probes, instead of tc < n. In that case the adversary could probe all yi’s and learn
x1 ⊕ · · · ⊕ xn = y1 ⊕ · · · ⊕ yn; as shown in Lemma 2, if only the yi’s are probed, then
all yi’s can be perfectly simulated from the knowledge of x1 ⊕ · · · ⊕ xn only, without the
knowledge of the individual xi’s. The following lemma shows that this is essentially the
best that the adversary can do, when we assume that y1 is among the probed variables;
in that case, either all n probes in the circuit can be simulated from x1 ⊕ · · · ⊕ xn only,
or they can be simulated from x|I with the improved bound |I| ≤ n − 1. As explained
in [Cor17c], the restriction on probing y1 is necessary, otherwise one could probe the n
input shares xi directly, and learn the value of the individual shares xi (and not only their
xor).
Lemma 5 ([Cor17c]). Let x1, . . . , xn be the input of a RefreshMasks where the randoms
are accumulated on x1, and let y1, . . . , yn be the output. Let tc be the number of probed
variables, with tc = n. If y1 is among the probed variables, then either all probed variables
can be perfectly simulated from x1 ⊕ · · · ⊕ xn, or there exists a subset I with |I| ≤ n− 1
such that they can be perfectly simulated from x|I .

Finally, we prove the following additional lemma for the proof of Theorem 2. We
show that if the adversary probes exactly one intermediate variable z in the RefreshMasks
algorithm except y1, then this variable can be simulated with at most one input xi, and
moreover y1 has the uniform distribution given z. In Section 6 we will describe a formal
verification of the lemma.
Lemma 6. Let x1, . . . , xn be the input of RefreshMasks and let y1, . . . , yn be the output,
for n ≥ 3. Consider a single probe z on any intermediate variable of the circuit except y1.
The distribution of z can be simulated from x|I with |I| ≤ 1, and given z the distribution
of y1 is uniform.
Proof. We consider the four possible cases for the probe z in RefreshMasks:
• if the probe is an input variable z = xi, then we set I = {i} and the variable xi

can be perfectly simulated from x|I with |I| ≤ 1. Furthermore, from Lemma 1, the
variable y1 is uniformly distributed given z.

• if the probe is a random variable z = ri, then we can perfectly simulate the variable
ri by a random value as in the real circuit, and we can take I = ∅. Furthermore,
since we have n ≥ 3, at least another random rj has not been probed, and therefore
the value y1 has the uniform distribution given z.

• if the probe is an output variable z = yi (recall that y1 is not probed), then one can
apply Lemma 1 since n ≥ 3 and therefore n − 1 ≥ 2, which ensures that the two
variables y1 and yi are uniformly and independently distributed. As a consequence,
the variable z = yi can be perfectly simulated by a random value, with I = ∅, and
the distribution of y1 is uniform given z.
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• if the probe is an intermediate variable z = y1,i = x1 ⊕ r2 ⊕ · · · ⊕ ri with 2 ≤ i < n
(since by assumption the probe cannot be y1,n = y1), then because the random ri

has not been probed, the variable y1,i can be perfectly simulated by a random value,
with I = ∅. Furthermore, since i < n and the random rn has not been probed, we
deduce that y1 has the uniform distribution given z.

Thus we have shown that if the probe z is not y1, then z can be simulated from x|I with
|I| ≤ 1, and given z, the value y1 has the uniform distribution. This concludes the proof
of Lemma 6.

5.2 Security of the Recursive Algorithm Cn

In order to prove Theorem 2, it suffices to show that the recursive Cn algorithm (Algorithm
2) has the (n− 1)-SNI property. As illustrated in Fig. 5, the algorithm is recursive, and
therefore our security proof will be also recursive, i.e. the (n− 1)-SNI property of Cn will
be proven assuming the (n− 2)-SNI property of Cn−1.

R ψ C +

C

x D
n + 1 n + 1

n

n n− 1

n− 1

n

Figure 5: The sequence of gadgets in Cn.

Globally, our security proof is relatively similar to the security proof in [Cor17c].
However, to make our recursive proof work, we must prove a stronger property for Cn.
Namely when considering the (n− 1)-SNI property of Cn, the adversary has n− 1 probes
at his disposal, so he could use all those n− 1 probes inside one of the two recursive calls
to Cn−1 (see Fig. 5); in that case the (n− 2)-SNI condition of Cn−1 would not be satisfied
(since in principle Cn−1 can accommodate at most n− 2 probes), and nothing could be said
about the (n− 1)-SNI property of Cn. Therefore we must prove recursively an additional
property of Cn, similar to the property of RefreshMasks in Lemma 5: when the adversary
has n probes (which corresponds to n− 1 probes when considering Cn−1), those n probes
can be simulated either from the xor of the input shares xi, or from x|I with |I| ≤ n
(remember that Cn has n+ 1 input shares). Formally, we prove the following lemma.

Lemma 7 (Security of Cn). Let (xi)1≤i≤n+1 be the input and let (Di)1≤i≤n be the output
of the Boolean to arithmetic conversion algorithm Cn. For any set of tc intermediate
variables and any subset O ⊂ [1, n] with tc + |O| < n, there exists a subset I of input
indices such that the tc intermediate variables as well as D|O can be perfectly simulated
from x|I , with |I| ≤ tc. Moreover, if tc + |O| = n, either there exists a subset I of input
indices such that the tc intermediate variables and D|O can be simulated from x|I with
|I| ≤ n, or those variables can be simulated from x1 ⊕ · · · ⊕ xn+1 only.

We prove Lemma 7 recursively, following the same process as in [BBD+16, Sect. 4.1],
where the t-SNI security of a construction is deduced from the t-NI or t-SNI property of
its component gadgets. The sequence of gadgets of our construction is illustrated in Figure
6. The gadgets are numbered from 1 to 5, and we denote by Ii the set of probed variables
in Gadget i. Gadget 5 corresponds to the initial Refreshmasks at Step 1, which we denote
by R. Gadget 4 is denoted by Ψ for the application of the Ψ function at Step 2. Gadgets
2 and 3 denote the recursive application of the conversion algorithm at Step 3. Finally,
Gadget 1 denotes the additive grouping performed at Step 4.
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Figure 6: The sequence of gadgets in the Boolean to arithmetic conversion algorithm.

It is easy to see that Lemma 7 is verified for n = 1, where only D1 = x1 ⊕ x2 is
computed. Namely the first condition is tc + |O| < 1, which implies tc = |O| = 0 and we
can take I = ∅. Secondly, when considering n = 1 probe, if xi is probed then we can let
I = {i}, and if x1 ⊕ x2 is probed, it can be simulated from the knowledge of x1 ⊕ x2 only.

Now we show the induction step. We denote by tc the total number of probes in the
circuit, and we let O ⊂ [1, n] be any subset of output shares. We must prove the following
two properties from Lemma 7:

• P1(n): if tc + |O| < n, then all tc probed variables in the circuit and all variables
D|O can be perfectly simulated from x|I , for some subset I satisfying |I| ≤ tc;

• P2(n): if tc + |O| = n, then either there exists a subset I of input indices such that
the n variables can be simulated from x|I with |I| ≤ n, or the n variables can be
simulated from x1 ⊕ · · · ⊕ xn+1 only.

The two properties P1(n) and P2(n) will be proven by assuming that P1(n − 1) and
P2(n− 1) are satisfied. As explained previously, P1(1) and P2(1) are trivially satisfied.

Property P1(n). We first consider the property P1(n) and therefore we assume:

tc + |O| < n

As in [BBD+16], the technique consists in starting from the output variables D|O, which
corresponds to Gadget 1, and showing for each successive gadget that any subset of the
output variables of the gadget can be simulated from a subset of its input variables; that
is, we proceed in reverse order back to the input shares of the full algorithm.

Gadget 1. We have Di = Ai +Bi for 1 ≤ i ≤ n− 2, and Dn−1 = An−1 and Dn = Bn−1.
For simplicity, to avoid a change of index, we denote the last wire of the Bi’s by Bn

instead of Bn−1, so that we can write Dn = Bn. We denote by P1 the set of probed
indices in Gadget 1, with |P1| ≤ |I1|. To simulate Di for 1 ≤ i ≤ n − 2, we must
know both Ai and Bi; to simulate Dn−1 we must know An−1 and to simulate Dn

we must know Bn. The simulation of Gadget 1 can therefore be performed from the
shares A|S1

1
and B|S1

2
, where the subsets S1

1 and S1
2 are defined as follows:

S1
1 =

(
O ∪ P1

)
∩ [1, n− 1] (3)

S1
2 =

(
O ∪ P1

)
∩
(
[1, n− 2] ∪ {n}

)
(4)

We obtain the upper bound:

|S1
1 |+ |S1

2 | = |S1
1 ∪ S1

2 |+ |S1
1 ∩ S1

2 | = |O ∪ P1|+ |(O ∪ P1) ∩ [1, n− 2]|
≤ |O|+ |P1|+ n− 2 ≤ |O|+ |I1|+ n− 2 (5)
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Gadgets 2 and 3. The gadgets 2 and 3 are recursive applications of the Boolean to
arithmetic conversion, with n− 1 shares. The t-SNI conditions for gadgets 2 and 3
correspond to property P1(n− 1) and are therefore respectively:

|S1
1 |+ |I2| < n− 1, |S1

2 |+ |I3| < n− 1 (6)

We highlight that both conditions in (6) are not necessarily simultaneously satisfied.
Indeed, the adversary could probe the n−1 shares Ai’s which would give |S1

1 | = n−1.
However, we show that at least one of the two conditions in (6) must be satisfied.
Indeed, if none of the two conditions is satisfied, we have |S1

1 | + |I2| ≥ n − 1 and
|S1

2 |+ |I3| ≥ n − 1, which would give |S1
1 |+ |S1

2 |+ |I2|+ |I3| ≥ 2n − 2. However,
from (5) and |I1|+ |I2|+ |I3| ≤ tc, with tc + |O| < n, we get:

|S1
1 |+ |S1

2 |+ |I2|+ |I3| ≤ |O|+ |I1|+ n− 2 + |I2|+ |I3|
≤ tc + |O|+ n− 2 < 2n− 2

which contradicts the previous inequality. Therefore, at least one of the t-SNI
conditions for gadgets 2 and 3 must be satisfied. We now distinguish three cases
depending on which of the two conditions in (6) is satisfied:

• Case |S1
1 |+ |I2| < n−1 and |S1

2 |+ |I3| ≥ n−1. Since we have |S1
2 | ≤ |O|+ |I1|

from (4) and from the condition tc + |O| < n, we obtain:

n− 1 ≤ |S1
2 |+ |I3| ≤ |O|+ |I1|+ |I3| ≤ |O|+ tc < n

which gives |S1
2 | + |I3| = |O| + |I1| + |I3| = |O| + tc = n − 1, and therefore

|I1|+ |I3| = tc. This implies that there are no other probes in the circuit, that
is, we must have |Ii| = 0 for i = 2, 4, 5. In particular, since we have |I2| = 0,
and the t-SNI condition for Gadget 2 is satisfied, we can apply the recursive
property P1(n− 1) and simulate all outputs of Gadget 2 with |S2| ≤ |I2| = 0,
which means that we can take S2 = ∅.
However, since the t-SNI condition for Gadget 3 is not satisfied, we cannot
apply P1(n − 1), but we can still use P2(n − 1), because |S1

2 | + |I3| = n − 1.
This ensures that the n − 1 corresponding variables can either be simulated
from z|S3 with |S3| ≤ n − 1, or from z1 ⊕ · · · ⊕ zn only. In the following, we
deal with both cases:
– if the n − 1 variables can be simulated from z|S3 with |S3| ≤ n − 1, we

obtain |S4| ≤ n. Thanks to the initial RefreshMasks (Gadget 5) which is
not probed in that case, one can apply Lemma 1 which ensures that the n
(out of n+ 1) variables to be simulated are uniformly and independently
distributed. Therefore they can be perfectly simulated by a random value.
Moreover since S2 = ∅, those n variables are the only ones that must be
simulated. Hence, we can take I = ∅.

– if the n− 1 variables can be simulated from the knowledge of z1 ⊕ · · · ⊕ zn

only, since by definition we have

z1 ⊕ · · · ⊕ zn = Ψ(y1, y2 ⊕ . . .⊕ yn+1) = y1 ⊕ · · · ⊕ yn+1 − y2 ⊕ . . .⊕ yn+1

and since we also have x = x1 ⊕ · · · ⊕ xn+1 = y1 ⊕ · · · ⊕ yn+1, we get:

z1 ⊕ · · · ⊕ zn = x− x⊕ y1

Moreover since S2 = ∅ and I4 = ∅, this is the only variable that must
be simulated. Thanks to the initial RefreshMasks (Gadget 5) which is not
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probed in that case, this has the uniform distribution (because y1 has the
uniform distribution from Lemma 1), and this can therefore be perfectly
simulated by a random value. Therefore we can take I = ∅.

• Case |S1
1 |+ |I2| ≥ n− 1 and |S1

2 |+ |I3| < n− 1. The reasoning is similar to the
previous case. As previously we have |I1|+ |I2| = tc and there are no other
probes in the circuit, that is, we have |Ii| = 0 for i = 3, 4, 5. Since the t-SNI
condition of Gadget 3 is satisfied and Gadget 3 is not probed, we can simulate
all outputs of Gadget 3 with S3 = ∅, and therefore we can take S4 = ∅. Since
the t-SNI condition for Gadget 2 is not satisfied but |S1

1 |+ |I2| = n− 1, we can
apply P2(n−1) to Gadget 2. This ensures that the n−1 corresponding variables
can either be simulated from y|S2 with |S2| ≤ n − 1, or from y2 ⊕ · · · ⊕ yn+1
only. We deal with both cases similarly as before:
– if the n − 1 variables can be simulated from y|S2 with |S2| ≤ n − 1,

thanks to the initial RefreshMasks (Gadget 5) which is not probed, Lemma 1
ensures that the n−1 variables are uniformly and independently distributed.
Therefore they can be perfectly simulated by a random value, and we can
take I = ∅ for the simulation of the entire circuit.

– if the n−1 variables can be simulated from the knowledge of y2⊕· · ·⊕yn+1 =
x ⊕ y1 only, thanks to the initial RefreshMasks (Gadget 5) which is not
probed, this has the uniform distribution (because y1 has the uniform
distribution from Lemma 1), and this can therefore be perfectly simulated
by a random value. Therefore we can take I = ∅ for the simulation of the
entire circuit.

• Case |S1
1 |+ |I2| < n−1 and |S1

2 |+ |I3| < n−1. In this case, the t-SNI condition
is satisfied for both gadgets 2 and 3. Therefore, we obtain from the recursive
hypothesis P1(n − 1) that the intermediate variables of gadgets 2 and 3 and
the output variables A|S1

1
and B|S1

2
can be perfectly simulated from y|S2 and

z|S3 , where:
|S2| ≤ |I2| and |S3| ≤ |I3| (7)

In the sequel, we can assume that (7) is satisfied, since in the two other cases (when only
one of the two t-SNI conditions is satisfied), as explained previously the simulation of all
probed variables and D|O can be performed with I = ∅.

Gadget 4. By definition of the Ψ function, we have z1 ← (n ∧ 1) · y1 ⊕ Ψ(y1, y2) and
zi ← Ψ(y1, yi+1) for all 2 ≤ i ≤ n. Therefore, the probed variables and the output
variables z|S3 can be simulated with the knowledge of y|S4 , where |S4| is such that:

|S4| ≤ |I4|+ |S3|+ 1 (8)

Note that since the variable y1 is involved during the computation of all the zi’s we
must have 1 ∈ S4.

Gadget 5. Let t′ = |S4|+ |S2|+ |I5| be the total number of variables within the initial
RefreshMasks that must be simulated (see Fig. 6). By using (7) and (8), we get

t′ = |S4|+ |S2|+ |I5| ≤ |I4|+ |S3|+ 1 + |I2|+ |I5|
≤ |I2|+ |I3|+ |I4|+ |I5|+ 1 ≤ tc + 1 < n+ 1

Therefore we have t′ < n+ 1 and since 1 ∈ S4, we can apply Lemma 4 where y1 is
among the t′ probes variables (note that the initial RefreshMasks has n+ 1 inputs
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and outputs, so we must apply Lemma 4 with n+ 1 instead of n). We obtain that
all variables can be perfectly simulated from x|I , where:

|I| ≤ t′ − 1 ≤ tc + 1− 1 ≤ tc

In summary all tc probed variables in the circuit and all output variables D|O can be
perfectly simulated from x|I with |I| ≤ tc. Hence the (n − 1)-SNI property is satisfied
for Cn, which concludes the recursive proof of the first property P1(n). Note that for the
recursive proof of P1(n) we needed both properties P1(n− 1) and P2(n− 1), that is we
cannot prove the two properties P1 and P2 separately.

Property P2(n). We now consider the second property P2(n), assuming that there are
tc + |O| = n variables to be simulated in the circuit. We must show that either there exists
a subset I of input indices such that those n variables can be simulated from x|I with
|I| ≤ n (remember that the Cn algorithm takes n+ 1 shares as input), or the n variables
can be simulated from x1 ⊕ · · · ⊕ xn+1 only.

We first distinguish two cases depending on whether the RefreshMasks (Gadget 5) is
probed or not. If RefreshMasks is not probed, then from Lemma 2 we can simulate all the
variables yi from the knowledge of x1 ⊕ · · · ⊕ xn+1 only. Then the rest of the circuit can
be simulated as in the real circuit, and property P2(n) is satisfied. We now assume that
RefreshMasks is probed, that is |I5| ≥ 1.

Gadget 1. As in the P1(n) property, we obtain:

S1
1 =

(
O ∪ P1

)
∩ [1, n− 1] (9)

S1
2 =

(
O ∪ P1

)
∩
(
[1, n− 2] ∪ {n}

)
(10)

Gadgets 2 and 3. As for P1(n), we start by showing that at least one of the two gadgets
must satisfy the t-SNI condition, that is, we cannot have |S1

1 | + |I2| ≥ n − 1 and
|S1

2 | + |I3| ≥ n − 1. Namely from |I5| ≥ 1 and |I1| + |I2| + |I3| + |I5| ≤ tc, we
obtain:

|I1|+ |I2|+ |I3| ≤ tc − 1

From (5) and using the condition tc + |O| = n, we get:

|S1
1 |+ |S1

2 |+ |I2|+ |I3| ≤ |O|+ |I1|+ n− 2 + |I2|+ |I3| ≤ tc − 1 + |O|+ n− 2
≤ tc + |O|+ n− 3 ≤ 2n− 3

and therefore as previously we cannot have both |S1
1 |+ |I2| ≥ n−1 and |S1

2 |+ |I3| ≥
n− 1. Therefore, at least one of the t-SNI conditions for gadgets 2 and 3 must be
satisfied. As before, we deal with the three possible cases, depending on whether one
or both conditions are satisfied:

• Case |S1
1 | + |I2| < n − 1 and |S1

2 | + |I3| ≥ n − 1. From (10), we know that
|S1

2 | ≤ |O|+ |I1| and since we have |I1|+ |I3| ≤ tc− 1 and tc + |O| = n, we get:

n− 1 ≤ |S1
2 |+ |I3| ≤ |O|+ |I1|+ |I3| ≤ |O|+ tc − 1 ≤ n− 1

which gives |O|+ |I1|+ |I3| = |O|+ tc − 1, and therefore |I1|+ |I3| = tc − 1.
Since |I5| ≥ 1 and

∑5
i=1 |Ii| = tc, we deduce that |I5| = 1, and that there are

no other probes in the circuit, i.e. |I2| = |I4| = 0. As a consequence, since the
t-SNI condition for Gadget 2 is satisfied, we can apply the recursive property
P1(n− 1) and simulate all outputs of Gadget 2 with |S2| ≤ |I2| = 0, hence we
can take S2 = ∅.
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However, since the t-SNI condition for Gadget 3 is not satisfied, we cannot
apply P1(n − 1), but we can still use P2(n − 1), because |S1

2 | + |I3| = n − 1.
This ensures that the n − 1 corresponding variables can either be simulated
from z|S3 with |S3| ≤ n − 1, or from z1 ⊕ · · · ⊕ zn only. In the following, we
deal with both cases:

– if the n− 1 variables can be simulated from z|S3 with |S3| ≤ n− 1, then
one can apply the same reasoning as for Gadget 4 when considering the
property P1(n) and we obtain:

|S4| ≤ |I4|+ |S3|+ 1 ≤ 0 + (n− 1) + 1 ≤ n

with 1 ∈ S4. Therefore, by using that |I5| = 1 and |S2| = 0, the total
number of variables t′ within the initial RefreshMasks that must be simulated
is such that

t′ = |S4|+ |S2|+ |I5| ≤ n+ 1

As a consequence, one can apply Lemma 5 on the initial RefreshMasks with
n + 1 inputs and n + 1 probed variables, one of whom being y1. Then
either all probed variables can be perfectly simulated from x1 ⊕ · · · ⊕ xn+1,
or there exists a subset I with |I| ≤ n such that they can be perfectly
simulated from x|I ; this is exactly the property P2(n).

– if the n−1 variables can be simulated from the knowledge of z1⊕· · ·⊕zn =
x− x⊕ y1 only, we proceed as follows. Recall that there is a single probed
variable in RefreshMasks. For simplicity we assume that this probed variable
is not y1, because we can consider that the probing of y1 is rather done in
I4. We can therefore apply Lemma 6, which shows that z can be simulated
from x|I with |I| ≤ 1, and given z, the distribution of y1 is uniform; thus
the distribution of x−x⊕y1 is also uniform (since x is fixed). Therefore one
can perfectly simulate z1⊕· · ·⊕zn = x−x⊕y1 by a random value, and the
remaining variable z can be perfectly simulated from x|I with |I| ≤ 1 ≤ n.

• Case |S1
1 |+ |I2| ≥ n− 1 and |S1

2 |+ |I3| < n− 1. The reasoning is similar to
the previous case, with |I1|+ |I2| = t− 1, |I5| = 1 and |I3| = |I4| = 0. Since
the t-SNI condition of Gadget 3 is satisfied and Gadget 3 is not probed, we can
simulate all outputs of Gadget 3 with S3 = ∅, and therefore we can take S4 = ∅.
Since the t-SNI condition for Gadget 2 is not satisfied but |S1

1 |+ |I2| = n− 1,
we can apply P2(n− 1). This ensures that the n− 1 corresponding variables
can either be simulated from y|S2 with |S2| ≤ n − 1, or from y2 ⊕ · · · ⊕ yn+1
only. We deal with both cases similarly as before:

– if the n−1 variables can be simulated from y|S2 with |S2| ≤ n−1, then one
can apply the basic t-NI property of RefreshMasks from Lemma 3, which
gives |I| ≤ |S2|+ |I5| ≤ n− 1 + 1 ≤ n as required in P2(n).

– if the n−1 variables can be simulated from the knowledge of y2⊕· · ·⊕yn+1 =
x ⊕ y1 only, then we can apply Lemma 6 as in the previous case. We
obtain that all probed variables can be perfectly simulated from x|I with
|I| ≤ 1 ≤ n, hence P2(n) is satisfied.

• Case |S1
1 |+ |I2| < n−1 and |S1

2 |+ |I3| < n−1. In this case, the t-SNI condition
is satisfied for both gadgets 2 and 3. Therefore, we obtain from the recursive
hypothesis P1(n− 1) that:

|S2| ≤ |I2| and |S3| ≤ |I3| (11)
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In the sequel, we can assume that (11) is satisfied, since in the two other cases (when only
one of both t-SNI conditions is satisfied), the simulation of all probed variables and D|O is
already performed.

Gadget 4. As in the proof of P1(n), by definition of the Ψ function, we have that the
probed variables and the output variables z|S3 can be simulated with the knowledge
of y|S4 , where 1 ∈ S4 and:

|S4| ≤ |I4|+ |S3|+ 1 ≤ |I4|+ |I3|+ 1 (12)

Gadget 5. Let t′ = |S4|+ |S2|+ |I5| be the total number of variables within the initial
RefreshMasks that must be simulated. By using (11) and (12), we get

t′ = |S4|+ |S2|+ |I5| ≤ |I4|+ |I3|+ 1 + |I2|+ |I5| ≤ tc + 1 ≤ n+ 1

Since 1 ∈ S4, we can apply Lemma 5 with n+ 1 inputs and n+ 1 probed variables,
one of whom being y1. This allows to deduce that all tc probed variables in the circuit
and all output variables D|O can be perfectly simulated either from x1 ⊕ · · · ⊕ xn+1,
or from x|I with |I| ≤ n, and the property P2(n) is satisfied.

This concludes the recursive proof of the second property P2(n). Thus we have shown that
both properties P1(n) and P2(n) in Lemma 7 are satisfied, which terminates the proof of
Lemma 7.

5.3 Proof of Theorem 2
The proof of Theorem 2 is straightforward from Lemma 7. Namely Algorithm 1 consists
in applying the Cn algorithm with xn+1 = 0. By applying the property P1(n) of Lemma 7,
we obtain that for any set of tc intermediate variables and any subset O ⊂ [1, n] with
tc + |O| < n, there exists a subset I ′ of input indices such that the tc intermediate variables
as well as D|O can be perfectly simulated from x|I′ , with |I ′| ≤ t. Since xn+1 = 0 it suffices
to take I = I ′ ∩ [1, n] for the input of Algorithm 1, and we still have |I| ≤ tc as required
for the (n− 1)-SNI property. This terminates the proof of Theorem 2.

6 Formal verification of Algorithm 1
We have performed a formal verification of our new countermeasure, using the CheckMasks
tool described in [Cor17b]; the source code is publicly available [Cor17a]. More precisely, we
first describe a partial formal verification of the countermeasure, focusing on the Boolean
part of the algorithm. We then describe a full formal verification in which we consider
both Boolean and arithmetic operations.

6.1 Partial formal verification
In this section, we perform a partial formal verification of our new countermeasure, focusing
on the properties of RefreshMasks. More precisely, the correctness of lemmas 4 and 5 for
the RefreshMasks algorithm has already been formally verified in [Cor17b], and we have
performed a formal verification of our Lemma 6, following the same approach as in [Cor17b].
In other words, all the non-trivial security properties of RefreshMasks considered in Section
5.1 and used in the proof of Theorem 2 are formally verified, at least for small values of n.

The generic verification of the masking countermeasure was initiated by Barthe et al.
in [BBD+15] based on the EasyCrypt framework. The approach consists in considering all
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possible t-tuples of intermediate variables, and proving that for each particular t-tuple the
adversary learns nothing from the secret key. The authors obtained a formal verification
of various masked implementations, up to second order masked implementation of AES,
and up to 5-th order for the masked Rivain-Prouff multiplication [RP10].

In this paper we have used the CheckMasks tool described in [Cor17b]; the source
code of the CheckMasks library is publicly available at [Cor17a], under the GPL v2.0
license. The circuit to be verified is represented as nested lists, which leads to a simple
and concise implementation in Common Lisp, a programming language well suited to
formal manipulations. In [Cor17b] a formal verification of the security of the Rivain-Prouff
multiplication is described, with running times similar to those in [BBD+15]; additionally
a formal verification of lemmas 4 and 5 for the RefreshMasks algorithm is described.

For the formal verification of Lemma 6, the approach consists in considering all
possible intermediate variables z in the RefreshMasks circuit (including the output variables
but not y1), and checking that z can be simulated from at most one variable xi, and
moreover the variable y1 is uniformly distributed given z. In principle, when applying a
generic verification, the running time is exponential in n, because all possible t-tuples of
intermediate variables must be considered, with t = n− 1; this implies that in general such
generic verification can only be performed for small values of n. However in the particular
case of Lemma 6, there is only a single intermediate variable z to consider (instead of a
t-tuple), and the formal verification is therefore polynomial in n, and quite efficient in
practice, so it can be performed for any n. For example, for n = 3 we obtain:

> ( check−refreshmasks−oneprobe 3)
In : (X1 X2 X3)
Out : ((+ R2 (+ R1 X1) ) (+ R2 X2) (+ R1 X3) )
Number o f in t e rmed ia t e v a r i a b l e s : 8
T

which means that for all intermediate variables z of RefreshMasks (except y1), the formal
tool has verified that z can be simulated from some xi, and moreover y1 is uniformly
distributed given z. We have run the verification algorithm up to n = 10. The source code
is publicly available at [Cor17a].

Using the same tool, we can also quickly verify that Lemma 6 does not hold if the
randoms in RefreshMasks are accumulated on xn instead of x1. More precisely, with the
modified RefreshMasks for n = 3, we obtain:

> ( check−refreshmasks−oneprobe 3 : rev ’ t )
In : (X1 X2 X3)
Out : ((+ R1 X1) (+ R2 X2) (+ R2 (+ R1 X3) ) )
Number o f in t e rmed ia t e v a r i a b l e s : 8
Fa i l u r e : (R1 (+ R1 X1) )
NIL

Namely, when the randoms are accumulated on x3, we have y1 = x1 ⊕ r1, y2 = x2 ⊕ r2
and y3 = x3 ⊕ r1 ⊕ r2, and the formal tool has correctly identified that by probing z = r1,
the variable y1 = x1 ⊕ r1 is not uniformly distributed.

6.2 Full formal verification
In the previous section we have described a formal verification of the security properties
of RefreshMasks that are required for the security proof of the Boolean to arithmetic
conversion algorithm. However this provides only a partial verification of the algorithm,
since in that case the adversary is restricted to only probing the Boolean operations
performed within the RefreshMasks. To obtain a full verification, we must consider an
adversary who can probe any variable in the Boolean to arithmetic algorithm. In that
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case the formal verification becomes more complex as we must handle both Boolean and
arithmetic operations.

In [Cor17b], it was shown how to extend [BBD+15] to handle a combination of arithmetic
and Boolean operations, with an application to the full formal verification of the Boolean
to arithmetic conversion algorithm from CHES 2017 [Cor17c]. In this section we first recall
this approach, and we show that exactly the same verification tool can be used to formally
verify our new Boolean to arithmetic conversion algorithm, moreover with better timings
because our new conversion algorithm is simpler.

In order to verify the (n − 1)-SNI property of the Boolean to arithmetic algorithm,
we must check that for all possible (n − 1)-tuples of intermediate variables (including
the outputs Di), the number of input variables xi’s that remain after the application of
a sequence of simplification rules is always ≤ tc, where tc is the number of non-output
variables in the (n− 1)-tuple.

For the verification of Boolean circuits in the previous section, we used only a single
simplification rule, namely replacing x⊕r by r when the random r appears only once in the
intermediate variables. For the verification of circuits combining Boolean and arithmetic
operations, we use the same sequence of simplification rules as in [Cor17b]:

• Rule 1: when ω = x1 + x2 mod 2k must be simulated, simulate both x1 and x2.

• Rule 2: from the affine property of the function Ψ, replace Ψ(x, y) ⊕ Ψ(x, z) by
x⊕Ψ(x, y ⊕ z).

• Rule 3: from the definition of Ψ, replace Ψ(x, y) by (x⊕ y)− y mod 2k.

• Rule 4: when a random r is used only once, replace x ⊕ r by r, and similarly for
x+ r mod 2k and x− r mod 2k.

• Rule 5: when a random r is not used in two intermediate variables e1 and e2, replace
the simulation of (e1⊕r, e2⊕r) by the simulation of (r, (e1⊕r)⊕e2); this corresponds
to the change of variable r′ = e1 ⊕ r.

• Rule 6: when Ψ(x1, x2) must be simulated, simulate both x1 and x2.

R1 R2 R4 R3+R4 R5 R6
no

yes yes
no no

yes yes
no

Figure 7: The rule application strategy for the formal verification of Boolean to arithmetic
conversion.

As explained in [Cor17b], the ordering of the application of the rules matters; we used
the same ordering strategy as in [Cor17b], as illustrated in Fig. 7. We summarize in
tables 4 and 5 the timings of formal verification for the algorithms in [Cor17c] and this
paper. Note that the Boolean to arithmetic conversion algorithm has complexity O(2n),
and therefore the number of possible (n− 1)-tuples of intermediate variables is O(2n2);
that is why we could only perform the formal verification up to n = 5.

7 Implementation Results
In Section 4.2, we showed that the number of operations Tn of our Boolean to arithmetic
conversion algorithm Cn is Tn = 10 · 2n − 6 · n− 13, compared to Tn = 14 · 2n − 12 · n− 21
in [Cor17c]. Therefore, the complexity of our algorithm is still exponential in n, but with
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Table 4: Formal verification of the t-SNI property of the Boolean to arithmetic conversion
algorithm from [Cor17c], for t = n− 1.

n #var. #tuples Security Time
2 11 11 X ε

3 48 1,128 X 0.08 s
4 133 383,306 X 85 s
5 312 387,278,970 X 88 h

Table 5: Formal verification of the t-SNI property of the Boolean to arithmetic conversion
algorithm from Section 4.1, for t = n− 1.

n #var. #tuples Security Time
2 14 14 X ε

3 39 741 X 0.06 s
4 94 134,044 X 30 s
5 207 74,303,685 X 12 h

an expected speed-up factor of 28.6% for large n, compared to [Cor17c]. Furthermore,
the complexity is independent of the register size k, while the conversion algorithm
from [CGV14] has complexity O(k · n2).

We have implemented our new algorithm, in C on an iMac running a 3.2 GHz Intel
processor, using the Clang compiler; see

https://pastebin.com/WKnNyEU8

for the source code. We summarize the execution times in Table 6, using the same timings
as in [Cor17c] for the CGV algorithm and the algorithm from [Cor17c]. The results from
Table 6 are consistent with the operation count from Table 2; for small values of n our
algorithm is at least one order of magnitude faster than [CGV14]. We also see that the
higher the order t, the greater the speed-up factor compared to [Cor17c]. For t = 2 the
running times are similar, while for t = 4 we get a 24% speed-up, and for t = 6 we get a
26% speed-up.

Table 6: Running time in µs for Boolean to arithmetic conversion algorithms, up to
security order t = 12, with n = t+ 1 shares. The implementation was done in C on a iMac
running a 3.2 GHz Intel processor.

B → A conversion Security order t

2 3 4 5 6 8 10 12
CGV, 32 bits [CGV14] 1 593 2 697 4 297 5 523 7 301 10 919 15 819 21 406
Coron [Cor17c] 45 119 281 611 1 270 5 673 22 192 87 322
Our algorithm (Section 4.1) 42 96 214 448 921 3 774 13 899 54 572
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