Improved High-Order Conversion From Boolean
to Arithmetic Masking

Luk Bettale!  Jean-Sébastien Coron? Rina Zeitoun?!

1 IDEMIA, France

2 University of Luxembourg

CHES 2018



Side-channel Attacks

Cryptographic device
(e.g., smart card and reader)

Control,
Ciphertexts

Contraol,
Waveform
data

Oscilloscope
Computer



Differential Power Analysis [KJJ99]

Group by predicted
SBox output bit Average trace

@ -, WMWMWWWWWW\ Differential trace
? % o




Masking Countermeasure

e Let x be some variable in a block-cipher.

e Masking countermeasure: generate a random r, and
manipulate the masked value 2’

x’:m@r

instead of x.

e 7 is random = 2’ is random
= power consumption of z’ is random

Mﬂ“ i W il WMW\M A m il WW o W

= no information about z is leaked




Arithmetic Masking

e Some algorithms use arithmetic operations, for example IDEA,
RC6, XTEA, SPECK, SHA-1.

e For these algorithms, we can use arithmetic masking:
&= A+r mod 2F

where we manipulate A and r separately.



Arithmetic Masking

e Some algorithms use arithmetic operations, for example IDEA,
RC6, XTEA, SPECK, SHA-1.

e For these algorithms, we can use arithmetic masking:
&= A+r mod 2F

where we manipulate A and r separately.
e Problem: how do we convert between Boolean and arithmetic
masking 7
e Goubin's algorithm (CHES 01): first-order secure
conversion between Boolean and arithmetic masking.



Second-order Attack




Higher-order masking

e Solution: n shares instead of 2:

T=x1PT2PB---Dxy



Higher-order masking

e Solution: n shares instead of 2:
T=x1DPr2D - Dxy

e Any subset of n — 1 shares is uniformly and independently
distributed
e If we probe at most n — 1 shares x;, we learn nothing
about z
e = secure against a DPA attack of order n — 1.



Higher-order masking

e High-order Boolean masking:
T=21DT2D - Dy
e High-order arithmetic masking:
$:A1+A2+...+Anm0d2k

e Problem: how do we convert between Boolean and arithmetic
masking 7



Higher-order masking

High-order Boolean masking:
T=21DT2D--- D
High-order arithmetic masking;:
x:A1+A2+...+Anmod2k

Problem: how do we convert between Boolean and arithmetic
masking 7

This talk: high-order Boolean to arithmetic conversion
algorithm, simpler and more efficient than [Corl7].

e complexity independent of the register size k
o still with a proof of security in the ISW probing model



Prior work and this talk

n: number of shares

k:

arithmetic modulo 2% (k = 32 for HMAC-SHA-1).
Direction Flrst-ord-er ngh-ord‘er
complexity complexity
Goubin’s algorithm | B — A O(1) -
[GouO1] A— B O(k) -
B—A
CGV14 - 2.k
covia) | ST O k)
B—+A -
CGTV15 O(n? -logk
| ] ASB | Ofogk) | O 18
[Corl7] B—A - 142" + O(n)
This talk B— A - 10-2" + O(n)




Prior work and this talk

n: number of shares
k: arithmetic modulo 2% (k = 32 for HMAC-SHA-1).

N First-order High-order
Direction . .
complexity complexity
Goubin’s algorithm | B — A O(1) -
[GouO1] A—B O(k) -
B—A
CGV14 - 2.k
coviy | T O(n* - 1)
B—A -
CGTV15 O(n? -logk
[ ] ASB | Ofogky | O T8
[Corl7] B—A - 14-2" 4+ O(n)
This talk B— A - 10-2" 4+ O(n)

o Complexity independent of the register size k, as in [Corl7]
e Exponential complexity, but one order of magnitude faster
than [CGV14] and [CGTV15] for small values of n.



Boolean to arithmetic conversion: comparison with prior
work (k = 32 bits)
‘ ' "[CGVA4] ——

[Cor17] ——
This paper 1

60000

50000 ¢

40000

30000 t

20000

10000




Comparison with CHES 2017 algorithm

[Corl7]

B— A

14-2" + O(n)

This talk

B— A

10 - 2"+ O(n)




Comparison with CHES 2017 algorithm

[Corl7]

B— A

14-2" + O(n)

This talk

B— A

10 - 2"+ O(n)

e Our new algorithm is roughly 25% faster, and simpler.

T — R P R F C
[Corl7]
R F C
T — R P C + —D
This talk




Our contribution

e Our contribution: high-order conversion algorithm from
Boolean to arithmetic masking
o simplified variant of CHES 2017 algorithm
o still with a proof of security in the ISW probing model.



Our contribution

e Our contribution: high-order conversion algorithm from
Boolean to arithmetic masking
o simplified variant of CHES 2017 algorithm
o still with a proof of security in the ISW probing model.
e Approach initiated by Hutter and Tunstall [HT16] (eprint)
e but no proof of security against high-order attacks was
provided by the authors.
e 3rd order attack for any number of shares n described in
[Corl7]
e 3rd order attack against updated Hutter-Tunstall algorithm
(see the proceedings)



ISW security model

¢ Simulation framework of [ISWO03]:
m (sk1, ska, ..., skp)

!

Block cipher




ISW security model

¢ Simulation framework of [ISWO03]:
(sk1, ska, ..., skp)

m
t probes
Block cipher

|

C



ISW security model

¢ Simulation framework of [ISWO03]:
m (sk1, ska, ..., skp)

LN

t probes Sim

Block cipher




ISW security model

¢ Simulation framework of [ISWO03]:
(sk1, ska, ..., skp)

m
. N
t probes Sim
Block cipher
}
c

e Show that any t probes can be perfectly simulated from at
most n — 1 of the sk;'s.



ISW security model
¢ Simulation framework of [ISWO03]:
(sk1, ska, ..., skp)

m
. N
t probes Sim
Block cipher
}
c

e Show that any t probes can be perfectly simulated from at
most n — 1 of the sk;'s.

e Those n — 1 shares sk; are initially uniformly and
independently distributed.



ISW security model

e Simulation framework of [ISWO03|:
(sk1, ska, ..., skp)

m
. N
t probes Sim
Block cipher
}
c

e Show that any t probes can be perfectly simulated from at
most n — 1 of the sk;'s.

e Those n — 1 shares sk; are initially uniformly and
independently distributed.

e = the adversary learns nothing from the ¢ probes, since he
could perfectly simulate those ¢ probes by himself.



Security proofs for side-channel countermeasures

o Never publish a high-order masking scheme
without a proof of security !

e So many things can go wrong.

e Many countermeasures without proofs have been
broken in the past.

o We have a poor intuition of high-order security.



Goubin's original conversion algorithm
e Goubin's theorem: the function
U(z,r)=(x@r)—r (mod 2F)

is affine with respect to r over Fs.
e This is surprising but true !



Goubin's original conversion algorithm

e Goubin's theorem: the function
U(z,r)=(x@r)—r (mod 2F)

is affine with respect to r over Fs.
e This is surprising but true !

e Goubin's Boolean to arithmetic conversion algorithm:

T =x1Dx2



Goubin's original conversion algorithm

e Goubin's theorem: the function
U(z,r)=(x@r)—r (mod 2F)

is affine with respect to r over Fs.
e This is surprising but true !

e Goubin's Boolean to arithmetic conversion algorithm:

T =x1Dx2

=(x1 P a2 —x2) + 22



Goubin's original conversion algorithm
e Goubin's theorem: the function
U(z,r)=(x@r)—r (mod 2F)

is affine with respect to r over Fs.
e This is surprising but true !

e Goubin's Boolean to arithmetic conversion algorithm:

T =x1Dx2
= (r1 ®x2 — x2) + 22
= U(z1,x2) + 22



Goubin's original conversion algorithm
e Goubin's theorem: the function
U(z,r)=(x@r)—r (mod 2F)

is affine with respect to r over Fs.
e This is surprising but true !

e Goubin's Boolean to arithmetic conversion algorithm:

T =x1Dx2
= (x1 ® 29 — 22) + T2
= U(z1,x2) + 22
= [(xl O Y(xy,r @xg)) fa \I'(a:l,r)] + 29



Goubin's original conversion algorithm
e Goubin's theorem: the function
U(z,r)=(x@r)—r (mod 2F)

is affine with respect to r over Fs.
e This is surprising but true !

e Goubin's Boolean to arithmetic conversion algorithm:

T =x1Dx2
= (z1 ®© w2 — x2) + 22
= U(z1,x2) + 22
=[(z21 ® ¥(z1,r Dx2)) ®V(21,7)| + 22
=A+zy (mod 2F)



Goubin's original conversion algorithm
e Goubin's theorem: the function
U(z,r)=(x@r)—r (mod 2F)

is affine with respect to r over Fs.
e This is surprising but true !

e Goubin's Boolean to arithmetic conversion algorithm:

T =x1Dx2
= (z1 ®© w2 — x2) + 22
= U(z1,x2) + 22
=[(z21 ® ¥(z1,r Dx2)) ®V(21,7)| + 22
=A+zy (mod 2F)

e One can compute A without leaking information about z,
thanks to the random r.



Our new algorithm: generalization of Goubin

e Our recursive algorithm takes n + 1 input shares (instead of
n):

T=21D - Dxy D rpi1



Our new algorithm: generalization of Goubin

e Our recursive algorithm takes n + 1 input shares (instead of
n):
T=21D - BxrpDTnt1
=1 @r2® - PTpp1 — 2P DTpy1) + 22D D Ty



Our new algorithm: generalization of Goubin
e Our recursive algorithm takes n + 1 input shares (instead of
n):
T=21D - BxrpDTnt1
=@1Dr2® DXl — 2D D Tpt1) +T2D - D Tpy
=V(r1,220B B Tpy1) + 22D B Tyt



Our new algorithm: generalization of Goubin

e Our recursive algorithm takes n + 1 input shares (instead of
n):
T=21D - Dxy D rpi1
=1 @r2® - PTpp1 — 2P DTpy1) + 22D D Ty
=VU(r1,22@ - DTpy1) + 22D D Tpy1

=nAl) -z ®V(x1,22) B BV(x1,Tpt1) + 22D+ D Tt



Our new algorithm: generalization of Goubin

e Our recursive algorithm takes n + 1 input shares (instead of
n):
T=21D - BxrpDTnt1
=@1Dr2® DXl — 2D D Tpt1) +T2D - D Tpy
=U(x1,20® - B Tpt1) + T2 D D Tpt
Zm'xl@‘I’($1,$2)@'--@‘I’($1,$n+1)+$2@-'-@l‘n+1
=216 B+ T2B B Tnp



Our new algorithm: generalization of Goubin

e Our recursive algorithm takes n + 1 input shares (instead of
n):
T=x1D - DTy D Tpt1
=1 @r2® - PTpp1 — 2P DTpy1) + 22D D Ty
=VU(r1,22@ - DTpy1) + 22D D Tpy1
=nAl) -z ®V(x1,22) B BV(x1,Tpt1) + 22D+ D Tt
=21B- - DP2n+T2D - DB Tnt1
e We can apply the algorithm recursively on both terms, from n
Boolean shares to n — 1 arithmetic shares:

r=A1+---+A,1+B1+---+B,_1



Our new algorithm: generalization of Goubin

e Our recursive algorithm takes n + 1 input shares (instead of
n):
T=x1D - DTy D Tpt1
=1 @r2® - PTpp1 — 2P DTpy1) + 22D D Ty
=VU(r1,22@ - DTpy1) + 22D D Tpy1
=nAl) -z ®V(x1,22) B BV(x1,Tpt1) + 22D+ D Tt
=21B- - DP2n+T2D - DB Tnt1
e We can apply the algorithm recursively on both terms, from n
Boolean shares to n — 1 arithmetic shares:

r=A1+---+A,1+B1+---+B,_1
=A1+B)+ -+ A2+ Bp2)+Ap_1 + B



Our new algorithm: generalization of Goubin

e Our recursive algorithm takes n + 1 input shares (instead of
n):
T=x1D - DTy D Tpt1
=1 @r2® - PTpp1 — 2P DTpy1) + 22D D Ty
=VU(r1,22@ - DTpy1) + 22D D Tpy1
=nAl) -z ®V(x1,22) B BV(x1,Tpt1) + 22D+ D Tt
=21B- - DP2n+T2D - DB Tnt1
e We can apply the algorithm recursively on both terms, from n
Boolean shares to n — 1 arithmetic shares:

r=A1+---+A,1+B1+---+B,_1
=(A1+B1)+ -+ A2+ Br2)+ A1+ B
=Di+-+Dp o2+ Dy 1+ Dy

e We obtain n arithmetic shares as required.



Our new algorithm

e We must add some intermediate mask refreshing, otherwise
the algorithm would be insecure:

Ty T Tn—1 Tn

D—T1

& n-1 —6
Y1 s Yi s Yn—1 Yn




Proof of Security in the ISW probing model

e We use the ¢-NI and ¢-SNI security definitions introduced by
Barthe et al. in [BBD+16]
e This enables to have a modular proof
o We first analyse each gadget separately
e We then compose the gadgets

75 74 73 7!
I S4 S3 S
r— R y > ¢ z > C B 22 + Q» D
IQ AS%
S2 A
- C

e See the proof in the ePrint version of the paper.



Operation count

e Operation count for Boolean to arithmetic conversion
algorithms, with n =t + 1 shares.

Security order t

B — A conversion

1 2 3 4 6 8 10 12
Goubin [Gou01]
Hutter-Tunstall [HT16] 31
CGV, 32 bits [CGV14] 2098 | 3664 | 7752 | 14698 | 28044 | 39518 | 56 344
[Corl7] 55 155 | 367 | 1687 | 7039 | 28519114511
Our algorithm 49 123 | 277 | 1225 | 5053 | 20401 | 81829

e For small orders t, [Corl7] and our algorithm are one order of
magnitude more efficient than [CGV14].




Formal Verification

e We have formally verified the security of our countermeasure,
using the CheckMasks tool [Cor18]
o Generic verification of masking countermeasures, based on the
Common Lisp language
e Source code: https://github.com/coron/checkmasks

e Verification time:

n F£var. #tuples Security Time
2 14 14 v 3

3 39 741 v 0.06 s
4 94 134,044 v 30s
5 207 74,303,685 v 12 h



https://github.com/coron/checkmasks

Conclusion

e We have described a new high-order Boolean to arithmetic
conversion algorithm.
e Simplified variant of [Corl7], roughly 25% more efficient.
e Provably secure in the ISW probing model
e Formal verification up ton =5



Conclusion

e We have described a new high-order Boolean to arithmetic
conversion algorithm.
e Simplified variant of [Corl7], roughly 25% more efficient.
e Provably secure in the ISW probing model
e Formal verification up ton =5

e Complexity: O(2") for n shares, independent of the register
size k.

e Instead of O(n? - k) in [CGV14]
e but one order of magnitude faster for small n



Conclusion

e We have described a new high-order Boolean to arithmetic
conversion algorithm.

e Simplified variant of [Corl7], roughly 25% more efficient.
e Provably secure in the ISW probing model
e Formal verification up ton =5

e Complexity: O(2") for n shares, independent of the register
size k.

e Instead of O(n? - k) in [CGV14]
e but one order of magnitude faster for small n

¢ Open problem: can we do better than O(2") ?



