
Improved High-Order Conversion From Boolean
to Arithmetic Masking

Luk Bettale1 Jean-Sébastien Coron2 Rina Zeitoun1

1 IDEMIA, France

2 University of Luxembourg

CHES 2018



Side-channel Attacks



Differential Power Analysis [KJJ99]

Average trace

Differential trace

Group by predicted

SBox output bit

1 1 1

0 0 0



Masking Countermeasure

• Let x be some variable in a block-cipher.

• Masking countermeasure: generate a random r, and
manipulate the masked value x′

x′ = x⊕ r

instead of x.

• r is random ⇒ x′ is random
⇒ power consumption of x′ is random

⇒ no information about x is leaked



Arithmetic Masking

• Some algorithms use arithmetic operations, for example IDEA,
RC6, XTEA, SPECK, SHA-1.

• For these algorithms, we can use arithmetic masking:

x = A+ r mod 2k

where we manipulate A and r separately.

• Problem: how do we convert between Boolean and arithmetic
masking ?

• Goubin’s algorithm (CHES 01): first-order secure
conversion between Boolean and arithmetic masking.



Arithmetic Masking

• Some algorithms use arithmetic operations, for example IDEA,
RC6, XTEA, SPECK, SHA-1.

• For these algorithms, we can use arithmetic masking:

x = A+ r mod 2k

where we manipulate A and r separately.

• Problem: how do we convert between Boolean and arithmetic
masking ?

• Goubin’s algorithm (CHES 01): first-order secure
conversion between Boolean and arithmetic masking.



Second-order Attack

• Second-order attack:

E(x′) E(r)

f(E(x′), E(r)) correlated with x = x′ ⊕ r

• Requires more curves but can be practical



Higher-order masking

• Solution: n shares instead of 2:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

• Any subset of n− 1 shares is uniformly and independently
distributed

• If we probe at most n− 1 shares xi, we learn nothing
about x

• ⇒ secure against a DPA attack of order n− 1.



Higher-order masking

• Solution: n shares instead of 2:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

• Any subset of n− 1 shares is uniformly and independently
distributed

• If we probe at most n− 1 shares xi, we learn nothing
about x

• ⇒ secure against a DPA attack of order n− 1.



Higher-order masking

• High-order Boolean masking:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

• High-order arithmetic masking:

x = A1 +A2 + . . .+An mod 2k

• Problem: how do we convert between Boolean and arithmetic
masking ?

• This talk: high-order Boolean to arithmetic conversion
algorithm, simpler and more efficient than [Cor17].

• complexity independent of the register size k
• still with a proof of security in the ISW probing model



Higher-order masking

• High-order Boolean masking:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

• High-order arithmetic masking:

x = A1 +A2 + . . .+An mod 2k

• Problem: how do we convert between Boolean and arithmetic
masking ?

• This talk: high-order Boolean to arithmetic conversion
algorithm, simpler and more efficient than [Cor17].

• complexity independent of the register size k
• still with a proof of security in the ISW probing model



Prior work and this talk
n: number of shares
k: arithmetic modulo 2k (k = 32 for HMAC-SHA-1).

Direction
First-order High-order

complexity complexity

Goubin’s algorithm B → A O(1) -

[Gou01] A → B O(k) -

[CGV14]
B → A

- O(n2 · k)
A → B

[CGTV15]
B → A - O(n2 · log k)
A → B O(log k)

[Cor17] B → A - 14 · 2n +O(n)

This talk B → A - 10 · 2n +O(n)

• Complexity independent of the register size k, as in [Cor17]
• Exponential complexity, but one order of magnitude faster

than [CGV14] and [CGTV15] for small values of n.



Prior work and this talk
n: number of shares
k: arithmetic modulo 2k (k = 32 for HMAC-SHA-1).

Direction
First-order High-order

complexity complexity

Goubin’s algorithm B → A O(1) -

[Gou01] A → B O(k) -

[CGV14]
B → A

- O(n2 · k)
A → B

[CGTV15]
B → A - O(n2 · log k)
A → B O(log k)

[Cor17] B → A - 14 · 2n +O(n)

This talk B → A - 10 · 2n +O(n)

• Complexity independent of the register size k, as in [Cor17]
• Exponential complexity, but one order of magnitude faster

than [CGV14] and [CGTV15] for small values of n.



Boolean to arithmetic conversion: comparison with prior
work (k = 32 bits)



Comparison with CHES 2017 algorithm

[Cor17] B → A - 14 · 2n +O(n)

This talk B → A - 10 · 2n +O(n)

• Our new algorithm is roughly 25% faster, and simpler.

R ψ R F C +

R F C

x D
[Cor17]

R ψ C +

C

x D
This talk



Comparison with CHES 2017 algorithm

[Cor17] B → A - 14 · 2n +O(n)

This talk B → A - 10 · 2n +O(n)

• Our new algorithm is roughly 25% faster, and simpler.

R ψ R F C +

R F C

x D
[Cor17]

R ψ C +

C

x D
This talk



Our contribution

• Our contribution: high-order conversion algorithm from
Boolean to arithmetic masking

• simplified variant of CHES 2017 algorithm
• still with a proof of security in the ISW probing model.

• Approach initiated by Hutter and Tunstall [HT16] (eprint)
• but no proof of security against high-order attacks was

provided by the authors.
• 3rd order attack for any number of shares n described in

[Cor17]
• 3rd order attack against updated Hutter-Tunstall algorithm

(see the proceedings)



Our contribution

• Our contribution: high-order conversion algorithm from
Boolean to arithmetic masking

• simplified variant of CHES 2017 algorithm
• still with a proof of security in the ISW probing model.

• Approach initiated by Hutter and Tunstall [HT16] (eprint)
• but no proof of security against high-order attacks was

provided by the authors.
• 3rd order attack for any number of shares n described in

[Cor17]
• 3rd order attack against updated Hutter-Tunstall algorithm

(see the proceedings)



ISW security model
• Simulation framework of [ISW03]:

m (sk1, sk2, . . . , skn)

c

Block cipher

t probes Sim

• Show that any t probes can be perfectly simulated from at
most n− 1 of the ski’s.

• Those n− 1 shares ski are initially uniformly and
independently distributed.

• ⇒ the adversary learns nothing from the t probes, since he
could perfectly simulate those t probes by himself.



ISW security model
• Simulation framework of [ISW03]:

m (sk1, sk2, . . . , skn)

c

Block cipher

t probes Sim

• Show that any t probes can be perfectly simulated from at
most n− 1 of the ski’s.

• Those n− 1 shares ski are initially uniformly and
independently distributed.

• ⇒ the adversary learns nothing from the t probes, since he
could perfectly simulate those t probes by himself.



ISW security model
• Simulation framework of [ISW03]:

m (sk1, sk2, . . . , skn)

c

Block cipher

t probes Sim

• Show that any t probes can be perfectly simulated from at
most n− 1 of the ski’s.

• Those n− 1 shares ski are initially uniformly and
independently distributed.

• ⇒ the adversary learns nothing from the t probes, since he
could perfectly simulate those t probes by himself.



ISW security model
• Simulation framework of [ISW03]:

m (sk1, sk2, . . . , skn)

c

Block cipher

t probes Sim

• Show that any t probes can be perfectly simulated from at
most n− 1 of the ski’s.

• Those n− 1 shares ski are initially uniformly and
independently distributed.

• ⇒ the adversary learns nothing from the t probes, since he
could perfectly simulate those t probes by himself.



ISW security model
• Simulation framework of [ISW03]:

m (sk1, sk2, . . . , skn)

c

Block cipher

t probes Sim

• Show that any t probes can be perfectly simulated from at
most n− 1 of the ski’s.

• Those n− 1 shares ski are initially uniformly and
independently distributed.

• ⇒ the adversary learns nothing from the t probes, since he
could perfectly simulate those t probes by himself.



ISW security model
• Simulation framework of [ISW03]:

m (sk1, sk2, . . . , skn)

c

Block cipher

t probes Sim

• Show that any t probes can be perfectly simulated from at
most n− 1 of the ski’s.

• Those n− 1 shares ski are initially uniformly and
independently distributed.

• ⇒ the adversary learns nothing from the t probes, since he
could perfectly simulate those t probes by himself.



Security proofs for side-channel countermeasures

• Never publish a high-order masking scheme
without a proof of security !

• So many things can go wrong.

• Many countermeasures without proofs have been
broken in the past.

• We have a poor intuition of high-order security.



Goubin’s original conversion algorithm

• Goubin’s theorem: the function

Ψ(x, r) = (x⊕ r)− r (mod 2k)

is affine with respect to r over F2.
• This is surprising but true !

• Goubin’s Boolean to arithmetic conversion algorithm:

x = x1 ⊕ x2
= (x1 ⊕ x2 − x2) + x2

= Ψ(x1, x2) + x2

=
[(
x1 ⊕Ψ(x1, r ⊕ x2)

)
⊕Ψ(x1, r)

]
+ x2

= A+ x2 (mod 2k)

• One can compute A without leaking information about x,
thanks to the random r.



Goubin’s original conversion algorithm

• Goubin’s theorem: the function

Ψ(x, r) = (x⊕ r)− r (mod 2k)

is affine with respect to r over F2.
• This is surprising but true !

• Goubin’s Boolean to arithmetic conversion algorithm:

x = x1 ⊕ x2
= (x1 ⊕ x2 − x2) + x2

= Ψ(x1, x2) + x2

=
[(
x1 ⊕Ψ(x1, r ⊕ x2)

)
⊕Ψ(x1, r)

]
+ x2

= A+ x2 (mod 2k)

• One can compute A without leaking information about x,
thanks to the random r.



Goubin’s original conversion algorithm

• Goubin’s theorem: the function

Ψ(x, r) = (x⊕ r)− r (mod 2k)

is affine with respect to r over F2.
• This is surprising but true !

• Goubin’s Boolean to arithmetic conversion algorithm:

x = x1 ⊕ x2
= (x1 ⊕ x2 − x2) + x2

= Ψ(x1, x2) + x2

=
[(
x1 ⊕Ψ(x1, r ⊕ x2)

)
⊕Ψ(x1, r)

]
+ x2

= A+ x2 (mod 2k)

• One can compute A without leaking information about x,
thanks to the random r.



Goubin’s original conversion algorithm

• Goubin’s theorem: the function

Ψ(x, r) = (x⊕ r)− r (mod 2k)

is affine with respect to r over F2.
• This is surprising but true !

• Goubin’s Boolean to arithmetic conversion algorithm:

x = x1 ⊕ x2
= (x1 ⊕ x2 − x2) + x2

= Ψ(x1, x2) + x2

=
[(
x1 ⊕Ψ(x1, r ⊕ x2)

)
⊕Ψ(x1, r)

]
+ x2

= A+ x2 (mod 2k)

• One can compute A without leaking information about x,
thanks to the random r.



Goubin’s original conversion algorithm

• Goubin’s theorem: the function

Ψ(x, r) = (x⊕ r)− r (mod 2k)

is affine with respect to r over F2.
• This is surprising but true !

• Goubin’s Boolean to arithmetic conversion algorithm:

x = x1 ⊕ x2
= (x1 ⊕ x2 − x2) + x2

= Ψ(x1, x2) + x2

=
[(
x1 ⊕Ψ(x1, r ⊕ x2)

)
⊕Ψ(x1, r)

]
+ x2

= A+ x2 (mod 2k)

• One can compute A without leaking information about x,
thanks to the random r.



Goubin’s original conversion algorithm

• Goubin’s theorem: the function

Ψ(x, r) = (x⊕ r)− r (mod 2k)

is affine with respect to r over F2.
• This is surprising but true !

• Goubin’s Boolean to arithmetic conversion algorithm:

x = x1 ⊕ x2
= (x1 ⊕ x2 − x2) + x2

= Ψ(x1, x2) + x2

=
[(
x1 ⊕Ψ(x1, r ⊕ x2)

)
⊕Ψ(x1, r)

]
+ x2

= A+ x2 (mod 2k)

• One can compute A without leaking information about x,
thanks to the random r.



Goubin’s original conversion algorithm

• Goubin’s theorem: the function

Ψ(x, r) = (x⊕ r)− r (mod 2k)

is affine with respect to r over F2.
• This is surprising but true !

• Goubin’s Boolean to arithmetic conversion algorithm:

x = x1 ⊕ x2
= (x1 ⊕ x2 − x2) + x2

= Ψ(x1, x2) + x2

=
[(
x1 ⊕Ψ(x1, r ⊕ x2)

)
⊕Ψ(x1, r)

]
+ x2

= A+ x2 (mod 2k)

• One can compute A without leaking information about x,
thanks to the random r.



Our new algorithm: generalization of Goubin

• Our recursive algorithm takes n+ 1 input shares (instead of
n):

x = x1 ⊕ · · · ⊕ xn ⊕ xn+1

= (x1 ⊕ x2 ⊕ · · · ⊕ xn+1 − x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= Ψ(x1, x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= (n ∧ 1) · x1 ⊕Ψ(x1, x2)⊕ · · · ⊕Ψ(x1, xn+1) + x2 ⊕ · · · ⊕ xn+1

= z1 ⊕ · · · ⊕ zn + x2 ⊕ · · · ⊕ xn+1

• We can apply the algorithm recursively on both terms, from n
Boolean shares to n− 1 arithmetic shares:

x = A1 + · · ·+An−1 +B1 + · · ·+Bn−1

= (A1 +B1) + · · ·+ (An−2 +Bn−2) +An−1 +Bn−1

= D1 + · · ·+Dn−2 +Dn−1 +Dn

• We obtain n arithmetic shares as required.



Our new algorithm: generalization of Goubin

• Our recursive algorithm takes n+ 1 input shares (instead of
n):

x = x1 ⊕ · · · ⊕ xn ⊕ xn+1

= (x1 ⊕ x2 ⊕ · · · ⊕ xn+1 − x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= Ψ(x1, x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= (n ∧ 1) · x1 ⊕Ψ(x1, x2)⊕ · · · ⊕Ψ(x1, xn+1) + x2 ⊕ · · · ⊕ xn+1

= z1 ⊕ · · · ⊕ zn + x2 ⊕ · · · ⊕ xn+1

• We can apply the algorithm recursively on both terms, from n
Boolean shares to n− 1 arithmetic shares:

x = A1 + · · ·+An−1 +B1 + · · ·+Bn−1

= (A1 +B1) + · · ·+ (An−2 +Bn−2) +An−1 +Bn−1

= D1 + · · ·+Dn−2 +Dn−1 +Dn

• We obtain n arithmetic shares as required.



Our new algorithm: generalization of Goubin

• Our recursive algorithm takes n+ 1 input shares (instead of
n):

x = x1 ⊕ · · · ⊕ xn ⊕ xn+1

= (x1 ⊕ x2 ⊕ · · · ⊕ xn+1 − x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= Ψ(x1, x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= (n ∧ 1) · x1 ⊕Ψ(x1, x2)⊕ · · · ⊕Ψ(x1, xn+1) + x2 ⊕ · · · ⊕ xn+1

= z1 ⊕ · · · ⊕ zn + x2 ⊕ · · · ⊕ xn+1

• We can apply the algorithm recursively on both terms, from n
Boolean shares to n− 1 arithmetic shares:

x = A1 + · · ·+An−1 +B1 + · · ·+Bn−1

= (A1 +B1) + · · ·+ (An−2 +Bn−2) +An−1 +Bn−1

= D1 + · · ·+Dn−2 +Dn−1 +Dn

• We obtain n arithmetic shares as required.



Our new algorithm: generalization of Goubin

• Our recursive algorithm takes n+ 1 input shares (instead of
n):

x = x1 ⊕ · · · ⊕ xn ⊕ xn+1

= (x1 ⊕ x2 ⊕ · · · ⊕ xn+1 − x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= Ψ(x1, x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= (n ∧ 1) · x1 ⊕Ψ(x1, x2)⊕ · · · ⊕Ψ(x1, xn+1) + x2 ⊕ · · · ⊕ xn+1

= z1 ⊕ · · · ⊕ zn + x2 ⊕ · · · ⊕ xn+1

• We can apply the algorithm recursively on both terms, from n
Boolean shares to n− 1 arithmetic shares:

x = A1 + · · ·+An−1 +B1 + · · ·+Bn−1

= (A1 +B1) + · · ·+ (An−2 +Bn−2) +An−1 +Bn−1

= D1 + · · ·+Dn−2 +Dn−1 +Dn

• We obtain n arithmetic shares as required.



Our new algorithm: generalization of Goubin

• Our recursive algorithm takes n+ 1 input shares (instead of
n):

x = x1 ⊕ · · · ⊕ xn ⊕ xn+1

= (x1 ⊕ x2 ⊕ · · · ⊕ xn+1 − x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= Ψ(x1, x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= (n ∧ 1) · x1 ⊕Ψ(x1, x2)⊕ · · · ⊕Ψ(x1, xn+1) + x2 ⊕ · · · ⊕ xn+1

= z1 ⊕ · · · ⊕ zn + x2 ⊕ · · · ⊕ xn+1

• We can apply the algorithm recursively on both terms, from n
Boolean shares to n− 1 arithmetic shares:

x = A1 + · · ·+An−1 +B1 + · · ·+Bn−1

= (A1 +B1) + · · ·+ (An−2 +Bn−2) +An−1 +Bn−1

= D1 + · · ·+Dn−2 +Dn−1 +Dn

• We obtain n arithmetic shares as required.



Our new algorithm: generalization of Goubin

• Our recursive algorithm takes n+ 1 input shares (instead of
n):

x = x1 ⊕ · · · ⊕ xn ⊕ xn+1

= (x1 ⊕ x2 ⊕ · · · ⊕ xn+1 − x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= Ψ(x1, x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= (n ∧ 1) · x1 ⊕Ψ(x1, x2)⊕ · · · ⊕Ψ(x1, xn+1) + x2 ⊕ · · · ⊕ xn+1

= z1 ⊕ · · · ⊕ zn + x2 ⊕ · · · ⊕ xn+1

• We can apply the algorithm recursively on both terms, from n
Boolean shares to n− 1 arithmetic shares:

x = A1 + · · ·+An−1 +B1 + · · ·+Bn−1

= (A1 +B1) + · · ·+ (An−2 +Bn−2) +An−1 +Bn−1

= D1 + · · ·+Dn−2 +Dn−1 +Dn

• We obtain n arithmetic shares as required.



Our new algorithm: generalization of Goubin

• Our recursive algorithm takes n+ 1 input shares (instead of
n):

x = x1 ⊕ · · · ⊕ xn ⊕ xn+1

= (x1 ⊕ x2 ⊕ · · · ⊕ xn+1 − x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= Ψ(x1, x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= (n ∧ 1) · x1 ⊕Ψ(x1, x2)⊕ · · · ⊕Ψ(x1, xn+1) + x2 ⊕ · · · ⊕ xn+1

= z1 ⊕ · · · ⊕ zn + x2 ⊕ · · · ⊕ xn+1

• We can apply the algorithm recursively on both terms, from n
Boolean shares to n− 1 arithmetic shares:

x = A1 + · · ·+An−1 +B1 + · · ·+Bn−1

= (A1 +B1) + · · ·+ (An−2 +Bn−2) +An−1 +Bn−1

= D1 + · · ·+Dn−2 +Dn−1 +Dn

• We obtain n arithmetic shares as required.



Our new algorithm: generalization of Goubin

• Our recursive algorithm takes n+ 1 input shares (instead of
n):

x = x1 ⊕ · · · ⊕ xn ⊕ xn+1

= (x1 ⊕ x2 ⊕ · · · ⊕ xn+1 − x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= Ψ(x1, x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= (n ∧ 1) · x1 ⊕Ψ(x1, x2)⊕ · · · ⊕Ψ(x1, xn+1) + x2 ⊕ · · · ⊕ xn+1

= z1 ⊕ · · · ⊕ zn + x2 ⊕ · · · ⊕ xn+1

• We can apply the algorithm recursively on both terms, from n
Boolean shares to n− 1 arithmetic shares:

x = A1 + · · ·+An−1 +B1 + · · ·+Bn−1

= (A1 +B1) + · · ·+ (An−2 +Bn−2) +An−1 +Bn−1

= D1 + · · ·+Dn−2 +Dn−1 +Dn

• We obtain n arithmetic shares as required.



Our new algorithm

• We must add some intermediate mask refreshing, otherwise
the algorithm would be insecure:

x1 · · · xi · · · xn−1 xn

r1

...

ri

...

rn−1

y1 · · · yi · · · yn−1 yn



Proof of Security in the ISW probing model

• We use the t-NI and t-SNI security definitions introduced by
Barthe et al. in [BBD+16]

• This enables to have a modular proof
• We first analyse each gadget separately
• We then compose the gadgets

R ψ C +

C

x D
y

A

B Oz
I1

I2

I3I4I5
S12

S11
S2

S3S4I

• See the proof in the ePrint version of the paper.



Operation count

• Operation count for Boolean to arithmetic conversion
algorithms, with n = t+ 1 shares.

B → A conversion
Security order t

1 2 3 4 6 8 10 12

Goubin [Gou01] 7

Hutter-Tunstall [HT16] 31

CGV, 32 bits [CGV14] 2 098 3 664 7 752 14 698 28 044 39 518 56 344

[Cor17] 55 155 367 1 687 7 039 28 519 114 511

Our algorithm 49 123 277 1 225 5 053 20 401 81 829

• For small orders t, [Cor17] and our algorithm are one order of
magnitude more efficient than [CGV14].



Formal Verification

• We have formally verified the security of our countermeasure,
using the CheckMasks tool [Cor18]

• Generic verification of masking countermeasures, based on the
Common Lisp language

• Source code: https://github.com/coron/checkmasks

• Verification time:

n #var. #tuples Security Time
2 14 14 X ε
3 39 741 X 0.06 s
4 94 134,044 X 30 s
5 207 74,303,685 X 12 h

https://github.com/coron/checkmasks


Conclusion

• We have described a new high-order Boolean to arithmetic
conversion algorithm.

• Simplified variant of [Cor17], roughly 25% more efficient.
• Provably secure in the ISW probing model
• Formal verification up to n = 5

• Complexity: O(2n) for n shares, independent of the register
size k.

• Instead of O(n2 · k) in [CGV14]
• but one order of magnitude faster for small n

• Open problem: can we do better than O(2n) ?



Conclusion

• We have described a new high-order Boolean to arithmetic
conversion algorithm.

• Simplified variant of [Cor17], roughly 25% more efficient.
• Provably secure in the ISW probing model
• Formal verification up to n = 5

• Complexity: O(2n) for n shares, independent of the register
size k.

• Instead of O(n2 · k) in [CGV14]
• but one order of magnitude faster for small n

• Open problem: can we do better than O(2n) ?



Conclusion

• We have described a new high-order Boolean to arithmetic
conversion algorithm.

• Simplified variant of [Cor17], roughly 25% more efficient.
• Provably secure in the ISW probing model
• Formal verification up to n = 5

• Complexity: O(2n) for n shares, independent of the register
size k.

• Instead of O(n2 · k) in [CGV14]
• but one order of magnitude faster for small n

• Open problem: can we do better than O(2n) ?


