Improved High-Order Conversion From Boolean to Arithmetic Masking

Luk Bettale¹ Jean-Sébastien Coron² Rina Zeitoun¹

1 IDEMIA, France

² University of Luxembourg

CHES 2018

Side-channel Attacks

Differential Power Analysis [KJJ99]

Masking Countermeasure

- Let x be some variable in a block-cipher.
- Masking countermeasure: generate a random r, and manipulate the masked value x'

$$x' = x \oplus r$$

instead of x.

- r is random $\Rightarrow x'$ is random
 - \Rightarrow power consumption of x^\prime is random

 \Rightarrow no information about x is leaked

Arithmetic Masking

- Some algorithms use arithmetic operations, for example IDEA, RC6, XTEA, SPECK, SHA-1.
- For these algorithms, we can use arithmetic masking:

$$x = A + r \bmod 2^k$$

where we manipulate A and r separately.

- Problem: how do we convert between Boolean and arithmetic masking ?
 - Goubin's algorithm (CHES 01): first-order secure conversion between Boolean and arithmetic masking.

Arithmetic Masking

- Some algorithms use arithmetic operations, for example IDEA, RC6, XTEA, SPECK, SHA-1.
- For these algorithms, we can use arithmetic masking:

$$x = A + r \bmod 2^k$$

where we manipulate A and r separately.

- Problem: how do we convert between Boolean and arithmetic masking ?
 - Goubin's algorithm (CHES 01): first-order secure conversion between Boolean and arithmetic masking.

Second-order Attack

• Second-order attack:

• Requires more curves but can be practical

• Solution: n shares instead of 2:

$$x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$$

- Any subset of n-1 shares is uniformly and independently distributed
 - If we probe at most n-1 shares x_i , we learn nothing about x
 - \Rightarrow secure against a DPA attack of order n-1.

• Solution: *n* shares instead of 2:

$$x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$$

- Any subset of n-1 shares is uniformly and independently distributed
 - If we probe at most n-1 shares x_i , we learn nothing about x
 - \Rightarrow secure against a DPA attack of order n-1.

• High-order Boolean masking:

 $x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$

• High-order arithmetic masking:

$$x = A_1 + A_2 + \ldots + A_n \mod 2^k$$

- Problem: how do we convert between Boolean and arithmetic masking ?
- **This talk:** high-order Boolean to arithmetic conversion algorithm, simpler and more efficient than [Cor17].
 - complexity independent of the register size k
 - still with a proof of security in the ISW probing model

• High-order Boolean masking:

 $x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$

• High-order arithmetic masking:

$$x = A_1 + A_2 + \ldots + A_n \mod 2^k$$

- Problem: how do we convert between Boolean and arithmetic masking ?
- **This talk:** high-order Boolean to arithmetic conversion algorithm, simpler and more efficient than [Cor17].
 - complexity independent of the register size k
 - still with a proof of security in the ISW probing model

Prior work and this talk

n: number of shares

k: arithmetic modulo 2^k (k = 32 for HMAC-SHA-1).

	Direction First-order		High-order	
	Direction	complexity	complexity	
Goubin's algorithm	$B\toA$	$\mathcal{O}(1)$	-	
[Gou01]	$A\toB$	$\mathcal{O}(k)$	-	
[CCV14]	$B\toA$		$\mathcal{O}(n^2 \cdot k)$	
	$A\toB$	_		
[CCT\/15]	$B\toA$	-	$\mathcal{O}(n^2 \cdot \log k)$	
	$A\toB$	$\mathcal{O}(\log k)$	$O(n \cdot \log k)$	
[Cor17]	$B \to A$	-	$14 \cdot 2^n + \mathcal{O}(n)$	
This talk	${f B} ightarrow {f A}$	-	$10 \cdot 2^n + \mathcal{O}(n)$	

• Complexity independent of the register size k, as in [Cor17]

 Exponential complexity, but one order of magnitude faster than [CGV14] and [CGTV15] for small values of n.

Prior work and this talk

n: number of shares

k: arithmetic modulo 2^k (k = 32 for HMAC-SHA-1).

	Direction	First-order	High-order	
	Direction	complexity	complexity	
Goubin's algorithm	$B\toA$	$\mathcal{O}(1)$	-	
[Gou01]	$A\toB$	$\mathcal{O}(k)$	-	
[CGV14]	$B\toA$		$\mathcal{O}(n^2 \cdot k)$	
	$A\toB$	_		
	$B\toA$	-	$\mathcal{O}(n^2 \cdot \log k)$	
	$A\toB$	$\mathcal{O}(\log k)$		
[Cor17]	$B \to A$	-	$14 \cdot 2^n + \mathcal{O}(n)$	
This talk	${f B} ightarrow {f A}$	-	$10 \cdot 2^n + \mathcal{O}(n)$	

- Complexity independent of the register size k, as in [Cor17]
- Exponential complexity, but one order of magnitude faster than [CGV14] and [CGTV15] for small values of *n*.

Boolean to arithmetic conversion: comparison with prior work (k = 32 bits)

Comparison with CHES 2017 algorithm

[Cor17]	$B\toA$	-	$14 \cdot 2^n + \mathcal{O}(n)$
This talk	$\mathbf{B} ightarrow \mathbf{A}$	-	$10 \cdot 2^n + \mathcal{O}(n)$

• Our new algorithm is roughly 25% faster, and simpler.

Comparison with CHES 2017 algorithm

[Cor17]	$B\toA$	-	$14 \cdot 2^n + \mathcal{O}(n)$
This talk	$\mathbf{B} ightarrow \mathbf{A}$	-	$10 \cdot 2^n + \mathcal{O}(n)$

• Our new algorithm is roughly 25% faster, and simpler.

Our contribution

- Our contribution: high-order conversion algorithm from Boolean to arithmetic masking
 - simplified variant of CHES 2017 algorithm
 - still with a proof of security in the ISW probing model.
- Approach initiated by Hutter and Tunstall [HT16] (eprint)
 - but no proof of security against high-order attacks was provided by the authors.
 - 3rd order attack for any number of shares n described in [Cor17]
 - 3rd order attack against updated Hutter-Tunstall algorithm (see the proceedings)

Our contribution

- Our contribution: high-order conversion algorithm from Boolean to arithmetic masking
 - simplified variant of CHES 2017 algorithm
 - still with a proof of security in the ISW probing model.
- Approach initiated by Hutter and Tunstall [HT16] (eprint)
 - but no proof of security against high-order attacks was provided by the authors.
 - 3rd order attack for any number of shares n described in [Cor17]
 - 3rd order attack against updated Hutter-Tunstall algorithm (see the proceedings)

- Show that any t probes can be perfectly simulated from at most n − 1 of the sk_i's.
- Those n 1 shares sk_i are initially uniformly and independently distributed.
- ⇒ the adversary learns nothing from the t probes, since he could perfectly simulate those t probes by himself.

- Show that any t probes can be perfectly simulated from at most n-1 of the sk_i's.
- Those n 1 shares sk_i are initially uniformly and independently distributed.
- ⇒ the adversary learns nothing from the t probes, since he could perfectly simulate those t probes by himself.

- Show that any t probes can be perfectly simulated from at most n-1 of the sk_i 's.
- Those n 1 shares sk_i are initially uniformly and independently distributed.
- ⇒ the adversary learns nothing from the t probes, since he could perfectly simulate those t probes by himself.

- Show that any t probes can be perfectly simulated from at most n-1 of the sk_i 's.
- Those n 1 shares sk_i are initially uniformly and independently distributed.
- ⇒ the adversary learns nothing from the t probes, since he could perfectly simulate those t probes by himself.

- Show that any t probes can be perfectly simulated from at most n-1 of the $sk_i{\rm 's.}$
- Those n 1 shares sk_i are initially uniformly and independently distributed.
- ⇒ the adversary learns nothing from the t probes, since he could perfectly simulate those t probes by himself.

- Show that any t probes can be perfectly simulated from at most n-1 of the sk_i 's.
- Those n 1 shares sk_i are initially uniformly and independently distributed.
- ⇒ the adversary learns nothing from the t probes, since he could perfectly simulate those t probes by himself.

Security proofs for side-channel countermeasures

- Never publish a high-order masking scheme without a proof of security !
 - So many things can go wrong.
 - Many countermeasures without proofs have been broken in the past.
 - We have a poor intuition of high-order security.

• Goubin's theorem: the function

$$\Psi(x,r) = (x \oplus r) - r \pmod{2^k}$$

is affine with respect to r over \mathbb{F}_2 .

- This is surprising but true !
- Goubin's Boolean to arithmetic conversion algorithm:

$$\begin{aligned} \mathbf{x} &= x_1 \oplus x_2 \\ &= (x_1 \oplus x_2 - x_2) + x_2 \\ &= \Psi(x_1, x_2) + x_2 \\ &= \left[\left(x_1 \oplus \Psi(x_1, r \oplus x_2) \right) \oplus \Psi(x_1, r) \right] + x_2 \\ &= A + x_2 \pmod{2^k} \end{aligned}$$

• Goubin's theorem: the function

$$\Psi(x,r) = (x \oplus r) - r \pmod{2^k}$$

is affine with respect to r over \mathbb{F}_2 .

- This is surprising but true !
- Goubin's Boolean to arithmetic conversion algorithm:

$$\begin{aligned} x &= x_1 \oplus x_2 \\ &= (x_1 \oplus x_2 - x_2) + x_2 \\ &= \Psi(x_1, x_2) + x_2 \\ &= \left[\left(x_1 \oplus \Psi(x_1, r \oplus x_2) \right) \oplus \Psi(x_1, r) \right] + x_2 \\ &= A + x_2 \pmod{2^k} \end{aligned}$$

• Goubin's theorem: the function

$$\Psi(x,r) = (x \oplus r) - r \pmod{2^k}$$

is affine with respect to r over \mathbb{F}_2 .

- This is surprising but true !
- Goubin's Boolean to arithmetic conversion algorithm:

$$\begin{aligned} x &= x_1 \oplus x_2 \\ &= (x_1 \oplus x_2 - x_2) + x_2 \\ &= \Psi(x_1, x_2) + x_2 \\ &= \left[\left(x_1 \oplus \Psi(x_1, r \oplus x_2) \right) \oplus \Psi(x_1, r) \right] + x_2 \\ &= A + x_2 \pmod{2^k} \end{aligned}$$

• Goubin's theorem: the function

$$\Psi(x,r) = (x \oplus r) - r \pmod{2^k}$$

is affine with respect to r over \mathbb{F}_2 .

- This is surprising but true !
- Goubin's Boolean to arithmetic conversion algorithm:

$$\begin{aligned} x &= x_1 \oplus x_2 \\ &= (x_1 \oplus x_2 - x_2) + x_2 \\ &= \Psi(x_1, x_2) + x_2 \\ &= \left[\left(x_1 \oplus \Psi(x_1, r \oplus x_2) \right) \oplus \Psi(x_1, r) \right] + x_2 \\ &= A + x_2 \pmod{2^k} \end{aligned}$$

• Goubin's theorem: the function

$$\Psi(x,r) = (x \oplus r) - r \pmod{2^k}$$

is affine with respect to r over \mathbb{F}_2 .

- This is surprising but true !
- Goubin's Boolean to arithmetic conversion algorithm:

$$x = x_1 \oplus x_2$$

= $(x_1 \oplus x_2 - x_2) + x_2$
= $\Psi(x_1, x_2) + x_2$
= $[(x_1 \oplus \Psi(x_1, r \oplus x_2)) \oplus \Psi(x_1, r)] + x_2$
= $A + x_2 \pmod{2^k}$

• Goubin's theorem: the function

$$\Psi(x,r) = (x \oplus r) - r \pmod{2^k}$$

is affine with respect to r over \mathbb{F}_2 .

- This is surprising but true !
- Goubin's Boolean to arithmetic conversion algorithm:

$$\begin{aligned} x &= x_1 \oplus x_2 \\ &= (x_1 \oplus x_2 - x_2) + x_2 \\ &= \Psi(x_1, x_2) + x_2 \\ &= \left[\left(x_1 \oplus \Psi(x_1, r \oplus x_2) \right) \oplus \Psi(x_1, r) \right] + x_2 \\ &= A + x_2 \pmod{2^k} \end{aligned}$$

• Goubin's theorem: the function

$$\Psi(x,r) = (x \oplus r) - r \pmod{2^k}$$

is affine with respect to r over \mathbb{F}_2 .

- This is surprising but true !
- Goubin's Boolean to arithmetic conversion algorithm:

$$\begin{aligned} x &= x_1 \oplus x_2 \\ &= (x_1 \oplus x_2 - x_2) + x_2 \\ &= \Psi(x_1, x_2) + x_2 \\ &= \left[\left(x_1 \oplus \Psi(x_1, r \oplus x_2) \right) \oplus \Psi(x_1, r) \right] + x_2 \\ &= A + x_2 \pmod{2^k} \end{aligned}$$

- Our recursive algorithm takes n + 1 input shares (instead of n):
 - $x = x_1 \oplus \cdots \oplus x_n \oplus x_{n+1}$

 $= (x_1 \oplus x_2 \oplus \cdots \oplus x_{n+1} - x_2 \oplus \cdots \oplus x_{n+1}) + x_2 \oplus \cdots \oplus x_{n+1}$

 $=\Psi(x_1,x_2\oplus\cdots\oplus x_{n+1})+x_2\oplus\cdots\oplus x_{n+1}$

 $= (n \wedge 1) \cdot x_1 \oplus \Psi(x_1, x_2) \oplus \dots \oplus \Psi(x_1, x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1}$ $= z_1 \oplus \dots \oplus z_n + x_2 \oplus \dots \oplus x_{n+1}$

• We can apply the algorithm recursively on both terms, from nBoolean shares to n-1 arithmetic shares:

 $x = A_1 + \dots + A_{n-1} + B_1 + \dots + B_{n-1}$ = $(A_1 + B_1) + \dots + (A_{n-2} + B_{n-2}) + A_{n-1} + B_{n-1}$ = $D_1 + \dots + D_{n-2} + D_{n-1} + D_n$

- Our recursive algorithm takes n + 1 input shares (instead of n):
 - $\begin{aligned} x &= x_1 \oplus \dots \oplus x_n \oplus x_{n+1} \\ &= (x_1 \oplus x_2 \oplus \dots \oplus x_{n+1} x_2 \oplus \dots \oplus x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= \Psi(x_1, x_2 \oplus \dots \oplus x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= \overline{(n \wedge 1)} \cdot x_1 \oplus \Psi(x_1, x_2) \oplus \dots \oplus \Psi(x_1, x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= z_1 \oplus \dots \oplus z_n + x_2 \oplus \dots \oplus x_{n+1} \end{aligned}$
- We can apply the algorithm recursively on both terms, from nBoolean shares to n-1 arithmetic shares:

$$x = A_1 + \dots + A_{n-1} + B_1 + \dots + B_{n-1}$$

= $(A_1 + B_1) + \dots + (A_{n-2} + B_{n-2}) + A_{n-1} + B_{n-1}$
= $D_1 + \dots + D_{n-2} + D_{n-1} + D_n$

• Our recursive algorithm takes n + 1 input shares (instead of n):

$$\begin{aligned} x &= x_1 \oplus \cdots \oplus x_n \oplus x_{n+1} \\ &= (x_1 \oplus x_2 \oplus \cdots \oplus x_{n+1} - x_2 \oplus \cdots \oplus x_{n+1}) + x_2 \oplus \cdots \oplus x_{n+1} \\ &= \Psi(x_1, x_2 \oplus \cdots \oplus x_{n+1}) + x_2 \oplus \cdots \oplus x_{n+1} \\ &= \overline{(n \wedge 1)} \cdot x_1 \oplus \Psi(x_1, x_2) \oplus \cdots \oplus \Psi(x_1, x_{n+1}) + x_2 \oplus \cdots \oplus x_{n+1} \\ &= z_1 \oplus \cdots \oplus z_n + x_2 \oplus \cdots \oplus x_{n+1} \end{aligned}$$

• We can apply the algorithm recursively on both terms, from nBoolean shares to n-1 arithmetic shares:

$$x = A_1 + \dots + A_{n-1} + B_1 + \dots + B_{n-1}$$

= $(A_1 + B_1) + \dots + (A_{n-2} + B_{n-2}) + A_{n-1} + B_{n-1}$
= $D_1 + \dots + D_{n-2} + D_{n-1} + D_n$

• Our recursive algorithm takes n + 1 input shares (instead of n):

$$\begin{aligned} x &= x_1 \oplus \dots \oplus x_n \oplus x_{n+1} \\ &= (x_1 \oplus x_2 \oplus \dots \oplus x_{n+1} - x_2 \oplus \dots \oplus x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= \Psi(x_1, x_2 \oplus \dots \oplus x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= \overline{(n \wedge 1)} \cdot x_1 \oplus \Psi(x_1, x_2) \oplus \dots \oplus \Psi(x_1, x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= z_1 \oplus \dots \oplus z_n + x_2 \oplus \dots \oplus x_{n+1} \end{aligned}$$

• We can apply the algorithm recursively on both terms, from nBoolean shares to n-1 arithmetic shares:

$$x = A_1 + \dots + A_{n-1} + B_1 + \dots + B_{n-1}$$

= $(A_1 + B_1) + \dots + (A_{n-2} + B_{n-2}) + A_{n-1} + B_{n-1}$
= $D_1 + \dots + D_{n-2} + D_{n-1} + D_n$

• Our recursive algorithm takes n + 1 input shares (instead of n):

$$\begin{aligned} x &= x_1 \oplus \dots \oplus x_n \oplus x_{n+1} \\ &= (x_1 \oplus x_2 \oplus \dots \oplus x_{n+1} - x_2 \oplus \dots \oplus x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= \Psi(x_1, x_2 \oplus \dots \oplus x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= \overline{(n \wedge 1)} \cdot x_1 \oplus \Psi(x_1, x_2) \oplus \dots \oplus \Psi(x_1, x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= z_1 \oplus \dots \oplus z_n + x_2 \oplus \dots \oplus x_{n+1} \end{aligned}$$

• We can apply the algorithm recursively on both terms, from nBoolean shares to n-1 arithmetic shares:

$$x = A_1 + \dots + A_{n-1} + B_1 + \dots + B_{n-1}$$

= $(A_1 + B_1) + \dots + (A_{n-2} + B_{n-2}) + A_{n-1} + B_{n-1}$
= $D_1 + \dots + D_{n-2} + D_{n-1} + D_n$

• Our recursive algorithm takes n + 1 input shares (instead of n):

$$\begin{aligned} x &= x_1 \oplus \dots \oplus x_n \oplus x_{n+1} \\ &= (x_1 \oplus x_2 \oplus \dots \oplus x_{n+1} - x_2 \oplus \dots \oplus x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= \Psi(x_1, x_2 \oplus \dots \oplus x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= \overline{(n \wedge 1)} \cdot x_1 \oplus \Psi(x_1, x_2) \oplus \dots \oplus \Psi(x_1, x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= z_1 \oplus \dots \oplus z_n + x_2 \oplus \dots \oplus x_{n+1} \end{aligned}$$

• We can apply the algorithm recursively on both terms, from n Boolean shares to n-1 arithmetic shares:

$$x = A_1 + \dots + A_{n-1} + B_1 + \dots + B_{n-1}$$

= $(A_1 + B_1) + \dots + (A_{n-2} + B_{n-2}) + A_{n-1} + B_{n-1}$
= $D_1 + \dots + D_{n-2} + D_{n-1} + D_n$

• Our recursive algorithm takes n + 1 input shares (instead of n):

$$\begin{aligned} x &= x_1 \oplus \dots \oplus x_n \oplus x_{n+1} \\ &= (x_1 \oplus x_2 \oplus \dots \oplus x_{n+1} - x_2 \oplus \dots \oplus x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= \Psi(x_1, x_2 \oplus \dots \oplus x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= \overline{(n \wedge 1)} \cdot x_1 \oplus \Psi(x_1, x_2) \oplus \dots \oplus \Psi(x_1, x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= z_1 \oplus \dots \oplus z_n + x_2 \oplus \dots \oplus x_{n+1} \end{aligned}$$

• We can apply the algorithm recursively on both terms, from n Boolean shares to n-1 arithmetic shares:

$$x = A_1 + \dots + A_{n-1} + B_1 + \dots + B_{n-1}$$

= $(A_1 + B_1) + \dots + (A_{n-2} + B_{n-2}) + A_{n-1} + B_{n-1}$
= $D_1 + \dots + D_{n-2} + D_{n-1} + D_n$

• Our recursive algorithm takes n + 1 input shares (instead of n):

$$\begin{aligned} x &= x_1 \oplus \dots \oplus x_n \oplus x_{n+1} \\ &= (x_1 \oplus x_2 \oplus \dots \oplus x_{n+1} - x_2 \oplus \dots \oplus x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= \Psi(x_1, x_2 \oplus \dots \oplus x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= \overline{(n \wedge 1)} \cdot x_1 \oplus \Psi(x_1, x_2) \oplus \dots \oplus \Psi(x_1, x_{n+1}) + x_2 \oplus \dots \oplus x_{n+1} \\ &= z_1 \oplus \dots \oplus z_n + x_2 \oplus \dots \oplus x_{n+1} \end{aligned}$$

• We can apply the algorithm recursively on both terms, from n Boolean shares to n-1 arithmetic shares:

$$x = A_1 + \dots + A_{n-1} + B_1 + \dots + B_{n-1}$$

= $(A_1 + B_1) + \dots + (A_{n-2} + B_{n-2}) + A_{n-1} + B_{n-1}$
= $D_1 + \dots + D_{n-2} + D_{n-1} + D_n$

Our new algorithm

• We must add some intermediate mask refreshing, otherwise the algorithm would be insecure:

Proof of Security in the ISW probing model

- We use the *t*-NI and *t*-SNI security definitions introduced by Barthe *et al.* in [BBD+16]
 - This enables to have a modular proof
 - We first analyse each gadget separately
 - We then compose the gadgets

• See the proof in the ePrint version of the paper.

Operation count

• Operation count for Boolean to arithmetic conversion algorithms, with n = t + 1 shares.

$\mathbf{B} \rightarrow \mathbf{A}$ conversion	Security order t							
	1	2	3	4	6	8	10	12
Goubin [Gou01]	7							
Hutter-Tunstall [HT16]		31						
CGV, 32 bits [CGV14]		2098	3664	7 7 5 2	14 698	28 0 4 4	39518	56344
[Cor17]		55	155	367	1 687	7039	28519	114511
Our algorithm		49	123	277	1 2 2 5	5053	20401	81829

 For small orders t, [Cor17] and our algorithm are one order of magnitude more efficient than [CGV14].

Formal Verification

- We have formally verified the security of our countermeasure, using the CheckMasks tool [Cor18]
 - Generic verification of masking countermeasures, based on the Common Lisp language
 - Source code: https://github.com/coron/checkmasks
- Verification time:

n	#var.	#tuples	Security	Time
2	14	14	\checkmark	ε
3	39	741	\checkmark	0.06 s
4	94	134,044	\checkmark	30 s
5	207	74,303,685	\checkmark	12 h

Conclusion

- We have described a new high-order Boolean to arithmetic conversion algorithm.
 - Simplified variant of [Cor17], roughly 25% more efficient.
 - Provably secure in the ISW probing model
 - Formal verification up to n=5
- Complexity: $\mathcal{O}(2^n)$ for n shares, independent of the register size k.
 - Instead of $\mathcal{O}(n^2 \cdot k)$ in [CGV14]
 - but one order of magnitude faster for small \boldsymbol{n}
- Open problem: can we do better than $\mathcal{O}(2^n)$?

Conclusion

- We have described a new high-order Boolean to arithmetic conversion algorithm.
 - Simplified variant of [Cor17], roughly 25% more efficient.
 - Provably secure in the ISW probing model
 - Formal verification up to n=5
- Complexity: $\mathcal{O}(2^n)$ for n shares, independent of the register size k.
 - Instead of $\mathcal{O}(n^2 \cdot k)$ in [CGV14]
 - but one order of magnitude faster for small n
- Open problem: can we do better than $\mathcal{O}(2^n)$?

Conclusion

- We have described a new high-order Boolean to arithmetic conversion algorithm.
 - Simplified variant of [Cor17], roughly 25% more efficient.
 - Provably secure in the ISW probing model
 - Formal verification up to n=5
- Complexity: $\mathcal{O}(2^n)$ for n shares, independent of the register size k.
 - Instead of $\mathcal{O}(n^2 \cdot k)$ in [CGV14]
 - but one order of magnitude faster for small \boldsymbol{n}
- Open problem: can we do better than $\mathcal{O}(2^n)$?