Improved High-Order Conversion From Boolean to Arithmetic Masking

Luk Bettale ${ }^{1}$ Jean-Sébastien Coron ${ }^{2}$ Rina Zeitoun ${ }^{1}$
${ }^{1}$ IDEMIA, France
${ }^{2}$ University of Luxembourg

CHES 2018

Side-channel Attacks

Cryptographic device
(e.g., smart card and reader)

Differential Power Analysis [KJJ99]

Group by predicted SBox output bit

Average trace

Masking Countermeasure

- Let x be some variable in a block-cipher.
- Masking countermeasure: generate a random r, and manipulate the masked value x^{\prime}

$$
x^{\prime}=x \oplus r
$$

instead of x.

- r is random $\Rightarrow x^{\prime}$ is random
\Rightarrow power consumption of x^{\prime} is random

\Rightarrow no information about x is leaked

Arithmetic Masking

- Some algorithms use arithmetic operations, for example IDEA, RC6, XTEA, SPECK, SHA-1.
- For these algorithms, we can use arithmetic masking:

$$
x=A+r \bmod 2^{k}
$$

where we manipulate A and r separately.

Arithmetic Masking

- Some algorithms use arithmetic operations, for example IDEA, RC6, XTEA, SPECK, SHA-1.
- For these algorithms, we can use arithmetic masking:

$$
x=A+r \bmod 2^{k}
$$

where we manipulate A and r separately.

- Problem: how do we convert between Boolean and arithmetic masking ?
- Goubin's algorithm (CHES 01): first-order secure conversion between Boolean and arithmetic masking.

Second-order Attack

- Second-order attack:

- Requires more curves but can be practical

Higher-order masking

- Solution: n shares instead of 2 :

$$
x=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}
$$

Higher-order masking

- Solution: n shares instead of 2 :

$$
x=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}
$$

- Any subset of $n-1$ shares is uniformly and independently distributed
- If we probe at most $n-1$ shares x_{i}, we learn nothing about x
- \Rightarrow secure against a DPA attack of order $n-1$.

Higher-order masking

- High-order Boolean masking:

$$
x=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}
$$

- High-order arithmetic masking:

$$
x=A_{1}+A_{2}+\ldots+A_{n} \bmod 2^{k}
$$

- Problem: how do we convert between Boolean and arithmetic masking ?

Higher-order masking

- High-order Boolean masking:

$$
x=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}
$$

- High-order arithmetic masking:

$$
x=A_{1}+A_{2}+\ldots+A_{n} \bmod 2^{k}
$$

- Problem: how do we convert between Boolean and arithmetic masking ?
- This talk: high-order Boolean to arithmetic conversion algorithm, simpler and more efficient than [Cor17].
- complexity independent of the register size k
- still with a proof of security in the ISW probing model

Prior work and this talk

n : number of shares
k : arithmetic modulo $2^{k}(k=32$ for HMAC-SHA-1).

	Direction	$\begin{array}{c}\text { First-order } \\ \text { complexity }\end{array}$	$\begin{array}{c}\text { High-order } \\ \text { complexity }\end{array}$
$\begin{array}{c}\text { Goubin's algorithm } \\ \text { [Gou01] }\end{array}$	$\mathrm{B} \rightarrow \mathrm{A}$	$\mathcal{O}(1)$	-
$\mathrm{A} \rightarrow \mathrm{B}$	$\mathcal{O}(k)$	-	
[CGV14]	$\mathrm{B} \rightarrow \mathrm{A}$		
$\mathrm{A} \rightarrow \mathrm{B}$			

Prior work and this talk

n : number of shares
k : arithmetic modulo $2^{k}(k=32$ for HMAC-SHA-1).

	Direction	$\begin{array}{c}\text { First-order } \\ \text { complexity }\end{array}$	$\begin{array}{c}\text { High-order } \\ \text { complexity }\end{array}$
$\begin{array}{c}\text { Goubin's algorithm } \\ \text { [Gou01] }\end{array}$	$\mathrm{B} \rightarrow \mathrm{A}$	$\mathcal{O}(1)$	-
$\mathrm{A} \rightarrow \mathrm{B}$	$\mathcal{O}(k)$	-	
[CGV14]	$\mathrm{B} \rightarrow \mathrm{A}$		
$\mathrm{A} \rightarrow \mathrm{B}$			

- Complexity independent of the register size k, as in [Cor17]
- Exponential complexity, but one order of magnitude faster than [CGV14] and [CGTV15] for small values of n.

Boolean to arithmetic conversion: comparison with prior work ($k=32$ bits)

Comparison with CHES 2017 algorithm

[Cor17]	$\mathrm{B} \rightarrow \mathrm{A}$	-	$14 \cdot 2^{n}+\mathcal{O}(n)$
This talk	$\mathrm{B} \rightarrow \mathbf{A}$	-	$10 \cdot 2^{n}+\mathcal{O}(n)$

Comparison with CHES 2017 algorithm

[Cor17]	$\mathrm{B} \rightarrow \mathrm{A}$	-	$14 \cdot 2^{n}+\mathcal{O}(n)$
This talk	$\mathbf{B} \rightarrow \mathbf{A}$	-	$10 \cdot 2^{n}+\mathcal{O}(n)$

- Our new algorithm is roughly 25% faster, and simpler.
[Cor17]

This talk

Our contribution

- Our contribution: high-order conversion algorithm from Boolean to arithmetic masking
- simplified variant of CHES 2017 algorithm
- still with a proof of security in the ISW probing model.

Our contribution

- Our contribution: high-order conversion algorithm from Boolean to arithmetic masking
- simplified variant of CHES 2017 algorithm
- still with a proof of security in the ISW probing model.
- Approach initiated by Hutter and Tunstall [HT16] (eprint)
- but no proof of security against high-order attacks was provided by the authors.
- 3rd order attack for any number of shares n described in [Cor17]
- 3rd order attack against updated Hutter-Tunstall algorithm (see the proceedings)

ISW security model

- Simulation framework of [ISW03]:

ISW security model

- Simulation framework of [ISW03]:

ISW security model

- Simulation framework of [ISW03]:

ISW security model

- Simulation framework of [ISW03]:

- Show that any t probes can be perfectly simulated from at most $n-1$ of the $s k_{i}$'s.

ISW security model

- Simulation framework of [ISW03]:

- Show that any t probes can be perfectly simulated from at most $n-1$ of the $s k_{i}$'s.
- Those $n-1$ shares $s k_{i}$ are initially uniformly and independently distributed.

ISW security model

- Simulation framework of [ISW03]:

- Show that any t probes can be perfectly simulated from at most $n-1$ of the $s k_{i}$'s.
- Those $n-1$ shares $s k_{i}$ are initially uniformly and independently distributed.
- \Rightarrow the adversary learns nothing from the t probes, since he could perfectly simulate those t probes by himself.

Security proofs for side-channel countermeasures

- Never publish a high-order masking scheme without a proof of security !
- So many things can go wrong.
- Many countermeasures without proofs have been broken in the past.
- We have a poor intuition of high-order security.

Goubin's original conversion algorithm

- Goubin's theorem: the function

$$
\Psi(x, r)=(x \oplus r)-r \quad\left(\bmod 2^{k}\right)
$$

is affine with respect to r over \mathbb{F}_{2}.

- This is surprising but true!

Goubin's original conversion algorithm

- Goubin's theorem: the function

$$
\Psi(x, r)=(x \oplus r)-r \quad\left(\bmod 2^{k}\right)
$$

is affine with respect to r over \mathbb{F}_{2}.

- This is surprising but true!
- Goubin's Boolean to arithmetic conversion algorithm:

$$
x=x_{1} \oplus x_{2}
$$

Goubin's original conversion algorithm

- Goubin's theorem: the function

$$
\Psi(x, r)=(x \oplus r)-r \quad\left(\bmod 2^{k}\right)
$$

is affine with respect to r over \mathbb{F}_{2}.

- This is surprising but true!
- Goubin's Boolean to arithmetic conversion algorithm:

$$
\begin{aligned}
x & =x_{1} \oplus x_{2} \\
& =\left(x_{1} \oplus x_{2}-x_{2}\right)+x_{2}
\end{aligned}
$$

Goubin's original conversion algorithm

- Goubin's theorem: the function

$$
\Psi(x, r)=(x \oplus r)-r \quad\left(\bmod 2^{k}\right)
$$

is affine with respect to r over \mathbb{F}_{2}.

- This is surprising but true!
- Goubin's Boolean to arithmetic conversion algorithm:

$$
\begin{aligned}
x & =x_{1} \oplus x_{2} \\
& =\left(x_{1} \oplus x_{2}-x_{2}\right)+x_{2} \\
& =\Psi\left(x_{1}, x_{2}\right)+x_{2}
\end{aligned}
$$

Goubin's original conversion algorithm

- Goubin's theorem: the function

$$
\Psi(x, r)=(x \oplus r)-r \quad\left(\bmod 2^{k}\right)
$$

is affine with respect to r over \mathbb{F}_{2}.

- This is surprising but true!
- Goubin's Boolean to arithmetic conversion algorithm:

$$
\begin{aligned}
x & =x_{1} \oplus x_{2} \\
& =\left(x_{1} \oplus x_{2}-x_{2}\right)+x_{2} \\
& =\Psi\left(x_{1}, x_{2}\right)+x_{2} \\
& =\left[\left(x_{1} \oplus \Psi\left(x_{1}, r \oplus x_{2}\right)\right) \oplus \Psi\left(x_{1}, r\right)\right]+x_{2}
\end{aligned}
$$

Goubin's original conversion algorithm

- Goubin's theorem: the function

$$
\Psi(x, r)=(x \oplus r)-r \quad\left(\bmod 2^{k}\right)
$$

is affine with respect to r over \mathbb{F}_{2}.

- This is surprising but true!
- Goubin's Boolean to arithmetic conversion algorithm:

$$
\begin{aligned}
x & =x_{1} \oplus x_{2} \\
& =\left(x_{1} \oplus x_{2}-x_{2}\right)+x_{2} \\
& =\Psi\left(x_{1}, x_{2}\right)+x_{2} \\
& =\left[\left(x_{1} \oplus \Psi\left(x_{1}, r \oplus x_{2}\right)\right) \oplus \Psi\left(x_{1}, r\right)\right]+x_{2} \\
& =A+x_{2} \quad\left(\bmod 2^{k}\right)
\end{aligned}
$$

Goubin's original conversion algorithm

- Goubin's theorem: the function

$$
\Psi(x, r)=(x \oplus r)-r \quad\left(\bmod 2^{k}\right)
$$

is affine with respect to r over \mathbb{F}_{2}.

- This is surprising but true!
- Goubin's Boolean to arithmetic conversion algorithm:

$$
\begin{aligned}
x & =x_{1} \oplus x_{2} \\
& =\left(x_{1} \oplus x_{2}-x_{2}\right)+x_{2} \\
& =\Psi\left(x_{1}, x_{2}\right)+x_{2} \\
& =\left[\left(x_{1} \oplus \Psi\left(x_{1}, r \oplus x_{2}\right)\right) \oplus \Psi\left(x_{1}, r\right)\right]+x_{2} \\
& =A+x_{2} \quad\left(\bmod 2^{k}\right)
\end{aligned}
$$

- One can compute A without leaking information about x, thanks to the random r.

Our new algorithm: generalization of Goubin

- Our recursive algorithm takes $n+1$ input shares (instead of $n)$:

$$
x=x_{1} \oplus \cdots \oplus x_{n} \oplus x_{n+1}
$$

Our new algorithm: generalization of Goubin

- Our recursive algorithm takes $n+1$ input shares (instead of $n)$:

$$
\begin{aligned}
x & =x_{1} \oplus \cdots \oplus x_{n} \oplus x_{n+1} \\
& =\left(x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n+1}-x_{2} \oplus \cdots \oplus x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1}
\end{aligned}
$$

Our new algorithm: generalization of Goubin

- Our recursive algorithm takes $n+1$ input shares (instead of $n)$:

$$
\begin{aligned}
x & =x_{1} \oplus \cdots \oplus x_{n} \oplus x_{n+1} \\
& =\left(x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n+1}-x_{2} \oplus \cdots \oplus x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1} \\
& =\Psi\left(x_{1}, x_{2} \oplus \cdots \oplus x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1}
\end{aligned}
$$

Our new algorithm: generalization of Goubin

- Our recursive algorithm takes $n+1$ input shares (instead of $n)$:

$$
\begin{aligned}
x & =x_{1} \oplus \cdots \oplus x_{n} \oplus x_{n+1} \\
& =\left(x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n+1}-x_{2} \oplus \cdots \oplus x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1} \\
& =\Psi\left(x_{1}, x_{2} \oplus \cdots \oplus x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1} \\
& =\overline{(n \wedge 1)} \cdot x_{1} \oplus \Psi\left(x_{1}, x_{2}\right) \oplus \cdots \oplus \Psi\left(x_{1}, x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1}
\end{aligned}
$$

Our new algorithm: generalization of Goubin

- Our recursive algorithm takes $n+1$ input shares (instead of $n)$:

$$
\begin{aligned}
x & =x_{1} \oplus \cdots \oplus x_{n} \oplus x_{n+1} \\
& =\left(x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n+1}-x_{2} \oplus \cdots \oplus x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1} \\
& =\Psi\left(x_{1}, x_{2} \oplus \cdots \oplus x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1} \\
& =\overline{(n \wedge 1)} \cdot x_{1} \oplus \Psi\left(x_{1}, x_{2}\right) \oplus \cdots \oplus \Psi\left(x_{1}, x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1} \\
& =z_{1} \oplus \cdots \oplus z_{n}+x_{2} \oplus \cdots \oplus x_{n+1}
\end{aligned}
$$

Our new algorithm: generalization of Goubin

- Our recursive algorithm takes $n+1$ input shares (instead of $n)$:

$$
\begin{aligned}
x & =x_{1} \oplus \cdots \oplus x_{n} \oplus x_{n+1} \\
& =\left(x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n+1}-x_{2} \oplus \cdots \oplus x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1} \\
& =\Psi\left(x_{1}, x_{2} \oplus \cdots \oplus x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1} \\
& =\overline{(n \wedge 1)} \cdot x_{1} \oplus \Psi\left(x_{1}, x_{2}\right) \oplus \cdots \oplus \Psi\left(x_{1}, x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1} \\
& =z_{1} \oplus \cdots \oplus z_{n}+x_{2} \oplus \cdots \oplus x_{n+1}
\end{aligned}
$$

- We can apply the algorithm recursively on both terms, from n Boolean shares to $n-1$ arithmetic shares:

$$
x=A_{1}+\cdots+A_{n-1}+B_{1}+\cdots+B_{n-1}
$$

Our new algorithm: generalization of Goubin

- Our recursive algorithm takes $n+1$ input shares (instead of $n)$:

$$
\begin{aligned}
x & =x_{1} \oplus \cdots \oplus x_{n} \oplus x_{n+1} \\
& =\left(x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n+1}-x_{2} \oplus \cdots \oplus x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1} \\
& =\Psi\left(x_{1}, x_{2} \oplus \cdots \oplus x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1} \\
& =\overline{(n \wedge 1)} \cdot x_{1} \oplus \Psi\left(x_{1}, x_{2}\right) \oplus \cdots \oplus \Psi\left(x_{1}, x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1} \\
& =z_{1} \oplus \cdots \oplus z_{n}+x_{2} \oplus \cdots \oplus x_{n+1}
\end{aligned}
$$

- We can apply the algorithm recursively on both terms, from n Boolean shares to $n-1$ arithmetic shares:

$$
\begin{aligned}
x & =A_{1}+\cdots+A_{n-1}+B_{1}+\cdots+B_{n-1} \\
& =\left(A_{1}+B_{1}\right)+\cdots+\left(A_{n-2}+B_{n-2}\right)+A_{n-1}+B_{n-1}
\end{aligned}
$$

Our new algorithm: generalization of Goubin

- Our recursive algorithm takes $n+1$ input shares (instead of $n)$:

$$
\begin{aligned}
x & =x_{1} \oplus \cdots \oplus x_{n} \oplus x_{n+1} \\
& =\left(x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n+1}-x_{2} \oplus \cdots \oplus x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1} \\
& =\Psi\left(x_{1}, x_{2} \oplus \cdots \oplus x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1} \\
& =\overline{(n \wedge 1)} \cdot x_{1} \oplus \Psi\left(x_{1}, x_{2}\right) \oplus \cdots \oplus \Psi\left(x_{1}, x_{n+1}\right)+x_{2} \oplus \cdots \oplus x_{n+1} \\
& =z_{1} \oplus \cdots \oplus z_{n}+x_{2} \oplus \cdots \oplus x_{n+1}
\end{aligned}
$$

- We can apply the algorithm recursively on both terms, from n Boolean shares to $n-1$ arithmetic shares:

$$
\begin{aligned}
x & =A_{1}+\cdots+A_{n-1}+B_{1}+\cdots+B_{n-1} \\
& =\left(A_{1}+B_{1}\right)+\cdots+\left(A_{n-2}+B_{n-2}\right)+A_{n-1}+B_{n-1} \\
& =D_{1}+\cdots+D_{n-2}+D_{n-1}+D_{n}
\end{aligned}
$$

- We obtain n arithmetic shares as required.

Our new algorithm

- We must add some intermediate mask refreshing, otherwise the algorithm would be insecure:

Proof of Security in the ISW probing model

- We use the t-NI and t-SNI security definitions introduced by Barthe et al. in [BBD+16]
- This enables to have a modular proof
- We first analyse each gadget separately
- We then compose the gadgets

- See the proof in the ePrint version of the paper.

Operation count

- Operation count for Boolean to arithmetic conversion algorithms, with $n=t+1$ shares.

$\mathbf{B} \rightarrow$ A conversion	Security order t							
	1	2	3	4	6	8	10	12
Goubin [Gou01]	7							
Hutter-Tunstall [HT16]		31						
CGV, 32 bits [CGV14]		2098	3664	7752	14698	28044	39518	56344
[Cor17]		55	155	367	1687	7039	28519	114511
Our algorithm		49	123	277	1225	5053	20401	81829

- For small orders t, [Cor17] and our algorithm are one order of magnitude more efficient than [CGV14].

Formal Verification

- We have formally verified the security of our countermeasure, using the CheckMasks tool [Cor18]
- Generic verification of masking countermeasures, based on the Common Lisp language
- Source code: https://github.com/coron/checkmasks
- Verification time:

n	\#var.	\#tuples	Security	Time
2	14	14	\checkmark	ε
3	39	741	\checkmark	0.06 s
4	94	134,044	\checkmark	30 s
5	207	$74,303,685$	\checkmark	12 h

Conclusion

- We have described a new high-order Boolean to arithmetic conversion algorithm.
- Simplified variant of [Cor17], roughly 25% more efficient.
- Provably secure in the ISW probing model
- Formal verification up to $n=5$

Conclusion

- We have described a new high-order Boolean to arithmetic conversion algorithm.
- Simplified variant of [Cor17], roughly 25% more efficient.
- Provably secure in the ISW probing model
- Formal verification up to $n=5$
- Complexity: $\mathcal{O}\left(2^{n}\right)$ for n shares, independent of the register size k.
- Instead of $\mathcal{O}\left(n^{2} \cdot k\right)$ in [CGV14]
- but one order of magnitude faster for small n

Conclusion

- We have described a new high-order Boolean to arithmetic conversion algorithm.
- Simplified variant of [Cor17], roughly 25% more efficient.
- Provably secure in the ISW probing model
- Formal verification up to $n=5$
- Complexity: $\mathcal{O}\left(2^{n}\right)$ for n shares, independent of the register size k.
- Instead of $\mathcal{O}\left(n^{2} \cdot k\right)$ in [CGV14]
- but one order of magnitude faster for small n
- Open problem: can we do better than $\mathcal{O}\left(2^{n}\right)$?

