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Abstract. Hardware obfuscation is widely used in practice to counteract reverse
engineering. In recent years, low-level obfuscation via camouflaged gates has been
increasingly discussed in the scientific community and industry. In contrast to classical
high-level obfuscation, such gates result in recovery of an erroneous netlist. This
technology has so far been regarded as a purely defensive tool. We show that low-level
obfuscation is in fact a double-edged sword that can also enable stealthy malicious
functionalities.
In this work, we present Doppelganger, the first generic design-level obfuscation tech-
nique that is based on low-level camouflaging. Doppelganger obstructs central control
modules of digital designs, e.g., Finite State Machines (FSMs) or bus controllers,
resulting in two different design functionalities: an apparent one that is recovered
during reverse engineering and the actual one that is executed during operation.
Notably, both functionalities are under the designer’s control.
In two case studies, we apply Doppelganger to a universal cryptographic coprocessor.
First, we show the defensive capabilities by presenting the reverse engineer with a
different mode of operation than the one that is actually executed. Then, for the
first time, we demonstrate the considerable threat potential of low-level obfuscation.
We show how an invisible, remotely exploitable key-leakage Trojan can be injected
into the same cryptographic coprocessor just through obfuscation. In both applica-
tions of Doppelganger, the resulting design size is indistinguishable from that of an
unobfuscated design, depending on the choice of encodings.
Keywords: Hardware Obfuscation · Camouflaging · Hardware Trojans

1 Introduction
Hardware-based threats have become increasingly important in recent years and have
moved into the public discussion, for example, in the 2018-Bloomberg allegations about a
supposed hardware backdoor in Supermicro server hardware [RR18], or the recent ban
by the US government on telecommunication equipment from China [KS]. In the work at
hand, we focus on an important aspect of hardware security, namely protection against
hardware reverse engineering. Such protection is crucial in several scenarios, including (1)
protection of Intellectual Property (IP), (2) impeding the insertion of hardware Trojans
by third parties, and (3) hiding security- or safety-critical components. First, IP-theft
is of great concern for virtually all industries, ranging from consumer electronics to
the large-scale cyber-physical systems. The Semiconductor Equipment and Materials
International Association (SEMI) reported losses from IP-theft between $2 billion and
$4 billion already in 2008 [Sem08]. Second, preventing malicious hardware manipulations
is another important effect of defending against hardware reverse engineering. The fear
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of such manipulations is also a backdrop for the current discussions on the possibility of
hidden backdoors in foreign-built computer and communication equipment [KS]. Finally,
hiding critical components, e.g., in TPMs, HSMs, smart cards, and larger designs that
contain security modules, is a widely used defense strategy to reduce the surface for attack
vectors such as targeted key extraction, laser-based fault attacks, or weakening of TRNGs.

Apart from physical protection of Integrated Circuits (ICs), e.g., via active shields
or coatings, the primary method to defend the design itself against reverse engineering
is through obfuscation. By definition, an obfuscation is a transformation that maintains
functional equivalence but obstructs comprehensibility. Hence, obfuscation aims to increase
reversing cost to extents where it becomes infeasible for an attacker. We would like to
stress that hardware obfuscation is not a niche technology but widely used in the design
industry, e.g., commercial IP cores are routinely obfuscated.

Hardware obfuscation methods can be divided in two families: traditional high-level
and hidden low-level obfuscation. Traditional high-level obfuscation is applied in order
to increase the difficulty of understanding the netlist of an IC, examples include bus
scrambling, randomized routing, and dummy states in FSMs. Note that an adversary has
all information about the design under attack and given enough effort, will be successful.
More recently, low-level obfuscation has been increasingly discussed in academia. In stark
contrast to traditional obfuscation, its goal is to create a situation in which the reverse
engineer can only recover an incomplete or erroneous netlist through almost invisible
alterations to logic cells or even single transistors. For instance, by changing the dopant
concentration of transistors, a gate can have a different functionality from the apparent
one recovered during reverse engineering. We note that low-level obfuscation (in contrast
to traditional obfuscation) creates an asymmetry between the designer and the analyst,
because the latter recovers incomplete or even incorrect information about the design
under attack. Interestingly, while such low-level techniques have been addressed over the
past seven years in academia [RSSK13, EEAM16, CEMG16, MBPB15, LSM+17, PAKS17,
SSTF19], patents [BCCJ98, CBCJ07, CBW+12, CBWC12], and even by companies that
offer camouflaged gates as a service [Ram], they were purely presented as atomic building
blocks. Little is known how to leverage these building blocks in novel high-level techniques
for generic obfuscation of (large) designs.

In this work, we close this gap by presenting Doppelganger, a generic and extremely
stealthy hardware obfuscation technique. Doppelganger is applicable to arbitrary encoding
logic, for instance, FSM state transitions or address resolution. Especially the former is
an attractive target for obfuscation since in more complex designs, the control logic often
contains the majority of the high-level information a reverse engineer may want to discover.
At its core, Doppelganger-generated logic presents a different visible behavior to a reverse
engineer than the one which is actually executed. On the physical level, our technique
makes use of camouflaged gates with dummy inputs and can be instantiated independently
of the physical realization of said primitive. We demonstrate that Doppelganger comes at
virtually no observable overhead and offers the designer control over the visible outcome
of the obfuscation, which enables much more stealthy results than traditional approaches.

As mentioned above, obfuscation is traditionally regarded as a purely defensive coun-
termeasure. However, obfuscation is in fact a double-edged sword. In this work we, for the
first time, highlight alarming implications of offensive use of low-level obfuscation. Using
Doppelganger, we trojanize a cryptographic coprocessor in a way that raises no suspicion,
even upon detailed analysis, yet enables remote exploitation.
Contribution: Our three main contributions are:

• We present Doppelganger, a novel hardware obfuscation technique to generate logic
which presents a different behavior to a reverse engineer than the one which is actually
implemented. It is generically applicable to arbitrary encoding or addressing logic as
found in virtually any digital design. Our technique does not infer a noticeable area
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overhead and is (conveniently) applied at the design stage in human-readable format.
Within limits posed by the functionality to obfuscate, it gives the designer control
over the apparent version of the design that a reverse engineer will face.

• We demonstrate the defensive strength and applicability of Doppelganger in a case
study where we obstruct the central control logic of a cryptographic coprocessor. Our
results demonstrate the power of our method by generating an apparent functionality
that is still plausible. We further show that, depending on the application, even a
randomized apparent functionality can result in strong obfuscation.

• To highlight the offensive implications of low-level obfuscation, we take the point-
of-view of a malicious designer. We show that Doppelganger can be used to inject an
extremely stealthy hardware Trojan into the same cryptographic coprocessor. Our
exemplary Trojan — coined Evil Twin — is the first demonstration of a kleptographic
Algorithm Substitution Attack (ASA) in hardware and allows for remote exploitation.
We argue that our Trojan remains undetected when faced with the majority of
conventional Trojan detection approaches.

Availability: All algorithms and hardware implementations are available open source at
https://github.com/emsec/doppelganger.

2 Technical Background
In this section, we will provide background knowledge for selected parts of our contribution.
We will discuss hardware reverse engineering, low-level obfuscation, and briefly survey
related work.

2.1 Hardware Reverse Engineering
Hardware reverse engineering can be split into two phases: netlist recovery and netlist
analysis. Netlist recovery from an IC consists of four time-consuming steps [QCF+16,
CC90, TJ11], namely (1) decapsulation, (2) delayering, (3) imaging and (4) post-processing.
During decapsulation, the die is extracted from its surrounding package. The die is then
delayered via a mixture of chemical and mechanical etching, while several high-resolution
images of the surface of each layer are taken. The standard procedure for image acquisition
in advanced labs is combining optical imaging for general structures with Scanning Electron
Microscope (SEM) imaging for small features [TJ11, BWL+20] which results in several
hundred to thousand images per layer. During post-processing, they are aligned, annotated,
and standard cells and their interconnections across multiple layers are identified. These
steps result in the netlist, an abstracted representation of the design, equivalent to a large
circuit diagram. Note that this phase is destructive, hence if errors occur that cannot be
corrected retrospectively, the process has to be (partially) repeated with a new IC.

The second phase is netlist analysis, which heavily depends on the analyst’s objective.
However, it is typically a mixture of manual and semi-automated analyses to gain an
understanding of critical parts. An example is the semi-automated reverse engineering
of high level modules, which is a common initial step, cf. [S+12, L+13, M+16b, M+16a,
FWS+18]. If the netlist that was recovered in the first phase is faulty, e.g., because
of low-level obfuscation, gaining a correct understanding of the analyzed device can be
considerably impeded.

2.2 Low-Level Obfuscation
Obfuscation is considered as the primary countermeasure against reverse engineering
[MBPB15, VPH+17]. The main difference between traditional high-level and low-level
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hardware obfuscation (cf. Section 1) is that the former complicates analysis of a recovered
netlist, while the latter increases the difficulty of recovering the netlist itself, as it results in
an erroneous netlist. Crucially, an adversary that is faced with a traditional obfuscation is
working with a correct netlist, while he has to cope with an unknown level of uncertainty
when faced with low-level obfuscation. In the latter case, one or more gates possess
a functionality different from what is apparent (camouflaging) or seemingly connected
wires are actually floating (dummy wires). In contrast to traditional obfuscation, low-
level obfuscation is particularly vulnerable to dynamic analysis, if there is an observable
mismatch between expected and obtained outputs: the more precisely an analyst can
trace the impact of single gates on the output, the easier he can locate and deobfuscate
camouflaged cells. However, this isolated analysis is often not possible in practice due to
the many levels of registers and logic between primary inputs and outputs.

Particularly relevant for the work at hand is gate- or transistor-level obfuscation, i.e.,
camouflaging. In the following we briefly present related work in this area.

Related Work: Previous work has almost exclusively focused on providing camou-
flaged circuit elements as atomic building blocks. This includes several Google patents
[BCCJ98, CBCJ07, CBW+12, CBWC12] and multiple academic publications: Rajendran
et al. presented a camouflaged gate that can implement either an OR, AND, or an XOR
gate [RSSK13], i.e, a one-of-many gate. Their construction features a comparatively large
number of transistors connected through a matrix of wires, where only a few connections
are actually conducting while others are separated via small isolation layers. Therefore,
their camouflaged gates can be easily identified on the layer images, but the implemented
functionality of the gate is not deducible from those. In parallel, Erbagci et al. and Col-
lantes et al. proposed constructions for one-of-many gates based on the transistor threshold
voltage asserted during manufacturing [EEAM16, CEMG16]. Malik et al. proposed a
standard cell library that integrates gate-level obfuscation through dopant manipulations
into standard design tools [MBPB15]. While dopant changes remain invisible during the
standard reverse engineering process they can be recovered with notable additional effort
per gate [SSF+14]. Li et al. formally analyzed resistance of gate camouflaging against
SAT-solver-based reverse engineering, revisited dopant-based modification to facilitate
always-on and always-off transistors, and demonstrated how to securely obfuscate AND-trees
[LSM+17]. In [PAKS17], Patnaik et al. focused on obfuscating the vias that interconnect
gates and wires. Their approach basically generates several multi-driven gate inputs where
only one driver is actually connected.

Recently, Shakya et al. revisited dopant-based camouflaging in [SSTF19]. They describe
how minuscule manipulations in the channels of transistors can be used to effectively
turn them into always-on or always-off transistors. Always-on transistors are achieved by
applying a shallow doping area underneath the transistor’s gate, virtually connecting the
source and drain directly, while always-off transistors are achieved by inserting a shallow
insulating layer of SiO2 between the transistor’s source/drain and their respective metal
contacts. Using these modified transistors they show how to extend a combinational gate
by an arbitrary number of dummy inputs. Crucially, they experimentally demonstrate
indistinguishability of their always-on/-off transistors from normal transistors using state-
of-the-art imaging techniques on a real chip. Furthermore, the authors claim that their
instantiation cannot be detected as shown by [SSF+14]. This makes their camouflaging
technique an excellent building block for our obfuscation scheme.

Low-level obfuscation is also already commercially available, e.g., in the SypherMedia
Library (SML) Circuit Camouflage Technology by Rambus [Ram]. However, somewhat
surprisingly, there are no reports in the open literature on how to employ camouflaged gates
to obfuscate more complex high-level structures, which is the objective of our contribution.
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3 Obfuscation with Doppelganger
In this section we present Doppelganger, a novel obfuscation technique that is applicable
to addressing logic or encoding logic. Especially attractive targets for Doppelganger
obfuscation are FSM state transition functions (encoding logic), since they are the central
control elements in digital designs, or bus address resolution modules (addressing logic),
since buses control the data flow of the design. For clarity, we will collectively refer to
encoding and addressing as encoding in the following.

We start with a high-level overview on Doppelganger, followed by a short example.
Then, we provide a detailed algorithmic descriptions. The strength and stealthiness of
Doppelganger are evaluated with respect to our experiments in Sections 4, 5, and 6 and
general limitations are discussed in Section 7.

Overview & Terminology: The overarching goal of Doppelganger is to generate a
design that, when reverse engineered, yields a netlist that does not match the actual
functionality of the design. While a reverse engineer will recover a seemingly valid netlist
that appears to implement a certain visible functionality, the IC actually executes a different
hidden functionality. In the following we will synonymously refer to the visible functionality
as fV and to the hidden functionality as fH. As a unique feature, the designer has control
over both functionalities. This is in contrast to many other obfuscation schemes, where
the designer cannot control the output that is visible to a reverse engineer.

In a nutshell, Doppelganger achieves this dual-functionality by ignoring parts of the
combinational logic via camouflaged gates. Applied during the conceptual phase of the
design process, i.e., on HDL level, Doppelganger takes two high-level descriptions as input:
one of the visible functionality and one of the hidden functionality. Its output consists
of two components: The first one is a synthesizable design that implements the visible
functionality. The second component is a set of specific connections between nets and
cells. When the specified connections are ignored in the computations by replacing the
respective gates with their camouflaged counterparts, the design now executes the hidden
functionality. Since a reverse engineer cannot tell the camouflaged gates apart from benign
gates, he is not aware that parts of the circuitry are effectively ignored, and therefore still
recovers a netlist of the visible functionality.

Requirements and Adversarial Model: In order to successfully apply Doppelganger
at full strength, the designer has to be able to instantiate camouflaged gates with dummy
inputs in the fabrication process, e.g., commercially available SML technology by Rambus
[Ram] or the covered gates from [SSTF19]. The “adversary” is a reverse engineer, facing
an unknown IC that features hidden functionality generated with Doppelganger. His goal
is to recover (parts of) the actual functionality, i.e., the hidden functionality, of the IC.
The reverse engineer has access to several fabricated ICs. Note, that the adversary is an
actor that operates after fabrication, i.e., Doppelganger is not suitable to defend, e.g.,
against a malicious foundry. We assume that the adversary employs the default techniques
of the state-of-the-art reversing process (cf. Section 2.1), i.e., based on delayering and
imaging. Thus, the employed camouflaged gates must be indistinguishable from their
benign counterparts during this standard procedure, as demonstrated in [SSTF19]. Note
that we do not restrict the adversary in his reversing techniques, but it is a reasonable
assumption that non-standard procedures are only employed given an initial suspicion.
Further, our technique is independent of the exact realization of the underlying camouflaged
gates. Hence, even if dedicated deobfuscation methods exist, they tend to infer high costs
[SSF+14] and the large design space for camouflaged gates in general [VPH+17] makes it
impossible to apply them preemptively to substantial parts of even moderately-sized ICs.
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Astart B C D

(a) The visible FSM, where a reverse engineer
finds four states

Astart B C D

(b) The hidden FSM, dummy state B is actually
never reached

Figure 1: A simple Doppelganger FSM

Table 1: Exemplary encodings of the states for our FSM
State A B C D

Encoding [s1:s0] 00 11 01 10

3.1 An Example of Doppelganger
In this section, we will illustrate the workflow of Doppelganger by means of a simple
example. As mentioned above, Doppelganger is applied to obfuscate encoding logic. Hence,
an especially attractive target are FSMs, which are present in virtually all digital designs.
Here, Doppelganger can be applied to the feedback logic which determines the state
transitions, i.e., the next state signal.

We consider the FSMs shown in Figure 1. The designer wants the reverse engineer
to recover the visible FSM from Figure 1a, while the actually executed functionality is
the hidden FSM shown in Figure 1b. The first step is to select suitable encodings for the
states. Assume the encodings of the 2-bit FSM state register s shown in Table 1. These
encodings result in the following Boolean functions for the next state signals s′visible and
s′hidden, where “in X” resembles a helper signal to indicate that the FSM is currently in
state X:

s′visible,1 = in A or in C or in D
s′visible,0 = in A or in B

s′hidden,1 = in C or in D
s′hidden,0 = in A or in B

Comparing both state transition functions, the hidden functionality is computed if a
term from the functions of the visible functionality is excluded from the computation. This
is a direct result of the selected state encodings. Therefore, we can directly implement
the hidden FSM by replacing the 3-input OR-gate from the equation for s′visible,1 with a
camouflaged gate, where the term “in A” is connected to a dummy input.

Since the dummy inputs cannot be identified as such by a reverse engineer, he will
eventually recover the state transition function s′visible, although s′hidden is computed
physically. Again, note that we were able to design both, the visible and the hidden FSM,
i.e., what a reverse engineer will erroneously recover.

3.2 The Doppelganger Algorithm
In the following we explain the Doppelganger algorithm in detail. Figure 2 contains a
walking example in form of a high-level breakdown of the algorithm’s steps based on the
example from the previous section. Our explanations follow the figure step-by-step. A
more formal pseudocode description of Doppelganger can be found in Appendix A.

3.2.1 Inputs:

The main inputs for Doppelganger are a description of fV and fH. The functionalities are
given via rules, RV for the visible and RH for the hidden functionality, that describe under
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(a) Inputs to the algorithm.

RV = {inA→B, inB→C, inC→D, inD→D}
RH = {inA→C, inB→C, inC→D, inD→D}

Predefined Encodings = {A: 00}

(b) Binary Encoding selection for all symbols.

All symbols S = {A, B, C, D}
Sorted critical symbols S = {B, C}
Apply predefined encodings:

E(A) = 00

Process critical symbols in sorted order:
E(C): available encodings: {01, 10, 11}

E(C) = 01
E(B): available encodings: {10, 11}
after filtering non-overlapping encodings: {11}

E(B) = 11

Remaining symbols are uncritical → assign remaining encodings:
E(D) = 10

(c) Function generation.

Initialize Boolean encoding functions e1 := 0 and e0 := 0. Updates are highlighted in
green, underlined terms are marked as to ignore and thus input to a dummy pin of a
camouflaged gate.

Process changed elements from RV to RH:
RV : “inA→ B” ⇒ e = 11 when inA
RH: “inA→ C” ⇒ e = 01 when inA

e1 = inA
e0 = inA

Process unchanged elements from RV and RH:
“inB→ C” ⇒ e = 01 when inB:

e1 = inA
e0 = inA + inB

“inC→ D” ⇒ e = 10 when inC:
e1 = inA + inC
e0 = inA + inB

“inD→ D” ⇒ e = 10 when inD:
e1 = inA + inC + inD
e0 = inA + inB

Process exclusive elements in RV :
(no elements in this group)

Figure 2: Rundown of the Doppelganger algorithm applied to the example from Section 3.1
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which signal combinations a specific symbol shall be output, e.g., “when signal_x is 1
and current symbol is symbol A, then output symbol B”. By specifying different rules for
both functionalities, i.e., different signal combinations or output symbols, the designer can
control the real (hidden) functionality and the apparent (visible) functionality. If necessary,
predefined encodings for some symbols can also be provided. Figure 2a shows the precise
inputs for the example from Section 3.1.

Limitations: The user is not entirely free in the differences between the rules of both
functionalities. Given that fH was designed to output the set of symbols SH , the joint set
of symbols S of both functionalities has to be encoded with the same number of bits as
necessary to encode just SH . In other words, the symbols that fV encodes do not have to
be a subset of SH , but also must not increase the size of individual encodings.

Next, the signal combinations in the rules for fV must be supersets of the signal
combinations in the rules for fH. Effectively this means that fV can include dummy signals
in its conditions that are ignored in fH, but no signal combinations used in the rules for
fH can be ignored in the rules for fV .

Furthermore, the differences between the functionalities must not form a cyclic depen-
dency between symbols. If, for instance, for their respective signal combinations symbol A
in the visible functionality shall become B in the hidden functionality and vice versa, this
would result in both symbols depending on each other (a cyclic dependency), making it
impossible to find suitable encodings. This is due to the necessity of encodings to overlap
each other, as we will explain in the next paragraph.

3.2.2 Obfuscation Approach:

The overall goal is to generate benign logic for fV that actually computes fH when
implemented with dummy inputs at specific gates. Rules that output the same symbol in
both functionalities but that ignore some signals in fH, i.e., “a and b → X” in RV and “b
→ X” in RH, are straightforward to facilitate by simply connecting these ignored signals
to dummy inputs in the combinational logic. However, rules that (in addition) change the
output symbol have to be assessed differently: the respective symbols have to be encoded
in a specific way, such that by ignoring parts of the encoding computation via dummy
inputs, the hidden symbol is output. To this end, Doppelganger consists of two steps: (1)
choosing suitable encodings and (2) generating the logic that enables both functionalities.

3.2.3 Step 1: Selecting Encodings

Doppelganger assigns a simple binary encoding, i.e., given |S| = n symbols, all encodings
have k = dlog2(n)e bit. As explained above, the most crucial step is to select suitable
encodings for all symbols that appear in rules with different outputs from RV to RH. We
refer to these symbols as critical symbols in the following.

Suppose that, for a specific combination of signals, fV shall output symbol x and fH
shall output symbol y. Encodings have to be chosen such that the encoding E(x) has a
1-bit wherever E(y) has a 1-bit. Since all encodings have to be unique, this implies that
HW (E(x)) > HW (E(y)). We refer to encodings with this relation and their respective
symbols as overlapping. An example for suitable overlapping encodings for x and y would
be E(x) = 1010 and E(y) = 0010. With these encodings, feeding the terms that will
compute the additional 1-bits of E(x) into dummy signals of camouflaged gates will result
in computation of the encoding of E(y) in fH. For the non-critical symbols, encoding values
do not matter for the obfuscation since they are untouched between fV and fH. Hence, for
all non-critical symbols, the remaining available encodings are sorted in ascending order
and the first available one is assigned to each to minimize gaps in utilized encodings.

We present two algorithms for assigning encodings to critical symbols, (1) a greedy
algorithm and (2) an exhaustive algorithm. For both algorithms, the critical symbols are
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sorted first: if the encoding of symbol x has to overlap the encoding of symbol y, then y
has to be processed before x. Figure 2b visualizes the encoding selection process for the
example from Section 3.1 using the greedy algorithm.

Greedy Encoding Assignment: Suppose that we want to assign an encoding for
critical symbol x. The greedy algorithm forms a candidate set C of encodings that are
suitable for x and yet unassigned. This is done by collecting all unassigned encodings that
overlap all encodings of symbols that x overlaps. The algorithm then simply assigns the
first encoding in C to x. A formal description of the algorithm can be found in Algorithm 1.

Since the greedy algorithm simply traverses all symbols once and assigns an encoding,
its complexity is O(c) for c ≤ n critical symbols. However, since it always picks the first
suitable encoding, it can run out of candidates if the overlap structure is more complex.
In that case, the exhaustive algorithm can take over, which we describe in the following.

Exhaustive Encoding Assignment: The exhaustive algorithm can be compared to a
recursive depth-first search across all possible encoding assignments. Basically, it works
exactly as the greedy variant, but instead of just assigning the first encoding in C, it tries
all of them in each iteration until a suitable encoding for all critical symbols is found.

In other words, it starts like the greedy variant, by taking the first critical symbol and
determining all suitable encodings. It then assigns one of these encodings and proceeds
with the next symbol. Again, it collects all suitable unassigned encodings, assigns one,
and proceeds to the next symbol. This is done until all symbols have a suitable encoding
assigned, which indicates successful termination of the algorithm, or there is no suitable
encoding available for a symbol. In this case, the algorithm assigns the next suitable
encoding to the previous symbol and tries again. If there are also no more suitable
encodings for the previous symbol, the encoding for the symbol before is advanced and so
on. This way, the algorithm exhaustively iterates all possible encoding assignments for all
symbols, eventually finding a suitable set of assignments if it exists. A formal description
of this recursive algorithm can be found in Algorithm 2.

For c ≤ n critical symbols, the exhaustive algorithm has a worst-case complexity
that can be approximated as O(c!) since the number of available encodings decreases
with each symbol. This can lead to long run times depending on the number of critical
symbols. However, in practice, the whole computation has to be performed only once in
the design process. In addition, the algorithm can be easily parallelized, e.g., by splitting
the available encodings for the first critical symbol into sets of equal size and processing
each set in a separate thread. In our implementation, the greedy algorithm is used as the
initial algorithm and the exhaustive algorithm only takes over if the greedy version fails.
Note that if a suitable encoding assignment exists for all critical symbols, the exhaustive
algorithm will definitely find it. In our case studies in Section 5 and Section 6, the greedy
algorithm was always able to find suitable encodings.

3.2.4 Step 2: Generating Obfuscated Logic

After encodings have been assigned, the obfuscated logic is generated in form of a Boolean
function ei for each output bit of the encoding output e. All output functions are initialized
to ei = 0. Doppelganger then analyzes the rules in RH and RV and assigns them to one
of three groups: (1) those which are only present in RV , (2) those which were changed
from RV to RH, and (3) those which are contained in both RH and RV . It then iterates
these groups and generates the output functions bit-by-bit in DNF format, based on the
encoding of the respective output symbol in the visible functionality. Depending on the
assigned group, specific DNF-terms are marked as to ignore if they appear only in visible
functionality. By connecting all signals that hold the terms marked as to ignore to dummy
inputs of camouflaged gates, the hidden functionality is actually computed because of
the overlapping encodings. Figure 2c shows the final function generation step-by-step
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Figure 3: Functional modules of the CBC-encryption core, connected via a central data
bus

for the example from Section 3.1. A formal description of the algorithm can be found in
Algorithm 3.

4 Case Study Overview
In this section, we give an overview on the cryptographic coprocessor that is used as the
baseline for our two case studies in Section 5 and Section 6.

4.1 Motivation
The chosen design resembles a cryptographic coprocessor for symmetric ciphers as used
in many applications with security features. The user is able to select from a variety of
cipher primitives and modes of operation to leverage hardware-accelerated cryptography.

Our design employs a standard architecture: modularity is achieved via a centralized bus
that interconnects the available functional modules and register files. Both, cipher cores and
the additional functionalities of modes of operation, can thus be implemented as isolated
modules, connected to the bus, and then used interchangeably. While the architecture
allows to add an arbitrary number of cipher primitives and modes, we implemented support
for one cipher (AES) and one mode of operation (CBC) for the sake of simplicity. In CBC
mode, the previous output (or the IV in case of the first block) is xored to the plaintext
and then the result is encrypted.

4.2 Design
All functional modules and bus connections of our implementation are shown in Figure 3. It
consists of I/O modules RX and TX, a random number generator RNG, an AES encryption
module AES, a CBC module CBC, and three registers: K for a key, P for a plaintext, and
Y for the output. The modules are orchestrated via a central FSM, which also operates a
Bus Controller that in turn controls the data flow. We selected a bus width of w = 16 bit.
For simplicity, the bus connections are implemented via tri-state logic: the current master
can arbitrarily write to the bus lines and all other nodes keep their bus connections on
high-impedance to allow for signal transmissions in arbitrary directions. Note, that the
mode-of-operation functionality, in case of CBC a simple xor, is intentionally computed
outside of the cipher module. This way, additional modes are easily added, while being
decoupled from the underlying cipher primitive. For the same reason, there is a dedicated
register for the plaintext P, which could be merged with the output register Y if only
CBC-mode had to be supported.

We synthesized the design using the Nangate 45nm standard cell library and the
Synopsys design suite multiple times with different random encodings in the components
we will obfuscate, i.e., the central FSM states and the bus controller addresses. Note that,
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Figure 4: Functionality of the design. For readability, only transitions to other states are
shown.

in practice, encodings can be chosen by the designer but are often also auto-generated by
design tools, which yields varying outcomes depending, e.g., on synthesis options, HDL
code, toolchain. Table 4 summarizes the min., max., and average size of the entire design,
as well as the sizes of the central FSM and the bus controller in isolation, for ten synthesis
runs.

4.3 Functionality
In our case studies, Doppelganger will be applied to the central FSM and the bus controller.
Figure 4 shows the combined functionality of both components. Note that, for the sake of
readability, we omitted arrows indicating a waiting state, i.e., we only included transitions
to other states. Each state circle contains its functionality as well as the performed bus
transmissions (if available).

The overall functionality of the design is as follows: After initialization, the core awaits
a control byte indicating either a new key or a new plaintext for encryption. If a new key
should be set, the core stores the new key, generates a fresh Initialization Vector (IV),
stores it in the Y-register, and transmits it to the user. When a new plaintext is received, it
is stored in the P-register. Then, it is sent to the CBC-module together with the previous
ciphertext from the Y-register, which is the IV in the first encryption, and stores the result
back into P. This result is then sent as the plaintext to the encryption module, followed by
the key. After encryption, the ciphertext is stored in Y and then transmitted to the user.

Thus, this design implements a cryptographic coprocessor that offers benign AES-CBC
functionality. There are no unusual design decisions and input/output behavior is as
expected given the specifications. Note that a fully-fledged design would likely feature
decryption functionality, additional modes of operation, and other symmetric ciphers, all
of which further increase complexity and thus the required effort for reverse engineering.

5 Case Study I – Defensive Obfuscation
In our first case study, we assess the impact of applying Doppelganger as a protective
measure. We show that a reverse engineer can be tricked into recovering a different but
plausible functionality. Furthermore, we demonstrate that partially random obfuscation
can massively hinder the analyst if plausibility cannot be easily verified in an application.

5.1 Plausible Obfuscation
In the case of a cryptographic coprocessor, control logic can quite easily be checked for
plausibility when the functional modules are understood. In the first part of this case
study, we therefore apply Doppelganger such that the visible functionality is plausible and



Max Hoffmann and Christof Paar 93

Table 2: Introduced changes in the visible functionality to the FSM state transitions (left)
and bus address decoding (right)

Conditions State in fH State in fV
state = receive P CBC: load P AES: load P

state = AES: encrypt transmit Y CBC: load P
state = CBC: P ⊕ Y AES: load P transmit IV

Conditions Bus config Bus config
in fH in fV

state = AES: load P P → AES Y → AES

presents the reverse engineer with a different mode of operation, namely CFB instead of
CBC. In this mode, the previous output (or the IV in the first block) is encrypted and
the plaintext is then xored. To lead a reverse engineer to recover this (incorrect) mode,
we applied Doppelganger to the central FSM and the bus controller of our coprocessor.
The hidden functionality is simply the original functionality of the design. For the visible
functionality we changed three state transitions and a bus address decoding to suggest the
CFB mode, as shown in Table 2. With these changes, our design indeed first encrypts the
previous output, stored in the Y-register and combines the output with the plaintext via xor
by reusing the CBC functionality afterwards. Note that the final transition was changed
to transmit IV instead of transmit Y to avoid a circular dependency between overlapping
encodings. Since effectively in both states the Y-register is transmitted and the next state
is receive ctrl for both, this results in a functional design.

Results: To enable the obfuscation, only four signals have to be connected to dummy
inputs of camouflaged gates. The number of sequential cells is unchanged, since Dop-
pelganger only affects combinational logic. Table 4 compares the size of the synthesized
plausibly-obfuscated coprocessor to the unobfuscated variant. Notably, the FSM and
the bus controller are both in the range of the unobfuscated design, i.e., a distinct area-
overhead is not noticeable. To assess the output of Doppelganger, we then used the
netlist analysis framework HAL [FWS+18] to analyze the resulting FSM implementation
from the point-of-view of a reverse engineer. We applied the recent FSM detection and
state transition recovery algorithm from Fyrbiak et al. [FWD+18]. The recovered state
transition graph contains all transitions that are possible with the given combinational
logic. Note that this can include state transitions that never occur in practice, but that
are generally possible when just looking at the combinational logic. The resulting state
transition graph is shown in Figure 5a. For readability, we show the corresponding state
names grayed-out next to the binary encodings. Note that a real-world analyst does not
have these semantic names and has to recover the purpose of each state with further
analyses. The algorithm from [FWD+18] correctly recovered the visible CFB-mode FSM,
confirming that an analyst would not see the CBC-mode that is actually executed.

Discussion: The obfuscation was introduced without a noticeable increase in area. Even
the sizes of the obfuscated components in isolation are still in the range of what was
observed for the unobfuscated design. When analyzing the visible functionality, the reverse
engineer will recover a valid AES-CFB core instead of an AES-CBC core. If the analyst is
constrained to static analysis, the plausibility of the visible functionality therefore results
in an incorrect understanding of the design. However, with dynamic analysis capabilities,
the analyst is able to detect a mismatch between expected and obtained results. Note that
he is still not able to immediately tell that parts of the design are obfuscated, nor can he
immediately locate the obfuscation that way. Only through further analysis, he may be
able to identify the source of his mismatched results (cf. Section 2.2). In the end, this
notably increases the effort and cost of the reversing process, rendering the obfuscation
successful in any case.
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Table 3: Randomized changes to the state transitions of the central FSM
Conditions State in fH State in fV

state = receive ctrl receive key AES: load Pand ctrl byte = new key
state = generate IV transmit IV AES: load K

state = receive P CBC: load P CBC: load Y
state = AES: load P AES: load K receive key
state = AES: load K AES: encrypt transmit Y
state = transmit Y receive ctrl CBC: store P ⊕ Y

Table 4: Size comparison of the defensive applications of Doppelganger. Area includes all
cells of the module, #CC denotes the number of combinational cells only.

FSM Bus Controller Entire Design
Design Area #CC Area #CC Area #CC

min 58 GE 38 55 GE 41 16,686 GE 10,170
Unobfuscated avg 61 GE 42 58 GE 44 16,737 GE 10,186

max 65 GE 47 60 GE 47 16,776 GE 10,202
Plausible Obf. 63 GE 47 59 GE 46 16,770 GE 10,200

Randomized Obf. 62 GE 45 54 GE 40 16,775 GE 10,205

5.2 Randomized Obfuscation
Arguably, the plausibility of the visible functionality of the coprocessor can be verified
once the crucial functional modules are understood, i.e., after the AES core and the
registers have been identified. However, this is not the case if there is no or little a-priory
knowledge about the target netlist, which is often the case during reverse engineering. If
plausibility cannot be easily verified, a (partially) randomized visible functionality can
thus heavily impede progress of the reverse engineer. As an example, we apply such
randomized obfuscation to the cryptographic coprocessor. In the visible functionality, we
replace six output symbols, i.e., six “next states”, with random other states. The symbolic
modifications are shown in Table 3.

Results: To enable the hidden functionality, only six signals have to be connected to
dummy inputs of camouflaged gates. Table 4 also includes the randomly-obfuscated design
in its area comparisons. Again, all observed values are in the ranges that where obtained
from the unobfuscated design. Applying the state transition recovery algorithm to the
obfuscated design results in the graph shown in Figure 5b. Comparing the recovered state
transition graph from the figure with the transitions of the hidden functionality shows
the major additional hurdles randomized obfuscation introduces for a reverse engineer
who cannot check for plausibility: First, three functional states of the hidden FSM, i.e.,
transmit IV, CBC: load P, and AES: encrypt, are missing in the graph, which are thus not
even considered by the analyst. Note that it is common that not all possible values of
the FSM state register encode valid states. The 12 found states still require four bits to
be encoded, hence not raising suspicion. Second, the overall structure of the recovered
state transition graph does not match the original structure anymore: instead of two
isolated state sequences (reacting to a new key and encrypting a plaintext) which return
to a common state, the recovered state transition graph of the obfuscated FSM has two
converging sequences that eventual lead to a loop. Third, the recovered state sequences
are completely different from the actually traversed sequences. Hence, even if the analyst
managed to reverse engineer the functionality of each module, the recovered interworkings
are incorrect. Without means to easily verify plausibility, it is likely impossible for an
analyst to detect the obfuscation via static analysis.
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(a) Recovered state transition graph of the
plausibly-obfuscated FSM

(b) Recovered state transition graph of the
randomly-obfuscated FSM

Figure 5: Recovered state transition graphs using the algorithm from [FWD+18]. Note
that the analyst does not know the semantic meanings marked in gray.

Discussion: Doppelganger heavily obfuscates the central control logic. Analysis of the
resulting circuitry shows that the difficulty of understanding the design is notably increased,
assuming that the plausibility of the FSM cannot be verified. If the output of such a
design is also probabilistic or cannot be reasonably cross-checked with simulation results,
we argue that the obfuscation constitutes a major hurdle for the reverse engineer. In
contrast to randomly injecting camouflaged gates into the design, randomized Doppelganger
immediately shows the high-level effect of the obfuscation to the designer. Note that there
is a difference between applying randomized Doppelganger and random injection of plain
camouflaged gates. With randomly injected gates, the precise effects on what a reverse
engineer recovers are unknown. If the random insertion points were chosen unluckily,
they might even cancel each other out or have limited impact in impeding the reverse
engineer’s understanding. The precise effects have to be determined via further analysis,
close to reverse engineering the affected party by oneself. In randomized Doppelganger,
the randomization is applied to the rules of the encoding logic. Hence, the designer
immediately knows the functionality a reverse engineer will recover and can properly assess
the obfuscation strength.

5.3 Summarizing the Defensive Strength of Doppelganger
As for the majority of obfuscation methods, it is difficult to provide quantiative measures for
stealth. Therefore, we provide a qualitative discussion of the stealthiness of Doppelganger.
Naturally, the strength of the obfuscation depends on the amount of information and
techniques available to an analyst. In the strongest case, where an analyst cannot perform
plausibility checks and cannot meaningfully check internal states of the design, e.g., because
dynamic analysis is not possible or because outputs are probabilistic, even randomized
application of Doppelganger is virtually impossible to detect. If the analyst has said
capabilities, a carefully crafted plausible functionality of Doppelganger still results in high
stealthiness. In that case, detectability solely depends on the application, as we will also
demonstrate in our case study of malicious obfuscation (cf. Section 6). Note that our
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obfuscation inferred no noticeable area overhead for the entire design. All variations in
area were in the natural range caused by different encodings, as shown in the synthesis
results for the unobfuscated design in Table 4. Our case studies show that an analyst
has to overcome major additional obstacles, regardless of the scenario. First, he has to
make sure that a potential mismatch was not caused by an error during netlist recovery,
which is a very common problem [BWL+20]. Now, even if the analyst was sure that
there was no error, he still has to narrow the source of the mismatch down to a few
specific gates, which is a challenging task, especially in large IC with billions of transistors.
Assuming that the analyst successfully located the obfuscation, he then has to uncover the
hidden functionality, which in turn requires him to understand how the camouflaged gates
are instantiated. Furthermore, existing reverse engineering methods such as [S+12] or
[FWD+18] are of less use to a reverse engineer, since they operate solely on the netlist, i.e.,
only recover the visible functionality. Likewise, it is more effective than existing schemes
for obfuscation, e.g., FSM obfuscation [Kou12, CB09], since techniques that break FSM
obfuscation such as [FWD+18] are not applicable to Doppelganger.

6 Case Study II – Stealthy Hardware Trojans
While obfuscation schemes have thus far primarily been presented as defensive techniques,
they can also be employed by malicious actors. In this section, we demonstrate the danger-
ous implications of malicious obfuscation, by the example of a dangerous cryptographic
backdoor. This very topic underlies the current discussion about trust in foreign-build
computer and communication devices [KS]. We demonstrate that this is a viable threat
by presenting an invisible, remotely exploitable, key-leakage Trojan, which is facilitated
by Doppelganger. Since a reverse engineer will find a benign design and only the hidden
functionality contains the malicious functionality, we call the Trojan Evil Twin.

6.1 Motivation
Hardware as the root of trust is often implicitly assumed to be free of manipulation.
However, Trojans in hardware are a dangerous threat for high-value targets, e.g., critical
infrastructure components such as network routers, the smart grid, government communi-
cation, or military systems. An example for the latter is the alleged backdoor in Syrian air
defense systems, which was exploited in 2007 [Pag, Ley]. Notably, the US Department of
Defense even advised against importing hardware from foreign countries because of the
associated risks in its 2015-report [oD]. The 2018 Bloomberg allegations on a supposed
hardware backdoor in Supermicro server hardware [RR18] and the recent ban by the US
government on using telecommunication equipment from China due to security concerns
[KS] underline the ongoing relevance. Trojans that are near-impossible to detect are
particularly attractive for nation-state actors. While common scenarios describe Trojans
that are inserted by a third party, they can also be implanted by the original designer, e.g.,
when pressured by a government, as described in the Snowden documents, cf. [SFKR15].

Several sophisticated hardware Trojans have been proposed in the academic liter-
ature, ranging from side-channel Trojans [L+09, EGMP17], over dopant-based Trojans
[B+13], Trojans which introduce exploitable bugs [BCS08, G+16] or exploit parasitic effects
[KAFP19], to analog Trojan triggers in digital designs [Y+16]. The different classes of
hardware Trojans as well as countermeasures have been surveyed in [T+10, CNB09].

Scenario: In this case study, we take the point-of-view of a malicious designer, who
wants to implement a hidden backdoor in the cryptographic coprocessor from Section 4.
The backdoor has to stay hidden even if the IC is reverse engineered, hence we employ
Doppelganger to stealthily subvert the given design. Recall that the adversary, i.e., an
analyst that reverse engineers the trojanized design, is outside of the fabrication chain
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and external to the design house, e.g., an inspector of foreign infrastructure technology
before wide-spread deployment or an analyst during certification assessment. Given the
application, the analyst is quite unrestricted in his approaches: plausibility checks and
comparisons to functional ICs are possible. Therefore, the visible functionality has to
be plausible with respect to the design specifications and the real output of the hidden
functionality has to be indistinguishable from expected output under reasonable inspection.
However, note that the analyst does not have access to a golden model or semantic design
internals, as he is not part of the design house.

6.2 Trojanization Strategy
Following the Trojan taxonomy of [T+10, CNB09], Evil Twin is an always-on Trojan.
The payload, the user-supplied symmetric key, shall be leaked via the encryption output.
While symmetric encryption in isolation does not leave room for key leakage, the mode of
operation can be used to exfiltrate data: most common modes, e.g., CBC, CFB, OFB, and
partially CTR or GCM, use random IVs to provide their security guarantees. The IV is
transmitted in plain together with the subsequently encrypted blocks. Hence, our Trojan
exploits the (seemingly) random IV, for leaking the secret symmetric key. Note that the
premise of such an IV-Trojan was sketched in [BPR14], however we craft a notably more
stealthy variant that does not have to insert an adversary-chosen key into the design.

The central bus architecture, while being a common design element, is crucial to
facilitate the Trojan. In order to leak the key through the IV, there has to exist a data
path between the IV register and the key register. A bus structure creates a physical data
path between all connected components, even though not all pairs of connected components
exchange data during normal operation.

Related Work: Young and Yung introduced kleptography [YY96, YY97], inspired by
covert channels [Sim84], as the study of “stealing information securely and subliminally”.
The premise of a trojanized implementation in general that presents genuine input/output
behavior but includes exploitable mechanisms was formalized as Algorithm Substitution
Attacks (ASAs) by Bellare et al. [BPR14, B+15]. Note that none of these theoretical
concepts have been transferred or applied to hardware designs so far. To the best of our
knowledge, Evil Twin is the first time a hardware design with a kleptographic ASA Trojan
has been demonstrated.

6.3 Applying Doppelganger
It is important to note that we do not make any changes to the design’s architecture to
implement the Trojan. Rather, we apply Doppelganger to the central FSM and the bus
controller. The visible functionality is simply the benign functionality of the coprocessor.
However, the hidden functionality turns said benign design into a trojanized design.

The most naive approach to facilitate a key-leakage Trojan would be to set the IV as a
plain copy of the key. However, this can be trivially detected from I/O testing, even by an
unsuspecting user. Generally speaking, as long as the IV is the result of a deterministic
function of just the key, the IV will be static. Setting the same key multiple times will
always result in an identical IV which is easily noticed.

In order to overcome that limitation, the IV has to be the result of a probabilistic
function. This leads to a delicate trade-off: The malicious designer has to be able to recover
the key from a randomized IV in order to exploit the Trojan. At the same time, the entropy
in the IV has to be high enough to thwart detection during testing. Therefore, we implement
Evil Twin via the following strategy: Evil Twin uses the existing AES module to encrypt
the user-supplied key kuser with an ephemeral key krnd and outputs IV = AESkrnd(kuser).
Since an entirely random krnd would require breaking the underlying cipher to recover
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Table 5: Introduced changes in the visible functionality to the FSM state transitions (left)
and bus address decoding (right) to enable Evil Twin. Note that this time V resembles
the original functionality.

Conditions State in fH State in fV
state = receive key transmit IV generate IV
state = generate IV AES: encrypt transmit IV
state = transmit IV generate IV receive ctrl

Conditions Bus config Bus config
in fH in fV

state = transmit IV K → AES Y → TX
state = generate IV RNG → AES RNG → Y

kuser, the strategy is to generate a partially random key. In our design, randomness is
obtained by filling the key register with output of the RNG module. We generate a key
with reduced entropy by starting encryption early, i.e., before all bus transmissions from
the RNG module are completed. This results the previously reset encryption core to use a
key of the binary form krnd = 00 . . . 00|R, with R being a random bit string of length t ·w,
where w is the bus width and t the number of transmitted bus words before encryption
is started. The Trojan is therefore parameterizable during design time via the security
parameter λ = t · w. For example, starting encryption after two transmitted data words
(t = 2) with a bus width of w = 16 would result in krnd consisting of 96 zero bits followed
by 32 random bits and thus allows for 232 unique IVs for one static user-supplied key.

Evil Twin Details: We implemented our Evil Twin Trojan by applying Doppelganger
to both, the state transition logic of the central FSM and the bus addressing logic. The
changes are shown in Table 5 and the resulting hidden functionality is depicted in Figure 6.

The hidden functionality operates as follows: Once a key is received in state receive key
the FSM transitions to transmit IV instead of generate IV. This is done since we need the
RNG module later, which is enabled during generate IV. Now in former state transmit IV,
the bus source address and bus destination address are modified. Instead of transmitting
the content of the Y register to the TX module, the content of the K register is sent to the
encryption module AES as plaintext. After that, the hidden FSM transitions to generate
IV. Here, instead of transmitting the output of the RNG module to the Y register, it is
transmitted directly to the encryption core as the key. The final modified state transition
starts the encryption process early, by transitioning to AES: encrypt directly after the first
bus transmission (t = 1). While the remaining data of the RNG module is still transmitted
to the bus, all bus read buffers are in high-impedance state, i.e., this does not impact the
AES module, which now holds the value krnd = 00 . . . 00|R in its internal key register. R is
the first 16-bit data word that was transmitted by the RNG module. Note that the entire
right side of the functionality in Figure 6 remains unchanged in order to keep plaintext
encryptions unmodified. In the following cycles, AES finishes, outputting AESkrnd(kuser)
into the Y register, which is subsequently transmitted to the user in transmit Y. Therefore,
the user receives a seemingly random value as the IV, which will be used for encryption of
the next transmitted plaintext.

Exploiting the Trojan: During operation, the user key can be recovered from just
a single wiretapped transmission that includes the IV and the encryption of a single
block of (partially) known plaintext. In practice, parts of a plaintext are often known,
e.g., formatting information or protocol header data. In order to recover kuser, the IV is
decrypted while iterating through all possible krnd, yielding candidate keys. If decrypting
the ciphertext with a candidate key matches the known plaintext, kuser was successfully
exfiltrated. This key search requires on average 2λ−1 operations, consisting of decryption
of the IV and decryption of a ciphertext with the resulting key candidate. Hence the
average cost of recovering the user key is 2λ decryptions. The entropy of krnd can easily be
adapted by changing either w or t. However, this also scales the exploitation complexity
accordingly. In our implementation with w = 16 and t = 1, the Trojan is exploitable via
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Figure 6: Overview on the realization of Evil Twin via Doppelganger. The gray transitions
of the visible functionality are changed to the red ones in the hidden functionality. Likewise,
bus address modifications are shown in red.

216 AES decryptions on average.

6.4 Evaluation of Evil Twin
Overhead: We synthesized the trojanized design with the same options as in our first
case study Section 5. The synthesized trojanized coprocessor has a total area of 16,683 GE,
includes 10,165 combinational cells, and six signals have to be connected to dummy inputs
of camouflaged gates. The FSM in isolation has an area of 60 GE with 40 combinational
cells and the bus controller in isolation has an area of 61 GE and 49 combinational cells.
Comparing these sizes to the sizes of the unobfuscated design in Table 4, the FSM size
matches the average unobfuscated size, while the bus controller is marginally larger, with 1
GE more than the unobfuscated designs. Again, the number of sequential cells is unchanged
as expected. The FSM analysis algorithm from [FWD+18] correctly recovered the visible
functionality, mirroring Figure 6.

Trojan Strength: Intuitively, a hardware Trojan requires additions to the benign design,
e.g., new modules, gates, or even analog components. Such additional components are
visible in the netlist and make for suitable anchor points during reverse engineering-based
inspection [BFS15]. Crucially, all existing static analysis methods for Trojan detection, e.g.,
[WSS13, OSYT15, HYT17, FWS+18], fail when faced with our Trojan, since the analyzed
netlist perfectly describes the visible, benign functionality and malicious functionality is
achieved by ignoring circuitry, not by adding new logic. Given that the analyst can employ
dynamic analysis, it is possible, however highly unlikely, that the presence of our Trojan
can be detected. While we cannot assess all available dynamic analysis approaches, in the
following we argue that the Trojan stays undetected for well known techniques.

Since the IV is (partially) random, netlist-based test pattern generation, e.g., via
Automated Test Pattern Generation (ATPG), is not applicable. Regarding latency, the
trojanized design takes longer to output an IV since a full encryption has to be performed.
Hence, comparing the expected duration of IV generation with the duration on a functional
IC might reveal a mismatch. However, this is only the case if there are no unpredictable
delays, e.g., when querying a TRNG. If the obfuscation is paired with common side-channel
countermeasures such as random delays, this analysis does not reveal the Trojan. Likewise,
increased power consumption during IV generation is only visible when comparing with a
golden model, which the analyst does not have.

Looking at the Trojan design, the most promising approach for detection lies in
finding IV collisions: if for a fixed key the same IV is observed multiple times in short
periods, suspicion arises. Based on the birthday paradox such a collision is expected
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after approximately 2λ/2 attempts for a fixed user key. Instantiating the design with, for
example, λ = 32, the first collision is hence expected after roughly 216 IVs. However,
since there is no indication of a Trojan at any point of the reversing process, it is not
reasonable to observe that many IVs for a single static key out of curiosity. Given λ = 32,
232 decryptions are required on average to exploit the Trojan. Such a computation can be
done in a matter of minutes on a modern desktop PC purely in software and even faster
using the specialized AES-NI instructions.

In total, we expect Evil Twin to remain undetected. In a real-world implementation,
with several more functionalities and potentially countermeasures against other attack
vectors, the Trojan would be even more stealthy than in our experimental setting. Note
that, to the unsuspecting user, the Trojan is entirely invisible since IVs appear to be
random and the device is interoperable with genuine devices.

Parametrization: In order to further decrease the likelihood of detectability from testing
IV collisions, the security parameter λ can be increased even more. However, this negatively
impacts exploitability, as one has to invest exponentially more computations to recover a
user key. For example, at λ = 64 the analyst would have to observe an average of 232 IVs
for the same key before a collision is expected, while the Trojan designer would need to
perform 264 decryptions to recover the user key. Even though this is considerable effort, it
seems highly likely that nation-state adversaries can routinely perform such computations.
Hence, the trade-off between detectability and exploitability also introduces a notion of
exclusivity: if the workload to exploit the Trojan is increased, only well-equipped actors
can exploit the Trojan even after it is uncovered.

7 Discussion
After demonstrating Doppelganger in two case studies and discussing its strength with
respect to the scenarios, we will now discuss its overall overhead and limitations.

7.1 Overhead
Typically, obfuscation schemes introduce a quantifiable overhead, e.g., increasing design
area by a fixed percentage. As shown in our experiments, the obfuscated designs are similar
in size to the unobfuscated designs, even when only inspecting the obfuscated modules in
isolation. This is mainly due to the fact that the design size is mostly dependent on the
chosen encodings since they directly influence the surrounding combinational logic. This is
also shown by the area variations of the unobfuscated designs in Table 4. However, since
specific signals must be connected to dummy inputs to enable the hidden functionality,
i.e., must not be removed or merged during synthesis optimization, Doppelganger puts
minor constraints on the synthesis process. As optimization passes typically employ
heuristics and highly depend on the synthesis targets, e.g., optimization for speed/area,
we found the effects of these minor constraints to get lost in the overall design complexity.
Unfortunately, a more precise generic quantification is difficult to provide, since the output
of the obfuscation, i.e., the encodings and surrounding circuitry, is largely dependent on
the application-dependent visible and hidden functionality specified by the designer. Still,
encoding logic typically makes an integral but area-wise very small part of modern ICs.
Thus, we expect the obfuscation overhead to not be noticeable in virtually all applications.

7.2 Obfuscation Limitations
Doppelganger is a valuable defensive tool for design obfuscation (cf. Section 5) and at the
same time poses a considerable threat in offensive applications (cf. Section 6). It should
be noted that Doppelganger can easily be combined with traditional obfuscation methods,
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e.g., bus scrambling. However, like all obfuscation it comes with limitations.
Naturally, the stealthiness of Doppelganger is dependent on the strength of the un-

derlying low-level obfuscation (cf. requirements in Section 3). Should an analyst be able
to uncover the camouflaged gates, he can recover an error-free netlist of the IC’s hidden
functionality. If he is able to do so immediately during the standard netlist recovery
process (cf. Section 2.1), i.e., the camouflaged gates are broken, Doppelganger is broken as
well, but only for that specific instantiation of camouflaging.

Another limitation lies in the fact that Doppelganger is only applied to a small part of
the design. While encoding logic is typically present in the central elements that orchestrate
the majority of a design, in many applications a reverse engineer can still correctly analyze
other functional modules, e.g., the I/O modules in our case study. However, in more
complex designs with a multitude of shared functional components, understanding the
control logic is imperative to recover the high-level functionalities of the design.

A potential way to quickly detect and locate low-level obfuscation in general is via scan
chains, where the state of each FF in the IC can be written and read out. Virtually all ICs
are equipped with (partial) scan chains for testing. While scan chains can be deactivated
after fabrication, in some applications they need to remain active for in-field reliability
testing. For Doppelganger to remain undetected, it is imperative that access to scan chains
is prohibited or that Doppelganger-affected modules are not included in the scan chains.
Da Rolt et al. provide an extensive overview on measures to authenticate scan-chain
access and to counteract malicious use [DDN+14] which were further evaluated by Azriel
et al. [AGGM17]. Karmakar et al. also propose a logic locking scheme to protect scan chains
[KCK18]. However, their solution was shown to be insecure [AYS+19] and the real-world
security of logic locking in general is currently critically discussed [EHP19, RTR+19].

8 Conclusion
In this work we presented Doppelganger, a generic hardware obfuscation technique for
arbitrary encoding logic. Built on camouflaged gates, the designer not only has control
over the functionality that is obfuscated, but also over the output a reverse engineer is
facing. This enables to present an analyst with an incorrect but plausible netlist.

We demonstrated the defensive strength of Doppelganger by obfuscating an exemplary
cryptographic coprocessor. Then, we demonstrated for the first time that obfuscation with
camouflaged gates is a double-edged sword. We show how a kleptographic ASA, initially
proposed as a theoretical construct, can in fact be stealthily mounted using Doppelganger.
The trojanized design is still interoperable with genuine designs and allows for remote
key-leakage via a known-plaintext attack.

In summary, Doppelganger offers major advantages over the state of the art in hard-
ware obfuscation, which is almost entirely restricted to traditional logic-level obfuscation
methods. Furthermore, it introduces no perceivable overhead while notably impeding
reverse engineering. Our results demonstrate that low-level obfuscation enables the novel
threat of invisible Trojans embedded in seemingly benign functionality. Crucially, even
though a large body of research exists on detection techniques for hardware Trojans in
general, they are all unable to detect Doppelganger-enabled low-level Trojans. Hence, our
work also highlights the need for novel interdisciplinary approaches to detect such threats.
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A Algorithms of Doppelganger
In this section we provide detailed algorithmic descriptions to complement our explanations
in Section 3.2. The set of conditions of each rule x in RV and RH is addressed by
”x.conditions” and the respective resulting output symbol is addressed by “x.symbol”.
Starting with the selection of suitable encodings, Algorithm 1 shows the greedy algorithm
and Algorithm 2 shows the exhaustive variant. Generation of the output functions is
shown in Algorithm 3

Algorithm 1 Greedy Encoding Generation
Input: Symbols S, rules of visible functionality RV , rules of hidden functionality RH,
predefined encodings E∗

Output: Encodings E or error symbol ⊥
1: k ← dlog2(|S|)e
2: Eavail ← {0, . . . , 2k − 1} \ {encodings in E∗}
3: S ← S \ {symbols in E∗}
4: E ← E∗

5: Scrit ← compute_critical_symbol_order(S, RV , RH)
6: for all s ∈ Scrit do
7: Sov ← get_overlapped_symbols(s,RV , RH) // get all symbols that s overlaps
8: Eov ← {E(x)}∀x ∈ Sov
9: C ← get_suitable_encodings(Eavail, Eov)

10: if C = ∅ then return ⊥ // no suitable encodings left
11: E(s)← C[0]
12: Eavail ← Eavail \ {E(s)}
13: for all s ∈ S \ Scrit do // assign remaining encodings to uncritical symbols
14: E(s)← Eavail[0]
15: Eavail ← Eavail \ {E(s)}
16: return E
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Algorithm 2 Exhaustive Encoding Generation
Input: Symbols S, rules of visible functionality RV , rules of hidden functionality RH,
predefined encodings E∗

Output: Encodings E or error symbol ⊥
1: k ← dlog2(|S|)e
2: Eavail ← {0, . . . , 2k − 1} \ {encodings in E∗}
3: S ← S \ {symbols in E∗}
4: Scrit ← compute_critical_symbol_order(S, RV , RH)
5: E ← RecursiveWalk(0, E∗) // start recursion at the first symbol in order with

only the predefined encodings
6: for all s ∈ S \ Scrit do // assign remaining encodings to uncritical symbols
7: E(s)← Eavail[0]
8: Eavail ← Eavail \ {E(s)}
9: return E

10: procedure RecursiveWalk(index i, encodings E′)
11: if i ≥ |Scrit| then return E′

12: s← Scrit[i]
13: Sov ← get_overlapped_symbols(s,RV , RH) // get all symbols that s overlaps
14: E′avail ← Eavail \ {encodings in E′}
15: C ← get_suitable_encodings(E′avail, Eov)
16: for all e ∈ C do
17: E′(s) = e
18: R← RecursiveWalk(i+ 1, copy E′)
19: if R 6= ⊥ then return R

20: return ⊥
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Algorithm 3 Output Logic Generation
Input: rules of visible functionality RV , rules of hidden functionality RH, encodings E

Output: Boolean functions ei and corresponding sets of terms Ii marked as to ignore, or
error symbol ⊥

1: n← bitlength of encodings in E
2: U ← RV ∩RH // unchanged entries
3: A← RV \RH // entries added in RV
4: RH ← RH \ U
5: RV ← RV \ (U ∪A)
6: C ← ∅ // collect pairs of changed entries in C
7: for all h ∈ RH do
8: for all v ∈ RV do
9: if h.symbol = v.symbol and h.conditions ⊂ v.conditions then

10: // conditions were changed, add to set
11: C ← C ∪ {(h, v)}
12: RH ← RH \ {h}
13: RV ← RV \ {v}
14: for all h ∈ RH do
15: for all v ∈ RV do
16: if h.symbol 6= v.symbol and h.conditions ⊆ v.conditions then
17: // at least the output symbol was changed, add to set
18: C ← C ∪ {(h, v)}
19: RH ← RH \ {h}
20: RV ← RV \ {v}
21: // At this point, RV and RH are separated in three groups U , A, and C

22: if RH 6= ∅ then return ⊥ // Error: functionality in RH is not a subset of
functionality in RV

23: for all i ∈ {0, . . . , n− 1} do // assign remaining encodings to uncritical symbols
24: ei ← 0
25: Ii ← ∅
26: for all x ∈ U do
27: if E(x.symbol)i = 1 then // check if i-th bit is set
28: ei ← ei +

∏
x.conditions // add condition term to DNF

29: for all (h, v) ∈ C do
30: if E(v.symbol)i = 1 then // check if i-th bit is set in the apparent output
31: th ←

∏
h.conditions

32: tv ←
∏

(v.conditions\h.conditions) // extract conditions that are ig-
nored in the hidden functionality

33: ei ← ei + (th · tv) // add both condition terms to DNF
34: Ii ← Ii ∪ {tv} // mark condition term tv as to be ignored
35: for all x ∈ A do
36: if E(x.symbol)i = 1 then // check if i-th bit is set
37: t←

∏
x.conditions

38: ei ← ei + t // add condition term to DNF
39: Ii ← Ii ∪ {t} // mark condition term as to be ignored
40: return ei, Ii ∀i
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