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Abstract. The side-channel community recently investigated a new approach, based
on deep learning, to significantly improve profiled attacks against embedded systems.
Compared to template attacks, deep learning techniques can deal with protected
implementations, such as masking or desynchronization, without substantial pre-
processing. However, important issues are still open. One challenging problem is to
adapt the methods classically used in the machine learning field (e.g. loss function,
performance metrics) to the specific side-channel context in order to obtain optimal
results. We propose a new loss function derived from the learning to rank approach
that helps preventing approximation and estimation errors, induced by the classical
cross-entropy loss. We theoretically demonstrate that this new function, called
Ranking Loss (RkL), maximizes the success rate by minimizing the ranking error of
the secret key in comparison with all other hypotheses. The resulting model converges
towards the optimal distinguisher when considering the mutual information between
the secret and the leakage. Consequently, the approximation error is prevented.
Furthermore, the estimation error, induced by the cross-entropy, is reduced by up to
23%. When the ranking loss is used, the convergence towards the best solution is up
to 23% faster than a model using the cross-entropy loss function. We validate our
theoretical propositions on public datasets.
Keywords: Side-Channel Attacks · Deep Learning · Learning to Rank · Loss
function · Success Rate · Mutual Information

1 Introduction
Side-channel analysis (SCA) is a class of cryptographic attack in which an evaluator tries to
exploit the vulnerabilities of a system by analyzing its physical properties, including power
consumption [KJJ99] or electromagnetic emissions [AARR03], to reveal secret information.
During its execution, a cryptographic implementation manipulates sensitive variables
that depend directly on the secret. Through the attack, evaluators try to recover this
information by finding some leakage related to the secret. One of the most powerful
types of SCA attacks are profiled attacks. In this scenario, the evaluators have access
to a test device whose target intermediate values are known. Then, they can estimate
the conditional distribution associated with each sensitive variable. They can predict the
right sensitive value on a target device containing a secret they wish to retrieve by using
multiple traces. In 2002, the first profiled attack was introduced by [CRR03], but their
proposal was limited by the computational complexity. Very similar to profiled attacks,
the application of machine learning algorithms was inevitably explored in the side-channel
context [HGM+11, BL12, LBM14].
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Some recent papers have demonstrated the robustness of convolutional neural networks
(CNNs) for defeating asymmetric cryptographic implementation [CCC+19] and symmetric
implementation even when the most common countermeasures, namely masking [MPP16,
MDP19b] and desynchronization [CDP17, ZBHV19] are implemented. One of the main
advantages is that CNNs do not require substantial pre-processing. These architectures
are based on a training process that consists in learning relevant features from traces. In
side-channel attacks, these relevant features are defined by the Points of Interest (PoIs)
which are revealed by leakage detection tools such as the Signal-to-Noise Ratio (SNR)
[MOP07]. To generate a model that efficiently locates the PoIs, the evaluator has to
configure a function, called loss, and appropriate performance metrics (e.g. accuracy)
in order to evaluate properly the performance of a model. In machine learning, a loss
function computes the error generated by the model. During the training process, the
evaluator aims to minimize the loss function in order to get the best model possible. The
most used loss function in the literature is the cross-entropy [GBC16]. In [MDP19b],
Masure et al. demonstrate that minimizing the cross-entropy is asymptotically equivalent
to maximizing the perceived information [RSVC+11]. Through this proposition, the
authors attempt to reduce the gap between the deep learning and side-channel metrics
questioned in [CDP17, PHJ+19]. However, the link between cross-entropy and perceived
information implies that errors can be generated during the training process namely the
optimization error, the estimation error and the approximation error. From an optimal
attack perspective, an evaluator wants to maximize the success rate given a number of
traces [BGH+17]. Finding a loss function, derived from the success rate, can reduce the
errors, induced by the cross-entropy loss function, in order to converge towards the optimal
deep-learning model for side-channel analysis.

Contributions. In deep learning side-channel analysis (DLSCA), one of the main chal-
lenges is to connect the classical machine learning metrics with those introduced in
side-channel [CDP17, PHJ+19]. From an evaluator point of view, using suitable deep
learning tools is crucial to perform efficient and meaningful attacks. As the efficiency
of deep learning models can greatly vary based on a variety of hyperparameters (e.g.
model architecture, optimizers, loss, . . . ), it is essential to find the most suitable ones for
the side-channel context. Finding the most optimal hyperparameters will strengthen the
security bounds on the targeted implementations.

This paper addresses the choice of the loss function in DLSCA. We propose a new loss,
called Ranking Loss (RkL), that tends towards the optimal distinguisher for side-channel
analysis. Our proposition adapts the “Learning to Rank” approach to the side-channel
context by redefining the concept of pointwise, pairwise and listwise approaches.

Assume that a distinguisher is defined as a function which takes the known plaintexts
and the measured leakages as input, and returns a key guess. We show theoretically that
our loss generates a model that is derived from the optimal distinguisher introduced in
[HRG14], which maximizes the success rate. The ranking loss penalizes the network when
the score related to the secret information is not the highest value. Hence, we are more
concerned with the relative order of the relevance of the key hypotheses than their absolute
value. We demonstrate that minimizing the ranking loss is equivalent to minimizing the
ranking error of the secret key with respect to all other hypotheses.

In [MDP19b], the authors show that the cross-entropy induces some errors during
the training process (i.e. approximation error, estimation error and optimization error).
In this paper, we demonstrate that optimizing the ranking loss generates a model that
converges towards the mutual information between the sensitive information and the
leakage. Consequently, we theoretically demonstrate that the approximation error is
prevented and the estimation error, induced by the classical cross-entropy loss, is reduced
by up to 23%. To the best of our knowledge, this is the first time that a metric, derived
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from the “Learning to Rank” approach, is linked with the mutual information between a
label and an input.

Finally, we confirm the relevance of our loss by applying it to the main public datasets
and we compare the results with the classical cross-entropy and the recently introduced
cross-entropy ratio [ZZN+20]. All these experiments can be reproduced through the
following GitHub repository: https://github.com/gabzai/Ranking-Loss-SCA.

Paper Organization. The paper is organized as follows. Section 2 explains the link
between the profiled side-channel attacks and the machine learning approach. It also intro-
duces the learning to rank approach applied to SCA. Section 3 proposes a new loss, called
Ranking Loss (RkL), that generates a model converging towards the optimal distinguisher.
In Section 4, we theoretically link the ranking loss with the mutual information. Finally,
Section 5 presents an experimental validation of ranking loss on public datasets showing
its efficiency.

2 Preliminaries

2.1 Notation and terminology
Let calligraphic letters X denote sets, the corresponding capital letters X (resp. bold
capital letters T) denote random variables (resp. vectors of random variables) and the
lowercase x (resp. t) denote their realizations. The i-th entry of a vector t is defined
as t[i]. Side-channel traces will be constructed as a random vector T ∈ R1×D where D
defines the dimension of each trace. The targeted sensitive variable is Z = f(P,K) where
f denotes a cryptographic primitive, P (∈ P) denotes a public variable (e.g. plaintext
or ciphertext) and K (∈ K) denotes a part of the key (e.g. byte) that an adversary tries
to retrieve. Z takes values in Z = {s1, ..., s|Z|} such that sj denotes a score associated
with the jth sensitive variable. Let us denotes k∗ the secret key used by the cryptographic
algorithm. We define the following information theory quantities needed in the rest of
the paper [CT91] . The entropy of a random vector X, denoted H(X), measures the
unpredictability of a realization x of X. It is defined by:

H(X) = −
∑
x∈X

Pr [X = x] · log2 (Pr [X = x]) .

The conditional entropy of a random variable X knowing Y is defined by:

H(X|Y) = −
∑
y∈Y

Pr [Y = y] ·H (X|Y = y)

= −
∑
y∈Y

Pr [Y = y] ·
∑
x∈X

Pr [X = x|Y = y] · log2 (Pr [X = x|Y = y]) .

The Mutual Information (MI) between two random variables X and Y is defined as:

MI (X;Y) = H (X)−H (X|Y)

= H (X) +
∑
x∈X

Pr [X = x] ·
∑
y∈Y

Pr [Y = y|X = x] · log2 (Pr [X = x|Y = y]) .

(1)

This quantifies how much information can be extracted about Y by observing X.

https://github.com/gabzai/Ranking-Loss-SCA
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2.2 Profiled Side-Channel Attacks
When attacking a device using a profiled attack, two stages must be considered: a building
phase and a matching phase. During the first phase, evaluators have access to a test device
where they control the input and the secret key of the cryptographic algorithm. They use
this knowledge to locate the relevant leakages depending on Z. To characterize the points
of interest, evaluators generate a model F : RD → R|Z| that estimates the probability
Pr[T|Z = z] from a profiled set T = {(t0, z0) , . . . ,

(
tNp−1, zNp−1

)
} of size Np. Once the

leakage model is generated, evaluators estimate which intermediate value is processed
using a prediction function F (·).

By predicting this sensitive variable and knowing the input used during the encryption,
an evaluator can use a set of attack traces of size Na and compute a score vector, based on
F (ti) , i ∈ {0, 1, . . . , Na − 1}, for each key hypothesis. Indeed, for each k ∈ K, this score is
defined as:

sNa(k) =
Na∑
i=1

log (Pr [F (ti) = zi]) = log
(
Na∏
i=1

Pr [F (ti) = zi]
)
, (2)

where zi = f(pi, k) and f denotes a cryptographic primitive.
Based on the scores introduced in Equation 2, we can classify all the key candidates

into a vector of size |K|, denoted gNa =
(
g1
Na
, g2
Na
, ..., g

|K|
Na

)
, such that:

gNa(k∗) =
∑
k∈K

1sNa (k)>sNa (k∗), (3)

defines the position of the secret key k∗, in gNa , amongst all hypotheses.
We consider g1

Na
as the most likely candidate and g|K|Na

as the least likely one. Commonly,
this position is called rank. The rank of the correct key gives us an insight into how well
our model performs. Given a number of traces Na, the Success Rate (SR) is a metric that
defines the probability that an attack succeeds in recovering the secret key k∗ amongst all
hypotheses. A success rate of β means that β attacks succeed in retrieving k∗ over 100
realizations. In [SMY09], Standaert et al. propose to extend the notion of success rate to
an arbitrary order d such that:

SRd(Na) = Pr [gNa(k∗) = d] . (4)

In other words, the dth order success rate is defined as the probability that the target
secret k∗ is ranked amongst the d first key guesses in the score vector g. In profiling
attacks, an evaluator wants to find a model F such that the condition SRd(Na) > β is
verified with the minimum number of attack traces Na.

2.3 Neural Networks in Side-Channel Analysis
Profiled SCA can be formulated as a classification problem. Given an input, a neural
network constructs a function Fθ : RD → R|Z| that computes an output called a prediction.
During the training process, a set of parameters θ, called trainable parameters, are updated
in order to generate the model. To solve a classification problem, the function Fθ must
find the right prediction y ∈ Z associated with the input t with high confidence. To find
the optimized solution, a neural network has to be trained using a profiled set of Np pairs
(tpi , y

p
i ) where tpi is the i-th profiled input and ypi is the associated label. In SCA, the

input of a neural network is a side-channel measurement and the related label is defined by
the corresponding sensitive value z. The input goes through the network to estimate the
corresponding probability vector ŷpi such that ŷpi (k) = Pr [Fθ(tpi ) = zi]. This probability is
computed with the softmax function [GBC16]. This function maps the outputs of each
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class to [0; 1]. Due to the exponential terms, the softmax helps to easily discriminate the
classes with high confidence. As a classical profiling attack, we can use the resulted values
ŷpi to compute the score for each key hypothesis and then estimate the dth order success
rate. To quantify the classification error of Fθ over the profiled set, a loss function has to
be configured. Indeed, this function reduces the error of the model in order to optimize
the prediction. For that purpose, the backward propagation [GBC16] is applied to update
the trainable parameters (e.g. weights) and minimize the loss function. The classical loss
function used in side-channel analysis is based on cross-entropy.

Definition 1 (Cross-Entropy). Given a joint probability distribution of a sensitive cryp-
tographic primitive Z and corresponding leakage T denoted as Pr[T, Z], we define the
Cross-Entropy of a deep leaning model Fθ as:

L(Pr[T, Z], Fθ) , E
Pr[T,Z]

[− log2 Fθ (T) [Z]] .

Given a profiling set T of Np pairs (tpi , y
p
i )0≤i≤Np and a classifier Fθ with parameter θ,

the Categorical Cross-Entropy (CCE) loss function is an estimation of the cross-entropy
such that:

LCCE(Fθ, T ) = − 1
Np

Np∑
i=1

|Z|∑
j=1

(
1yp

i
=zj · log2 (Pr [Fθ (tpi ) = zj ])

)
.

In other words, minimizing the categorical cross-entropy reduces the dissimilarity
between the right distributions and the predicted distributions for a set of inputs. According
to the Law of Large Numbers, the categorical cross-entropy loss function converges in
probabilities towards the cross-entropy for any θ [SSBD14]. However, no information about
the gap between the empirically estimated error and its true unknown value is given for
any finite profiling set T . In [MDP19b], Masure et al. study the theoretical soundness of
the categorical cross-entropy, denoted as Negative Log Likelihood (NLL), in side-channel
to quantify its relevance in the leakage exploitation. They demonstrate that minimizing
the categorical cross-entropy loss function is equivalent to maximizing an estimation of
the Perceived Information (PI) [RSVC+11] that is defined as a lower bound of the Mutual
Information (MI) between the leakage and the target secret. Consequently, when the
categorical cross-entropy is used as a loss function, the number of traces needed to reach a
1st order success rate is defined as an upper bound of the optimal solution [dCGRP19].
Because the PI is substitute to the MI, some source of imprecision could affect the quality
of the model Fθ. As mentioned in [DSVC14, MDP19b], the gap between the estimation of
the PI, defined by the categorical cross-entropy, and the MI can be decomposed into three
errors:

• Approximation error – it defines the deviation between the empirical estimation
of the PI and the MI. In theory, the Kullback-Leibler divergence [KL51] can be
computed in order to evaluate this deviation. However, evaluators face the problem
that the leakage Probability Density Function (PDF) is unknown.

• Estimation error – the minimization of the categorical cross-entropy maximizes
the empirical estimation of the PI rather than the real value of the PI. Therefore,
the finite set of profiling traces may be too low to estimate the perceived information
properly. Consequently, this error can be quantified for a given number of profiling
traces.

• Optimization error – it characterizes the error made by the optimization algorithm
(e.g. Stochastic Gradient Descent [RM51, KW52, BCN18], RMSprop, Momentum
[Qia99], Adam [KB15], . . . ) to converge towards the best solution of the categorical
cross-entropy.
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These errors caused by the categorical cross-entropy could impact the training process.
Section 5 emphasizes the impact of these error terms on different datasets. In addition,
the more secure the system, the larger the inequality between the empirical PI and the
MI. As mentioned in [DFS15, BHM+19], a higher MI implies a more powerful maximum
likelihood attack where the secret key k∗ can be extracted more efficiently. In other words,
the probability of the success rate is linked with the MI. Therefore, finding a new loss
derived from the success rate can minimize the approximation and estimation errors unlike
the categorical cross-entropy. In addition, this loss could be helpful to converge towards
the optimal distinguisher for a given number of traces.

2.4 Learning To Rank Approach in Side-Channel Analysis
The “Learning to Rank” refers to machine learning techniques for training a model in
a ranking task. This approach is useful for many applications in Natural Language
Processing, Data Mining and Information Retrieval [Liu09, Bur10, Li11a, Li11b]. Learning
to rank is a supervised learning task composed by a set of documents D and a query q. In
document retrieval, the ranking task is performed by using a ranking model Fθ(q, d) to sort
a document d ∈ D depending on its relevance with respect to the query q. The relevance of
the documents with respect to the query is represented by several grades defined as labels.
The higher the grade, the more relevant is the document. In the side-channel context,
the application of the learning to rank can be useful to efficiently evaluate the rank of
k∗. Contrary to the classical learning to rank approach that consists in the comparison
between inputs relevance, we propose to adapt the “Learning to Rank” approach for
the side-channel context through the comparison of the score, related to the sensitive
information, with the other classes. Consequently, for a given input, this approach tries to
penalize the training process when the score related to k∗ is not considered as the most
relevant. Classically, three approaches can be considered in the learning to rank field. We
adapt these approaches in the side-channel context as follows:

• Pointwise approach can be seen as a regression or a classification problem. In
a classification task, given a trace t, the ranking function Fθ is trained such that
Fθ(t) = sc defines the relevance of a specific class c given a trace t. Then, the final
phase consists in sorting the classes depending on their score. This entire process is
exactly what the evaluator does in the classical deep learning side-channel approach.

• Pairwise approach predicts the order between a pair of scores, such that Fθ(t, (ci, cj))
defines the probability that the ith class ci has a better rank than cj given a trace
t [BSR+05, BRL07, WBSG10]. The comparison between each pair of scores builds
the ranking of the whole model.

• Listwise approach directly sorts the entire list of sensitive information and tries to
come up with the optimal ordering list [XL07, XLW+08, PGH18, CHX+19]. During
the training process, it assumes that the evaluator can predetermine the relevance of
each class depending on a given input. Consequently, given a trace t, the evaluator
should be able to define the rank of each irrelevant classes.

The first approach is classically used when the evaluator wants to perform a classical
deep learning side-channel attack. The listwise approach seems difficult to apply in our
context because an evaluator cannot precisely define the rank of the irrelevant classes given
a trace t. Finally, the pairwise approach can be useful in order to optimize the rank of a
specific output in comparison with the others. In the following sections, we demonstrate
how the pairwise approach can be useful to discriminate the score of the relevant output.
The other learning to rank approaches are beyond the scope of this paper.
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3 Ranking Loss: A Learning Metric Adapted For SCA
This section presents our main contribution: the Ranking Loss (RkL). Section 3.1 explains
to what extent the pairwise approach and the success rate are linked in order to propose
the ranking loss. Then, Section 3.2 demonstrates the theoretical bounds of the ranking
loss regarding the success rate. Finally, Section 3.3 presents the impact of the ranking loss
on the scores during the training process.

3.1 Ranking Loss Maximizes the Success Rate
Pairwise approach and success rate. For a given query q, each pair of documents (di, dj)
is presented to the ranking model which computes the order of relevance between di and dj .
We denote di . dj the event that di should be ranked higher than dj . The corresponding
loss function maps the scores associated with di and dj and penalizes the training process
once the relation di . dj is not respected. This penalization is exactly what we want to
optimize when the 1st order success rate is considered.

Let Na be the number of traces needed to perform an attack. From Equation 3 and
Equation 4, the following relation can be deduced:

SR1(Na) = Pr [gNa(k∗) = 1] = Pr
[∑
k∈K

1sNa (k)>sNa (k∗) = 1
]
. (5)

In other words, measuring the 1st order success rate is equivalent to computing the
probability that the score related to the secret key k∗ is higher than all key hypotheses.
This means defining the probability that the class ck∗a is ranked higher than ck for all
k ∈ K \ {k∗}. This approach is equivalent to the pairwise approach defined earlier. Let a
key hypothesis k and a secret key k∗, the probability that ck∗ . ck can be estimated via a
sigmoid function [QLL10, BZBN19] such that:

Pr [ck∗ . ck] ≡ 1
1 + e−α(sNa (k∗)−sNa (k)) , (6)

where α denotes the parameter of the sigmoid function. The value of α greatly impacts
the training process. We evaluate its impact in Appendix A. In the following, we assume
that α is well configured.

Definition of the Ranking Loss. We apply the cross-entropy loss function in order to
penalize the deviation of the model probabilities from the desired prediction. In other
words, we want to penalize the loss function when the expected relation ck∗ . ck is not
observed. Thus, we define a partial loss function lNa(ck∗ , ck), for a given hypothesis k, as:

lNa(ck∗ , ck) = −P̄k∗,k · log2 (Pk∗,k)−
(
1− P̄k∗,k

)
· log2 (1− Pk∗,k) , (7)

where Pk∗,k = Pr [ck∗ . ck] and P̄k∗,k defines the true unknown probability that k∗ is ranked
higher than k.

In the remainder of the paper, we assume that the ranking value is deterministically
known such that, P̄k∗,k = 1

2 (1 + relk∗,k) [BSR+05] where relk∗,k ∈ {−1, 0, 1} defines the
relation between the secret key k∗ and k such that relk∗,k = −1 if k∗ is less relevant than
k; relk∗,k = 0 if k∗ is as relevant as k; relk∗,k = 1 if k∗ is more relevant than k. We assume
that relk∗,k is always equal to 1. In the side-channel context, this approximation is reliable

aFor convenience, ck∗ is used to denote the class related to the correct label. Hence, ck∗ is also used
to define the class associated to f(p, k∗) such that f is a cryptographic primitive and p characterizes a
plaintext value.
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because we want to maximize the score related to k∗ compared with the other hypotheses.
From Equation 6 and Equation 7, we can deduce the following partial loss function:

lNa(ck∗ , ck) = log2

(
1 + e−α(sNa (k∗)−sNa (k))

)
. (8)

Equation 8 gives us an insight into how the cost function penalizes the training process
when the relation ck∗ . ck is not the expected result. Therefore, maximizing the success
rate tends to minimize the ranking error between the secret key k∗ and a hypothesis k. As
a remainder, this cost function, presented in Equation 8, is only applied on a single key
hypothesis. In order to efficiently train a side-channel model, we have to apply this cost
function on each key hypothesis in order to maximize the rank of the secret key.
Definition 2 (Ranking loss - Our contribution). Given a profiling set T of Np pairs
(tpi , y

p
i )0≤i≤Np , a classifier Fθ with parameter θ and a number of attack traces Na, we

define the Ranking Loss (RkL) function as:

LRkL(Fθ, T , Na) =
∑
k∈K
k 6=k∗

(
log2

(
1 + e−α(sNa (k∗)−sNa (k))

))
, (9)

where sNa (k) =
∑Na
i=1 Fθ (tpi ) [f(P, k)] defines the output score b of the hypothesis

k ∈ |K|.
Remark 1. To discriminate the right output and normalize this value into a probability
distribution, we compute the softmax function of each score during the attack phase. The
softmax function converts the negative score to very low probability. This is essential to
perform a side-channel attack (see Equation 2).

With the ranking loss, we are more concerned with the relative order of the relevance
of the key hypothesis than its absolute value (i.e. categorical cross-entropy). Conse-
quently, maximizing the success rate is equivalent to minimizing the ranking error for
each pair (k∗, k)k∈K. Futhermore, Definition 2 takes into account the number of attack
traces needed to perform a successful side-channel attack. The ranking loss penalizes the
network depending on the number Na of training scores that an adversary aggregates before
iterating the training process. The ranking loss tends to maximize the success rate for
a given Na traces and converges towards the optimal distinguisher introduced in [BGH+17].

Remark 2. In classic information retrieval tasks, (di, dj) and (d′i, d′j) characterize two
different pairs of documents such that the following relation is defined di . dj . d′i . d′j . For
each pair of documents, if the difference of their scores is equal, thus, the final loss will
be the same regardless of the rank of the documents. In this specific case, swapping the
rank of di (resp. dj) and d′i (resp. d′j) does not impact the loss function. The loss only
cares about the total number of pairwise-rankings it gets wrong. This can be particularly
problematic if we are interested in the top ranking items. To solve this issue, the pairwise
approach applies some information retrieval (IR) measures (e.g. Discounted Cumulative
Gain [JK02], Normalized Discounted Cumulative Gain [JK00], Expected Reciprocal Rank
[CMZG09], Mean Average Precision, etc...) to compute the loss. However, in our context,
di = d′i, therefore the difference between the scores of each pair (di, dj) and (di, d′j) gives us
enough information on the position of di related to dj and d′j . Consequently, the addition
of IR metrics is not relevant. Moreover, IR metrics can be either discontinuous or flat,
so gradient descent appears to be problematic (i.e. gradient equals to 0 or not defined)
unless some appropriate approximation is used.

bHere, the output score denotes the value before the softmax function. This choice is made to impact
the training process accordingly to the relative order of the key hypotheses’ relevance instead of the
normalized probability distribution. However, the classical side-channel score (see Equation 2) can also be
applied.
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3.2 Theoretical Bounds of the Ranking Loss
In this section, we show that the ranking loss is an upper bound of the measure-based
ranking error. In the learning to rank research area, the information retrieval measures are
used to evaluate the network performance. In most cases, two categories of metrics can
be used: those designed for binary relevance levels (e.g. Mean Average Precision (MAP),
Mean Reciprocal Rank (MRR) [Cra09]) and those designed for multiple levels of relevance
(e.g. discounted cumulative gain, normalized discounted cumulative gain [JK00]). In the
side-channel context, there are only two levels of relevance such that 1 is associated with
the correct output class and 0 otherwise. Thus, the metrics for binary relevance levels have
to be considered. The Mean Average Precision (MAP) defines the average precision of
the secret key k∗ over the |K| hypotheses. Let d be a threshold and MAP@d the average
precision of the secret key k∗ in the top d relevant positions. In particular, MAP@1 can
be seen as a 1st order success rate (see Appendix B). As mentioned in [CLL+09a], the
standard pairwise loss is considered as the upper bound of the measure-based ranking
error that is defined by 1−MAP@|K| (justifications are provided in Appendix C).

Theorem 1 ([CLL+09a]). Given 2-level rating data with n1 objects having label 1 and
n1 > 0, then, the following inequality holds,

1−MAP@|K| ≤ 1
n1

|K|−1∑
i=0

|K|−1∑
j=0

gr(j)<gr(i)

log2

(
1 + e−α(sNa (i)−sNa (j))

)
, (10)

where gr(i) defines the label (or grade) associated to the ith key hypothesis (i.e. 0 or 1).

In our context, a 2-level rating data means that a class ck ∈ {0, 1} such that ck = 1 iff
k = k∗. In side-channel analysis, there is only one key candidate with a label equal to 1 in
the one-hot encoding representation (i.e. the label corresponding to the sensitive output).
Thus, Theorem 1 can be easily written following the ranking loss.

Proposition 1 (Our contribution). Given 2-level rating data with n1 objects having label
1 and n1 > 0, a profiling set T of Np pairs (tpi , y

p
i )0≤i≤Np , a classifier Fθ with parameter

θ and a number of attack traces Na, the following inequality holds:

1− SR1(Na) ≤ 1
n1

∑
k∈K
k 6=k∗

log2

(
1 + e−α(sNa (ck∗ )−sNa (ck))

)
= LRkL(Fθ, T , Na). (11)

Proof. Following [CLL+09a, Theorem 2] and [CLL+09b, Lemma 1], given a 2-level rating
data, it can be proved that:

n1 − i0 + 1 ≤ 1
n1

|K|−1∑
i=0

|K|−1∑
j=0

gr(j)<gr(i)

log2

(
1 + e−α(sNa (i)−sNa (j))

)
,

where n1 denotes the number of elements having label 1, i0 defines the position of the first
object with label 0 in a ranking list.

If i0 > n1, the first element with label 0 is ranked after position n1. In SCA, there is
only one candidate with a label 1 (i.e. ck∗). Hence, the correct candidate is ranked at the
first position and 1− SR1(Na) = 0. Similarly, the first element with a label 0 is ranked at
the second position and n1 − i0 + 1 = 0. If i0 ≤ n1, the first element with label 0 is ranked
before the correct class ck∗ . Consequently, the correct candidate is ranked at the second
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position and 1− SR1(Na) = 1. Similarly, the first element with a label 0 is ranked at the
first position and n1 − i0 + 1 = 1. Thus,

n1 − i0 + 1 = 1− SR1(Na) ≤ 1
n1

|K|−1∑
i=0

|K|−1∑
j=0

gr(j)<gr(i)

log2

(
1 + e−α(sNa (i)−sNa (j))

)
.

Finally, from Equation 10, we can easily rewrite the right part of the inequality as:

|K|−1∑
i=0

|K|−1∑
j=0

gr(j)<gr(i)

log2

(
1 + e−α(sNa (i)−sNa (j))

)
=
∑
k∈K
k 6=k∗

log2

(
1 + e−α(sNa (ck∗ )−sNa (ck))

)
.

Indeed, the condition gr(j) < gr(i) holds for all j ∈ K \ {k∗} iff i corresponds to ck∗ .
This result implies:

1− SR1(Na) ≤ 1
n1

∑
k∈K
k 6=k∗

log2

(
1 + e−α(sNa (ck∗ )−sNa (ck))

)
.

From Proposition 1, we can deduce that minimizing the ranking loss is equivalent
to maximizing the 1st order success rate. This inequality implies a maximization of the
success rate through the the minimization of the ranking loss. Therefore, the value of the
loss function gives us an insight into how well our network performs related to the success
rate.

3.3 Impact of the Ranking Loss during the Training Process
This subsection theoretically explains how the training process can be useful in order to
precisely order the secret key k∗ amongst all the hypotheses.

The training process aims at optimizing the loss function in order to minimize the
error made by the network. This process can be decomposed into two phases: the forward
propagation and the backward propagation [GBC16]. Given an input, the goal of the
forward propagation is to feed training examples to the network in the forward direction
by processing successive linear and non-linear transformations in order to predict a value
related to the input. Once this process is done, the backward propagation measures the
error between the predictions and the correct output and tries to reduce it by updating the
parameters θ that compose the network. Let lNa(ck∗ , ck) the partial loss function defined
in Equation 8 where k∗ is the secret key and k ∈ K is a key hypothesis. Let wi ∈ θ be a
i-th trainable parameter. The backpropagation updates the weights as below:

wi ← wi − η
∑
k∈K

(
∂lNa(ck∗ , ck)

∂wi

)
= wi − η

∑
k∈K
k 6=k∗

(
∂lNa
∂sk∗

∂sk∗

∂wi
+ ∂lNa

∂sk

∂sk
∂wi

)
, (12)

where η denotes the learning rate and (sk)k∈K defines the output score related to the class
(ck)k∈K.

From Equation 8 and Equation 12, we can deduce the following equation,

∂lNa(ck∗ , ck)
∂wi

= −α
(

1
1 + eα(sNa (k∗)−sNa (k))

)(
∂sk∗

∂wi
− ∂sk
∂wi

)
. (13)
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This derivative can be decomposed in two parts. First, computing the gradient of the
ranking loss is equivalent to computing an ascent gradient of the score sk∗ and a gradient
descent of sk. As mentioned in Section 3.1, the score value is defined by the prediction
before the softmax function. The training process updates the weights to increase the score
related to the secret key and reduces the score related to the hypothesis k. Secondly, the
norm of the gradient vectors is scaled by γα(sk∗ , sk) = α

1+eα(sNa (k∗)−sNa (k)) . Depending on

the difference between sNa(k∗) and sNa(k), the resulted norm varies as below:

• If sNa(k)� sNa(k∗), γα(sk∗ , sk) tends to converge towards α thus, the norm of the
gradient vector related to each score is maximized.

• If sNa(k) = sNa(k∗), γα(sk∗ , sk) tends to converge towards α
2 thus, the norm of the

gradient vector related to each score is divided by 2.

• If sNa(k)� sNa(k∗), γα(sk∗ , sk) tends to converge towards 0 thus, the norm of the
gradient vector related to each score is minimized.

The gradient of the ranking loss defined in Equation 9 can be derived as:

∂LRkL(s,Na)
∂wi

=
∑
k∈K
k 6=k∗

(
∂lNa(ck∗ , ck)

∂wi

)
. (14)

Therefore, the ranking loss proposed in Equation 9 pushes the score of the secret key
up and pushes the score of the key hypotheses down via gradient ascent/descent on a pair
of items. This is equivalent to maximizing the success rate. For each pair (k∗, k)k∈K, there
are two “forces” at play. The force that each pair exerts is proportionate to the difference
of their scores multiplied with α. Consequently, α should be carefully configured during
the training process. The force applied on the secret key k∗ is equal to the sum of the
forces exerted on each pair. Consequently, using the ranking loss tends to order the secret
key as the highest position which is equivalent to maximizing the success rate.

4 Mutual Information Analysis of the Ranking Loss
This section studies the ranking loss from a mutual information point-of-view. Section 4.1
demonstrates that ranking loss is an approximation of the optimal distinguisher. Then,
Section 4.2 shows that the categorical cross-entropy is only a lower bound of the ranking
loss. Finally, Section 4.3 analyzes the reduction of the different errors of the ranking loss.

4.1 An Approximation of the Optimal Distinguisher
Let D be a distinguisher that maps a set of traces T and a sensitive variable Z to an
estimation of the secret key k∗.

Definition 3 (Optimal Distinguisher [HRG14]). Given a conditional probability distribu-
tion of a sensitive cryptographic primitive Z following a leakage T denoted as Pr[Z|T], we
define the optimal distinguisher as maximizing the success rate of an attack:

D (t, z) = arg max
k

(Pr [Z = f (p, k) |t]) , (15)

where f (p, k) = z is the sensitive information computed from a cryptographic primitive f ,
a plaintext p ∈ P, a key k ∈ K.
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The main issue of Definition 3 is that the optimal distinguisher can only be computed
if the leakage model is perfectly known [HRG14, BGH+15]. Therefore, one solution is to
find the adequate estimation of Pr [Z = z|t]. Through the maximization of the success
rate, we want to find an estimation D̂ (t, z) of the optimal distinguisher that converges
towards D (t, z) [BCG+17, BGH+17].

Definition 4 (Estimation of the Optimal Distinguisher). Given a conditional probability
distribution of a sensitive cryptographic primitive Z following a leakage T and a parameter
θ denoted as Pr[Z|T, θ], we define the estimation of the optimal distinguisher as:

D̂ (t, z) = arg max
k

(
max
θ

(Pr [Z = z|t, θ])
)

= arg min
k

(
min
θ

(1− Pr[Z = z|t, θ])
)
, (16)

where f (p, k) = z is the sensitive information computed from a cryptographic primitive f ,
a plaintext p ∈ P, a key k ∈ K.

Through Equation 16, we can observe that minimizing the error on the success rate is
helpful in estimating the optimal distinguisher. To converge towards the true distinguisher
D, some optimization algorithm shall be run in order to minimize the error on Pr [Z = z|t, θ]
and find a local minimum. However, the computation needed to reach the global minimum
is computationally expensive due to a matrix inversion [SKS09, BCG+17]. Using the deep
learning approach can be helpful in order to automatically reach the global minimum.
When θ is optimal, finding a model Fθ that minimizes the error on the success rate
is equivalent to generating a distinguisher D̂ (t, z) that converges towards the true D.
Through Equation 1, we can assume that minimizing the error on the success rate is
equivalent to optimizing the estimation of a mutual information between the sensitive
information and the leakage:

M̂I (Z;T; θ) = H (Z) +
∑
z∈Z

Pr [z] 1
Np

Np∑
i=0

log2

(
max
θ

(Pr [Z = z|t(i), θ])
)

≤ H (Z) +
∑
z∈Z

Pr [z]
∑
t∈T

Pr [T = t|z] log2 (Pr [Z = z|t]) = MI (Z;T) . (17)

Hence, finding a model Fθ that maximizes the success rate is equivalent to maximizing
an estimation of the mutual information. When the hyperparameter configuration θ is
optimal and Np → ∞, this estimation converges towards the real mutual information.
Therefore, the ranking loss can be considered as an upper bound of the actual categorical
cross-entropy.

4.2 The Cross Entropy as a Lower Bound of the Ranking Loss
Classically, given a set of traces T , the deep learning side-channel analysis tries to minimize
the categorical cross-entropy loss function in order to maximize the score related to the true
sensitive information. When the categorical cross-entropy loss function is used, the training
process increases the score related to the true sensitive information in order to boost
its rank. However, this loss function is not optimized for the IR measures (e.g. NDCG,
MAP@d, SRd) and no comparison is made with the irrelevant classes. Consequently, the
loss function may emphasize irrelevant sensitive information [Liu09]. This is exactly what
the pointwise approach does in learning to rank [Li11b].

In [MDP19b], Masure et al. provide a complete interpretation of the categorical cross-
entropy, denoted Negative Log Likelihood (NLL), in the side-channel context. The authors
theoretically show that minimizing the NLL is asymptotically equivalent to minimizing
the categorical cross-entropy that maximizes the perceived information (PI) introduced by
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Renauld et al. [RSVC+11]. The PI is the amount of information that can be extracted
from data with the help of an estimated model. It can be seen as a lower bound of the MI
[dCGRP19, BHM+19].

As a consequence, a model Fθ,CCE using the categorical cross-entropy as a loss function
can be considered as a lower bound estimator of the MI introduced in Equation 17:

P̂ I (Z;T; θ) = H (Z) +
∑
z∈Z

Pr [z] 1
Np

Np∑
i=0

log2 (Fθ,CCE (ti))

≤ H (Z) +
∑
z∈Z

Pr [z] 1
Np

Np∑
i=0

log2

(
max
θ

(Pr [Z = z|ti, θ])
)

≤ H (Z) +
∑
z∈Z

Pr [z]
∑
t∈T

Pr [T = t|z] log2 (Pr [Z = z|t]) = MI (Z;T) . (18)

Thus,

P̂ I (Z;T; θ) ≤ M̂I (Z;T; θ) ≤MI (Z;T) . (19)

Therefore, the number of traces needed to perform a successful attack on Fθ,CCE is
defined as an upper bound of the number of traces needed to perform a successful attack on
a model Fθ,RkL that maximizes the estimation of the MI [BHM+19, dCGRP19, MDP19b].
This implies that:

NθCCE ≥ NM̂I
≥ NMI . (20)

As mentioned in Section 4.1, the maximization of the 1st order success rate is equivalent
to maximizing an estimation of the MI. Equation 20 illustrates that the ranking loss is
more efficient than the current usual loss used in the side-channel context. Indeed, when
the ranking loss is used, the number of traces that are needed to reach a constant guessing
entropy of 1 is defined as a lower bound of NθCCE . Following [MDP19b], this inequality is
due to three forms of errors that can be decomposed into approximation, estimation and
optimization errors. In the next section, we analyze the errors made by the categorical
cross-entropy and we compare them with the ranking loss.

4.3 Error Analysis

First, this section recalls the gap between the categorical cross-entropy and the MI
introduced in [MDP19b]. Then, we explain the theoretical benefits of the ranking loss
through an error analysis between the ranking loss, the categorical cross-entropy and the
MI. To assess the quality of the ranking loss, we have to evaluate the tightness of the
inequalities defined in Equation 18.

Error Analysis of the Categorical Cross-Entropy. Proposed in [MDP19b], this error
decomposition establishes the gap between the MI and the PI that we are maximizing
with the categorical cross-entropy. To facilitate the comparison of our results with
[MDP19b], we use the same notations. Let θ̂ denote an estimation of the parameters when
a classical optimizer is used (i.e. SGD, Adam, RMSprop, Nadam, ...) and θ the optimal
hyperparameter vector obtained when a global minima of the loss function is reached. In
their paper, Masure et al. decompose the gap into three errors (i.e. approximation error,
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estimation error, optimization error) as:

P̂ I
(
Z;T; θ̂

)
−MI (Z;T) =

(
P̂ I
(
Z;T; θ̂

)
− P̂ I (Z;T; θ)

)
(21)

+
(
P̂ I (Z;T; θ)− sup

θ∈Θ
PI (Z;T; θ)

)
(22)

+
(

sup
θ∈Θ

PI (Z;T; θ)−MI (Z;T)
)
. (23)

such that Equation 21 defines the optimization error, Equation 22 defines the estimation
error and Equation 23 denotes the approximation error.

Masure et al. provide some simulations to define the impact of the maximization of
the PI on the errors. Through their simulations, they argue that the approximation errors
are negligible, no matter the countermeasures considered. However, Section 5 will show
that, even in the simplest case, the approximation error can have a huge impact on the
training process such that some irrelevant features could be defined as points of interest.
Consequently, these errors could highly impact the performance of the network.

Error Analysis of the Ranking Loss. In order to complete the work made by Masure
et al. [MDP19b], we estimate the errors generated when M̂I and MI are taken into
consideration. The gap between the estimated MI and the true mutual information can
be decomposed into an estimation and an optimization errors as below:

M̂I
(
Z;T; θ̂

)
−MI (Z;T) =

(
M̂I

(
Z;T; θ̂

)
− M̂I (Z;T; θ)

)
(24)

+
(
M̂I (Z;T; θ)−MI (Z;T)

)
. (25)

Indeed, Equation 24 defines the error related to the optimization of the model trained
with the loss proposed in Equation 9. Finally, Equation 25 characterizes the estimation
error that can be reduced when the number of profiling traces converges towards infinity
[BHM+19]. In Section 5, we show that this error is reduced by up to 23% when the ranking
loss is used compared to the classical categorical cross-entropy.

Error Gap between the Categorical Cross-Entropy and the Ranking Loss. Finally, the
gap between the categorical cross-entropy and the ranking loss can be divided into different
error terms. Let a model Fθ̂,CCE (resp. Fθ̂,RkL) trained with the categorical cross-entropy
loss (resp. the ranking loss). Here, we assume that the optimization error generated by
both models is approximately the same. This strong assumption is useful to simplify our
analysis and focus on the benefits of using the ranking loss compared to the categorical
cross-entropy. Consequently,

P̂ I
(
Z;T; θ̂

)
− M̂I

(
Z;T; θ̂

)
=
(
P̂ I
(
Z;T; θ̂

)
− P̂ I (Z;T; θ)

)
−
(
M̂I

(
Z;T; θ̂

)
− M̂I (Z;T; θ)

)
+
(
P̂ I (Z;T; θ)− M̂I (Z;T; θ)

)
=
(
P̂ I (Z;T; θ)− M̂I (Z;T; θ)

)
. (26)

Equation 26 defines that the difference of the models lies in the approximation error
generated between P̂ I (Z;T; θ) and M̂I (Z;T; θ). Indeed, the approximation error that
defines the distance between the PI and the MI is removed when the success rate is
maximized. One of the most challenging issues, induced by this approximation error, is
then prevented when the ranking loss is considered. In the next section, we validate all
the theoretical observations on unprotected and protected implementations.
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5 Experimental Results
To confirm our theoretical propositions, we complete the analysis of the ranking loss with
experimental results on various public datasets.

5.1 Settings
The experiments are implemented in Python using the Keras library [C+15] and are run
on a workstation equipped with 16GB RAM and a NVIDIA GTX1080Ti with 11GB
memory. All of the following architectures and hyperparameters c are based on the best
state-of-the-art results [ZBHV19]. Table 1 summarizes the choices made by Zaid et al.
No more investigations are performed on these hyperparameters. We define NtGE as the
number of traces that are needed to reach a constant guessing entropy of 1. For a good
estimation of NtGE , the attack traces are randomly shuffled and 100 NtGE are computed
to give the average value denoted N̄tGE . In the next sections, the Na value needed to
compute the ranking loss, is set to 1. Hence, the ranking loss tends to maximize the success
rate when only 1 attack trace is considered (see Definition 2). Finally, the ranking loss is
averaged over the batch-size value before each iteration.
Remark 3. In this paper, we only consider Convolutional Neural Networks (CNN) because
the benefits of these networks were demonstrated in the side-channel context [MPP16,
CDP17, KPH+19, CCC+19, ZBHV19, Mag20]. While the theoretical observations (see
Section 4) are independent of the architecture used, the benefits of the ranking loss
should also be confirmed on all the other networks introduced in the literature (Multi-
Layer Perceptrons, Recurrent Neural Networks [SP97, HS97], Residual Neural Networks
[HZRS16], U-Nets [RFB15], . . . ).

Table 1: Choice of hyperparameters [ZBHV19]
Values

Optimizer Adam [KB15]
Weight initialization He uniform [HZRS15]
Activation function SeLU [KUMH17]
Learning Rate One-Cycle policy [Smi17, ST17]
Number of epochs Chipwhisperer: 20 / AES_HD: 20 / ASCAD: 50

5.2 Comparison with the Cross-Entropy Ratio
In the following, we compare the categorical cross-entropy and the cross-entropy ratio (CER)
loss functions with the ranking loss on different publicly available datasets. Introduced in
[ZZN+20], the cross-entropy ratio is defined as:

LCER(Fθ, T r) = LCCE(Fθ, T )
LCCE(Fθ, T r)

,

where T r identifies the profiling set T with shuffled labels while keeping the traces
unchanged.
Remark 4. In [ZZN+20], Zhang et al. construct the cross-entropy ratio loss as specialized
for imbalanced labels (e.g. when a particular leakage model is considered). The ranking
loss proposed in this paper is generic, no leakage model is chosen (i.e. the identity function
is used). A future work could study the suitability of the ranking loss on imbalanced labels.

chttps://github.com/gabzai/Ranking-Loss-SCA

https://github.com/gabzai/Ranking-Loss-SCA
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5.3 Presentation of the Datasets
We use three different datasets for our experiments. All the datasets correspond to
implementations of Advanced Encryption Standard (AES) [DR02]. The datasets offer a
wide range of use cases: high-SNR unprotected implementation on a smart card, low-
SNR unprotected implementation on a FPGA, low-SNR protected implementation with
first-order masking [SPQ05] and random-delay effect.

• Chipwhispererd is an unprotected implementation of AES-128 (8-bit XMEGA
Target). Due to the lack of countermeasures, we can recover the secret directly. In
this experiment, we attack the first round S-box operation. We identify each trace
with the sensitive variable Y (i)(k∗) = Sbox[P (i)

0 ⊕ k∗] where P (i)
0 is the first byte

of the i-th plaintext. The measured SNR equals 7.87 (see Appendix D Figure 5).
Our experience is conducted with 45, 000 power traces of 800 points for the training
phase and 5, 000 power traces for the validation. Finally, 50, 000 power traces are
used for the attack phase.

• AES_HDe is an unprotected AES-128 implemented on FPGA. Introduced in
[PHJ+19], the authors attack the register writing in the last round such that the
label of the i-th trace is Y (i)(k∗) = Sbox−1[C(i)

j ⊕ k∗] ⊕ C
(i)
j′ where C(i)

j and C
(i)
j′

are two ciphertext bytes associated with the i-th trace, and the relation between
j and j′ is given by the ShiftRows operation of AES. The authors use j = 12 and
j′ = 8. The measured SNR equals 0.01554 (see Appendix D Figure 6). We use
75, 000 measurements such that 50, 000 are randomly selected for the training process
(45, 000 for the training and 5, 000 for the validation) and we use 25, 000 traces for
the attack phase.

• ASCADf is introduced in [BPS+19] and is the first open database that has been
specified to serve as a common basis for further works on the application of deep
learning techniques in the side-channel context. The target platform is an 8-bit
AVR microcontroller (ATmega8515) where a masked AES-128 with different levels of
random delay (i.e. 0, 50, 100) is implemented. The leakage model is the first round
S-box operation such that Y (i)(k∗) = Sbox[P (i)

3 ⊕k∗]. As explained in [BPS+19], the
third byte is exploited. The measured SNR equals 0.007 (see Appendix D Figure 7).
This SNR computation was performed on the unmasked sbox output which is targeted
by the network. To generate our network, we divide the dataset of ASCAD into
three subsets: 45, 000 traces for the training set, 5, 000 for the validation set and
10, 000 for the attack phase.

Remark 5. To efficiently evaluate the performance of our networks, we apply some visual-
ization tools provided in [MDP19a, ZBHV19]. Indeed, through the weight and the gradient
visualizations, we are able to identify the relevant features retained by the network to
classify the traces.

5.4 Evaluation of the Ranking Loss on Public Datasets
From a practical perspective, the generation of suitable architectures is known as a difficult
task. Hence, two kinds of models are considered. In Section 5.4.1, models that exploit
a partial set of PoI in the leakage traces are evaluated. In Section 5.4.2, models that
exploit all the relevant information in the leakage traces are considered. This subsection
evaluates the efficiency of the ranking loss compared to the categorical cross-entropy and

dhttps://newae.com/tools/chipwhisperer/
ehttps://github.com/AESHD/AES_HD_Dataset
fhttps://github.com/ANSSI-FR/ASCAD

https://newae.com/tools/chipwhisperer/
https://github.com/AESHD/AES_HD_Dataset
https://github.com/ANSSI-FR/ASCAD
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(a) Weight visualization
(Categorical Cross-Entropy
(CCE))

(b) Weight visualization
(Cross-Entropy Ratio
(CER))

(c) Weight visualization
(Ranking Loss (RkL)
(α = 5.0))

(d) SNR of the Chipwhisperer dataset

Figure 1: Visualization of the approximation error (Chipwhisperer)

the cross-entropy ratio in both cases through various scenario, notably in presence of high
noise, masking and desynchronization.

5.4.1 A Partial Exploitation of the Leakages

For simplicity, we evaluate this case study with the ChipWhisperer dataset. The model
implemented is a CNN architecture with one convolutional block of 2 filters of size 1 and
one fully-connected layer with 2 nodes. When considering unprotected implementation
with low noise, all the models trained with different losses provide the same N̄tGE value
(see Table 2 for small σ values). In [ZBHV19], Zaid et al. propose to visualize the weights
corresponding to the flatten layer in order to evaluate the capacity of the network to extract
the relevant features. Through this visualization, an evaluator is able to retrieve the points
of interest selected by a network. However, due to the effect of the convolutional block,
the number of weighted samples is divided by the value of the pooling stride [ZBHV19].
Thus, the comparison of these visualizations with the SNR computation can be difficult.
For ease of visualization, we add a padding on the weight representation in order to get
the same x-axis on each figures. In Figure 1, we compare the features retained by the
categorical cross-entropy (see Figure 1a), the cross-entropy ratio (see Figure 1b) and the
ranking loss (see Figure 1c) with the classical SNR (see Figure 1d).

Interestingly, depending on the loss, the model does not select the same relevant
features. The Figure 1a, Figure 1b and Figure 1c do not show the same points of interest.
While the SNR computation reveals 4 high peaks between 0 and 200 samples, the models
trained with the categorical cross-entropy and the cross-entropy ratio losses detect only
2 high peaks in the same area. Hence, only a partial set of leakages is exploited by
these cross-entropy losses. In comparison, the ranking loss extracts most of the sensitive
information. Moreover, the categorical cross-entropy loss identifies a false-positive leakage
while no irrelevant peak occurs when the ranking loss is applied. This error underlines
an important issue when the categorical cross-entropy loss is used in side-channel: the
approximation error is non-negligible and some false-positive leakages can occur. If the
evaluator cannot find a more suitable neural network architecture, these noisy points
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(i.e. irrelevant features) could dramatically impact the performance of the network. As
mentioned in [DSVC14], the approximation (or assumption) error can be dramatic if the
model, characterizing the perceived information, does not converge towards the right
distribution Pr [Z = z|t] defined by the mutual information MI (Z,T). In Section 4.3,
we have shown that the ranking loss prevents the approximation error compared to the
categorical cross-entropy. Hence, when the ranking loss is used, the related performance
should be, at least, as good as a model trained with the categorical cross-entropy.

If the PoIs amplitude is low compared to the noise, the performance gap between a
model trained with the categorical cross-entropy, the cross-entropy ratio and the ranking
loss could increase. To illustrate this phenomenon, we add Gaussian noise N ∼ B

(
0, σ2)

such that σ defines the standard deviation of the noise. Table 2 shows the evolution of
the N̄tGE value depending on the added noise on the Chipwhisperer dataset. When the
additional noise level is low (i.e. σ ≤ 10−2), the feature detection is effective regardless of
the loss function and the performance gap is low (i.e. less than 9). However, for high noise
level (i.e. σ ≥ 10−1), the performance gap increases dramatically and reaches 1, 031 when
we compare the categorical cross-entropy and the ranking loss and 885 when we compare
the cross-entropy ratio and the ranking loss. The ranking loss is clearly the most efficient
loss function, even in the presence of high noise levels.

Table 2: Evolution of N̄tGE depending on σ (average over 10 converging models)

N̄tGE

σ 0 10−6 10−5 10−4 10−3 10−2 10−1 Training Time

Categorical Cross-Entropy 4 4 6 6 7 21 3,958 81 s
Cross-Entropy Ratio 4 5 6 8 17 20 3,812 143 s
Ranking Loss 3 3 3 3 3 13 2,927 294 s

As a conclusion, if an evaluator generates a model that does not exploit the entire
set of leakages, he shall use the ranking loss in order to obtain a model mitigating the
approximation error. Indeed, depending on the level of the SNR peaks, this error can
dramatically impact the performance of a network. However, from practical perspective,
a model trained with the ranking loss can also extract false-positive leakages due to the
optimization error. But its overall error rate stays a lower bound of the error rate generated
by a model trained with a cross-entropy loss function (see Section 4.3) with the assumption
that the optimization errors are similar. The evaluation of the approximation error was
also made on the AES_HD and the ASCAD datasets but the architectures proposed in
[ZBHV19] already give the same best solution for all the losses. For these datasets, we
can assume that the approximation error is negligible. Hence, we assume that all losses
exploit the entire set of relevant information. The next section evaluates the benefits of
the ranking loss against the categorical cross-entropy and the cross-entropy ratio when all
leakages are detected.
Remark 6. In this experiment, we noticed that when the noise level is high, the best value
of α used by the ranking loss decreases. Consequently, α is configured to obtain the most
powerful model when the noise level is high. Even if the resulted performance is similar
for many values of α, this observation illustrates that α should be correctly configured
depending on the characteristic of the traces (i.e. level of noise, number of profiling traces
...).

5.4.2 A Total Exploitation of the Leakages

As previously mentioned, given the architecture provided in [ZBHV19], the entire set of
leakages is detected on the AES_HD and the ASCAD datasets. Hence, we can assume that
the approximation error does not impact the overall performance of the model regardless
of the loss function. When all the losses converge towards the same best solution, a
comparison method consists in the evaluation of the number of profiling traces that are
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needed to reach this performance. From an evaluator point of view, it is more interesting
to converge faster towards the best solution because it is difficult to estimate a priori
the number of profiling traces needed to reach the best performance. To highlight the
benefits of each loss, we decompose this experimental study into an Estimation Error Gap
(EEG) and a performance gap evaluations. We introduce the EEG that characterizes the
difference between the number of profiling traces Np, when different losses are used, for a
given N̄tGE . We note EEG(Li,Lj) the EEG value between models trained with the loss
functions Li and Lj . For each dataset, we report the performance results given by 10
models converging towards a constant guessing entropy of 1 and display the evolution of
the average N̄tGE values for different level of Np. When the number of profiling traces is
low (i.e. ≤ 30, 000), some models do not retrieve the sensitive information and the resulted
N̄tGE value cannot be estimated. For allowing an equal comparison between the losses, we
only consider the models for which the N̄tGE value can be computed for all the learning
metrics.

AES_HD. In Figure 2a, we compare the convergence capacity of each model depending
on the loss used. When the model is trained with the ranking loss, only 20, 000 profiling
traces are needed to perform a successful attack such that N̄tGE = 2, 000. To reach
the same performance, a model trained with the categorical cross-entropy needs 24, 870
profiling traces. Thus, when N̄tGE = 2, 000, EEG(LRkL,LCCE) = 4, 870. Similarly, if
the evaluator chooses the cross-entropy ratio as loss function, he needs to increase its
training set by 4, 950 traces to perform similar attacks. When the ranking loss is used,
the number of profiling traces needed to reach a constant N̄tGE solution is, in the worse
case, similar to the cross-entropy propositions (i.e. categorical cross-entropy, cross-entropy
ratio). Through Table 3, we compare the performance of each loss for a given number of
profiling traces. When Np is low (i.e. ≤ 30, 000), the performance gap is relatively high
(up to 8, 293 traces) between the ranking loss and the cross-entropy losses.

EEG

(a) Evolution of N̄tGE depending on Np

(AES_HD)

EEG

(b) Evolution of N̄tGE depending on Np

(ASCAD)

Figure 2: Evaluation of the EEG value on synchronized datasets (average over 10
converging models)

Hence, when the number of profiling traces is limited (as often in practice), the ranking
loss is the most efficient loss function. However, as defined in [MDP19b], if the number of
profiling traces is large enough and no approximation error occurs, the performance gap is
reduced and the categorical cross-entropy loss function generates a model that converges
towards the same best solution (see Table 3). The same observation can be made if we
consider the cross-entropy ratio loss function. These experimental results confirm the
theoretical propositions of Section 4.2 such that the ranking loss is, at least, as efficient as
a model trained with a cross-entropy loss function.
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Table 3: Evolution of N̄tGE depending on the number of profiling traces Np (AES_HD -
average over 10 converging models)

N̄tGE

Np 10, 000 15, 000 20, 000 25, 000 30, 000 35, 000 40, 000 45, 000

Categorical Cross-Entropy >25,000 13,855 5,685 2,220 1,725 1,385 1,235 1,165
Cross-Entropy Ratio >25,000 19,591 5,158 2,390 2,115 1,397 1,259 1,206
Ranking Loss >25,000 11,298 2,443 1,805 1,370 1,280 1,210 1,115

Remark 7. In comparison with the cross-entropy loss function, the training time can be
impacted when the ranking loss is considered. Following Equation 9, the partial ranking
loss function has to be summed for each key candidate. Hence, the training time needed
to reach a given number of epochs could be increased depending on the leakage model (i.e.
identity, hamming weight, . . . ). The lesser the number of classes (or key hypotheses), the
lesser the training time is impacted. For the AES_HD dataset, the worst case scenario is
considered (i.e. 255 partial ranking loss functions are summed). In comparison with the
cross-entropy loss function, the training time increased by 10s, when Np = 15, 000, and by
up to 145s for 45, 000 profiling traces. In the worst-case scenario (i.e. Np = 45, 000), the
training time is multiplied by 4. While this work was focused on the introduction of the
ranking loss and the theoretical/performance comparison with the cross-entropy, a further
investigation should be made on datasets that needed more profiling datas for extracting
the relevant information from the physical traces.

Remark 8. The value α of the ranking loss needs to be adapted depending on the number
of profiling traces. For example, when Np is low, the risk of overfitting is a major issue.
One solution, to limit the overfitting effect, is to fix a higher learning rate [HHS17, ST17].
Hence, following Equation 12 and Equation 13, α can be monitored as the learning rate,
in order to optimize the training process. For the AES_HD dataset, increasing α to 10
generates a more powerful model than α equal to 1 (see Appendix A Figure 4c) when the
number of profiling traces equals 20, 000.

ASCAD. In contrast with the previous datasets, ASCAD is a protected implementation
with 1st-order masking and random-delay countermeasures. Figure 2b, Figure 3a and
Figure 3b provide a comparison between models trained with the different losses for
synchronized and desynchronized traces. In Figure 2b, when the model is trained with the
ranking loss, only 15, 000 profiling traces are needed to perform a successful attack while
18, 500 (resp. 20, 000) are needed to reach the same performance when the categorical
cross-entropy (resp. cross-entropy ratio) loss is used for the training process. Consequently,
if the evaluator chooses the categorical cross-entropy (resp. cross-entropy ratio) as loss
function, he needs to increase its training set by 3, 500 (resp. 5, 000) profiling traces on
average. Thus, when N̄tGE = 1, 700, EEG(LRkL,LCCE) = 3, 500. Furthermore, when no
desynchronization occurs, the model converges faster towards the average best solution (i.e.
N̄tGE ≈ 260) when the ranking loss is used (i.e. 35, 000) compared to the categorical cross-
entropy or the cross-entropy ratio losses (i.e. about 45, 000). The resulting EEG value equals
10, 000. This estimation error gap is up to 6, 000 profiling traces when desynchronization
occur (see Figure 3a and Figure 3b)g. Hence for the ASCAD dataset, EEG is not increased
with the desynchronization effect. Indeed, in comparison with synchronized traces, this
countermeasure only impacts the exploitation of the relevant information. Finding suitable
CNN architectures reduce the desynchronization effect [CDP17, ZBHV19] while preserving
the same performance as a model trained with synchronized traces.

gNote that models trained with the cross-entropy ratio did not converge when desynchronization 100 is
considered.
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EEG

(a) Evolution of N̄tGE depending on Np

(ASCAD (desynchronization 50))

EEG

(b) Evolution of N̄tGE depending on Np

(ASCAD (desynchronization 100))

Figure 3: Evaluation of the EEG value on desynchronized datasets (average over 10
converging models)

Through Table 4, we confirm the observations on the AES_HD dataset. In our
experiment, for a small number of profiling traces Np (i.e. ≤ 25, 000), a model trained
with the ranking loss is, on average, more efficient than one trained with the categorical
cross-entropy or the cross-entropy ratio. For synchronized and desynchronized traces, an
evaluator with a limited number of profiling traces shall use the ranking loss.

Table 4: Evolution of N̄tGE depending on the number of profiling traces Np (ASCAD -
average over 10 converging models)

N̄tGE

Np 10, 000 15, 000 20, 000 25, 000 30, 000 35, 000 40, 000 45, 000

D
es
yn

c
0 Categorical Cross-Entropy >8,000 2,135 1,054 705 471 435 318 270

Cross-Entropy Ratio >8,000 3,015 1,771 1,220 950 437 313 295
Ranking Loss >8,000 1,740 709 481 334 272 258 244

D
es
yn

c
50 Categorical Cross-Entropy >8,000 4,172 2,342 1,041 792 656 577 337

Cross-Entropy Ratio >8,000 6,640 3,042 1,473 1,028 742 567 403
Ranking Loss >8,000 3,475 1,792 765 641 558 449 345

D
es
yn

c
10

0 Categorical Cross-Entropy >8,000 7,593 3,343 1,175 756 570 473 371
Cross-Entropy Ratio >8,000 >8,000 >8,000 >8,000 >8,000 >8,000 >8,000 >8,000

Ranking Loss >8,000 4,883 2,216 696 584 496 390 325

When the entire set of leakages is detected by the network, a model trained with the
ranking loss converges faster towards the best solution compared to the categorical cross-
entropy and the cross-entropy ratio losses. From a theoretical perspective, we can assume
that the estimation error is reduced when the ranking loss is considered. As discussed in
Section 2.3, the estimation error defines the gap between the empirical estimation of the
PI (resp. the empirical estimation of the MI), computed with the categorical cross-entropy
(resp. ranking loss), and the real value of the PI (resp. MI). When the number of profiling
traces Np is large enough, we validate that the impact of the estimation error can be
negligible. However, in practice, the number of profiling traces is limited. For that purpose,
the ranking loss function seems to be more appropriate with the assumption that an
attacker has not an infinite number of traces in the profiling phase [PHG19]. Hence, the
ranking loss is a solid alternative to the cross-entropy losses for side-channel attacks.
Remark 9. As previously mentioned, depending on the number of classes, the training time
can be impacted when the ranking loss is considered. In comparison with the cross-entropy
loss function, the training time is increased by 60s, when Np = 15, 000, and by up to 253s
when 45, 000 profiling traces are used for generating a network on the ASCAD dataset
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when no desynchronization occurs. In the worst-case scenario (i.e. Np = 45, 000), the
training time is multiplied by 1.9. In addition, when a random delay effect with a maximum
amplitude of 100 samples is implemented (i.e. “Desync 100”), the network proposed in
[ZBHV19] is more complex than the network trained on the synchronized traces (16, 960
against 142, 044 trainable parameters). In comparison with the cross-entropy loss function,
the network trained on desynchronized traces increases the resulted training time by 97s,
when Np = 15, 000, and by up to 290s when 45, 000 profiling traces are considered. Hence,
the training time is multiplied by 2 in the worst-case scenario (i.e. Np = 45, 000). These
results are similar with the network trained on synchronized traces. Hence, in this example,
a more complex network does not impact a lot the training time induced by the ranking
loss. However, a further study should be made to validate this observation on deeper
networks.

Remark 10. As mentioned earlier, the value α of the ranking loss needs to be adapted
depending on the number of profiling traces. For example, when Np = 15, 000 traces,
increasing α to 5 generates a more powerful model than α = 0.5 (see Appendix A Figure 4b)
if the desynchronization effect equals 100. Finally, as we can see in Figure 3b and Table 4,
a model trained with the cross-entropy ratio loss function does not converge towards a
constant GE of 1 when the random-delay effect equals 100. However, the cross-entropy
ratio aims at reducing the imbalanced effect [ZZN+20] which is not consider in this paper.

6 Conclusion

We extend the work done by Masure et al. [MDP19b] that consists in the interpretation
and the explainability of the loss in the side-channel context. We use the learning to rank
approach in order to propose a new loss, called Ranking Loss. We theoretically show that
this new loss is derived from the success rate. Indeed, we demonstrate that maximizing the
success rate is equivalent to minimizing the ranking error of the secret key compared to all
other hypotheses. Hence, the ranking loss tends to maximize the success rate for a given
Na traces and converges towards the optimal model introduced in [BGH+17]. Through
this new proposition, we are more concerned with the relative order of the relevance of
the key hypothesis than their absolute value. In the side-channel perspective, the ranking
loss generates a distinguisher that converges towards the mutual information between the
sensitive information and the leakage. Hence, the errors namely approximation, estimation
errors [MDP19b] are reduced when our approach is applied.

All these observations are experimentally validated through two scenarios. Firstly,
if an evaluator does not generate a model exploiting all the sensitive information from
a leakage trace. Using the ranking loss prevents the approximation error and provides
the most efficient model. Otherwise, if an evaluator generates a model that exploits the
entire set of leakages, the model trained with the ranking loss converges faster towards the
best solution compared to the cross-entropy losses. Hence, if an evaluator deals with a
limited number of traces, using the ranking loss should provide the most efficient model.
Consequently, in all situations, the evaluator shall consider the ranking loss as a clear
alternative to the cross-entropy.

The cross-entropy ratio loss function was introduced to reduce the imbalanced data
effect [ZZN+20], a setting which is not explored in this work. A further investigation
should be made to evaluate the suitability of the ranking loss in this context. Then, we
only investigate the ranking loss function when Na = 1. A further study could explore
the suitability of considering Na > 1 during the training process. Finally, this paper only
looks at the pairwise approach for ranking loss. A future work could theoretically evaluate
the benefits and the limitations of using the listwise approach in the side-channel context.
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A Impact of α

We select a wide range of α values in order to efficiently evaluate the impact of this
parameter on the training process. Figure 4 illustrates the impact of α on the loss function
depending on the dataset used for training the model. The architectures are the same
as in Section 5.4. For the Chipwhisperer dataset, if α is small (e.g. less than 10), the
sigmoid approximates the indicator function less accurately [BZBN19]. Consequently, the
loss function optimizes the model that is far from the original ranking loss. However,
this property is not necessarily verified in practice. Indeed, depending on the score value,
the impact of α could be scaled. When α is too large, the gradient tends to vanish (see
Equation 13) and the resulted training process provides poor performance. It appears
that a relatively small value of α could provide a good trade-off between the optimization,
through the gradient computation, and the approximation of the indicator function. The
same observation can be made when the ASCAD with synchronized traces (see Figure 4b)
and AES_HD (see Figure 4c) are considered. However, we have to note that α should be
carefully configured depenfing on the dataset.

(a) Chipwhisperer (b) ASCAD (Synchronized
traces)

(c) AES_HD

Figure 4: Impact of α on the loss function during the training phase (45, 000 profiling
traces)

B Link between MAP and SR
The Mean Average Precision (MAP) defines the average precision of the secret key k∗ over
the |K| hypotheses. Let g =

(
g1, g2, ..., g|K|

)
be a vector that defines the rank for each key

hypothesis in K as introduced in Equation 3. We consider g1 as the most likely candidate
and g|K| as the least likely one. Let d be a threshold and MAP@d be the average precision
of the secret key k∗ in the top d relevant position (i.e. gd) such that:

MAP@d = 1
N

N∑
i=1

APi@d,

where N denotes the number of queries (e.g. batch-size) and APi@d is the average precision
of the query i over the top d relevant position as:

AP@d = 1
Number of True Positives at d

d∑
i=1

Number of True Positive seen× rel(i)
i

,

where rel(i) is an indicator that equals 1 if the element at rank i is a relevant item and
0 otherwise. In SCA context, it means that rel(i) = 1 when i defines the rank related to
k∗.

In side channel analysis, we want to recover the secret key k∗, consequently, the total
number of True Positives is equal to 1 and the previous equation can be simplified as
below:
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MAP@d = 1
N

N∑
i=1

APi@d = 1
N

N∑
i=1

d∑
j=1

1gi(k∗=j)
j

.

Therefore,

MAP@1 = 1
N

N∑
i=1

APi@1 = 1
N

N∑
i=1

1gi(k∗=1) = SR1(N).

C Bounds in Learning to Rank Metrics
In [CLL+09a], Chen et al. reveal the relationship between classical information retrieval
measures (i.e. MAP, DCG, NDCG) and the loss functions used in “Learning to Rank”
approach (i.e. Pairwise and Listwise losses). In this appendix, we exploit their results
in order to argue the inequalities introduced in Equation 10 and Equation 11. Let sg(i)
be the score associated with the key hypothesis ranked at the ith position in the ranking
vector g, introduced in Section 2.2. In [CLL+09a], the authors define a loss function, called
essential loss, that characterizes the sum of the classification error involved during the
training process,

less (sg) ,
|K|−2∑
i=0

1−
|K|−1∏
j=i+1

1sg(i)>sg(j)

 .

First, the essential loss can be defined as an upper bound of (1−MAP@|K|) where
|K| denotes the number of key hypotheses and MAP@|K| is the mean average precision
over the top |K| relevant position in g.
Theorem 2 (From item (2) of Theorem 1 [CLL+09a]). Given a 2-level rating data with n0
(resp. n1) elements with the label 0 (resp. 1), then, the following inequality holds,

1−MAP@|K| ≤ 1
n1

|K|−2∑
i=0

1−
|K|−1∏
j=i+1

1sg(i)>sg(j)

 .

Proof. See the proof of Theorem 1 in [CLL+09a]

Following Chen et al., the essential loss can also be defined as a lower bound of many
ranking loss functions (i.e. Pairwise and Listwise losses).
Theorem 3 (From item (1) of Theorem 2 [CLL+09a]). The pairwise loss function is an
upper bound of the essential loss such as,

|K|−2∑
i=0

1−
|K|−1∏
j=i+1

1sg(i)>sg(j)

 ≤ |K|−2∑
i=0

|K|−1∑
j=i+1

log2

(
1 + e−α(sg(i)−sg(j))

)
.

Proof. See the proof of Theorem 2 in [CLL+09a]

Interestingly, combining the results obtained in Theorem 2 and Theorem 3 is helpful to
distinguish a relation between the classical learning to rank loss functions and the informa-
tion retrieval measures used to evaluate the training process. Indeed, this combination
gives us the following result,

(1−MAP@|K|) ≤ 1
n1

|K|−2∑
i=0

|K|−1∑
j=i+1

log2

(
1 + e−α(sg(i)−sg(j))

)
= 1
n1

|K|−1∑
i=0

|K|−1∑
j=0

gr(j)<gr(i)

lNa (i, j) ,

where gr(i) defines the label (or grade) associated to the ith key hypothesis (i.e. 0 or 1)
and lNa characterizes the function introduced in Equation 8.
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D Signal-to-Noise Ratio of the Experimental Datasets

Figure 5: SNR of the Chipwhisperer dataset

Figure 6: SNR of the AES_HD dataset

Figure 7: SNR of the ASCAD dataset
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