
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 1, pp. 1–24. DOI:10.46586/tches.v2021.i1.1-24

Compact Dilithium Implementations on
Cortex-M3 and Cortex-M4

Denisa O. C. Greconici1, Matthias J. Kannwischer2 and Amber Sprenkels1

1 Digital Security Group, Radboud University, Nijmegen, The Netherlands
d.greconici@cs.ru.nl, amber@electricdusk.com

2 Max Planck Institute for Security and Privacy, Bochum, Germany
matthias@kannwischer.eu,

Abstract. We present implementations of the lattice-based digital signature scheme
Dilithium for ARM Cortex-M3 and ARM Cortex-M4. Dilithium is one of the three
signature finalists of the NIST post-quantum cryptography competition. As our
Cortex-M4 target, we use the popular STM32F407-DISCOVERY development board.
Compared to the previous speed records on the Cortex-M4 by Ravi, Gupta, Chat-
topadhyay, and Bhasin we speed up the key operations NTT and NTT−1 by 20%
which together with other optimizations results in speedups of 7%, 15%, and 9% for
Dilithium3 key generation, signing, and verification respectively. We also present the
first constant-time Dilithium implementation on the Cortex-M3 and use the Arduino
Due for benchmarks. For Dilithium3, we achieve on average 2 562 kilocycles for key
generation, 10 667 kilocycles for signing, and 2 321 kilocycles for verification.
Additionally, we present stack consumption optimizations applying to both our Cortex-
M3 and Cortex-M4 implementation. Due to the iterative nature of the Dilithium
signing algorithm, there is no optimal way to achieve the best speed and lowest stack
consumption at the same time. We present three different strategies for the signing
procedure which allow trading more stack and flash memory for faster speed or vice-
versa. Our implementation of Dilithium3 with the smallest memory footprint uses
less than 12kB. As an additional output of this work, we present the first Cortex-M3
implementations of the key-encapsulation schemes NewHope and Kyber.
Keywords: Dilithium, ARM Cortex-M4, ARM Cortex-M3, number theoric transform,
lattice-based cryptography

1 Introduction
In 2016, NIST called for proposals for new post-quantum schemes [NIS16] which are meant
to replace the existing standards for key establishment (SP 800-56A [BCR+18] and SP 800-
56B [BCR+19]) and digital signatures (FIPS 186-4 [Nat13]). While the existing standards
are based on the hardness of integer factorization and computing discrete logarithms and
are, therefore, broken by Shor’s algorithm [Sho94], the new ones should resist adversaries
with access to a large-scale quantum computer. After receiving 69 submissions in 2017,
NIST narrowed down to 26 schemes advancing to round two in 2019. In July 2020, NIST
announced their selection of seven finalists which are to be evaluated in a third round.
Out of those finalists NIST expressed their intention to standardize a subset at the end
of round three. Additionally, NIST announced eight alternative schemes which may still
be standardized at a later point. The seven finalists include the four key establishment

∗This work was done while MJK was employed by Radboud University, Nijmegen, The Netherlands.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-07-15 Accepted: 2020-09-15 Published: 2020-12-03

https://doi.org/10.46586/tches.v2021.i1.1-24
mailto:d.greconici@cs.ru.nl
mailto:amber@electricdusk.com
mailto:matthias@kannwischer.eu
http://creativecommons.org/licenses/by/4.0/

2 Compact Dilithium Implementations on Cortex-M3 and Cortex-M4

schemes Classic McEliece, Kyber, NTRU, and Saber as well as the three signature schemes
Dilithium, Falcon, and Rainbow.

One major family of post-quantum cryptographic schemes are based on hard lattice
problems. Out of the seven finalists, five are lattice-based. Together with Falcon [PFH+19],
Dilithium [LDK+19] is one of the two remaining lattice-based signature schemes. In round
two, an additional lattice-based signature scheme called qTesla [BAA+19]. However, qTesla
was not selected to advance to the third round.

Dilithium and qTesla are conceptually very similar to they are both Fiat-Shamir-
with-abort schemes [Lyu09] based on {R,M}LWE and {R,M}SIS. However, Dilithium
has significantly smaller keys, smaller signatures, and better performance. For example,
qTESLA-p-I public keys are 14 880 bytes and signatures are 2 592 bytes, while Dilithium2
has 1 184 byte public keys and 2 044 byte signatures albeit providing the same level of
(claimed) security. Note that qTesla initially also proposed “heuristic” parameter sets
which achieved sizes and performance closer to Dilithium, but the qTesla team withdrew
those parameter sets because Lyubashevsky and Schwabe presented a complete break
allowing universal forgeries1. Falcon, on the other hand, is a “hash-and-sign” signature
schemes based on NTRU lattices and, hence, has different characteristics while being
competitive with Dilithium in terms of message sizes and computational performance.

Together with the finalist key-encapsulation mechanism Kyber [ABD+19], Dilithium is
part of the Cryptographic Suite for Algebraic Lattices (CRYSTALS). Both Dilithium and
Kyber use structured lattices to allow fast arithmetic and compact key, signature, and
ciphertext sizes. Both make use of the polynomial ring Zq[X]/(X256 + 1) which enables
efficient polynomial multiplication using the number theoretic transform (NTT). However,
Dilithium is using a 23-bit prime modulus, while Kyber is using a 12-bit prime modulus
which means that their implementations of polynomial arithmetic differ significantly.

While there is a vast literature on the implementation of lattice-based key-encapsulation
schemes, the coverage of lattice-based signatures is still limited and more research is needed.
We advance the field by presenting optimized implementations of Dilithium for the ARM
Cortex-M3 and ARM Cortex-M4. In this work, aside from optimizing for speed, we also
optimize for stack usage.

The Cortex-M4 has been declared the main microcontroller optimization target for the
post-quantum competition by NIST and, hence, the majority of schemes in the third round
have an optimized implementation for that architecture. However, its “smaller brother”,
the Cortex-M3, is also still widely deployed.

The Cortex-M4 provides various advanced instructions for optimizing cryptographic
schemes which might be one of the reasons why it has received much attention from the
cryptographic community.

However, the Cortex-M3 comes with one “feature” which does appear interesting from
an implementation and also from a side channel perspective: Different from the Cortex-M4,
it does not have a constant-cycle 32-bit multiplier producing a 64-bit result, but only a
variable-cycle one. Therefore, an implementation of any scheme working on large (secret)
integers compiled for the Cortex-M3 is most likely going to leak information about these
secret integers via timing side channels. This has been shown to pose a problem for
cryptographic schemes in preceding ARM architectures [GOPT09]. This is particularly
interesting for Dilithium, because of the large prime modulus q = 8380417. If existing
implementations for Dilithium are simply compiled for the Cortex-M3, they are very likely
to be vulnerable to timing attacks within the polynomial multiplication. In this paper, we
build a safe constant-time implementation of Dilithium on the Cortex-M3. That is, the
execution time of the algorithm is invariant over all the secret values in the algorithm.

1https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/HHnavSx4f5Q/fRsujb9ACgAJ

https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/HHnavSx4f5Q/fRsujb9ACgAJ

Denisa O. C. Greconici, Matthias J. Kannwischer and Amber Sprenkels 3

Contribution. The contribution of this paper is fourfold: First, we further optimize the
existing Dilithium implementation for the Cortex-M4 by switching to a signed polynomial
representation and optimizing more parts of the scheme. Second, we present the first
constant-time implementation of Dilithium on the Cortex-M3. Third, we present various
stack consumption and speed trade-offs for the signing procedure of Dilithium. Due to the
iterative nature of the signing procedure, there exist interesting implementation choices.
Finally, as a by-product, we provide Cortex-M3 implementations of the lattice-based key-
encapsulation schemes Kyber and NewHope. This, most notably, consists of constant-time
implementations of the NTT and NTT−1 operations in those schemes.

Code. The implementations of Dilithium, Kyber, and NewHope that are the result of this
work are in the public domain and available at https://github.com/dilithium-cortexm/
dilithium-cortexm.

Related Work. Previous speed-records for Dilithium on the Cortex-M4 were set by Ravi,
Gupta, Chattopadhyay, and Bhasin [RGCB19] and were built upon an implementation by
Güneysu, Krausz, Oder, and Speith [GKOS18]. A masked implementation of a modified
Dilithium on Cortex-M3 is presented in [MGTF19]. Migliore, Gérard, Tibouchi, and
Fouque propose to use a power-of-two modulus instead of the original prime modulus to
allow for cheaper masking. However, strictly speaking, they do not implement the Dilithium
scheme as it was submitted to NIST. There is an extensive line of work for Cortex-M4
implementation of lattice-based key-encapsulation mechanisms [AJS16,BKS19,ABCG20,
KRS19,KBMSRV18,BMKV20]. Similar studies exist on hardware implementations and
instruction set extensions [BMTK+,BUC19,AEL+20]. Other lattice-based signatures have
been implemented on the Cortex-M4: Pornin presents a fast constant-time implementation
of Falcon on the Cortex-M4 [Por19]; In 2019, [GR19] presented a masked implementations
of qTesla; More recently, [WTJ+20] presented a hardware-accelerated implementation of
qTesla.

Structure of this paper. Section 2 introduces the lattice-based signature scheme Dilithium
and the peculiarities of the Cortex-M3 and Cortex-M4 relevant for this work. In Section 3
we present some improvements for the Cortex-M4. Section 4 presents the first constant-time
implementation of Dilithium on the Cortex-M3. Section 5 presents various trade-offs in
terms of stack consumption and speed of Dilithium implementations. Section 6 presents
the performance results for both implementations. In Appendix A, we provide performance
results for Kyber and NewHope on the Cortex-M3 which are a by-product of this work.

2 Preliminaries
2.1 Dilithium
Dilithium [DKL+18,LDK+19] is a digital signature scheme based on the hardness of the
M-LWE and the M-SIS lattice problems. It is one of the three digital signature finalists
of the NIST Post-Quantum Competition [NIS16]. Note that with the advance to the
third round the Dilithium submitters may introduce tweaks to the scheme. The following
description is based on the second round specification [LDK+19].

Parameters. Dilithium consists of four different parameter sets Dilithium1, Dilithium2,
Dilithium3, and Dilithium4 of which the latter three target NIST security levels 1 to
3 respectively. We omit Dilithium1 in the following as it falls short of the lowest
NIST security level. Dilithium is operating in the polynomial ring Zq[X]/(X256 + 1);
denoted by Rq in the following. Across all parameter sets, the modulus is fixed at

https://github.com/dilithium-cortexm/dilithium-cortexm
https://github.com/dilithium-cortexm/dilithium-cortexm

4 Compact Dilithium Implementations on Cortex-M3 and Cortex-M4

Table 1: Dilithium parameter sets
Name NIST level (k, ℓ) η β ω |pk| |sig| exp. iterations

Dilithium2 1 (4, 3) 6 325 80 1184 2044 5.9
Dilithium3 2 (5, 4) 5 275 96 1472 2701 6.6
Dilithium4 3 (6, 5) 3 175 120 1760 3366 4.3

q = 223 − 213 + 1 = 8380417 and the polynomial dimension is n = 256. Furthermore, for
all parameter sets the bound γ1 is set to (q− 1)/16 = 523776 and γ2 = γ1/2 = 261888. For
each parameter set, the remaining parameters and the resulting public key and signature
sizes are given in Table 1. The parameters consist of the matrix dimension (k, ℓ), the
sampling bounds of the secret η, and the rejection thresholds β and ω. The Dilithium
signature generation algorithm uses rejection sampling to find a signature that can be both
correctly verified and does not leak information about the secret key. Table 1 also gives
the expected number of iterations of the rejection sampling. Due to this iterative nature,
the runtime of Dilithium varies significantly between multiple signature generations. Note,
however, that the rejection probability does not depend on the secret key, and consequently,
the variable run-time caused by rejection sampling does not violate the time constantness
of implementations of Dilithium [LDK+19, Section 3.3].

Notation. We follow the notation of the Dilithium specification [LDK+19] and denote
polynomials by lower case latin letters like c, vectors of polynomials by bold lower case
letters like t, and matrices by bold upper case letters (A). Polynomials, vectors, and
matrices that have been transformed to NTT-domain are identified by their hat, e.g.,
ĉ, â and Â. The operator ◦ describes coefficient-wise multiplication. The operator ||
denotes concatenation of two inputs that are implicitly converted to a byte-string. ||a||∞
refers to the maximum absolute coefficient of the polynomial a and is similarly defined
for vectors. When sampling a from a certain distribution S, we write a ← S. Sη is the
uniform distribution ranging from −η to +η (both inclusive).

Functions. As a central building block, Dilithium uses the NTT and NTT−1 function which
are used to implement efficient polynomial multiplication of a, b as NTT−1(NTT(a) ◦ NTT(b)).
The details of the Dilithium NTT are described later in this section. In addition, Dilithium
uses a collision resistant hash-function H with 384-bit output length and a cryptographic
hash-function HB outputting a polynomial that has exactly 60 coefficients set to ±1 while
the remaining 196 coefficients are zero. The hash functions H and HB are implemented
using the extendable-output function (XOF) SHAKE256. Furthermore, Dilithium defines the
seed expansion functions ExpandA and ExpandMask; the rounding functions Power2Round,
HighBits, and Decompose and the hint functions MakeHint and UseHint. To keep the
algorithm description brief, we omit the details of those functions and refer the reader to
the Dilithium specification.

Scheme Specification. Algorithm 1, Algorithm 2, and Algorithm 3 specify Dilithium
key generation, signature generation, and signature verification. The descriptions are
consistent with the ones from Figure 4 in the Dilithium specification [LDK+19], but we
omit details about rounding that are not relevant to this work.

Number Theoretic Transform. At the core of the Dilithium scheme construction and
parameter choices is the number theoretic transform (NTT) which allows efficient polyno-
mial multiplication. The NTT can be seen as the counterpart of the Fourier transform in
a finite field. NTT-based multiplication allows the multiplication of two polynomials a and
b in quasi-linear time by first transforming both arguments to NTT domain (or frequency

Denisa O. C. Greconici, Matthias J. Kannwischer and Amber Sprenkels 5

Algorithm 1 Dilithium key generation
Output: Secret key sk = (ρ, K, tr, s1, s2, t0)
Output: Public key pk = (ρ, t1)

1: ρ← {0, 1}256

2: K ← {0, 1}256

3: (s1, s2)← Sℓ
η × Sk

η

4: Â ∈ Rk×ℓ
q := ExpandA(ρ)

5: t := NTT−1(Â ◦ NTT(s1)) + s2
6: (t1, t0) := Power2Round(t)
7: tr ∈ {0, 1}384 := H(ρ||t1)

Algorithm 2 Dilithium signature generation
Input: Secret key sk = (ρ, K, tr, s1, s2, t0)
Input: Message M ∈ {0, 1}∗

Output: Signature σ = (z, h, c)
1: Â ∈ Rk×ℓ

q := ExpandA(ρ)
2: µ ∈ {0, 1}384 := H(tr||M)
3: κ := 0; (z, h) = ⊥
4: ρ′ ∈ {0, 1}384 := H(K||µ)
5: ŝ1 := NTT(s1); ŝ2 := NTT(s2); t̂0 := NTT(t0)
6: while (z, h) = ⊥ do
7: y ∈ Sℓ

γ1−1 := ExpandMask(ρ′, κ)
8: w := NTT−1(Â ◦ NTT(y))
9: w1 := HighBits(w)

10: ĉ := NTT(HB(µ||w1))
11: z := y + NTT−1(ĉ ◦ ŝ1)
12: (r1, r0) := Decompose(w− NTT−1(ĉ ◦ ŝ2))
13: if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β or r1 ̸= w1 then
14: (z, h) = ⊥
15: else
16: h := MakeHint

(
−NTT−1(ĉ ◦ t̂0), w− NTT−1(ĉ ◦ ŝ2) + NTT−1(ĉ ◦ t̂0)

)
17: if ||NTT−1(ĉ ◦ t̂0)||∞ ≥ γ2 or # 1’s in h > ω then
18: (z, h) = ⊥

domain) in quasi-linear time using a Fast Fourier transform algorithm (FFT). The multipli-
cation in the NTT-domain is coefficient-wise multiplication and, hence, has linear run-time.
To transform back to the regular domain (or time domain), the inverse NTT (denoted
as NTT−1 from here on) is computed which again can be implemented in quasi-linear
time. A full polynomial multiplication can be performed as NTT−1(NTT(a) ◦ NTT(b)). While
NTT-based multiplication itself does achieve superior performance on some platforms
over other multiplication methods, the advantage is even bigger when either argument is
already in NTT-domain or, alternatively, the output can remain in NTT-domain.

For a polynomial a =
∑n−1

i=0 aiX
i, the Dilithium NTT is defined as

NTT(a) = â =
n−1∑
i=0

âiX
i, with âi =

n−1∑
j=0

rjajr2ij ,

where r is a 2n-th primitive root of unity modulo q. Dilithium uses the 512-th primitive
root of unity r = 1753.

6 Compact Dilithium Implementations on Cortex-M3 and Cortex-M4

Algorithm 3 Dilithium verification
Input: Public key pk = (ρ, t1)
Input: Message M ∈ {0, 1}∗

Input: Signature σ = (z, h, c)
Output: Valid or Invalid

1: Â ∈ Rk×ℓ
q := ExpandA(ρ)

2: µ ∈ {0, 1}384 := H(H(ρ||t1)||M)
3: w′

1 := UseHint(h, NTT−1(Â ◦ NTT(z)− NTT(c) ◦ NTT(2d · t1)))
4: if c = HB(µ||w′

1) and ||z||∞ < γ1 − β and # 1’s in h ≤ ω then
5: return Valid
6: else
7: return Invalid

The NTT−1 is defined as

NTT−1(â) = a =
n−1∑
i=0

aiX
i, with ai = n−1r−i

n−1∑
j=0

ajr−2ij .

Dilithium implementations usually use the Cooley–Tukey (CT) FFT algorithm [CT65]
in the forward NTT and the Gentleman–Sande (GS) FFT algorithm [GS66] in the NTT−1.
These algorithms implement the NTT in quasi-linear time, and make use of log n layers of
n/2 Cooley–Tukey or Gentleman–Sande “butterflies” which we will introduce in Section 3.

2.2 Target Platforms: Cortex-M3 and Cortex-M4
NIST has stated that performance will play an important role in the evaluation of schemes
beyond the first round2. As a primary microcontroller optimization target, NIST recom-
mends the use of the Cortex-M4 board with all options included. Consequently, previous
work on microcontroller implementations of Dilithium [GKOS18,RGCB19] has primarily
focused on the Cortex-M4. Particularly, it has been targeting the STM32F407 core which
was popularized for post-quantum cryptography by the testing and benchmarking frame-
work pqm4 [KRSS]. For our Cortex-M4 optimization we target the same core and board
so that we can report comparable results.

Cortex-M4. The Cortex-M4 implements the ARMv7E-M [ARM14] instruction set architec-
ture (ISA). The core we use is the STM32F407 which provides 196 KiB of RAM (of which
128 KiB are contiguous) and 1 MiB of flash, and it runs at a maximum frequency of 168
MHz. One feature of the ARMv7E-M instruction set makes it particularly interesting for
Dilithium optimizations: the large single-cycle multiplier implementing the instructions
UMULL, SMULL, UMLAL, and SMLAL. Those allow computing the 64-bit product of two 32-bit
arguments and, in the case of UMLAL and SMLAL, adding the result to a 64-bit accumulator.
On the Cortex-M4 microarchitecture, these instructions execute in a single cycle. Those
prove particularly useful for the Dilithium polynomial multiplication. Due to the large
modulus (23-bit) in Dilithium, those multiplications do require computing 64-bit products.

Another feature of the ARMv7E-M ISA are SIMD instructions like SMLAD or UADD16
which have been shown to achieve significant speedups for NTT-based polynomial multipli-
cation [BKS19,ABCG20] and Toom–Cook-based polynomial multiplication [KRS19,KBM-
SRV18,BMKV20] on the Cortex-M4. While those provide vast speedups for schemes with
small moduli (<16-bits) like Kyber [ABD+19], Saber [DKRV19], or NewHope [PAA+19],
they do not help when working with larger moduli like the one from Dilithium. Hence,
other optimization strategies are needed.

2https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/BjLtcwXALbA/Bjj_77pzCAAJ

https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/BjLtcwXALbA/Bjj_77pzCAAJ

Denisa O. C. Greconici, Matthias J. Kannwischer and Amber Sprenkels 7

zi

yi

×

ri
n

−

+

xi+ n
2

xi

(a) Cooley–Tukey

zi

yi

−

+

×

ri
n

x2i+1

x2i

(b) Gentleman–Sande

Figure 1: Butterfly diagrams for the Cooley–Tukey and Gentleman–Sande FFT algorithms.

Cortex-M3. One issue arising when using the UMULL, SMULL, UMLAL, and SMLAL is that
while they are single-cycle (i.e., constant-time) on the Cortex-M4, they are not single-cycle
on all ARM cores. Particularly, the Cortex-M3 (implementing the ARMv7-M) ISA also
provides these instructions, but on this platform UMULL and SMULL take 3 to 5 cycles to
execute and UMLAL and SMLAL take 4 to 7 cycles. As there is no authoritative information
available on the early-termination conditions for these variable-time instructions, it appears
dangerous to use these instructions in code that needs to be constant-time. The early-
termination conditions have been reverse engineered by de Groot [dG15], who showed that
there appear to be four properties that cause an early termination: (1) Arguments being
zero; (2) arguments being smaller than 16-bits; (3) top-heavy arguments (i.e., zero in the
least significant 16-bits); or (4) arguments being a power of two.

Previous work by Großschädl–Oswald–Page–Tunstall [GOPT09] evaluated
early-terminating multiplication instructions on ARMv3 microcontrollers. They propose a
constant-time multiplication algorithm which still uses the variable-time multiplication
instructions, but avoids any shortcuts from being taken. Unfortunately, the newer ARMv7-M
ISA appears to have vastly more sophisticated shortcuts and it appears unlikely that
all shortcuts can be avoided at reasonable cost. In addition, the shortcuts identified by
de Groot [dG15] are not actually confirmed by ARM. It is, hence, possible that not all
shortcuts are known or that the shortcuts do not apply to all Cortex-M3 chips. Therefore,
when writing constant-time code those instructions should be avoided, which means only
the multiplication instructions MUL and MLA can be used which only compute the lower
32 bits of the 64 bit product. This presents a challenge for implementing the Dilithium
polynomial multiplication. This issue was not addressed by previous work on Dilithium
implementations on the Cortex-M3 [MGTF19]. Instead, Migliore, Gérard, Tibouchi, and
Fouque propose a modified Dilithium with the power-of-two modulus q = 232 to allow for
cheaper masking. As a side-effect of this proposed change, multiplications can be done
using MUL, MLS, and MLA as those implicitly reduce modulo 232, and, hence, constant-time
implementations are more straightforward.

The Cortex-M3 platform we use is the popular Arduino Due which comes with a Atmel
SAM3X8E core, has 96 KiB of RAM, 512 KiB of Flash, and runs at a maximum frequency
of 84 MHz.

3 Improving the Performance on Cortex-M4
Our Cortex-M4 implementation is based on the Dilithium implementation by Ravi, Gupta,
Chattopadhyay, and Bhasin [RGCB19], which includes the NTT and NTT−1 assembly
implementation of Güneysu, Krausz, Oder, and Speith [GKOS18].

8 Compact Dilithium Implementations on Cortex-M3 and Cortex-M4

The number theoretic transform is implemented using the divide-and-conquer approach
of the Cooley–Tukey and Gentleman–Sande FFT algorithms. While these are strictly “fast
Fourier-transform” (FFT) algorithms, they are used in Dilithium to compute the “number
theoretic transform” (NTT). In this section it is often the case that both terms apply.

Both the CT and GS algorithms split the input vector into two halves: the Cooley–
Tukey butterfly breaks the input vector into its even-indexed values and its odd-indexed
values; the Gentleman–Sande splits the input vector in the middle of the vector, yielding
the first half and the last half of the original vector. After splitting the input vector, the
final NTT is computed by applying the NTT over each smaller vector and then combining
the results according to the CT or GS methods defined below.

In the Cooley–Tukey algorithm, the smaller NTT-transformed vectors y (from the even
indices) and z (from the odd indices) are used to compute the larger vector using

xi = yi + ri
mzi,

xi+ m
2

= yi − ri
mzi;

and in the Gentleman–Sande algorithm, the smaller NTT-transformed vectors y (from the
low indices) and z (from the high indices) construct the larger vector x using

x2i = yi + zi,
x2i+1 = ri

m(yi − zi);

where, for a vector size of m, the value rm denotes the primitive mth root of unity modulo q.
For the purpose of illustration, we show these formulas in the form of “butterfly diagrams”
in Figure 1. In the literature, the powers of rm are known as twiddle factors, or twiddles
for short.

In these FFT algorithms, the NTTs of the smaller vectors can themselves again be
computed using the CT and GS algorithms. Indeed, we can recursively apply these
algorithms until we are left with vectors of size 1, for which NTT(v) = NTT−1(v) = v.
Because the size of the Dilithium polynomial n = 256 is a power of two, the algorithm will
be applied log2 n = 8 times until we reach the base case.

In Dilithium, the NTT and NTT−1 are computed iteratively and in-place, such that
no auxiliary vectors are required to store intermediate results. For computing the NTT,
Dilithium uses such an iterative Cooley–Tukey algorithm, which takes its input vector in
normal order, and outputs the vector in bit-reversed order. The NTT−1 is implemented
using an iterative Gentleman–Sande algorithm, which takes its input vector in bit-reversed
order and returns a vector in normal order. Note that this has no effect on the polynomial-
multiplication property (using coefficient-wise multiplication), as described in Section 2.

In our implementation similarly to previous work, we precompute and store the twiddle
factors in flash. The twiddle factors are stored in Montgomery domain (with modulus
R = 232), such that after the multiplication in the FFT butterfly, we can use Montgomery
reduction [Mon85] to reduce the product modulo q.

After each level of the NTT and NTT−1, the polynomial coefficients are growing in size
due to additions and subtractions. Intuitively we would apply a modular reduction after
each addition/subtraction operation. However, the coefficients in the input polynomial are
bounded by 2q (which is only 24 bits) and even if we do not reduce mod q after each level,
we will not overflow the 32-bit registers in which we store the coefficients. Therefore, we
reduce each coefficient mod q only once, at the end of the NTT and NTT−1. This technique
of delaying the reduction is usually referred to as lazy reduction.

When implementing the NTT and NTT−1, we first unroll the outer loop which iterates
over the 8 levels of the NTT and NTT−1. Furthermore, similar to the merging technique
in [GOPS13], we can merge two levels of the NTT and NTT−1 on Cortex-M4 ({0,1}, {2,3},

Denisa O. C. Greconici, Matthias J. Kannwischer and Amber Sprenkels 9

Listing 1 CT butterfly from [GKOS18]

1 ; q=8380417, qinv=4236238847
2 ; Input: p0, p1, twiddle
3 ; Output: p0, p1
4 umull tmp0, tmp1, p1, twiddle
5 mul pol1, tmp0, qinv
6 umlal tmp0, tmp1, p1, q
7 add p1, p0, q, lsl#1
8 sub p1, p1, tmp1
9 add p0, p0, tmp1

Listing 2 Our CT butterfly

1 ; q=8380417, qinv=4236238847
2 ; Input: p0, p1, twiddle
3 ; Output: p0, p1
4 smull tmp0, tmp1, p1, twiddle
5 mul p1, tmp0, qinv
6 smlal tmp0, tmp1, p1, q
7 sub p1, p0, tmp1
8 add p0, p0, tmp1

Listing 3 GS butterfly in [GKOS18]

1 ; q=8380417, qinv=4236238847
2 ; Input: p0, p1, twiddle
3 ; Output: p0, p1
4 add tmp0, p0, q, lsl#8
5 sub tmp0, tmp0, p1
6 add p0, p0, p1
7 umull tmp1, p1, tmp0, twiddle
8 mul tmp0, tmp1, qinv
9 umlal tmp1, p1, tmp0, q

Listing 4 Our GS butterfly

1 ; q=8380417, qinv=4236238847
2 ; Input: p0, p1, twiddle
3 ; Output: p0, p1
4 sub tmp0, p0, p1
5 add p0, p0, p1
6 smull tmp1, p1, tmp0, twiddle
7 mul tmp0, tmp1, qinv
8 smlal tmp1, p1, tmp0, q

{4,5} and {6,7}). Merging k layers here means that instead of loading two coefficients,
one loads the 2k coefficients which are used together in k consecutive layers. By doing so
on can eliminate the load and store operations between the layers. Hence, the number of
layers that can be merged is bounded by the available registers. For our implementation,
we achieved the best performance by merging two layers. As a consequence, the number of
store and load instructions is reduced with a factor of 2.

Lastly the main difference which distinguishes our implementation from the one pub-
lished in [GKOS18] is changing the polynomial coefficients to signed representation. When
unsigned integers are subtracted from each other, it is possible for the result wrap around
zero (when the result would be negative). To prevent this overflow, the subtractions in the
reference implementation are accompanied by an addition with a multiple of q, pushing
the results back into the positive domain. By switching to the signed representation, the
problem of negative overflows is fixed, and we do not need this extra multiple-of-q addition.
Therefore, switching to signed representation allows us to eliminate all these additions
throughout the code.

This is especially relevant for the NTT and NTT−1 implementations, because every
butterfly operation has a subtraction. Listing 2 shows our improvements to the CT
butterfly in the NTT by [GKOS18] which is shown in Listing 1. For the GS butterflies in
the NTT−1, the improvements are listed in Listings 3 and 4.

However, the overflow-mitigating additions were not only present in the NTT, but
also in the sampling of s1, s2, and y, polynomial subtraction, and unpacking operations
throughout the scheme. By switching to signed representation, we did not only improve
the performance of the NTT, but also of all the other routines listed above.

Finally, in addition to improving the NTT and NTT−1, we rewrote the pointwise poly-

10 Compact Dilithium Implementations on Cortex-M3 and Cortex-M4

nomial multiplication, uniform sampling of polynomials, and polynomial reduction in
assembly as these were the most expensive operations besides the already optimized
NTT, NTT−1, and hashing operations using Keccak. We omit the details, as they result
straightforward from the reference code.

4 Fast Constant-Time NTTs on Cortex-M3
Our constant-time Cortex-M3 implementation of Dilithium is based on the Cortex-M4
implementation described in the previous section. To keep this section concise, we only
describe the differences here, which are mainly in order to make the implementation
constant-time. When compiling the existing implementation [GKOS18] for the Cortex-M3,
we identify three functions which make use of the variable-time instructions UMULL and
UMLAL: NTT, NTT−1, and pointwise multiplication (◦). These functions are the only ones
that involve the multiplication of the 32-bit coefficients of polynomials. When any of them
operates on secret data, it will leak information through a timing side channel.

Previous work by [MGTF19] suggests that the reference implementation of Dilithium
is constant time. This is however untrue for Cortex-M3, because the compiler is in no way
prevented from emitting any of the variable-time instructions. In their paper, the authors
propose a modified Dilithium with a power-of-two modulus q = 232 to allow for cheaper
masking. As a side-effect of this proposed change, multiplications can be done using MUL,
MLS, and MLA as those implicitly wrap their results modulo 232. In that case, implementing
Dilithium in constant-time is more straightforward.

Interestingly, many of the operations within Dilithium do not handle secret data, and,
hence, do not need to be constant time. Particularly, all operations in the signature
verification (Algorithm 3) are only operating on public data and can, therefore, be
implemented in variable time. Similarly, in signature generation (Algorithm 2) NTT(t0)
(line 5), NTT(HB(µ, w1)) (line 10), and NTT−1(ĉ ◦ t̂0) (line 16 and 17) are not processing
secret data as both t and c are considered public. For the details we refer to the security
proof in [LDK+19, Section 5]. The remaining calls to NTT, NTT−1, and ◦ do process secret
data. Similarly, all operations in the key generation of Dilithium (Algorithm 1) have
secret inputs. In our implementation we provide both a constant-time and variable-time
(leaktime) implementation implementations of NTT, NTT−1, and ◦. Because the variable-
time implementations are significantly faster, we prefer using them over the constant-time
implementations when we are only dealing with public data.

Note that, in theory, the compiler could introduce UMULL, UMLAL, SMULL, and SMULL
instructions in other parts of the code as well. Since there is no easy way to prevent
compilers (gcc and clang) from emitting those instructions, we instead carefully analyze
the assembly generated by the compiler to not contain these instructions in functions that
are safe to leak. We add the suffix _leaktime to the names of variable-time functions only
operating on public data to support this analysis.

The remainder of this section describes the necessary changes to the Cortex-M4
implementation to ensure it executes in constant-time on the Cortex-M3. We describe the
details from the bottom up, i.e., we start with the multiplication of coefficients, continue
with the changes to the implementations of the Cooley–Tukey and Gentleman–Sande
butterfly operations, and finally describe the changes to the NTT, NTT−1 and the rest of
the scheme.

4.1 SMULL and SMLAL

As Dilithium uses a 23-bit modulus q, its polynomials are usually represented as vectors of
32-bit values. Consequently, multiplying coefficients requires multiplication of 32-bit values
producing a 64-bit product. Usually, Montgomery multiplication is used, so that the result

Denisa O. C. Greconici, Matthias J. Kannwischer and Amber Sprenkels 11

Listing 5 Schoolbook SMULL (SBSMULL)
1 ; Input: a = a0 + a1*2^16
2 ; b = b0 + b1*2^16
3 ; Output: c = a*b = c0 + c1*2^32
4 mul c0, a0, b0
5 mul c1, a1, b1
6 mul tmp, a1, b0
7 mla tmp, a0, b1, tmp
8 adds c0, c0, tmp, lsl #16
9 adc c1, c1, tmp, asr #16

Listing 6 Schoolbook SMLAL (SBSMLAL)
1 ; Input: a = a0 + a1*2^16
2 ; b = b0 + b1*2^16
3 ; c = c0 + c1*2^32
4 ; Output: c = c + a*b
5 ; = c0 + c1*2^32
6 mul tmp, a0, b0
7 adds c0, c0, tmp
8 mul tmp, a1, b1
9 adc c1, c1, tmp

10 mul tmp, a1, b0
11 mla tmp, a0, b1, tmp
12 adds c0, c0, tmp, lsl #16
13 adc c1, c1, tmp, asr #16

is promptly reduced back to 32-bits. In our Cortex-M4 implementation the Montgomery
multiplication is computed using SMULL and SMLAL, which—as already discussed—execute
in variable-time on the Cortex-M3. In case the inputs are secret, we cannot use those
instructions.

In general, there are two approaches to address this issue: either re-implement SMULL
and SMLAL using available constant-time instructions (MUL, MLA, ADD) or using a different
representation of polynomials that does not require to multiply 32-bit coefficients. We
experimented with the latter approach by using multiple smaller 16-bit polynomial multi-
plications to construct a larger 23-bit polynomial multiplication. The idea is to perform
polynomial multiplications in Rq by first splitting up the polynomial into multiple polyno-
mials in Zqi

/(Xn + 1), performing the polynomial multiplication in these smaller rings and
then reconstructing the result in Rq using the explicit Chinese remainder theorem [BS07].
A similar approach is used in the AVX2 implementation of NTRUPrime [BCLv19]. For the
result to be correct, it needs to hold that 2n · ⌊q/2⌋2 <

∏
qi. For example, one could use

the NTT-friendly primes {7681, 10753, 11777, 12289}. However, this approach turned out
to be slower than re-implementing the SMULL and SMLAL instructions using MUL instructions,
and hence we did not use it in our implementation. Nonetheless, we present results for
16-bit NTTs on the Cortex-M3 for the primes 3329 and 12289 which are used in the NIST
key-encapsulation candidates Kyber [ABD+19] and NewHope [PAA+19] respectively. We
report the results for the full schemes in Appendix A.

To re-implement SMULL and SMLAL, we use the schoolbook approach, i.e., we represent
the 32-bit inputs in radix 216 and compute the product as sums of 32-bit products. Let
a = 216a1 + a0 and b = 216b1 + b0, with 0 ≤ a0, b0 < 216 and −215 ≤ a1, b1 < 215, then the
product ab = 232a1b1 + 216(a0b1 + a1b0) + a0b0, with −231 ≤ aibj < 231. Accordingly, our
constant-time assembly implementations for SMULL and SMLAL are illustrated in Listing 5
and Listing 6. We denote them by SBSMULL and SBSMLAL in the following. The four 16-bit
halves of the two multiplicands are passed in the registers a0, a1, b0, and b1; the 64-bit
output is placed in c0 (lower half) and c1 (upper half). For SMLAL, c0 and c1 initially contain
the value to be added to the product. On the Cortex-M3, additions and multiplications
use 1 cycle, while MLA uses 2 cycles. As such, the SBSMULL macro takes 7 cycles to execute,
while SBSMLAL takes 9 cycles.

It is important to note that SBSMULL (SBSMLAL) is not semantically equivalent to SMULL
(SMLAL). In case the accumulation (a0b1 + a1b0) in line 7 of Listing 5 or line 11 of Listing 6
overflows, the carry bit is lost and the result will not be correct. Hence, our schoolbook
multiplication does not support the full 32-bit range of the inputs. In general, we have to

12 Compact Dilithium Implementations on Cortex-M3 and Cortex-M4

Listing 7 Constant-time Cooley–Tukey butterfly on the Cortex-M3
1 ; qinv = 4236238847, q = 8380417 = ql + qh*2^16
2 ; Input: p0 (32-bit signed)
3 ; p1 = p1l + p1h*2^16 (p1l 16-bit unsigned, p1h 16-bit signed)
4 ; twiddle = tl + th*2^16 (tl 16-bit unsigned, th 16-bit signed)
5 ; Output: p0, p1 (32-bit signed)
6 SBSMULL tmpl, tmph, p1l, p1h, tl, th ;(tmpl,tmph) = (p1l,p1h)*twiddle
7 mul p1h, tmpl, qinv
8 ubfx p1l, p1h, #0, #16
9 asr p1h, p1h, #16

10 SBSMLAL tmpl, tmph, p1l, p1h, ql, qh ;(tmpl,tmph) += (p1l,p1h)*q
11 sub p1, p0, tmph
12 add p0, p0, tmph

consider two cases:

1. One of the factors (say b) is small, e.g., a twiddle factor (< q) or the constant q. In
that case b1 is at most

⌊
q

216

⌋
= 127. In the worst case both b0 and a0 are equal to

216 − 1. Consequently, for the addition (a0b1 + a1b0) not to overflow, a1 can be at
most

⌊
231−1−127·(216−1)

216−1

⌋
= 32641.

2. Both multiplicands can be equally large. This occurs, for example, in the pointwise
polynomial multiplication. In that case both a0b1 and a1b0 need to be less or equal
to

⌊
231−1

2

⌋
= 230 − 1 and hence, a1, b1 ≤

⌊
230−1
216−1

⌋
= 214.

Case 1 applies in the NTT and NTT−1. In the NTT, the coefficients values never exceed
10q, which is sufficiently small for the multiplication to remain safe. Similarly, in the NTT−1

coefficients never exceed 128q < 32641 · 216.
Case 2 applies in the pointwise polynomial multiplication. In that case the input

coefficients are bounded by 10q which is comfortably below 230.

4.2 Cooley–Tukey and Gentleman–Sande Butterflies

Using constant-time SBSMULL and SBSMLAL sub-routines, we can construct the butterfly
operations needed to implement the NTT and NTT−1. Listing 7 depicts the modified Cooley–
Tukey butterfly operation based on Listing 2. To be able to use SBSMULL, p1 and the
twiddle factor needs to be loaded in half-words, while p0 can be loaded as a 32-bit word.
For the multiplication by q, we require to have the lower and the upper half-word of q
separately. Additionally, we need to split up the 32-bit result of the multiplication by −q−1

into half-words (lines 8 and 9). In total, the Cooley–Tukey butterfly operation requires 21
cycles on the Cortex-M3, while Listing 2 only needs 5 cycles on the Cortex-M4.

Similarly, Listing 8 depicts our constant-time assembly implementation of the Gentleman–
Sande butterfly. As the addition and subtraction happens before the multiplication by
the twiddle factor, both p0 and p1 are loaded as full 32-bit words, while the twiddle factor
is again split into two half words. After the subtraction in line 5, we split up the result
before we pass it into SBSMULL. To perform the Montgomery reduction, we again need
the split up the result of the multiplication by −q−1 into halves, before multiplying it by
q using SBSMLAL. Each Gentleman–Sande butterfly operation requires 23 cycles on the
Cortex-M3 which compares to 5 cycles for Listing 4 on the Cortex-M4.

Denisa O. C. Greconici, Matthias J. Kannwischer and Amber Sprenkels 13

Listing 8 Constant-time Gentleman–Sande butterfly on the Cortex-M3
1 ; qinv = 4236238847, q = 8380417 = ql + qh*2^16
2 ; Input: p0, p1 (32-bit signed)
3 ; twiddle = tl + th*2^16 (tl 16-bit unsigned, th 16-bit signed)
4 ; Output: p0, p1 (32-bit signed)
5 sub tmp, p0, p1
6 add p0, p0, p1
7 ubfx tmpl, tmp, #0, #16
8 asr tmph, tmp, #16
9 SBSMULL tmp, p1, tmpl, tmph, tl, th ;(tmp, p1) = (tmpl,tmph)*twiddle

10 mul tmph, tmp, qinv
11 ubfx tmpl, tmph, #0, #16
12 asr tmph, tmph, #16
13 SBSMLAL tmp, p1, tmpl, tmph, ql, qh ;(tmp, p1) += (tmpl,tmph)*q

4.3 NTT, NTT−1, and ◦
Using the Cooley–Tukey butterfly from the previous section, we implement the NTT. Similar
to in the Cortex-M4 implementation, we pre-compute all the twiddle factors and place
them into flash. As our Cooley–Tukey butterfly requires the second coefficient and the
twiddle factor in halves, we load those using ldrh (for the unsigned lower half-word) and
ldrsh (for the upper signed half-word). This, however, significantly increases register
pressure and hinders the common optimization technique of merging multiple levels of
butterfly operations with the purpose of saving store and load instructions. Therefore, we
can not use that optimization and need to perform one layer at a time. This also leads to
a slightly different ordering of the twiddle factors in memory. The results of the butterfly
is returned as a 32-bit value and can, hence, be stored back using str.

For the NTT−1, we proceed likewise. However, the inputs to the butterfly have to be
loaded in full-words using ldr. At the end of the NTT−1, each coefficient of the polynomial
is multiplied with the constant n−1 followed by a Montgomery reduction. We integrate
this step into the last level of the NTT−1 in order to minimize load and store operations.
Furthermore, we observe that n−1 in Montgomery domain is 41 978 and, hence, less than
16-bits. Therefore, we do not need a full SBSMULL, but can use a simpler multiplication
routine that multiplies a 32-bit word by the 16-bit constant which requires 2 multiplication
instructions and, hence, 2 cycles less.

Besides the NTT and NTT−1 we identify one other place where our compiler is introducing
SMULL and SMLAL instruction: The pointwise multiplication ◦. If either of the multiplicands
is secret, the pointwise multiplication must not use the variable time instructions. We
guarantee that by rewriting the pointwise multiplication in assembly and making use of
the Montgomery multiplication using SBSMULL and SBSMLAL like in our Butterfly operation
in Listing 7 and Listing 8. In case both inputs are considered public, we simply use the
pointwise multiplication which was presented in Section 3 section.

5 Time-Memory Trade-Offs
Depending on the programmer’s requirements, there are multiple ways in which we can
implement Dilithium signing, each with their own tradeoffs.

For microcontroller implementations of Dilithium the main challenge is that computing
A is expensive since it involves many calls to SHAKE256 which is relatively slow in software.
Also, A is used multiple times during the signing procedure. Consequently, we either have

14 Compact Dilithium Implementations on Cortex-M3 and Cortex-M4

to store the complete matrix A in RAM or flash, or incur the cost of having to recompute
it during each loop iteration.

In order to explore this time-memory tradeoff, we implement the signing operation
using three different strategies. In the first strategy, we refuse to recompute A during the
signing operation and instead store it in flash. The second strategy describes the more
traditional implementation of Dilithium, expanding A once during each signing operation
before entering the rejection-sampling loop. The third case describes the situation wherein
we are highly constrained in flash and SRAM size, but have ample performance budget.
In this strategy, we save the amount of memory needed by computing both A and y on
the fly.

Although the algorithm’s intermediate values can be stored anywhere in the RAM
(i.e. in SRAM/CCM for the STM32F407 and SRAM1/SRAM2 for the ATSAM3X8E), we
see no real benefit in doing that. Therefore, to keep it simple, we will store the variables
on the stack.

5.1 Strategy 1: A in Flash

In Dilithium signing, the values A, ŝ1, ŝ2, and t̂0 depend only on the Dilithium key pair.
Therefore, instead of computing these values during signing, we can compute these values
as part of the key generation. We assume that the platform has some kind of non-volatile
storage that is large enough (and secure enough3) to store these extra values. Then, during
the signature generation algorithm, instead of passing in sk (as described in line 1 of
Algorithm 2), we pass a larger struct that also contains the precomputed values. These
precomputed values (A, ŝ1, ŝ2 and t̂0) add up to k · l + 2k + l polynomials that have to be
stored extra. In the case of Dilithium3, this amounts to 34 KiB of extra flash space as
each Dilithium polynomial requires 1 KiB when stored uncompressed.

Because these four values are now stored separately, we do not have to compute (and
store) them anymore during the signature generation. Thus, this strategy will save a
considerable amount of SRAM, in exchange for (relatively cheap) flash space. Furthermore,
in the absence of hardware-accelerated SHAKE256, generating A is a relatively expensive
step in the signature-generation process. Having A stored in flash will speed up the overall
performance of generating signatures. Hence, we think that this strategy will be the most
favored to be deployed in a real-world small-devices environment.

5.2 Strategy 2: A in SRAM

When there is enough SRAM available on the device, we opt for the “traditional” im-
plementation of the signature generation algorithm. That is, we follow the specification
closely, and implement signature generation following the general structure of Algorithm 2.
Apart from some space for storing intermediate values, we will need to allocate

• 4k polynomial slots for storing t̂0, ŝ2, w, w1;

• (k + 3)l polynomial slots for storing A, ŝ1, y and ŷ; and

• 1 polynomial slot for storing ĉ.

This adds up to a pretty high lower bound of k · l + 4k + 3l + 1 KiB of necessary stack
space, e.g., 53 KiB for Dilithium3.

3A, and t̂0 need to be integrity-protected; ŝ1, and ŝ2 need to remain secret and integrity-protected.

Denisa O. C. Greconici, Matthias J. Kannwischer and Amber Sprenkels 15

5.3 Strategy 3: Streaming A and y
For the last strategy we considered the situation, wherein we optimize stack usage without
using extra long-term storage for precomputed values. In the signing implementation, we
optimize exclusively for stack usage. We only intend to find the lower-bound of the needed
stack space.

In contrast to the other strategies, we do not store any complete copies of A and y.
Instead, we regenerate every element of A and y on the fly when we compute elements of
w (in line 8 of Algorithm 2). Because we do not retain y after this step, we regenerate it
again in line 11 of Algorithm 2). Relative to strategy 2, this saves us k · l polynomials of
space for A, and another l polynomials for y.

When we look further into stack-optimizing the signing algorithm, we find that the
main bottleneck in terms of stack usage is the overlapping lifetimes of w and ĉ. In lines 12
and 16 of Algorithm 2, the values r1, r0 and h all depend on both w and ĉ. However,
in line 10 we also need the complete value of w1 (and thus w) to compute ĉ. Therefore,
we conclude that we either have to store w and ĉ both at the same time; or we have to
recompute every element of w on the fly when we are computing r1 and r0 in line 12, and
when we are constructing the hint h in line 16.

In order to recompute elements of w, we would have to do the matrix multiplication
NTT−1(Â ◦ NTT(y)) all over again, including the complete regenerating of A and y. The
performance cost of this optimization would be at least a factor 2, so we chose to not do
this. Instead we accept that w and ĉ both need to be stored at the same time.

5.4 Splitting signature generation in an offline and online phase
To speed up the Dilithium signing process even more, one can choose to split the signature
generation in an offline and online phase, where the offline phase can already be performed
before the message to be signed is known. The general idea of using an offline/online phase
was introduced in 1989 by Even, Goldreich, and Micali [EGM90], and was first proposed
for usage in lattice-based signature schemes in [AYS15]. It has also been used last year
by Ravi, Gupta, Chattopadhyay, and Bhasin in [RGCB19, Section 4.1.2] to optimize the
online latency of Dilithium signing.

However for Dilithium, this optimization comes with a significant cost. In their paper,
Ravi, Gupta, Chattopadhyay, and Bhasin describe that an additional 260 KiB of space4

is needed to store the precomputed values for Dilithium3, such that there is a 95%
probability that at least one of the y values results in a good signature. For our main
target (the ATSAM3X8E), that would mean that more than half its flash space would
already be lost to storing these precomputed values. We think that, in the general case,
the improved signature-generation latency does not justify this kind of loss in available
flash space.

6 Results
This section presents the performance results for our Dilithium implementations. First, we
present new speed-records for the Dilithium NTT on the Cortex-M4 and first results for
the Dilithium, Kyber, and NewHope NTT in Section 6.1. We then present results for the
full Dilithium scheme on the Cortex-M4 (Section 6.2) and on the Cortex-M3 (Section 6.3).
Finally, we profile our implementations on the Cortex-M4 in Section 6.5.

Cortex-M4 setup. We benchmark all our Cortex-M4 implementations on a STM32F407
discovery board, which features the STM32F407VG microcontroller. It was clocked at

4See [RGCB19, Table 6]. Compute 300 − 34 = 266 KB ≈̂ 260 KiB.

16 Compact Dilithium Implementations on Cortex-M3 and Cortex-M4

24 MHz to eliminate flash wait states when fetching instructions or data from flash.
For benchmarking the algorithm latency we used the SysTick counter. Our build and
benchmarking setup is based on pqm4 [KRSS] and benchmarking our code within pqm4
gives the same performance results. We will open a pull request to merge our code into
pqm4.

Cortex-M3 setup. The Cortex-M3 measurements were done on an Arduino Due board
which uses the ATSAM3X8E microcontroller. The ATSAM chip was clocked at 16 MHz,
which results in a flash access time with zero wait-states. The algorithm latencies were
measured using the internal cycle counter (CYCCNT).

Compiler, random numbers, stack measurements, and Keccak. On both platforms,
we used the GCC compiler, version 10.2.0. For obtaining random numbers (e.g., ρ and
K), we use the hardware random number generators which are available on both cores.
The stack usage was measured by filling the memory with sentinel values, executing the
algorithm, and measuring the amount of sentinel-value bytes that were overwritten during
the execution. In the stack measurements, space reserved for input and output values is
not counted. For SHA3 and SHAKE, we use the assembly optimized implementation of the
Keccak permutation from the eXtended Keccak Code Package (XKCP)5. As it only uses
ARMv7-M instructions, we use the same implementation on both platforms.

Side-channel Protection. Our implementations are only considering timing side-channels,
i.e., we provide constant-time code that avoids leaking secret data through variable time
instructions, secret-dependent branches, and secret-dependent memory addresses. For
certain use-cases one may want to consider to also protect against more powerful attacks like
power analysis attacks, e.g., using masking. There exists work in the literature for masking
Dilithium by Migliore, Gérard, Tibouchi, and Fouque [MGTF19] which presents a protected
implementation modified Dilithium. There is more work required for implementing a fully
masked Dilithium that is adhering to the specification submitted to NIST. However, this
work is outside of the scope of this paper and we leave it for future work.

6.1 NTT performance

In Table 2, we list the benchmarking results for the optimized NTT, NTT−1, and pointwise
multiplications (◦) implementations in Dilithium, Kyber, and NewHope1024 on the Cortex-
M4 and Cortex-M3. For the Cortex-M4, we obtain a speedup of 23% for the NTT and
NTT−1 compared to [GKOS18, RGCB19]. This speedup is mainly due to the switch
to a signed representation of polynomials. We use this representation throughout our
new Dilithium implementations, which saves a number of additions of multiples of q.
Additionally, we optimize the pointwise multiplication (◦) which was not optimized in
previous implementations.

In the Cortex-M3 results, we first benchmark the implementation also used on the
Cortex-M4 which uses SMULL and SMLAL. As SMULL and SMLAL, but also MLA, need sig-
nificantly more cycles on the Cortex-M4 (respectively 3 – 5, 4 – 7, and 2 on the M3 vs. 1
on the Cortex-M4), the cycle counts for NTT, NTT−1, and ◦ increase between 2.3× and
2.5×. Making those constant-time on the Cortex-M3 using SBSMULL and SBSMLAL from
Section 4.1 increases the number of cycles by a factor of 1.7×.

Denisa O. C. Greconici, Matthias J. Kannwischer and Amber Sprenkels 17

Table 2: Performance results for NTT, NTT−1, and ◦ of Dilithium, Kyber, and
NewHope for the Cortex-M3 and the Cortex-M4 reported in clock cycles. The
Cortex-M3 (SAM3X8E) is running at 16MHz, and the Cortex-M4 (STM32F407)
is running at 24 MHz.

NTT NTT−1 ◦

Dilithiuma

[GKOS18] constant-time M4 10 701 11 662 −
This work constant-time M4 8 540 8 923 1 955
This work variable-time M3 19 347 21 006 4 899
This work constant-time M3 33 025 36 609 8 479

Kyberb [ABCG20] constant-time M4 6 855 6 983 2 325
This work constant-time M3 10 819 12 994 4 773

NewHope1024c [ABCG20] constant-time M4 68 131 51 231 6 229
This work constant-time M3 77 001 93 128 18 722

a n = 256, q = 8380417 (23 bits), 8 layer NTT/NTT−1
b n = 256, q = 3329 (12 bits), 7 layer NTT/NTT−1
c n = 1024, q = 12289 (14 bits), 10 layer NTT/NTT−1

6.2 Cortex-M4 performance
Table 3 lists the benchmarking results of our Dilithium implementation, together with the
cycle counts from the relevant related work. As signing time varies considerably depending
on the number of rejections, we performed 10 000 executions and took the average of the
resulting cycle counts.

For our signing strategy 1, we need to pre-compute A, ŝ1, ŝ2 and t̂0 We include this
pre-computation in the key generation. Compared to the [GKOS18] implementation, which
is comparable to our signing strategy we obtain speedups of 13%, 27%, and 18% for key
generation, signing, and verification respectively. We also drastically decrease the stack
consumption.

When comparing to the [RGCB19] implementation, our strategy 1 is similar to their
scenario 2, while our strategy 2 corresponds to their scenario 1. For both scenarios, we
achieve substantial speedups for all parameter sets ranging from 14% to 20%.

Our strategy 3 implementation which solely optimized for memory footprint, achieves
by far the worst performance in terms of speed.

6.3 Cortex-M3 performance
Table 4 presents our results for the Cortex-M3. The only other work implementing (a
modified version of) Dilithium on the Cortex-M3 is from Migliore, Gérard, Tibouchi, and
Fouque [MGTF19]. However, they do not report cycle counts on the Cortex-M3, and
we were not able to find their source code online. Therefore, we can unfortunately not
compare our results to theirs.

6.4 Stack usage
Up to this point we have mainly discussed the improvements in Dilithium’s speed. However
as already mentioned, it is also important to be economic in the usage of stack space.

In Tables 3 and 4, we show the considerable improvement in stack-space usage over the
previous works. We see that signature verification needs only around 10 KiB of storage
space (depending on the Dilithium parameters), without incurring a performance hit.
Furthermore, when Dilithium is deployed on a device that has enough space to store
A—either in SRAM or in flash—we get a reasonable signature-generation latency.

5https://github.com/XKCP/XKCP

https://github.com/XKCP/XKCP

18 Compact Dilithium Implementations on Cortex-M3 and Cortex-M4

Table 3: Performance results on the Cortex-M4 (STM32F407 at 24 MHz). Averaged over
10 000 executions.

Algorithm/
strategy Params Work Speed [kcc] Stack [B]

KeyGen (1)
Dilithium2 This work 2 267 7 916c

Dilithium3 This work 3 545 8 940d

Dilithium4 This work 5 086 9 964e

KeyGen (2 & 3)

Dilithium2 This work 1 315 7 916
Dilithium3 [GKOS18] 2 320 50 488
Dilithium3 This work 2 013 8 940
Dilithium4 This work 2 837 9 964

Sign (1)

Dilithium2 [RGCB19, scen. 2]a 3 640 –
Dilithium2 This work 3 097 14 428c

Dilithium3 [RGCB19, scen. 2]a 5 495 –
Dilithium3 This work 4 578 17 628d

Dilithium4 [RGCB19, scen. 2]a 4 733 –
Dilithium4 This work 3 768 20 828e

Sign (2)

Dilithium2 [RGCB19, scen. 1]b 4 632 –
Dilithium2 This work 3 987 38 300
Dilithium3 [GKOS18] 8 348 86 568
Dilithium3 [RGCB19, scen. 1]b 7 085 –
Dilithium3 This work 6 053 52 756
Dilithium4 [RGCB19, scen. 1]b 7 061 –
Dilithium4 This work 6 001 69 276

Sign (3)
Dilithium2 This work 13 332 8 924
Dilithium3 This work 23 550 9 948
Dilithium4 This work 22 658 10 972

Verify

Dilithium2 This work 1 259 9 004
Dilithium3 [GKOS18] 2 342 54 800
Dilithium3 This work 1 917 10 028
Dilithium4 This work 2 720 11 052

a “Strategy 1” from Section 5.1 corresponds to “Scenario 2” in [RGCB19].
b“Strategy 2” from Section 5.2 corresponds to “Scenario 1” in [RGCB19].
c For Dilithium2 using stack strategy 1, an additional 23 632 bytes of flash space

are used for storing the precomputed values.
d For Dilithium3 using stack strategy 1, an additional 34 896 bytes of flash space

are used for storing the precomputed values.
e For Dilithium4 using stack strategy 1, an additional 48 208 bytes of flash space

are used for storing the precomputed values.

Denisa O. C. Greconici, Matthias J. Kannwischer and Amber Sprenkels 19

Table 4: Performance results on the Cortex-M3 (SAM3X8E at 16 MHz). Averaged over
10000 executions.

Algorithm/
strategy Params Speed [kcc] Stack [B]

KeyGen (1)
Dilithium2 2 945 12 631a

Dilithium3 4 503 15 703b

Dilithium4 6 380 18 783c

KeyGen (2 & 3)
Dilithium2 1 699 7 983
Dilithium3 2 562 9 007
Dilithium4 3 587 10 031

Sign (1)
Dilithium2 5 822 14 869a

Dilithium3 8 730 18 083b

Dilithium4 7 398 18 083c

Sign (2)
Dilithium2 7 115 39 503
Dilithium3 10 667 53 959
Dilithium4 10 031 70 463

Sign (3)
Dilithium2 18 932 9 463
Dilithium3 33 229 10 495
Dilithium4 31 180 11 511

Verify
Dilithium2 1 541 8 944
Dilithium3 2 321 9 967
Dilithium4 3 260 10 999

a For Dilithium2 using stack strategy 1, an additional
23 632 bytes of flash space are used for storing the pre-
computed values.

b For Dilithium3 using stack strategy 1, an additional
34 896 bytes of flash space are used for storing the pre-
computed values.

c For Dilithium4 using stack strategy 1, an additional
48 208 bytes of flash space are used for storing the pre-
computed values.

However, in the same tables we see the cost of aggressively optimizing for stack space.
On both platforms, we see really disproportionate cycle counts for signature generation,
for example with Dilithium3 signature generation takes about 33 million cycles on the
Cortex-M3. On slow devices (like our 16 MHz Arduino Due), this latency grows into the
order of seconds.

6.5 Profiling
To identify how much is still left to optimize in our implementations, we profiled the
implementations on the Cortex-M4. Table 5 contains the profile for all our Dilithium
implementations. We see that the run-time of the scheme is mostly dominated by Keccak.
The proportion of cycles spent in hashing is up to 85% for key generation, 77% for signing,
and 81% for verification, which greatly limits the speedup achievable by further optimizing
the arithmetic of the scheme.

Only about 3.4% to 24.5% of cycles are spent in the NTT and NTT−1. Another 3.9% to
13.2% of cycles are spent in the other assembly optimized functions which are pointwise
multiplication, uniform sampling, and modular reduction. The time spent in non-optimized
C code is consistently relatively small. Hence, optimizing the remaining code is not going

20 Compact Dilithium Implementations on Cortex-M3 and Cortex-M4

Table 5: Profiling results on the Cortex-M4
Operation KeyGen Sign Verify

(1) (2 & 3) (1) (2) (3)

Dilithium2

Keccak 81.4% 81.4% 41.4% 55.4% 75.2% 76.6%
NTT 5.2% 1.9% 5.0% 7.2% 7.0% 5.4%
NTT−1 1.6% 2.7% 19.5% 11.7% 4.0% 2.8%
other asm 5.2% 6.2% 10.5% 9.3% 4.0% 6.8%
not opt. 6.7% 7.8% 23.6% 16.3% 9.8% 8.4%

Dilithium3

Keccak 83.4% 82.8% 50.2% 63.7% 77.2% 79.1%
NTT 4.3% 1.7% 6.4% 6.8% 6.7% 4.4%
NTT−1 1.2% 2.2% 13.7% 8.6% 3.2% 2.3%
other asm 5.3% 6.4% 11.8% 8.4% 3.9% 7.0%
not opt. 5.8% 6.9% 17.9% 12.5% 8.9% 7.2%

Dilithium4

Keccak 85.0% 84.2% 50.9% 61.8% 75.6% 80.9%
NTT 3.7% 1.5% 6.3% 6.2% 7.2% 3.7%
NTT−1 1.0% 1.9% 12.8% 9.2% 3.6% 1.9%
other asm 5.4% 6.6% 13.2% 10.0% 4.0% 7.1%
not opt. 4.9% 5.8% 16.8% 12.9% 9.6% 6.3%

to provide a large speedup. When looking at individual functions of the non-optimized
code, no function takes more than 3% of the total run-time.

Acknowledgements
This work has been supported by the European Commission through the ERC Starting
Grant 805031 (EPOQUE). We thank Bo-Yin Yang for his valuable comments and the
Institute of Information Science at Academia Sinica in Taipei, Taiwan, for housing and
supporting MJK during the COVID-19 pandemic. This paper would not have been written
otherwise. We thank Peter Pessl for pointing out various improvements to our stack
optimizations.

References
[ABCG20] Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard.

Cortex-M4 optimizations for {r,m}lwe schemes. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2020(3):336–357, 2020.
https://tches.iacr.org/index.php/TCHES/article/view/8593/8160.

[ABD+19] Roberto Avanzi, Joppe Bos, Láo Ducas, Eike Kiltz, Tancrède Le-
point, Vadim Lyubashevsky, John M. Schanck, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS–Kyber. Sub-
mission to the NIST Post-Quantum Cryptography Standardization
Project [NIS16], 2019. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[AEL+20] Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen, and Richard
Petri. ISA extensions for finite field arithmetic: Accelerating kyber and
newhope on RISC-V. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2020(3):219–242, 2020. https://tches.iacr.org/
index.php/TCHES/article/view/8589.

https://tches.iacr.org/index.php/TCHES/article/view/8593/8160
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://tches.iacr.org/index.php/TCHES/article/view/8589
https://tches.iacr.org/index.php/TCHES/article/view/8589

Denisa O. C. Greconici, Matthias J. Kannwischer and Amber Sprenkels 21

[AJS16] Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. A new hope on ARM
Cortex-M. In SPACE 2016, volume 10076 of LNCS, pages 332–349. Springer,
2016. https://eprint.iacr.org/2016/758.

[ARM14] ARM®v7-M Architecture Reference Manual. https://static.docs.
arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf; accessed 13/07/2020,
2014.

[AYS15] Aydin Aysu, Bilgiday Yuce, and Patrick Schaumont. The Future of Real-
Time Security: Latency-Optimized Lattice-Based Digital Signatures. ACM
Transactions on Embedded Computing Systems, 14(3), 2015. https://dl.
acm.org/doi/abs/10.1145/2724714.

[BAA+19] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Jo-
hannes Buchmann, Edward Eaton, Gus Gutoski, Juliane Kramer, Patrick
Longa, Harun Polat, Jefferson E. Ricardini, and Gustavo Zanon. qTESLA.
Technical report, 2019. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[BCLv19] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and
Christine van Vredendaal. NTRU Prime. Submission to the NIST Post-
Quantum Cryptography Standardization Project [NIS16], 2019. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions.

[BCR+18] Elaine Barker, Lily Chen, Allen Roginsky, Apostol Vassilev, and Richard
Davis. NIST SP 800-56A Rev. 3: Recommendation for Pair-Wise Key-
Establishment Schemes Using Discrete Logarithm Cryptography, 2018.
https://doi.org/10.6028/NIST.SP.800-56Ar3.

[BCR+19] Elaine Barker, Lily Chen, Allen Roginsky, Apostol Vassilev, Richard Davis,
and Scott Simon. NIST SP 800-56B Rev. 2: Recommendation for Pair-
Wise Key-Establishment Using Integer Factorization Cryptography, 2019.
https://doi.org/10.6028/NIST.SP.800-56Br2.

[BKS19] Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. Memory-
Efficient High-Speed Implementation of Kyber on Cortex-M4. In
AFRICACRYPT 2019, volume 11627 of LNCS, pages 209–228. Springer,
2019. https://eprint.iacr.org/2019/489.pdf.

[BMKV20] Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Verbauwhede.
Time-memory trade-off in Toom-Cook multiplication: an application to
module-lattice based cryptography. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(2):222–244, 2020. https://tches.
iacr.org/index.php/TCHES/article/view/8550.

[BMTK+] Jose Maria Bermudo Mera, Furkan Turan, Angshuman Karmakar, Sujoy
Sinha Roy, and Ingrid Verbauwhede. Compact domain-specific co-processor
for accelerating module lattice-based key encapsulation mechanism. In DAC
2020. to appear, https://eprint.iacr.org/2020/321.

[BS07] Daniel J. Bernstein and Jonathan P. Sorenson. Modular exponen-
tiation via the explicit Chinese remainder theorem. Mathematics
of Computation, 76(257):443–454, 2007. https://doi.org/10.1090/
S0025-5718-06-01849-7.

https://eprint.iacr.org/2016/758
https://static.docs.arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf
https://static.docs.arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf
https://dl.acm.org/doi/abs/10.1145/2724714
https://dl.acm.org/doi/abs/10.1145/2724714
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Br2
https://eprint.iacr.org/2019/489.pdf
https://tches.iacr.org/index.php/TCHES/article/view/8550
https://tches.iacr.org/index.php/TCHES/article/view/8550
https://eprint.iacr.org/2020/321
https://doi.org/10.1090/S0025-5718-06-01849-7
https://doi.org/10.1090/S0025-5718-06-01849-7

22 Compact Dilithium Implementations on Cortex-M3 and Cortex-M4

[BUC19] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. Sap-
phire: A configurable crypto-processor for post-quantum lattice-based pro-
tocols. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, 2019(4):17–61, 2019. https://tches.iacr.org/index.php/TCHES/
article/view/8344.

[CT65] James W. Cooley and John W. Tukey. An algorithm for the ma-
chine calculation of complex Fourier series. Mathematics of Computa-
tion, 19(90):297–301, 1965. https://www.ams.org/mcom/1965-19-090/
S0025-5718-1965-0178586-1/.

[dG15] Wouter de Groot. A performance study of X25519 on Cortex-M3 and M4,
2015. https://pure.tue.nl/ws/portalfiles/portal/47038543.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Pe-
ter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A
lattice-based digital signature scheme. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2018(1):238–268, 2018. https:
//tches.iacr.org/index.php/TCHES/article/view/839.

[DKRV19] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. SABER. Submission to the NIST Post-Quantum Cryptography
Standardization Project [NIS16], 2019. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-2-submissions.

[EGM90] Shimon Even, Oded Goldreich, and Silvio Micali. On-Line/Off-Line Digital
Signatures. In CRYPTO 1989, volume 435 of LNCS, pages 263–275. Springer,
1990. https://link.springer.com/chapter/10.1007/0-387-34805-0_
24.

[GKOS18] Tim Güneysu, Markus Krausz, Tobias Oder, and Julian Speith. Evaluation
of lattice-based signature schemes in embedded systems. In ICECS 2018,
pages 385–388, 2018. https://www.seceng.ruhr-uni-bochum.de/media/
seceng/veroeffentlichungen/2018/10/17/paper.pdf.

[GOPS13] Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe.
Software speed records for lattice-based signatures. In Post-Quantum
Cryptography, volume 7932 of LNCS, pages 67–82. Springer, 2013. https:
//cryptojedi.org/papers/lattisigns-20130328.pdf.

[GOPT09] Johann Großschädl, Elisabeth Oswald, Dan Page, and Michael Tunstall.
Side-channel analysis of cryptographic software via early-terminating multi-
plications. In ICISC 2009, volume 5984 of LNCS, pages 176–192. Springer,
2009. https://eprint.iacr.org/2009/538.pdf.

[GR19] François Gérard and Mélissa Rossi. An efficient and provable masked
implementation of qtesla, 2019. https://eprint.iacr.org/2019/606.

[GS66] W. M. Gentleman and G. Sande. Fast Fourier Transforms: for fun and
profit. In FJCC 1966, AFIPS 1966 (Fall), pages 563–578. ACM, 1966.
https://doi.org/10.1145/1464291.1464352.

[KBMSRV18] Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy, and
Ingrid Verbauwhede. Saber on ARM: CCA-secure module lattice-based key
encapsulation on ARM. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2018(3):243–266, 2018. https://tches.iacr.org/
index.php/TCHES/article/view/7275.

https://tches.iacr.org/index.php/TCHES/article/view/8344
https://tches.iacr.org/index.php/TCHES/article/view/8344
https://www.ams.org/mcom/1965-19-090/S0025-5718-1965-0178586-1/
https://www.ams.org/mcom/1965-19-090/S0025-5718-1965-0178586-1/
https://pure.tue.nl/ws/portalfiles/portal/47038543
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://link.springer.com/chapter/10.1007/0-387-34805-0_24
https://link.springer.com/chapter/10.1007/0-387-34805-0_24
https://www.seceng.ruhr-uni-bochum.de/media/seceng/veroeffentlichungen/2018/10/17/paper.pdf
https://www.seceng.ruhr-uni-bochum.de/media/seceng/veroeffentlichungen/2018/10/17/paper.pdf
https://cryptojedi.org/papers/lattisigns-20130328.pdf
https://cryptojedi.org/papers/lattisigns-20130328.pdf
https://eprint.iacr.org/2009/538.pdf
https://eprint.iacr.org/2019/606
https://doi.org/10.1145/1464291.1464352
https://tches.iacr.org/index.php/TCHES/article/view/7275
https://tches.iacr.org/index.php/TCHES/article/view/7275

Denisa O. C. Greconici, Matthias J. Kannwischer and Amber Sprenkels 23

[KRS19] Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. Faster
multiplication in Z2m [x] on Cortex-M4 to speed up NIST PQC candidates.
In ACNS 2019, volume 11464 of LNCS, pages 281–301. Springer, 2019.
https://eprint.iacr.org/2018/1018.pdf.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https:
//github.com/mupq/pqm4.

[LDK+19] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-DILITHIUM.
Submission to the NIST Post-Quantum Cryptography Standardization
Project [NIS16], 2019. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[Lyu09] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice
and factoring-based signatures. In ASIACRYPT 2009, volume 5912 of
LNCS, pages 598–616. Springer, 2009. https://www.iacr.org/archive/
asiacrypt2009/59120596/59120596.pdf.

[MGTF19] Vincent Migliore, Benoit Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking dilithium: Efficient implementation and side-channel evaluation,
2019. https://eprint.iacr.org/2019/394.

[Mon85] Peter L. Montgomery. Modular multiplication without trial division. Math-
ematics of Computation, 44(170):519–521, 1985. https://www.ams.org/
mcom/1985-44-170/S0025-5718-1985-0777282-X/.

[Nat13] National Institute of Standards and Technology. FIPS186-4: Digital
Signature Standard (DSS), 2013. https://doi.org/10.6028/NIST.FIPS.
186-4.

[NIS16] NIST Computer Security Division. Post-Quantum Cryptogra-
phy Standardization, 2016. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography.

[PAA+19] Thomas Pöppelmann, Erdem Alkim, Roberto Avanzi, Joppe Bos,
Léo Ducas, Antonio de la Piedra, Peter Schwabe, Douglas Ste-
bila, Martin R. Albrecht, Emmanuela Orsini, Valery Osheter, Ken-
neth G. Paterson, Guy Peer, and Nigel P. Smart. NewHope. Sub-
mission to the NIST Post-Quantum Cryptography Standardization
Project [NIS16], 2019. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[PFH+19] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirch-
ner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gre-
gor Seiler, William Whyte, and Zhenfei Zhang. Falcon. Tech-
nical report, 2019. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[Por19] Thomas Pornin. New efficient, constant-time implementations of falcon.
Cryptology ePrint Archive, Report 2019/893, 2019. https://eprint.iacr.
org/2019/893.

[RGCB19] Prasanna Ravi, Sourav Sen Gupta, Anupam Chattopadhyay, and Shivam
Bhasin. Improving Speed of Dilithium’s Signing Procedure. In CARDIS
2019, volume 11833 of LNCS, pages 57–73. Springer, 2019. https://eprint.
iacr.org/2019/420.pdf.

https://eprint.iacr.org/2018/1018.pdf
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://www.iacr.org/archive/asiacrypt2009/59120596/59120596.pdf
https://www.iacr.org/archive/asiacrypt2009/59120596/59120596.pdf
https://eprint.iacr.org/2019/394
https://www.ams.org/mcom/1985-44-170/S0025-5718-1985-0777282-X/
https://www.ams.org/mcom/1985-44-170/S0025-5718-1985-0777282-X/
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2019/893
https://eprint.iacr.org/2019/893
https://eprint.iacr.org/2019/420.pdf
https://eprint.iacr.org/2019/420.pdf

24 Compact Dilithium Implementations on Cortex-M3 and Cortex-M4

[Sho94] P.W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In FOCS 1994, pages 124–134. IEEE, 1994. https://ieeexplore.
ieee.org/abstract/document/365700.

[WTJ+20] Wen Wang, Shanquan Tian, Bernhard Jungk, Nina Bindel, Patrick
Longa, and Jakub Szefer. Parameterized hardware accelerators for lattice-
based cryptography and their application to the hw/sw co-design of
qtesla. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2020(3):269–306, 2020. https://tches.iacr.org/index.php/
TCHES/article/view/8591.

A Kyber and NewHope on Cortex-M3
As a side-product of Section 4, we present implementations for the NTT and NTT−1 operations
for the primes 3329 and 12289. While those did not allow us to speed up our Dilithium
implementation further, they can be used to implement the key-encapsulation mechanisms
Kyber and NewHope on the Cortex-M3 in constant-time. We report the results for
these schemes here. Our implementations of both Kyber and NewHope are based on the
implementations by Alkim–Bilgin–Cenk–Gérard [ABCG20]. As those implementations
make heavy use of instructions not available on the Cortex-M3 (e.g., SIMD instructions
like uadd16, or multiplication instructions like smlabb), these are not directly functional
on the Cortex-M3.

In addition to the NTT and NTT−1 implementations, we further port the other assem-
bly routines to Cortex-M3. For Kyber this includes polynomial addition, polynomial
subtraction, Barrett reduction, and base multiplication. For NewHope, we use the same
approach as [ABCG20], and use the Cooley–Tukey algorithm [CT65] for NTT and the
Gentleman–Sande algorithm [GS66] for NTT−1. Beside that, we port the code for poly-
nomial addition, pointwise multiplication, and bit-reversal to Cortex-M3. We present
the results for both NewHope and Kyber in Table 6. The slow-down compared to the
Cortex-M4 implementation is between 7% and 20% and as such it is not as significant as
for the Dilithium implementations. However, it does demonstrate the limitations of the
Cortex-M3.

Table 6: Kyber and NewHope results on the Cortex-M3 (SAM3X8E at 16 MHz) compared
to the fastest Cortex-M4 implementation. Average of 100 executions.

Platform KeyGen Encaps Decaps
[kcc] [kcc] [kcc]

Kyber512 [ABCG20] Cortex-M4 455 586 544
This work Cortex-M3 539 682 652

Kyber768 [ABCG20] Cortex-M4 864 1 033 970
This work Cortex-M3 1 012 1 194 1 145

Kyber1024 [ABCG20] Cortex-M4 1 405 1 606 1 526
This work Cortex-M3 1 636 1 853 1 793

NewHope1024-CCA [ABCG20] Cortex-M4 1 157 1 675 1 587
This work Cortex-M3 1 239 1 921 1 888

https://ieeexplore.ieee.org/abstract/document/365700
https://ieeexplore.ieee.org/abstract/document/365700
https://tches.iacr.org/index.php/TCHES/article/view/8591
https://tches.iacr.org/index.php/TCHES/article/view/8591

	Introduction
	Preliminaries
	Dilithium
	Target Platforms: Cortex-M3 and Cortex-M4

	Improving the Performance on Cortex-M4
	Fast Constant-Time NTTs on Cortex-M3
	SMULL and SMLAL
	Cooley–Tukey and Gentleman–Sande Butterflies
	NTT, NTT-1, and

	Time-Memory Trade-Offs
	Strategy 1: A in Flash
	Strategy 2: A in SRAM
	Strategy 3: Streaming A and y
	Splitting signature generation in an offline and online phase

	Results
	NTT performance
	Cortex-M4 performance
	Cortex-M3 performance
	Stack usage
	Profiling

	Kyber and NewHope on Cortex-M3

