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Abstract. In this paper, we present an instruction set coprocessor architecture for
lattice-based cryptography and implement the module lattice-based post-quantum key
encapsulation mechanism (KEM) Saber as a case study. To achieve fast computation
time, the architecture is fully implemented in hardware, including CCA transforma-
tions. Since polynomial multiplication plays a performance-critical role in the module
and ideal lattice-based public-key cryptography, a parallel polynomial multiplier
architecture is proposed that overcomes memory access bottlenecks and results in a
highly parallel yet simple and easy-to-scale design. Such multipliers can compute a
full multiplication in 256 cycles, but are designed to target any area/performance
trade-offs. Besides optimizing polynomial multiplication, we make important design
decisions and perform architectural optimizations to reduce the overall cycle counts
as well as improve resource utilization.
For the module dimension 3 (security comparable to AES-192), the coprocessor
computes CCA key generation, encapsulation, and decapsulation in only 5,453, 6,618
and 8,034 cycles respectively, making it the fastest hardware implementation of Saber
to our knowledge. On a Xilinx UltraScale+ XCZU9EG-2FFVB1156 FPGA, the
entire instruction set coprocessor architecture runs at 250 MHz clock frequency and
consumes 23,686 LUTs, 9,805 FFs, and 2 BRAM tiles (including 5,113 LUTs and
3,068 FFs for the Keccak core).
Keywords: Lattice-based Cryptography · Post-Quantum Cryptography · Hardware
Implementation · Saber KEM · High-speed Instruction-set Architecture

1 Introduction
In October 2019, Google’s 54-qubit quantum processor ‘Sycamore’ completed a task
in 200 seconds, the equivalent of which can only be computed in 10,000 years using a
state-of-the-art supercomputer [AAB+19]. To break present-day public-key cryptographic
primitives, namely RSA and Elliptic Curve cryptosystems, Shor’s algorithm [Sho97] needs
a significantly more powerful quantum computer. However, several quantum computing
scientists anticipate that quantum computers powerful enough to break these cryptosystems
will be feasible in the next 15 to 20 years [20120]. Post-quantum cryptography is a branch
of cryptography that focuses on designing quantum-attack resistant public-key primitives
and analyzing their security. Existing post-quantum public-key cryptographic primitives
have been built based on different problems that are presumed to be computationally
infeasible for both present-day computers as well as quantum ones. In 2017, the American
National Institute of Standards and Technology (NIST) called for the standardization of
post-quantum public-key algorithms. The majority of the candidate submissions are based
on presumed computationally infeasible lattice-problems. One such candidate scheme is
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Saber [DKRV19], which is a Chosen-Ciphertext Attack (CCA) resistant key encapsulation
mechanism (KEM) based on module lattices. It is one of the nine lattice-based public-key
encryption or encapsulation schemes that have proceeded to the second round of NIST’s
standardization project. Saber is based on the Module Learning With Rounding (MLWR)
problem [BPR12], and it uses power-of-two moduli to achieve flexibility, simplicity, high
security, and efficiency [DKRV19].

There have been several efficient hardware or software/hardware implementations of
lattice-based public-key cryptosystems. It is well-known that in ideal or module lattice-
based public-key cryptography, the performance of polynomial multiplication plays a big
role [KRSS19] in the overall performance of the cryptographic primitive. The Number The-
oretic Transform (NTT), which is a generalization of Fast Fourier Transform (FFT), has the
asymptotically-fastest time-complexity O(n logn). However, the NTT requires the cipher-
text modulus to be a prime. In 2012, Göttert et al. [GFS+12] reported the first hardware
implementation of the ideal lattice-based LPR [LPR10] public-key encryption scheme. Their
implementation used a massively parallel and unrolled NTT-based polynomial multiplier ar-
chitecture that consumed millions of LUTs and flip-flops. In the few years that followed, sev-
eral hardware and software implementation papers [PG14b, RVM+14, dCRVV15, PDG14,
PG14a, LN16, AJS16, DKSRV18, KBMRV18, BKS19, BUC19, ZYC+20] improved the
performance of lattice-based public-key cryptography on hardware and software platforms
by orders of magnitude.

Efficient implementations of lattice-based public-key cryptographic algorithms gained
significant interest in the context of NIST’s post-quantum cryptography standardization
project. A comparison of most round 2 submissions, including Saber, can be found in
[DFA+20]. Since several research papers showed that the use of an NTT-based polynomial
multiplier results in lower computation cost for ideal lattice-based cryptosystems, several
NIST candidates [ADPS16, BDK+18, ABB+19] use NTT-friendly parameter sets, and
some of them (e.g., Kyber [BDK+18]) even require the use of NTT in their protocol.

On the contrary, Saber [DKRV19] uses power-of-two moduli, thus making it inconvenient
to use the asymptotically fastest NTT-based polynomial multiplication. This non-typical
parameter set in Saber makes its implementation an interesting problem as well as a
challenging research topic. In [DKSRV18] the authors of Saber proposed a fast polynomial
multiplier based on the Toom-Cook algorithm [Knu97] and showed that a non-NTT
parameter set does not make their implementation slow. At CHES 2018, Karmakar
et al. [KBMRV18] proposed software optimization techniques to implement Saber on
resource-constrained microcontrollers. The latest software optimization techniques for
Saber were proposed by Bermudo Mera et al. [BMKV20] at CHES 2020. All of these
works targeted improving the computational efficiency of Saber, mostly by improving the
Toom-Cook polynomial multiplier. However, their efforts to improve matrix generation
on software platforms faced a major obstacle by the SHAKE128 pseudo-random number
generator, which is executed serially in Saber [DKRV19]. In practice, more than 50% of
the computation time is spent on generating pseudo-random numbers using SHAKE128,
thus making it the performance bottleneck. It is known that the Keccak [20115] function,
which is at the core of SHAKE128, is very efficient on hardware platforms. This motivated
us to investigate the implementation aspects of Saber on hardware platforms.

The only reported hardware implementations of Saber are by Dang et al. [DFAG19]
(also reported in [FDAG] and [DFA+20]) and Bermudo Mera et al. [BMTK+20]. Both of
them use hardware/software (HW/SW) codesign approaches to accelerate Saber. Bermudo
Mera et al. [BMTK+20] report that their HW/SW codesign achieves 5 to 7-times speed-up
compared to software-only implementation on the same platform. Dang et al. [DFAG19]
compare seven lattice-based key encapsulation methods on HW/SW codesign platforms.
They report that out of the seven tested protocols (FrodoKEM, Round5, Saber, NTRU-
HPS, NTRU-HRSS, Streamlined NTRU Prime and NTRULPRime), Saber is the fastest
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protocol in the encapsulation operation and second fastest in the decapsulation operation.
While HW/SW codesign has its benefits, such as flexibility and a shorter design cycle,

a full-hardware (i.e., including all building blocks) implementation of Saber can offer
better latency and throughput. At the same time, implementing such an accelerator is a
challenging research topic because it requires making careful design decisions that take into
account both algorithmic and architectural alternatives for the internal building blocks
and their interactions at the protocol level. Hence, it is important to investigate design
methodologies that will result in the best performance for Saber.

Contributions In this paper, we present an instruction-set coprocessor architecture for
lattice-based post-quantum key encapsulation mechanism (KEM) and implement the
architecture for Saber KEM [DKRV19]. The architecture implements all the building
blocks in the hardware, thus making it the fastest implementation of Saber to our knowledge.
In particular, we make the following contributions:

1. Since polynomial multiplication plays a central role in Saber, we analyze different
algorithmic alternatives for implementing high-speed polynomial multiplication in
hardware. By taking into account both computation and memory access overheads, we
use a simple yet parallel and hardware-friendly polynomial multiplication algorithm
targeting the parameter set of Saber.

2. We take advantage of the power-of-two moduli and small secret in Saber and imple-
ment a custom architecture for the polynomial multiplication algorithm. Additionally,
we perform architectural optimizations to reduce cycle, logic, and register counts. The
designed polynomial multiplier architecture is massively parallel and does not suffer
from memory-access bottlenecks. With this multiplier, one polynomial multiplication
operation requires only 256 cycles (excluding the overhead of operand loading).

3. The polynomial architecture is easy to scale to meet different performance-area
trade-offs. We further show how to pipeline the polynomial multiplier architecture
and achieve higher clock frequency with a negligible increase in the latency.

4. Several operations in Saber use non-multiples of 8-bit operands, making their resource-
shared and optimized hardware implementation challenging. We analyze these
building blocks and perform optimizations to reduce both cycle and area counts.

5. The optimized building blocks are integrated to realize an instruction-set copro-
cessor architecture that computes all KEM operations, namely key generation,
encapsulation and decapsulation, in the hardware. Since several existing software
implementations [KRSS19, Roy19] of lattice-based KEMs reported that Keccak-
based pseudo-random number generation takes a share of about 50% of the overall
computation time, we used the high-performance Keccak core that was developed by
the Keccak team [Tea19]. The unified architecture computes CCA-secure Saber key
generation, encapsulation and decapsulation in only 5,453, 6,618 and 8,034 cycles
respectively for the parameter set with security comparable to AES-192.

6. We further extend the instruction-set architecture to support the other two variants
of Saber, namely LightSaber and FireSaber [DKRV19], which correspond to security
levels comparable to AES-128 and AES-256 respectively.

7. Our design methodology is generic and hence can be followed to design instruction-set
coprocessors for other lattice-based schemes. The Vivado project and all HDL source
codes are available at https://github.com/sujoyetc/SABER_HW.

https://github.com/sujoyetc/SABER_HW
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Paper organization In Sec. 2, we introduce the relevant mathematical background,
including a summary of the Saber KEM protocol. Sec. 3 discusses the optimization
techniques and the design decisions that lead to our proposed high-speed instruction-
set architecture. Sec. 4 presents the implementation results and compares them with
state-of-the-art solutions. The final section includes concluding remarks.

2 Preliminaries
2.1 Notation
In this section, we introduce the notation used throughout the paper. Let p and q be two
powers of 2, i.e. p = 2εp and q = 2εq . We denote with Zq the ring of integers modulo q.
We then define the ring of polynomials Rp = Zp[x]/〈xN + 1〉, for some integer N . Similarly
for q, we have Rq = Zq[x]/〈xN + 1〉. A vector is represented in bold, such as a, and we
identify polynomials in R with a N -vector where the i-th entry is the i-th coefficient of
a(x). Let the operator b·e denote rounding, i.e. bae = ba+ 1

2c. This can be extended to
polynomials coefficient-wise.

Let βµ denote a centered binomial distribution with even parameter µ. The distribution
takes on values in the range [−µ/2, µ/2] with probability p(x) = µ!

(µ/2+x)!(µ/2−x)! 2
−µ. We

write x ← βµ to denote x randomly sampled from a βµ distribution and x ← βµ for a
polynomial whose coefficients are independently sampled from βµ. Given a set S, we write
x← U(S) for x uniformly randomly selected from S.

2.2 Saber
Saber [DKRV19] is a IND-CCA secure Key Encapsulation Mechanism (KEM). Its security
relies on the hardness of the module variant of the Learning With Rounding (Mod-LWR)
problem [BPR12]. A Mod-LWR sample is given by

(
aaa, b =

⌊p
q

(aaaTsss)
⌉)
∈ Rl×1

q ×Rp,
where aaa is a vector of randomly generated polynomials in Rq, sss is a secret vector of
polynomials in Rq whose coefficients are sampled from a centered binomial distribution,
and the modulus p is less than q. The decisional variant of the problem asks to distinguish
between Mod-LWR samples and uniformly random samples in Rl×1

q ×Rp. This Mod-LWR
problem is presumed to be computationally infeasible, both on classical and quantum
computers. It is thus a good candidate for developing quantum-resistant cryptosystems.

Saber [DKRV19] uses the Mod-LWR problem with both p and q power-of-two to
construct a Chosen Plaintext Attack (CPA) secure public-key encryption scheme. Following
that, a CCA-secure Saber KEM is realized using a post-quantum variant of the Fujisaki-
Okamoto transformation [HHK17]. In this section, we describe the algorithms used in
CPA-secure ‘Saber Public Key Encryption’ (Alg. 1, 2, 3) and CCA-secure ‘Saber Key
Encapsulation’ (Alg. 4, 5, 6). We refer to the original paper [DKRV19] for further
information.

Algorithm 1 Saber.PKE.KeyGen() [DKRV19]
seedAAA ← U({0, 1}256)
AAA = gen(seedAAA) ∈ Rl×lq

r = U({0, 1}256)
sss = βµ(Rl×1

q ; r)
bbb = ((AAATsss+ hhh) mod q)� (εq − εp) ∈ Rl×1

p

return (pk := (seedAAA, bbb), sk := (sss))

Key generation starts by randomly generating a seed that determines an l× l matrix AAA
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consisting of l2 polynomials in Rq. The function gen that is used to obtain the matrix from
the seed is a pseudo-random number generator based on SHAKE-128 [20115]. A secret
vector sss of polynomials whose entries are sampled from a centered binomial distribution
with parameter µ is also generated. The public key then consists of the matrix seed and the
rounded product AAATsss, while the secret key consists of the secret vector sss. The constants hhh,
h1, and h2 in the following algorithms are used to replace rounding operations by a simple
bit shift [DKRV19].

Algorithm 2 Saber.PKE.Enc(pk = (seedAAA, bbb),m ∈ R2; r) [DKRV19]
AAA = gen(seedAAA) ∈ Rl×lq

if r is not specified then
r = U({0, 1}256)

s′s′s′ = βµ(Rl×1
q ; r)

bbb′ = ((AAAsss′ + hhh) mod q)� (εq − εp) ∈ Rl×1
p

v′ = bbbT (sss′ mod p) ∈ Rp
cm = (v′ + h1 − 2εp−1m mod p)� (εp − εT ) ∈ RT
return c := (cm, b′b′b′)

Encryption consists of generating a new ‘secret’ s′s′s′ and adding the message to the inner
product between the public key and the new secret s′s′s′. This forms the first part of the
ciphertext, while the second is used to hide the encrypting secret and contains the rounded
product AAAsss′.

Algorithm 3 Saber.PKE.Dec(sk = sss, c = (cm, b′b′b′)) [DKRV19]
v = bbb′T (sss mod p) ∈ Rp
m′ = ((v − 2εp−εT cm + h2) mod p)� (εp − 1) ∈ R2
return m′

Decryption uses the secret key to compute v, which is approximately the same as
the v′ computed during encryption. This allows extracting the message from the ciphertext.

The CPA-secure components are used to build a CCA-secure KEM via a post-quantum
variant of the Fujisaki-Okamoto transformation. The functions F : {0, 1}∗ → {0, 1}n
and G : {0, 1}∗ → {0, 1}l×n are hash functions SHA3-256 and SHA3-512 respectively,
standardized in FIPS 202 [20115].

Algorithm 4 Saber.KEM.KeyGen() [DKRV19]
(seedAAA, bbb, sss) = Saber.PKE.KeyGen()
pk = (seedAAA, bbb)
pkh = F(pk)
z = U({0, 1}256)
return (pk := (seedAAA, bbb), sk := (sss, z, pkh))

The KEM key generation does not differ significantly from the CPA key generation
algorithm but appends to the secret key both a hash of the public key and a randomly
generated string that is returned if decapsulation fails.

Encapsulation starts by randomly generating a message m and obtaining from that
and the public key the source of randomness used during encryption. The ciphertext then
consists of the encrypted message and a value obtained from the message and public key.

Decapsulation decrypts the ciphertext via Saber.PKE.Dec and ensures that the ci-
phertext was honestly generated. To do so, it re-encrypts the obtained message with the
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Algorithm 5 Saber.KEM.Encaps(pk = (seedAAA, bbb)) [DKRV19]
m← U({0, 1}256)
(K̂, r) = G(F(pk),m)
c = Saber.PKE.Enc(pk,m; r)
K = F(K̂, c)
return (c,K)

Algorithm 6 Saber.KEM.Decaps(sk = (sss, z, pkh), pk = (seedAAA, bbb), c) [DKRV19]
m′ = Saber.PKE.Dec(sss, c)
(K̂ ′, r′) = G(pkh,m′)
c′ = Saber.PKE.Enc(pk,m′; r′)
if c = c′ then return K = H(K̂ ′, c) ;
else return K = H(z, c) ;

randomness associated with it and checks whether the ciphertext corresponds to the one
received.

Parameters Saber defines three sets of parameters called LightSaber, Saber and FireSaber,
which match NIST security levels 1, 3 and 5 respectively. All three levels use polynomial
degree N = 256, and moduli q = 213 and p = 210. The three variants differ in the
module dimension, the binomial distribution parameter, and the message space. Namely,
LightSaber uses module dimension 2, secrets sampled from [−5, 5], and t = 22; Saber uses
module dimension 3, secrets sampled from [−4, 4], and t = 23; and FireSaber upgrades the
parameters to module dimension 4, secrets sampled from [−3, 3], and t = 25.

3 Design Decisions
In the previous section, we outlined the operations that are computed during key generation,
encapsulation, and decapsulation. These computations are composed of several elementary
operations, including hashing, pseudo-random number generation, polynomial addition
and multiplication, and rounding.

Since Saber uses power-of-two moduli p and q, all modulus reductions are free in
hardware. Additionally, the rounding operation is cheap as it comprises only of additions,
modulo reductions, and bit selection. In the following subsections, we describe various
design alternatives and the design decisions that we made while implementing Saber on
hardware platforms. Our aim was to achieve both high speed and flexibility for the KEM
operations and to support multiple parameter sets.

3.1 High-level Architecture
There are two general methodologies to implement computationally intensive cryptographic
algorithms in hardware, namely HW/SW codesign and full-HW design. While a HW/SW
codesign strategy offers a shorter design cycle and higher flexibility, it may not result in
the best performance. On the other hand, a full-HW architecture, i.e., with all the building
blocks in hardware, can offer significant speedup over a HW/SW codesign architecture.
However, the HW-only design methodology demands significant implementation efforts
(hence a longer design cycle), and may result in diminished flexibility. In this paper,
we prioritize speed, and thus opt for a full-hardware implementation with all building
blocks residing in hardware. At the same time, we aim to make design decisions such that
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Figure 1: Block diagram: Instruction-set architecture for Saber

the hardware remains flexible to a great extent (e.g., can fully compute key generation,
encapsulation, and decapsulation for multiple Saber parameter sets).

When a HW-only implementation is considered, one design option is to cascade
different building blocks in the data-path following the standard data-flow model, if the
blocks are required in multiple parallel instances. However, this approach results in a
large area consumption and demands customized data-paths for different protocol-level
operations, namely key-generation, encapsulation, and decapsulation. Additionally, such
an architecture becomes more inflexible to different parameter sets [GFS+12]. Hence, we
do not follow this design methodology in this work.

To achieve programmability and flexibility, we realize an instruction-set coprocessor ar-
chitecture for Saber. The advantages of this design strategy are: instruction-level flexibility
and modularity, ease to add or modify new instructions, and most importantly a unified
architecture that can be used for multiple tasks. We analyzed the SW implementation of
Saber [DKRV19] and identified the high-level instructions that are needed to support all
the CCA-secure KEM routines, namely key generation, encapsulation, and decapsulation.
A high-level architecture diagram of the instruction-set coprocessor architecture (ISA) is
shown in Fig. 1.

We followed standard design practices to make the implementation constant-time.
There is no conditional branching in the algorithms used and all the building blocks have
been designed to be constant-time. Thus, all KEM operations take a fixed amount of time.

We would like to remark that, although we only implement the architecture targeting
Saber KEM as a case study, the implementation strategy is quite generic in nature. Hence,
our strategy can be followed to implement other lattice-based public-key schemes in
hardware. The following sections describe the building blocks.

3.2 SHA3-256/SHA3-512/SHAKE-128
As shown in Alg. 4, 5, and 6, Saber uses the hash functions SHA3-256 and SHA3-512 that
were standardized in FIPS 202 [20115]. Moreover, to generate pseudorandom numbers,
the extendable output function SHAKE-128, also standardized in FIPS 202, is used.
Since all of these functions use the Keccak sponge function [20115], we implement the
SHA3-256/SHA3-512/SHAKE-128 block as a wrapper around a single Keccak core (Fig. 2).

We chose to use a single Keccak core for several reasons. Software benchmark-
ing [KRSS19] of many lattice-based KEM schemes have reported that 50-70% of the
overall computation time is spent on executing the Keccak function, thus making it the
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most performance-critical component. On software platforms with Single Instruction
Multiple Data (SIMD) processors, such as Intel AVX2, the overhead of pseudo-random
number generation is reduced in Kyber KEM [BDK+18] (which is also based on module
lattices) by using a vectorized implementation (factor 4) of Keccak. However, the Saber
algorithm [DKRV19] calls the Keccak operations in a serial manner and thus a single call to
a Saber KEM operation cannot leverage a vectorized implementation of Keccak on software
platforms with SIMD. A batched implementation of Saber, such as SaberX4 [Roy19], is
needed to improve the throughput of KEM operations on platforms with SIMD.

This serial execution of Keccak in the Saber algorithm does not cause issues since
Keccak is very efficient [20115] on hardware platforms. In this work, we use the open-
source high-speed implementation of the Keccak core that was designed by the Keccak
Team [Tea19]. This high-speed implementation of Keccak computes ‘state-permutations’
at a gap of only 28 cycles, thus generating 1,344 bits of pseudo-random string every 28
cycles during the extraction-phase. Furthermore, we observed that one instance of the
Keccak core consumes around 5K LUTs and 3K registers, which are respectively nearly
21% and 31% of the overall area in our implementation. The area consumption results
indicate that instantiating multiple high-speed Keccak cores in the hardware would make
the implementation area-expensive. Additionally, as the Keccak core is already very fast,
the use of multiple such cores in parallel would be of little help in improving the speed.
Due to these reasons, we instantiate only one high-speed Keccak core in the hardware. As
an added benefit, the serial use of the Keccak core makes our implementation simpler.

3.3 Data Memory

In the instruction-set architecture (Fig. 1), the building blocks read their operand-data from
the data memory and write their results back to the data memory. The data memory is of
size 8KB such that all the parameter sets of Saber can be computed, and it is implemented
using Block RAM tiles. An important design parameter is the word-size of the memory. We
set the word-size to 64-bit as the high-speed Keccak core reads/writes data in 64-bit words.
Additionally, when we consider integration of the instruction-set coprocessor architecture
with a host computer (32-bit or 64-bit), the use of a 64-bit data-memory simplifies the
data transfer protocol between the two sides. All the remaining blocks in Fig. 1 have been
optimized to use 64-bit data read/write operations efficiently.
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3.4 Program Memory
Our instruction-set coprocessor architecture offers programmability and thus the flexibility
to execute multiple KEM operations. Fig. 1 shows a program memory that is loaded with
the microcode of a protocol. For example, to compute key generation, the microcode
of key generation is loaded into the program memory. The instruction words are 35-bit
wide: 5-bits for the instruction code, 2× 10-bits for two input operand addresses, and the
remaining 10-bits for the result address. However, for SHA and SHAKE operations, the
instructions are two words long as the operations also require input/output lengths. The
program memory is small and is thus implemented using LUTs.

3.5 Binomial Sampling
A binomial sampler with parameter µ computes a sample from a µ-bit pseudo-random
input string, say r[µ− 1 : 0], by subtracting the Hamming weight of the most-significant
µ/2 bits from the Hamming weight of the least-significant µ/2 bits, i.e., by computing
HW(r[µ/2 − 1 : 0]) − HW(r[µ − 1 : µ/2]), where HW() stands for the Hamming weight. In
Saber, the secret coefficients are drawn from a centered binomial distribution with the
parameter µ = 10, 8, and 6 for LightSaber, Saber, and FireSaber respectively [DKRV19].
Hence, the secret coefficients are in [−5, 5] for LightSaber, [−4, 4] for Saber, and [−3, 3]
for FireSaber. As µ is small in all the variants of Saber, the sampler can be implemented
with simple bit manipulations. In our architecture, the sampler is a combinational block
(Fig. 3) that directly maps pseudo-random bits from an input buffer to a sample value.

For all the variants of Saber, a sample is represented as a 4-bit signed-magnitude
number (pair of sign and an absolute value) in our implementation. Note that existing
software implementations of Saber [DKRV19, KBMRV18, Roy19] use the two’s complement
number system to represent the samples in the C data type uint16_t. The use of ‘4-bit
signed-magnitude’ representation simplifies the hardware architecture because we can store
16 such samples easily in a 64-bit word of the data memory. Thus, no sample is split
across two words. Additionally, in Sec. 3.6.1 we show that this representation simplifies
the polynomial multiplier.

The data-path of the sampler is shown in Fig. 3. For Saber, since µ = 8 divides
the word-length of the data memory, two 64-bit pseudo-random words are read from the
memory and stored in a 128-bit buffer register. Then, 16 samples are generated in parallel
and stored in an output buffer register of length 64-bit. Finally, the output buffer is written
to the data memory. However, for LightSaber and FireSaber, µ = 10 and µ = 6 are not
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divisors of 64. Hence, the reading of pseudo-random bits is relatively more complicated for
these two variants of Saber. The operand loading problem is solved by using a 320-bit
input buffer register since lcm(10, 64) = 320.

For LightSaber, five consecutive pseudo-random words (hence 320 bits) are read from
the memory and stored in the buffer register. Then 320/10 = 32 samples are generated
by consuming the pseudo-random buffer, and finally they are stored in two words of
data memory. For FireSaber, three consecutive pseudo-random words are read from the
memory, then 192/6 = 32 samples are generated, and finally the samples are stored in two
data memory words. As each secret-polynomial consists of 256 coefficients, the sample
generation process is repeated in a loop.

3.6 Polynomial Multiplication
In ideal and module lattice-based cryptosystems, the performance of polynomial multipli-
cation plays a critical role. Since Saber uses power-of-two moduli p = 210 and q = 213, it
cannot trivially use the asymptotically fastest Number Theoretic Transform (NTT)-based
polynomial multiplication. Software implementations [DKSRV18] of Saber have used the
Toom-Cook polynomial multiplication algorithm [Knu97], which is a generic algorithm and
asymptotically the second fastest after the NTT-based polynomial multiplication. However,
the Toom-Cook algorithm has a recursive structure and it is hard to transform it into an
iterative algorithm. The hardware implementation of the Toom-Cook polynomial multipli-
cation by Bermudo Mera et al. [BMTK+20] describes the challenges in implementing the
recursive function calls in hardware and proposes efficient architectures. The high-speed
HW/SW codesign implementation by Dang et al. [DFAG19] uses a polynomial multiplier
consisting of 256 DSPs, each taking 13-bit inputs.

In this work, we follow a principled design approach and realize a simple, yet parallel
and fast polynomial multiplier architecture by using the quadratic-complexity schoolbook
polynomial multiplication algorithm. Additionally, we optimize the multiplier architecture
for Saber. Since the polynomials in Saber are only of degree 256, the asymptotic inferiority
of the quadratic-complexity algorithm is outweighed by its simplicity and amiability to
parallelization. The schoolbook multiplication algorithm for polynomials of degree N is
described in Alg. 7.

Algorithm 7 Schoolbook polynomial multiplication.
Input: Two polynomials a(x) and b(x) in Rq of degree N .
Output: The product a(x) · b(x) of degree N .

1: acc(x)← 0.
2: for i = 0; i < N ; i = i+ 1 do
3: for j = 0; j < N ; j = j + 1 do
4: acc[j] = acc[j] + b[j] · a[i] mod Zq
5: end for
6: b = b · x mod Rq.
7: end for
8: return acc.

In line 1, an accumulator which consists of N registers is initialized to zero. This
accumulator is used to store the results of the polynomial multiplication. Then, inside the
nested loops (line 4), the i-th coefficient of a(x) is multiplied with the j-th coefficient of b(x)
and the result of the multiplication is accumulated in the j-th register of the accumulator
acc. This operation consists of an integer multiplication, followed by modular reduction
and modular addition. During a schoolbook multiplication, one polynomial needs to be
rotated inside the outermost loop. In Alg. 7, b(x) is rotated by multiplying it by x in Rq.
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Although the schoolbook polynomial multiplication algorithm looks rather simple,
its efficient implementation on a hardware platform requires wise design decisions as
well as design-space exploration. In the remaining part of this section, we describe our
optimizations and implementation strategies, along with their advantages (and some minor
drawbacks) over alternative design strategies.

3.6.1 Optimization of coefficient-wise modular multiplier

In Saber [DKRV19], polynomial multiplications are computed of public polynomials in
Rq or Rp and secret polynomials. For simplicity, we will denote the former by a(x) and
the latter by s(x). As mentioned in Sec. 2.2, the coefficients of the secret polynomial s
are randomly generated from a binomial distribution and—depending on the version of
Saber—they are contained in the small intervals [−3, 3], [−4, 4] or [−5, 5]. Additionally,
since both p and q are power-of-two in Saber, modular reduction by p or q is free.

We exploit ‘short’ secret-size and reduction-free modular multiplication to optimize
the coefficient-wise multiplications in Alg. 7. A coefficient-wise multiplier is implemented
using simple shift and add operations, as shown in Algorithm 8, instead of requiring a true
integer multiplier. We compute up to times-five multiplication to fully support all variants
of Saber. Implementations exclusively targeting the regular version of Saber or FireSaber
can obtain slight gains in area consumption by avoiding unnecessary computations at this
stage. Note that we represent the coefficients of s with a sign-magnitude system (Sec. 3.5)
and perform multiplications only with their absolute values. The accumulator is then
updated by adding or subtracting the results depending on the sign-bit of the coefficient of
s. Furthermore, since the modulus q is a power of 2 and the coefficients of a are represented
as 13-bit numbers, modulus reduction is implicit and requires no additional operation. In
hardware, a bit-parallel combinatorial circuit is used to implement Alg. 8 and hence the
multiplier is constant-time.

Algorithm 8 Coeffient-wise shift-and-add multiplier.
Input: ai: 13-bit number, sj : 3-bit number with 0 ≤ sj ≤ 5.
Output: ai · sj modulo q = 213.
r0 ← 0
r1 ← ai,
r2 ← ai � 1,
r3 ← ai + (ai � 1),
r4 ← ai � 2,
r5 ← ai + (ai � 2),
return rk, where k = sj .

3.6.2 Parallel polynomial multiplier architecture

Fig. 4 shows the polynomial multiplier architecture that implements a parallelized version
of the schoolbook multiplication described in Algorithm 7. Since the coefficient-wise
modular multiplication has a small area (Sec. 3.6.1), the schoolbook polynomial multiplier
architecture instantiates multiply-and-accumulate (MAC) units in parallel to compute line
4 of Alg. 7. For example, by instantiating 256 MAC units in parallel, the innermost loop
in Alg. 7 can be computed in one cycle, thus requiring only 256 cycles to compute one
polynomial multiplication for N = 256.

The overhead of memory access during polynomial multiplication plays a critical role in
lattice-based cryptography (e.g., [RVM+14], [BMTK+20]) and could hinder or complicate
logic-level parallel processing. For example, in NTT-based multiplication, the pattern
of memory access changes with each iteration. Hence, a special memory management
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technique is required to reduce the overhead of memory access [RVM+14]. Additionally, the
varying memory access pattern of NTT makes its parallel implementation rather challenging
since care must be taken to eliminate memory access conflicts [RJV+18, RTJ+19].

The schoolbook multiplication algorithm has a regular and simple data read/write
pattern. To attain maximum parallelism in data read/write, and to avoid the above-
mentioned memory-access bottlenecks, we store the entire secret polynomial s(x) in a shift
register (composed of flip-flops) (Fig. 4). At the beginning of a polynomial multiplication,
s(x) is read from the data memory (block RAM) and then loaded into the shift register.
This allows the architecture to access all the coefficients of s(x) simultaneously.

As shown in Alg. 7, only one coefficient of the other polynomial a(x) is required at a
time to compute the scalar multiplication s(x) · a[i]. Hence, it is not necessary to store
the entire polynomial a(x). The ‘coefficient selector’ block in Fig. 4 provides the required
coefficient of a(x) during the multiplication s(x) · a[i] by the parallel MAC cores. In the
next subsection we describe how the ‘coefficient selector’ block is designed for this purpose.

After the multiplication of s(x) and a[i], s(x) needs to be multiplied by x. This
operation is a simple nega-cyclic left-shift operation that moves each coefficient from
position i to position i+1 and sends the last coefficient to the first position after a modular
subtraction from zero. This nega-cyclic rotation happens since the reduction-polynomial is
x256+1. In our implementation, the binomial distributed coefficients of s(x) are represented
in the signed magnitude system. Hence, the sign of the 256-th coefficient is simply flipped,
and does not require a true subtraction operation.

3.6.3 Data loading

In the previous subsection, we described a fast polynomial multiplier core for Saber. In
practice, we can leverage its speed if we can both load the operands and read the result of
a polynomial multiplication in minimum cycle count. In this section, we describe how we
design a fast data exchange interface between the data-memory (block RAM in Fig. 1)
and the polynomial multiplication core (Fig. 4).

The public polynomial a(x) lives in the field R` = Z`[x]/(xn + 1), where either
` = q = 213 or ` = p = 210. In the former case, the coefficients of a(x) are 13-bits long
and they are outputted by the SHAKE-128 block by expanding a seed. The output of the
SHAKE-128 implementation that we use is a continuous stream of 64-bit words. Hence, an
entire polynomial in Rq is stored in data-memory (block RAM) as a continuous string of
length 256 · 13 = 3328 bits, divided into 64-bit words. Since the coefficient length (13-bit)
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does not divide the block size, the information of a single coefficient may be split across
different words.

In the latter case, coefficients of polynomials inRp are 10-bit wide and are not generated
by the SHAKE-128 block. To simplify the read/write of polynomials in Rp, the coefficients
are zero-padded up to 16-bit long, so that exactly four coefficients are contained in one
data-memory word and no coefficient is split across different blocks. Our multiplier
accommodates both situations while reusing most of its architecture, thus requiring only a
few ad hoc modifications.

There are different possible approaches to solve the issue of coefficients being split over
different blocks. The simplest approach involves a two-words (i.e., 128-bit) long buffer.
Whenever at least 64 bits are empty, a new word is written; also, 13 bits are consumed
at the end during each cycle. However, this solution, the most software-like, requires
incoming data to be written at different indices (to ensure that coefficients are packed
continuously). This approach can be problematic from a hardware-implementation point
of view, as it requires a variable bit-shifter for each possible index, thus increasing the area
consumption as well as the critical path delay.

Another possible solution that achieves lower area consumption relies on a long buffer,
namely an 832-bit long buffer, since that is the least common multiplier of 13 and 64. After
13 cycles of loading, the buffer is filled with exactly 64 coefficients (each 13-bit long), which
can then be consumed. This approach avoids writing at different indices, but requires a
long buffer and a delay of 13 cycles to load 64 coefficients. When we consider a polynomial
of degree 256, this data-load overhead is around 20% of the pure computation time.

We developed a solution that improves on the second strategy (i.e., use of a long buffer)
and reduces both the buffer-size and the cycle overheads. We do not wait for the entire
buffer to get filled; instead, we start processing as soon as the first few coefficients (from
the first word) are available in the buffer. This strategy requires a small multiplexer circuit.
This multiplexer reads data from the positions where the first coefficient is on the first cycle,
the second coefficient is on the second cycle, etc. In more detail, after the first cycle, the
first coefficient a[0] is at the location buffer[624 : 612], because 612 = len(buffer)− 64.
After the second cycle, the second coefficient a[1] is at the location buffer[573 : 561]
because the first block has been shifted and we have 561 = len(buffer)−2×64+13. More
generally, the multiplexer reads the data for the ith coefficient, for 1 ≤ i ≤ 12, starting
at index len(buffer)− 64i+ 13(i− 1). Fig. 5 shows the first three cycles of data loading
and where the multiplexer receives the input from. Furthermore, since we are reading
one coefficient per cycle while loading, we can thus shorten the buffer as we do not need
to store the coefficients that have already been used. Twelve coefficients are read during
loading since there is a one-cycle delay between writing to the buffer and reading from
it. Also, our architecture uses a buffer that is 676-bit long, since 676 = 64× 13− 12× 13.
This means that at the cost of a 13 to 1 multiplexer, our solution — compared to the
longer buffer solution — requires almost 20% fewer registers for the buffer and adds a
one-cycle delay, compared to 13.

The loading of 10-bit coefficients follows a similar but simplified pattern. Since each
coefficient is zero-padded to 16 bits of length, we need to store only two blocks at a time.
The loading phase consists of only two cycles. In the first cycle, the first block is loaded;
in the second cycle, we read the first coefficient, shift the first block, and load the second.
Just before the buffer is emptied, we repeat the loading process. We only require a 112-bit
buffer because two blocks require 128 bits, and we consume one coefficient while loading.

Lastly, since the multiplier reads the coefficient values from the least significant part of
the buffer, it is possible to load the next 64-bit block of data in the most significant part
of the buffer before the buffer is completely emptied out. In this way, multiplication can
continue uninterrupted, and the overhead due to loading the polynomial a(x) is thus only
one cycle—the cycle needed to load the initial block into the buffer. The overall timeline
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3.6.4 Alternative design decisions

Our multiplier loads the secret polynomial s(x) into a register at the start, then progressively
reads the coefficients of the polynomial a(x). An alternative to this design decision would
be to interchange the positions of a(x) and s(x), i.e., load a(x) entirely into a register
and then progressively read the coefficients of s(x). The former design choice has several
advantages over the latter, with some minor drawbacks.

Firstly, if the polynomial a(x) was stored in a register, we would be doing operations
that involve only one coefficient of s(x) at a time. Considering that a potential attacker has
control over the values of a(x), such an architecture would increase the chances of mounting
a successful simple side-channel attack. For instance, if a(x) was set to be a(x) = 1, it
could be possible to retrieve the secret s(x) by retrieving the Hamming distance of the
different states of the accumulator. By storing the secret into a register, any coefficient of
a(x) is simultaneously multiplied by all the coefficients of s(x) in parallel, which makes the
traces of such operations much noisier, thus making it harder for a side-channel attacker.

Secondly, the decision to store the entire s(x) in the register simplifies the overall
architecture, as the data exchange interface with the data-memory (block RAM) and the
register do not have to deal with different sizes of coefficients. Note that the coefficients of
s(x) are always 4-bits wide (a divisor of 64) and each load stores 16 coefficients into the
buffer for s(x). This architecture requires less overhead for data loading: loading s(x) into
the register takes only 16 cycles, whereas loading the entire a(x) would require 52 cycles.

Finally, our design optimizes the number of flip-flops and logic elements for the shift
register. To store s(x), we need only 4 ·256 = 1, 024 flip-flops as opposed to 13 ·256 = 3, 328
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flip-flops in the other strategy.
This comes at the cost of a more complicated loading process, since the coefficients of

a(x) are stored over multiple RAM blocks, unlike the coefficients of s(x). However, the
loading techniques described in Section 3.6.3 mitigates the problem and the advantages
detailed so far greatly outweigh the drawbacks.

3.6.5 Pipelining the multiplier

It is possible to reduce the length of the critical path in the multiplier by pipelining the
MAC units. A MAC unit receives a 13-bit coefficient of a(x) and a 4-bit coefficient of
s(x). A pipelined implementation of the MAC computes at one cycle the product between
the coefficient of a(x) and the magnitude of the coefficient of s(x), then buffers the result,
together with the sign of the secret coefficient. At the next cycle, the accumulator is
updated by adding or subtracting the stored result, depending on the buffered sign. Figure
7b contains a representation of the pipelined architecture.

This design allows new inputs to be processed continuously. Thus, an entire polynomial
multiplication now takes 257 cycles, which is virtually the same as the non-pipelined
architecture (there is only a one-cycle overhead due to pipelining). These changes allow
shortening of the critical path but come at the cost of an additional 14-bit register per
MAC unit, which means an added 3384-bit register for the entire polynomial multiplier.

The same changes can also be applied to the MAC units with parallel multipliers as
described in the next subsection. The number of registers will increase depending on the
placement of the pipeline registers.

3.6.6 Scalability

The current polynomial multiplier architecture with 256 MACs achieves high performance
with a moderate area consumption. This architecture can be extended to scale up or down
to achieve different performance/area trade-offs. Reducing the area consumption can be
achieved by decreasing the number of MACs used. For instance, it is possible to use 128
or 64 MACs and only multiply as many coefficients per cycle, which respectively doubles
or quadruples the number of cycles.

Increasing performance, on the other hand, requires more involved modifications. In
order to reduce the multiplication cycle count to 256/d, the multiplier must be changed to
compute the multiplication of s(x) with d coefficients of a(x) in one cycle, i.e. compute
s(x) · (ai+ai+1x+ . . .+ai+d−1x

d−1). Since the current architecture round-shifts the secret
polynomial at each cycle (equivalent to multiplying it by x), the new architecture needs to
cycle-shift the secret by d increments (equivalent to multiplying it by xd) and the MAC
units need to simulate the in-between shifts. In the regular architecture, if we update the
accumulator at position i with s[i] · a[j] at one cycle, we shift s and use the next coefficient
of a at the next cycle, and thus we increase the accumulator by s[i − 1] · a[j + 1]. The
following cycle will compute s[i− 2] · a[j + 2], the one after that s[i− 3] · a[j + 3], and so
on. Thus, each MAC unit now needs to compute d such operations in one cycle. Namely,
the MAC associated to position i in the accumulator needs to update the accumulator
by s[i] · a[j] + s[i− 1] · a[j + 1] + . . .+ s[i− (d− 1)] · a[j + d− 1]. This means that each
MAC unit should receive in input s[i], . . . , s[i− (d− 1)] and a[j], . . . , a[j + d− 1] and be
equipped with d multipliers (see Figure 7c for the MAC architecture when d = 2). Note
that the indexing of the coefficients of s(x) must be interpreted in a round way, e.g. if
j = 0, then s[j − 1] denotes the 256th coefficient with its sign flipped.

These changes have a positive impact on the number of registers required. Since we are
now consuming d coefficients per cycle, the polynomial buffer length should be decreased.
If d = 2, the buffer can be 520-bit long, since 24 coefficients can be read during loading
and 520 = lcm(64, 13)− 24× 13. This means we can reduce the buffers needed by 23%.
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More generally, the number of coefficients that can be consumed while loading is 12d, and
thus the buffer should be (lcm(64, 13)− 13 · 12d)-bit long.

However, increasing the performance comes at an expensive cost in terms of area
consumption. For d = 2, each MAC unit needs to be equipped with two multipliers
and twice as many buffers, thus its area requirements are almost exactly doubled. More
generally, we can achieve polynomial multiplication in 256/d cycles by multiplying d times
the area consumption of each MAC unit.

3.7 Adaptation to prime modulus and application to other schemes
The schoolbook polynomial multiplication is a generic algorithm and hence there is no
restriction on the modulus choice. However, when the modulus is not a power-of-two (e.g.,
a prime), the modular reduction operation is not free. Hence, dedicated reduction circuits
are required after the integer multiplier and adder circuits inside the MAC units.

Let us consider the 13-bit prime qprime = 7681 that is a popular modulus for efficient
NTT-based polynomial multiplications in some lattice-based schemes [BUC19, dCRVV15,
PG14b, RVM+14]. Assuming that both the operand polynomials are modulo qprime, we
implemented the coefficient multipliers using DSP-slices to avoid explosion in the LUT
consumption. In Section 4, we present its resource requirements.

With minor modifications, it is possible to use this generic polynomial multiplier
architecture in other lattice-based schemes that perform arithmetic in a polynomial
ring. For example, the CPA-secure LPR public-key encryption scheme [LPR10] performs
simple polynomial arithmetic in a ring. Hence, the LPR scheme [LPR10] can use the
parallel multiplier architecture. Note that several recent-generation lattice-based public-key
schemes [ADPS16, BDK+18] use NTT-specific optimizations in the high-level protocols.
These optimizations make NTT-based polynomial multiplication an integral part in these
schemes, thus leaving no room for a parallel schoolbook multiplier.

3.8 Remaining building blocks
The remaining building blocks, namely AddPack, AddRound, Verify, CMOV, and Copy-
Words, have low O(n) computational complexity. The ‘Verify’ block is a word-to-word
comparison between the received ciphertext and re-encrypted ciphertext during a decapsu-
lation operation. The result of ‘Verify’ is stored in a flag register that is used by ‘CMOV’
(constant-time move) to either copy the decrypted session key or a pseudo-random string
at a specified location.
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Table 1: Total cycles spent in low-level operations for Saber (module dimension 3). The
polynomial multiplier uses 256 MAC units in parallel, with each MAC equipped with one
multiplier.

Instruction Cycle Count
Keygen Encapsulation Decapsulation

SHA3-256 339 585 303
SHA3-512 0 62 62
SHAKE-128 1,461 1,403 1,403
Vector sampling 176 176 176
Polynomial multiplications 2,685 3,592 4,484
Remaining operations 792 800 1,606

Total cycles 5,453 6,618 8,034
Total time at 250 MHz 21.8 µs 26.5 µs 32.1 µs

The ‘AddRound’ block performs coefficient-wise addition of the constant h (Sec. 2.2)
followed by coefficient-wise rounding. Similarly, ‘AddPack’ is used for coefficient-wise
addition of a constant followed by the message (Sec. 2.2) and finally packing of the result
bits into a byte string. Although these small operations are computationally cheap, their
hardware implementation required fine-tuned bit manipulation as the data types are not
always multiples of 8 and different Saber variants use different packing width. With
low-level bit manipulation and careful resource sharing, we implemented these blocks in a
small area.

4 Results
The instruction-set coprocessor architecture is described in mixed Verilog and VHDL and
is compiled using Xilinx Vivado for the target platform Xilinx ZCU102 board that has
an UltraScale+ XCZU9EG-2FFVB1156 FPGA. The implemented hardware architecture
contains all the building blocks that are required to compute Saber, LightSaber, and
FireSaber. During a KEM operation (e.g., key generation, encapsulation or decapsulation),
the operand data is transferred to the coprocessor at once from a host processor, then all
the computations are performed in the FPGA, and finally the result is read by the host
processor.

4.1 Timing results
Table 1 shows the cycle counts for the individual low-level operations that are computed
during the execution of Saber (module dimension 3 and security comparable to AES-192)
as well as the total cycle counts. The polynomial multiplier here uses 256 MAC units
in parallel, where each MAC contains one modulo multiplier. Although a polynomial
multiplication requires around 256 cycles, the KEM operations compute polynomial
vector-vector and matrix-vector multiplications. Hence, the time spent on polynomial
multiplications is 47%, 54%, and 56% of key generation, encapsulation, and decapsulation
respectively. The total time spent on Keccak-based [PA11] functions, namely SHA3-256,
SHA3-512, and SHAKE-128, is 33%, 31%, and 22% of key generation, encapsulation,
and decapsulation respectively. The results show that, despite having a fast polynomial
multiplier architecture, it is the most time-consuming primitive, requiring more than half
of the overall time. We tested the functional correctness of the coprocessor on the ZCU102
board and at 250 MHz clock frequency, the CCA-secure key generation, encapsulation and
decapsulation operations take 21.8, 26.5, and 32.1 µs respectively.
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Table 2: Area results for the instruction-set coprocessor architecture for Saber (module
dimension 3). The clock frequency constraint was set to 250 MHz in Vivado.

Block LUTs Flip-flops DSPs BRAM Tiles

SHA/SHAKE 5,113 3,068 0 0
b Keccak 4,990 2,964 0 0
Binomial sampler 92 88 0 0
Poly-vector multiplier (256 MACs) 17,429 5,083 0 0
b Polynomial multiplier 17,406 5,069 0 0
Other blocks 1,052 1,566 0 0

Saber Coprocessor (256 MACs) 23,686 9,805 0 2
(% of overall FPGA) 8.6% 1.8% 0% 0.2%

Table 3: Execution times for different variants of Saber using Vivado simulation. Time is
calculated at 150 MHz. The polynomial multiplier uses 256 MAC units in parallel.

Instruction Cycles/Time (µs)
KeyGen Encapsulation Decapsulation

LightSaber 2,761/18.41 4,033/26.89 5,037/33.58
Saber 5,453/36.35 6,618/44.12 8,034/53.56
FireSaber 9,029/60.19 10,262/68.41 12,301/82.01

4.2 Area consumption
The area results for our coprocessor architecture are shown in Table 2 along with a
breakdown of the internal building blocks. The data-memory consists of 1,024 words of
width 64-bit and it consumes 2 Block RAM tiles on the FPGA platform. The program-
memory (Fig. 1) is a small memory and is implemented using LUTs. Despite the high
performance, our proposed architecture manages to achieve a moderate area consumption:
only 8.6% of LUTs, 1.8% of flip-flops, 0% of DSP slices, and 0.2% of block RAMs on the
target FPGA. The Keccak-based SHA3/SHAKE block occupies nearly 21 to 31% of the
entire coprocessor.

Results for unified Saber, LightSaber, and FireSaber architecture We also implemented
the unified architecture that supports all variants of Saber, in the same coprocessor. Table 3
shows the cycle counts for the Saber variants. When the unified architecture is compiled
at 150 MHz clock frequency, as per Vivado simulation, the unified architecture occupies
24,950 LUTs, 10,720 flip-flops and 2 BRAMs.

Area/performance trade-offs As the polynomial multiplier architecture is scalable, we
implemented a variant of it with MAC units fitting two multipliers. With this higher-
performing architecture, the cycle counts for polynomial multiplications nearly halves,
thus balancing the time between Keccak-based functions and polynomial multiplications.
The overall cycle count for Saber (module dimension 3) is 4,320, 5,231 and 6,461 for key
generation, encapsulation, and decapsulation respectively. Thus, the cycle count is reduced
by 21%, 21%, and 20% respectively. The increased speed comes with increased area
consumption of 1.83× for LUTs and 1.74× for flip-flops (this is both due to the increased
area consumption of the MAC units with two multipliers and due to the pipelining). Table
4 contains the execution times of the different versions of Saber when the polynomial
multiplier uses 512 parallel multipliers.
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Table 4: Cycle counts for different variants of Saber when each MAC unit fits two
multipliers.

Instruction Cycles
KeyGen Encapsulation Decapsulation

LightSaber 2,253 3,135 4,012
Saber 4,320 5,231 6,461
FireSaber 6,997 7,722 9,262

Polynomial multiplier for prime modulus 7681 We synthesized the polynomial multiplier
(Sec. 3.7) for the 13-bit prime modulus 7,681. The multiplier consumes 256 DSP slices,
31,298 LUTs, and 25,088 flip-flops. The increased LUT consumption is due to the full
integer multiplier in Z7681 and modular reduction circuits. The increased flip-flop count is
mostly due to the presence of pipeline registers in the modular multipliers.

4.3 Comparisons with existing implementations
In Table 5 we compare our flexible architecture with some of the recent hardware imple-
mentations of post-quantum KEM schemes. We remark that a fair comparison between
the listed hardware implementations is not always possible since the implementations
target different schemes and security levels, use different platforms, follow different design
methodologies, and sometimes report simulation results. Nevertheless, our coprocessor has
been tested in the hardware and the timing results in Table 5 show that our architecture
has a very fast computation time for Saber KEM while consuming a modest area.

The fairest comparisons are with the existing implementations of Saber by [BMTK+20]
and [DFAG19]. Both implementations follow HW/SW codesign to split the computation
of a Saber operation among the hardware and software platforms. Naturally, the speed of
their implementations greatly depends on the speed of the HW/SW data transfer interface.
For example, [BMTK+20] accelerates Saber by computing only the Toom-Cook polynomial
multiplications in hardware and achieves 5 to 7-times speed-up compared to software-
only implementation on the same platform. The high-speed implementation [DFAG19]
implements matrix-vector multiplication, inner product architecture, matrix and secret
generation, and hashing in hardware. A significant portion of the overall time is spent
on the HW/SW data exchanges. On the other hand, our instruction-set coprocessor
architecture is able to compute all protocol-operations and the speed does not depend
on the speed of the data transfer interface. Additionally, our architecture does not use
FPGA-specific DSP multipliers and hence the source HDL code can be implemented on
other technologies. The results in Table 5 show that our full-hardware architecture is faster
than the other two HW/SW codesign implementations [BMTK+20, DFAG19] of Saber.

As Keccak is slower compared to the polynomial multiplier on SW platforms, HW/SW
codesigns that use SW-based Keccak (e.g., [BMTK+20]) spend a large amount of time
on Keccak. In our implementation with 256 MAC units (thus 256 cycles), the ratio of
cycles of polynomial multiplications to the one of Keccak is 2:1. With each MAC having 2
multipliers, the ratio goes down to 1:1.

Banerjee et al. [BUC19] implemented a unified architecture that can be used for multiple
lattice-based schemes including Kyber [BDK+18], which is also a module lattice-based
KEM scheme. Their design strategy aims at reducing power consumption. In the TSMC
40nm technology, their cryptoprocessor occupies 0.28 mm2 area and runs at 72 MHz. For
Kyber-768 (module dimension 3), their architecture is around 100 times slower compared
to our architecture.

The hardware implementation of Frodo KEM by Howe et al. [HOKG18] uses dedicated
data paths for the key generation, encapsulation, and decapsulation. Since Frodo is



462 Saber in Hardware

Table 5: Comparisons with existing implementations of CCA-secure KEM schemes. All
results for Saber use module dimension 3.

Implementation Platform Time in µs Frequency Area
(KeyGen./Encaps./ (MHz) (LUT/FF/DSP/BRAM)

Decaps.) (or mm2 for ASIC)

Kyber-768 [BUC19] ASIC 1.5K/2.4K/2.6K 72 0.28 mm2

NewHope-1024 [BUC19] ASIC 1.3K/3.2K/3.6K 72 0.28 mm2

FrodoKEM-976 [HOKG18] Artix-7 45K/45K/47K 167 ≈7.7K/3.5K/1/24
SIKEp503 [MLRB20] Virtex-7 (HW/SW) 8.2K/13.9K/14.8K 142 21.2K/13.6K/162/38
Saber [BMTK+20] Artix-7 (HW/SW) 3.2K/4.1K/3.8K 125 7.4K/7.3K/28/2
Saber [DFAG19] UltraScale+ (HW/SW) -/60/65 322 ≈12.5K/11.6K/256/4
Saber [this work] UltraScale+ 21.8/26.5/32.1 250 23.6K/9.8K/0/2

based on the standard learning with errors (LWE) problem, computationally expensive
matrix-vector multiplications are computed several times, thus making Frodo significantly
slower than other ring or module lattice-based schemes.

We also compare our results with non-lattice-based KEM schemes. The SIKE [JF11]
scheme relies on the computational hardness of the supersingular isogeny problem. Its
most recent hardware implementation by Massolino et al. [MLRB20] targets high speed
and even beats Frodo KEM. Our hardware implementation of Saber is around 500 to 600
times faster than their implementation.

Recently, Wang et al. [WTJ+20] proposed a parametrized hardware accelerator for the
lattice-based signature scheme qTesla. While a direct comparison is not possible between
KEMs and signature schemes, the HW/SW implementation targetting NIST security level
3 (the same as Saber) takes 2,305,000, 7,745,000 and 2,316,000 cycles for key generation,
signing and verifying, respectively. Their in-hardware implementation for NTT-based
polynomial multiplier requires 11,455 cycles. However, a direct comparison is not possible,
since they use polynomials of degree 1,024 and reductions modulo 65,537. While our
polynomial multiplier has not been tested with those parameters, we expect the modulus
to have little impact on the cycle count, whereas the higher degree would increase our
cycle count approximately fourfold. Thus, we expect our multiplier to require about only
10% of their computation time. However, this comes at a considerably far larger area
consumption, given the moderate resource utilization of qTesla.

The experimental evidence shows that implementing lattice-based KEM schemes as
full-hardware instruction-set architecture results in high-speed, reusability and flexibility.
For the module-lattice based Saber KEM, the use of a parallel schoolbook polynomial
multiplier that exploits the short secret size and power-of-two modulus resulted in very
high speeds that outperformed all the reported implementations in Table 5.

5 Conclusions
In this work, we proposed a high-performance and flexible instruction-set coprocessor
architecture for lattice-based public-key cryptography with Saber KEM as a case study.
We optimized the implementation targeting the parameter set of Saber and showcased
the flexibility of our design by creating a unified architecture that can perform all KEM
operations for LightSaber, Saber, and FireSaber.

Our design for a polynomial multiplier lies at the core of the architecture. It uses the
schoolbook multiplication algorithm and achieves high speeds, while remaining simple and
highly scalable. The default implementation computes a multiplication of two 256 degree
polynomials in only 256 cycles. To demonstrate the flexibility of the design, we introduced a
variant that halves the cycle count and proposed a method to achieve any area/performance
trade-off. We also demonstrated an adaption of our polynomial multiplier to prime moduli.
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Overall, for a security level comparable to AES-192, the architecture achieves very high
speeds. It performs Saber key generation, encapsulation, and decapsulation in 21.8, 26.5,
and 32.1 µs respectively and achieves modest area requirements by consuming only 9% of
LUTs and 2% of flip-flops on an UltraScale+ FPGA. These results show that the modular
structure of Saber and the use of power-of-two moduli greatly simplify the architecture
and result in better performance.

In the future, we will investigate how to integrate and ensure resistance against side-
channel attacks, while continuing to prioritize high-performance and flexibility.
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