
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 4, pp. 389–415. DOI:10.13154/tches.v2020.i4.389-415

Remove Some Noise: On Pre-processing of
Side-channel Measurements with Autoencoders

Lichao Wu and Stjepan Picek

Delft University of Technology, The Netherlands
l.wu-4@tudelft.nl, s.picek@tudelft.nl

Abstract. In the profiled side-channel analysis, deep learning-based techniques proved
to be very successful even when attacking targets protected with countermeasures.
Still, there is no guarantee that deep learning attacks will always succeed. Various
countermeasures make attacks significantly more complex, and such countermeasures
can be further combined to make the attacks even more challenging. An intuitive
solution to improve the performance of attacks would be to reduce the effect of
countermeasures.
This paper investigates whether we can consider certain types of hiding countermea-
sures as noise and then use a deep learning technique called the denoising autoencoder
to remove that noise. We conduct a detailed analysis of six different types of noise
and countermeasures separately or combined and show that denoising autoencoder
improves the attack performance significantly.
Keywords: Side-channel analysis, Deep learning, Noise, Countermeasures, Denoising
autoencoder

1 Introduction
Side-channel analysis (SCA) is a threat exploiting weaknesses in cryptographic algorithms’
physical implementations rather than the algorithms themselves [MOP06]. During the
execution of an algorithm, leakages like electromagnetic (EM) radiation [QS01] or power
dissipation [KJJ99] can happen. Side-channel analysis can be divided into 1) direct attacks
like single power analysis (SPA) and differential power analysis (DPA) [KJJ99], and 2)
profiled attacks like template attack (TA) [CRR02] and supervised machine learning-based
attacks [MPP16, PSK+18, CDP17, KPH+19]. Machine learning-based approaches and
deep learning-based approaches have proved to be powerful options when conducting
profiled SCA in recent years. While such attack methods actively threaten the security of
cryptographic devices, there are still severe limitations. More precisely, attack methods
commonly rely on the signal’s correlation characteristics, i.e., signal patterns related to
the processed data. Once the correlation degrades, attacks become less effective or even
useless [BCO04].

The countermeasures can be divided into two categories: masking and hiding. The
masking countermeasure splits the sensitive intermediate values into different shares to
decrease the key dependency [CJRR99,BDF+17]. The hiding countermeasure aims to
reduce the side-channel information by adding randomness to the leakage signals or making
it constant. There are several approaches to hiding. For example, the direct addition
of noise [CCD00] or the design of dual-rail logic styles [TV03] are frequently considered
options. Exploiting time-randomization is another alternative, e.g., by using Random Delay
Interrupts (RDIs) [CK09] implemented in software and clock jitters in hardware. Still, the
countermeasures (especially the hiding ones) are not without weaknesses. Regardless of

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-04-15 Accepted: 2020-06-15 Published: 2020-08-26

https://doi.org/10.13154/tches.v2020.i4.389-415
mailto:l.wu-4@tudelft.nl
mailto:s.picek@tudelft.nl
http://creativecommons.org/licenses/by/4.0/

390 Remove Some Noise: On Pre-processing of Side-channel Measurements with Autoencoders

the used hiding approaches, we can treat their effects as noise due to their randomness.
In other words, the ground truth of the traces always exists. If we can find a way to
remove the noise (denoise) from the traces and recover the leakage’s ground truth, then
the reconstructed traces could become more vulnerable to SCA.

While considering the countermeasures as noise and removing that noise sounds like
an intuitive approach, this is not an easy problem. The noise (both from the environment
and countermeasures) is a part of a signal, and those two components cannot entirely be
separated if we do not know their characterizations. Additionally, in realistic settings,
we must consider the portability and the differences among various devices [BCH+19].
Combining all these factors makes this problem very complicated, and to the best of our
knowledge, there are no universal approaches to removing the effects of environmental
noise and countermeasures.

Common approaches to remove/reduce noise are to use low-pass filters [WLL+18],
conduct trace alignments [TGWC18], and various feature engineering methods [ZZY+15,
PHJB19]. More recently, the SCA community started using deep learning techniques
that make implicit feature selection and counteract the effect of countermeasures [CDP17,
KPH+19,ZBHV19]. While such techniques are useful, they are usually aimed against a
single source of the noise. In cases when they can handle more sources of noise, the results
could be lack of interpretability. More precisely, in such cases, it is not clear at what point
noise removal stops and attack starts (or even if there is such a distinction). We emphasize
that being able to reduce the noise comprehensively could bring several advantages, like
1) understanding the attack techniques better, 2) understanding the noise better, and
consequently, (hopefully) being able to design stronger countermeasures, and 3) ability to
mount stronger/simpler attacks as there is no noise to consider.

We propose a new approach to remove several common hiding countermeasures with
a denoising autoencoder. Although the denoising autoencoder proved to be successful
in removing the noise from several sources such as images [Gon16], as far as we are
aware, this technique has not been applied to the side-channel domain to reduce the
noise/countermeasures effect. We demonstrate the effectiveness of a convolutional denoising
autoencoder in dealing with different types of noise and countermeasures separately, i.e.,
Gaussian noise, uniform noise, desynchronization, RDIs, clock jitters, and shuffling. We
then increase the problem difficulty by combining various types of noise and countermeasures
with the traces and trying to denoise it with the same machine learning models. The results
show that the denoising autoencoder is efficient in removing the noise and countermeasures
in all investigated situations. We emphasize that denoising autoencoder is not a technique
to conduct the profiled attack, but to pre-process the measurements to apply any attack
strategy. Our approach is especially powerful when considering the white-box scenarios,
but we also discuss denoising autoencoders in black-box settings.

1.1 Related Work
The analysis of the leakage traces in the profiled SCA scenario can be seen as a classification
problem where the goal of an attacker is to classify the traces based on the related data
(i.e., the encryption key). The most powerful attack from the information-theoretic point
of view is the template attack (TA) [CRR02]. This attack can reach its full potential only
if the attacker has an unbounded number of traces, and the noise follows the Gaussian
distribution [LPB+15]. More recently, various machine learning techniques emerged as
preferred options for cases where 1) the number of traces is either limited or very high, 2)
the number of features is very high, 3) countermeasures are implemented, and 4) we cannot
make assumptions about data distribution. The side-channel community first showed
the most interest in techniques like random forest [LMBM13, HPGM16] and support
vector machines [HZ12,PHJ+17]. More recently, multilayer perceptron (MLP) [GHO15,
PHJ+19] and convolutional neural networks (CNN) [MPP16,CDP17,KPH+19] emerged

Lichao Wu and Stjepan Picek 391

as the most potent approaches. Specifically, CNNs were demonstrated to cope with the
random delay countermeasure due to their spatial invariance property [CDP17,KPH+19].
At the same time, the fully-connected layers in MLP and CNNs are effective against
masking countermeasures as they produce the effect of a higher-order attack (combining
features) [BPS+18,KPH+19]. As far as we are aware, the only application of autoencoders
for profiled SCA is made by Maghrebi et al., but there, the authors use it for classification
and report a poor performance when compared to CNNs [MPP16].

1.2 Our Contributions
We consider how to denoise the side-channel traces with convolutional autoencoder (CAE),
which has not been explored before in the side-channel domain to the best of our knowledge.
More precisely, we introduce a novel approach to remove the effect of countermeasures,
and we propose:

1. A convolutional autoencoder architecture that requires a limited number of traces
to train the model, and capable of denoising/removing the effect of various hiding
countermeasures.

2. A methodology to recover the ground truth of the traces.
3. A technique to denoise measurements in black-box settings, where we use traces

processed with other denoising techniques as a reference “clean” measurements to be
used with denoising autoencoder.

4. A benchmark of the attack performance for popular denoising/signal processing
techniques used in the side-channel domain.

To conduct experimental analysis, we consider six separate sources of noise or their
combination. We investigate the performance of template attack, multilayer perceptron,
and convolutional neural networks for the classification task (SCA attack) before and
after the noise removal. Additionally, we explore PCA’s influence on the performance of
template attack and input noise addition for CNNs (as a regularization factor). Finally,
we experiment with different datasets, having either fixed or random keys, to show our
approach’s universality.

2 Background
Let k∗ denote the fixed secret cryptographic key (byte), k any possible key hypothesis,
and p plaintext. To guess the secret key, the attacker first needs to choose a leakage model
Y (p, k) (or Y when there is no ambiguity) depending on the key guess k and some known
text p, which relates to the deterministic part of the leakage. The size of the key space
equals |K|. For profiled attacks, the number of acquired traces in the profiling phase
equals N , while the number of traces in the testing phase equals T . For the autoencoder,
we denote its input as X . The encoder part of an autoencoder is denoted as φ and the
decoder part as ψ. Its latent space is denoted as F . As for the training data, we refer to
protected traces (with noise and countermeasures) as noisy traces, while the unprotected
traces are denoted as clean traces.

2.1 Profiled Side-channel Analysis
In profiled SCAs, we assume an attacker with access to an open (keys can be chosen/or are
known by the attacker) clone device. Then, the attacker uses that clone device to obtain
N measurements from it and construct a characterization model of the device’s behavior.
When launching an attack, the attacker collects a few (T) traces from the attack device
where the secret key is unknown. By comparing the attack traces with the characterized
model, the secret key can be revealed. Ideally, the secret key can be obtained with a single

392 Remove Some Noise: On Pre-processing of Side-channel Measurements with Autoencoders

trace from the attack device (T = 1). Single trace attack is difficult in practice due to the
effect of the noise, countermeasures, and a finite number of traces in the profiling phase
(while we assume the attacker is not bounded in his power and he can collect any number
of traces, that number represent a small fraction of all possible measurements). Details
about attack techniques used in this paper (template attack, multilayer perceptron, and
convolutional neural networks) are given in Appendix A.

To assess the attacker’s performance, one needs a metric denoting the number of
measurements required to obtain the secret key. A typical example of such a metric is
guessing entropy (GE) [SMY09]. GE represents the average number of key candidates an
adversary needs to test to reveal the secret key after conducting a side-channel analysis.
In particular, given T amount of samples in the attacking phase, an attack outputs a key
guessing vector g = [g1, g2, . . . , g|K|] in decreasing order of probability. Then, GE is the
average position of k∗ in g over several experiments.

2.2 Neural Networks
In general, a neural network consists of three blocks: an input layer, one or more hidden
layers, and an output layer, whose processing ability is represented by the strength (weight)
of the inter-unit connections, learning from a set of training patterns from the input layer.
In the supervised machine learning paradigm, neural networks work in two phases: training
and testing. In the training phrases, the goal is to learn a function f , s.t. f : X → Y , given
a training set of N pairs (xi, yi). Here, for each example (trace) x, there is a corresponding
label y, where y ∈ Y. Once the function f is obtained, the testing phase starts with the
goal to predict the labels for new, previously unseen examples.

2.3 The ASCAD Dataset
The ASCAD dataset was introduced by Prouff et al. to provide a benchmark to evaluate
machine learning techniques in the context of side-channel attacks [BPS+18]. There are
two datasets recorded in different conditions: fixed key encryption and random keys
encryption. For the data with fixed key encryption, we use a dataset that is time-aligned
in a prepossessing step [BPS+18]. There are 60 000 EM traces (50 000 training/cross-
validation traces and 10 000 test traces), and each trace consists of 700 points of interest
(POI). For the data with random keys encryption, there are 200 000 traces in the profiling
dataset that is provided to train the (deep) neural network models. A 100 000 traces attack
dataset is used to check the performance of the trained models after the profiling phase. A
window of 1 400 points of interest is extracted around the leaking spot. We use the raw
traces and the pre-selected window of relevant samples per trace corresponding to masked
S-box for i = 3.

3 Denoising with Convolutional Autoencoder
3.1 Autoencoders
Autoencoders were first introduced in the 1980s by Hinton and the PDP group [RHW85] to
address the problem of “backpropagation without a teacher”. Unlike other neural network
architectures that map the relationship between the inputs and the labels, an autoencoder
transforms inputs into outputs with the least possible amount of distortion [Bal12]. Benefits
from its unsupervised learning characteristic, an autoencoder is applicable in settings such
as data compression [TSCH17], anomaly detection [SY14], and image recovery [Gon16].

An autoencoder consists of two parts: encoder (φ) and decoder (ψ). The goal of the
encoder is to transfer the input to its latent space F , i.e., φ : X → F . The decoder, on the
other hand, reconstructs the input from the latent space, which is equivalent to ψ : F → X .

Lichao Wu and Stjepan Picek 393

When training an autoencoder, the goal is to minimize the distortion when transferring
the input to the output (Eq. (1)), i.e., the most representative input features are forced to
be kept in the smallest layer in the network:

φ, ψ = arg min
φ,ψ

‖X − (ψ ◦ φ)X‖2. (1)

When applying the autoencoder for the denoising purpose, the input and output are not
identical but represented by noisy-clean data pairs. A similar idea can also be applied to
remove the countermeasures from the leakage traces. A well-trained denoising autoencoder
can keep the most representative information (i.e., leakage trace value) in its latent space
while neglecting other random factors. Since the original trace (without noise) can be
recovered by feeding noisy traces to the autoencoder’s input, one can expect that the
attack efficiency will be significantly improved with the recovered traces.

3.2 Denoising Strategy
As discussed in Section 3.1, we require noisy-clean trace pairs to train a denoising au-
toencoder. In our context, we assume an attacker with full control of a device (device
A). Specifically, he can enable/disable the implemented countermeasures. To attack the
real devices with countermeasures enabled (device B), he first acquires traces with and
without countermeasures from device A to build the training sets. Then the attacker uses
these traces to train the denoising autoencoder. Once the training process is finished, the
trained model can pre-process the leakage traces obtained from the device B. Finally,
with “clean” (or, at least, cleaner) traces reconstructed by the denoising autoencoder, an
attacker could eventually retrieve the secret information with less effort. For practical
attack scenarios, the biggest challenge for this strategy is how to obtain clean traces:

1. White-box setting. For software implementations, an attacker might have a device
where he can modify the code, and then turn off the countermeasures. For hardware
implementations, the scenario is more complicated. Let us consider a cryptographic
core on an SoC: an attacker might be able to turn off countermeasures by setting
the control registers of the cryptographic engine if he has run-time control of the
SoC’s main processor. For signature schemes, the public key’s verification procedure
sometimes does not include countermeasures while the signature generation does.
This means that verification can be used for learning. Finally, during EMVCo and
Common Criteria evaluations, it is common to turn off some (or all) countermeasures.

2. Black-box setting. Here, the attacker cannot obtain clean measurements, but he
can apply other denoising techniques like averaging or spectral analysis to reduce the
influence of noise or countermeasures. Then, he can use noisy/less noisy pairs to train
a denoising autoencoder. While this approach is not realistic for all countermeasures,
we show it works for several of them. Even if we train autoencoder for different types
of noise simultaneously, it is successful when applied to settings that do not use all
the noise types.

The application of denoising autoencoders is intuitive if we consider the white-box
setting. Still, we also see its potential in the black-box setting. Let us consider the Gaussian
noise scenario. The first option is to use noisy traces and build a profiling model on such
traces. Then, we use that model to attack noisy traces. Alternatively, we can use averaging
on profiling traces, and then we build a profiling model. Next, we apply the averaging
on attack traces and use the profiling model. While this will work, due to averaging, we
reduce the number of profiling traces (less severe as we assume unlimited traces) and the
number of attack traces, which could directly influence the attack performance. Now, let
us consider a denoising autoencoder setup. We can use averaging on profiling traces and
apply the original/averaged measurements to train the autoencoder, and then use the
averaged measurements to build a profiling model. When conducting the attack, we apply

394 Remove Some Noise: On Pre-processing of Side-channel Measurements with Autoencoders

the autoencoder on attack (denoised) traces. As a consequence, there is no size reduction
of the attack trace set.

The denoised traces processed by the denoising autoencoder turn an impossible attack
(from the perspective of guessing entropy with a limited number of traces) into a reality.
From the attacker perspective, he can invest more effort to acquire limited numbers of
clean traces and train a denoising autoencoder. Naturally, for some other countermeasures,
like desynchronization, there is no dataset size reduction if applying specialized denoising
techniques. Still, autoencoder brings the advantages of having an autoencoder model based
on profiling traces. This makes the denoising process potentially faster when compared to
the independent application of specialized techniques and more adapted to the profiling
model, which will potentially improve the attack performance. We give experimental
results for the black-box setting in Section 4.8.

Moreover, denoising autoencoder serves well as a generic denoiser technique, so that it
can be used in denoising other countermeasures or types of measurements. For instance,
the verification procedure could be used for training the denoising autoencoder. Although
the signature generation and verification contain many operations, scalar multiplication is
the most prominent one and shared by both of them. As such, we presume the training
with verification procedure will work for most of the cases.

3.3 Convolutional Autoencoder Architecture
An autoencoder can be implemented with different neural network architectures. The
most common examples are the MLP-based autoencoder and convolutional autoencoder
(CAE). We tested different MLP and CNN architectures and then selected the best
performing model in denoising all types of noise and countermeasures. As a result, we
use the convolution layer as the basic element for denoising. To maximize the denoising
ability of the proposed architecture, we tune the hyperparameters by evaluating the CAE
performance toward different types of noise, and we select the one that has the best
performance on average for all noise types1. We display the tuning range and selected
hyperparameters in Table 1. We use the SeLU activation function to avoid vanishing and
exploding gradient problems [KUMH17].

Table 1: CAE hyperparameter tuning.
Hyperparameter Range Selected
Optimizer Adam, RMSProb, SGD Adam
Activation function Tanh, ReLU, SeLU SeLU
Batch size 32, 64, 128, 256 128
Epochs 30, 50, 70, 100, 200 100

Training sets 1 000, 5 000, 10 000, 20 000 10 000
Validation sets 2 000, 5 000 5 000

In terms of autoencoder architecture, we observed that an autoencoder with a shallow
architecture could successfully denoise the traces when dealing with trace desynchronization.
Still, when introducing other types of noise into the traces while keeping the same
hyperparameters, such autoencoders cannot recover the traces’ ground truth. Consequently,
we decided to increase the autoencoder’s depth to ensure it would be suitable for different
noise types.

The size of the latent representation in the middle of the autoencoder is a critical
parameter that should be fine-tuned. One should be aware that although the autoencoder

1We consider all sources of noise or countermeasures equally important and thus, we do not give
preference toward any. In case that one aims to explore the behavior of a denoising autoencoder against
only one type of noise, more tuning is possible, which will result in better performance when denoising
that type of noise.

Lichao Wu and Stjepan Picek 395

can reconstruct the input, some information from the input is lost. We aim to maximize
the noise removal capability for the denoising purpose while minimizing useful information
loss. By choosing a smaller size of the latent space, the signal quality will be degraded.
In contrast, a larger size may introduce less critical features to the output. To better
control the latent space’s size, we flatten the convolutional blocks’ output and introduce a
fully-connected layer with 512 neurons as the middle layer in our proposed architecture.

The details on the CAE architecture used in this paper are in Table 2. The convolution
block (denoted Convblock) usually consists of three parts: convolution layer, activation
layer (function), and max pooling layer. As we noticed that an autoencoder implemented
in this manner suffers from overfitting and poor performance in denoising the validation
traces, we add the batch normalization layer to each convolution block.

The latent space’s size is controlled by the number of neurons in the fully-connected
layer. To ensure the CAE output has the same shape with the training sets, we develop
the following equation to calculate the needed size of the fully-connected layer Slatent:

Slatent = Sclean∏n
i=1 Spool,i

∗Nfilter0. (2)

Sclean is the size of the target clean traces, Spool,i represents the ith non-zero pooling stride
of the decoder, and Nfilter0 represents the number of the filters of the first Deconvolution
block. Note, one can vary the latent space’s size for different cases by changing the pooling
layer’s size and the number of filters.

Table 2: CAE architecture.
Block/Layer # of filters Filter number Pooling stride # of neurons
Conv block * 5 2 256 0 -
Conv block 2 256 5 -
Conv block * 3 2 128 0 -
Conv block 2 128 2 -
Conv block * 3 2 64 0 -
Conv block 2 64 2 -

Flatten - - - -
Fully-connected - - - 512
Fully-connected - - - Slatent

Reshape - - - -

Deconv block 2 64 2 -
Deconv block * 3 2 64 0 -
Deconv block 2 128 2 -
Deconv block * 3 2 128 0 -
Deconv block 2 256 5 -
Deconv block * 5 2 256 0 -

Deconv block 2 1 0 -

We emphasize that a CAE can be easily trained by noisy (protected)–clean (unprotected)
traces pairs. Once the training finishes, the autoencoder can be used to denoise the leakages
from real-world devices.

4 Experimental Results
To investigate the precise influence of different sources of noise in a fair way, we simulated six
types of noise/countermeasures: Gaussian noise, uniform noise (results in Appendix B.2),
desynchronization (misalignment), random delay interrupts (RDI), clock jitters, and
shuffling. The simulation approaches are based on previous research and the observation or
implementation of the real devices. Our experiments show that the denoising architecture

396 Remove Some Noise: On Pre-processing of Side-channel Measurements with Autoencoders

can reduce GE to 0 (or close value) within 10 000 attack traces. Note that CAE could
also reduce even higher noise levels, but more measurements are required to reach GE
close to 0. Additionally, we do not provide results for scenarios with less noise (i.e.,
smaller countermeasure effect), as our experiments consistently show those cases to be
easier to attack. To compare CAE’s denoising performance with the existing techniques
commonly used by attackers, we select and benchmark well-known denoising techniques
for each type of noise. First, we consider principal component analysis (PCA) [WEG87], a
well-known dimensionality reduction technique. The PCA is combined with TA, where TA
uses the first 20 principal components without additional POIs selection. Additionally,
recent research shows that the addition of noise can enhance the robustness of the model,
eventually becoming beneficial in the process of classification [KPH+19]. Thus, we also
use CNNs, where we add Gaussian noise to the input layer to improve the model’s
classification performance. We tested several noise levels in the range from 0.05 to 0.25
(recommendations from [KPH+19]), and we select to use a noise variance of 0.1 as it
provides the best performance improvement. Finally, we apply specialized techniques to
denoise specific types of noise. More precisely, we use static alignment [MOP06] for the
treatment of misaligned traces [BHvW12]; frequency analysis (FA) [Tiu05], which is a
method to analyze leakages in the frequency domain by transferring the data to its power
spectrum density, to reduce the effect of RDIs and clock jitters [PHF08,ZDZC09]. For
shuffling, we use additional traces during the profiling phase [VCMKS12]. To the best of
our knowledge, there is no optimal method in denoising the combined noise, and we use
FA for traces with the combination of the noise and countermeasures. Additional results
for the combination of noise sources are given in Appendix B.

Throughout the experiments, we use the ASCAD dataset (with fixed key and random
keys). Note that the ASCAD dataset is masked, and there is no first-order leakage. As
such, we consider the masked S-box output:

Y (i) = S-box[(p[i]⊕ k[i])⊕ rout]. (3)

Besides the template attack, we use two machine learning models, CNNbest and
MLPbest introduced in the ASCAD paper [BPS+18]. The CNN architecture is listed in
Table 3, while for MLP, we use six fully-connected layers, each with 200 neurons. We
use an NVIDIA GTX 1080 Ti graphics processing unit (GPU) with 11 Gigabytes of
GPU memory and 3 584 GPU cores. All of the experiments are implemented with the
TensorFlow [AAB+15] computing framework and Keras deep learning framework [C+15].
The time consumption to train a CAE highly depends on the length of the traces, but
for the experiments performed in this paper, a CAE can be trained within one hour, on
average. We note that there is no conceptual limitation on CAE’s trace length; the only
limit is that longer traces need more processing time.

Table 3: CNN architecture used for attacking.
Layer Filter size # of filters Pooling stride # of neurons
Conv block 11 64 2 -
Conv block 11 128 2 -
Conv block 11 256 2 -
Conv block 11 512 2 -
Flatten - - - -
Fully-connected * 2 - - - 4 096

We selected 20 POIs from the traces according to the trace variation of the intermediate
data (S-box output) for the template attack. For each POI, the minimum distance is set to
5 to avoid selecting continuous points from the traces. For the selected hyperparameters for
MLP and CNN classifiers, we used Uniform distribution and ReLU activation function.
The RMSProb optimizer is used for both models with the learning rate of 1e-5, while

Lichao Wu and Stjepan Picek 397

the batch size equals 128. During the training phase, the MLP and CNN are trained for
100 and 1 000 epochs, respectively. Finally, 35 000 traces were used for training, 5 000 for
validation, and 10 000 for the attack.

We emphasize that we do not aim to find the best attack models but show how denoising
autoencoders can help improve various attacks’ performance. The quality of the recovered
traces is evaluated by guessing entropy (GE). For a good estimation of GE, the attack
traces are randomly shuffled, and 100 key ranks are computed to obtain the average value.

4.1 Denoising the “Clean” Traces
One should notice that the traces regenerated by CAE have information loss because of
the bottleneck in the middle of the architecture. An ideal CAE could locate as well as
precisely describe the leakage (variation) of the dataset. To evaluate the reconstruction
capability, we first use CAE to denoise the “clean” traces. Here, by “clean”, we use the
original traces as in the ASCAD dataset with no added noise or countermeasures. Still,
note that the traces are not perfectly clean as the noise still exists. In this case, the CAE
input and output are the same measurements, while the goal of training the model is to
learn how to represent the output with fewer features than at the input. We consider this
scenario to 1) show that CAE removes mostly noise (features that do not contribute to
the useful information), and 2) validate that if the evaluator applies CAE by mistake, the
performance of the attack will not be reduced.

We use the CNNbest model [BPS+18] for the attack. Interestingly, the SNR [Fis22]
value for the traces reconstructed by CAE slightly increases by 0.05, which confirms that
CAE can discard random features (such as noise) and focus on the distinguishing ones
and eventually make the reconstructed trace more “clean”. Furthermore, considering the
variation for each cluster (divided by the Hamming weight or intermediate data), CAE
acts as a regulator to minimize the in-cluster variance, eventually leading to a better SNR.
As expected, the improvement of SNR directly leads to better performance in terms of
GE: for instance, we require 831 traces for the correct key for CNN if we use the original
traces, while this value decreases to 751 after the traces are reconstructed with CAE.
Similar performance could be observed when adding the noise to the input layer: the
required number of traces decreases from 742 to 647. Note that CNN’s performance with
added noise is slightly better than the version without noise, proving that noise, as a
regularization factor, could improve the attack efficiency. For MLP, the required traces
reduced from 1 930 to 1 084. For TA, the required traces reduced from 5 928 to 4 667; when
applying PCA to the traces, 615 and 635 traces are required to obtain the correct key for
two datasets. The detailed results are presented in Figure 15, Appendix B.

4.2 Gaussian Noise
The Gaussian noise is the most common type of noise existing in side-channel traces. The
transistor, data buses, the transmission line to the record devices such as oscilloscopes, or
even the work environment can be the source of Gaussian noise (inherent measurement
noise). The noise can also be intentionally introduced by parallel operations or a dedicated
noise engine. In terms of trace leakage, the noise level’s increment hides the correlated
patterns and reduces the signal-to-noise (SNR) ratio. Consequently, the noise influences
an attack’s effectiveness, i.e., more traces are needed to obtain the attacked intermediate
data.

To demonstrate the influence of the Gaussian noise, we add normal-distributed random
value with zero mean and variance of eight to each point of the trace. The pseudocode
for constructing traces with Gaussian noise is shown in Algorithm 1. An example of the
zoom-in view of two manipulated traces is shown in Figure 1a. PCA-based TA shows the
best performance with GE equal to 3 after applying 10 000 attack traces. CNN and CNN

398 Remove Some Noise: On Pre-processing of Side-channel Measurements with Autoencoders

with added noise from the input layer (CNN_Noise) also converge to low guessing entropy,
while TA and MLP do not succeed in the attack. Compared with the baseline traces, the
Gaussian noise significantly distorted the shape of the original traces in the amplitude
domain, eventually increasing the difficulties in obtaining the correct key (Figure 1).

300 320 340 360 380 400
Time Samples

−80

−60

−40

−20

0

20

40

Am
pl
itu

de

Trace 1
Trace 2

(a) Gaussian noise: zoom-in view.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En
tro

py

TA
TA_PCA
MLP
CNN
CNN_Noise

(b) Gaussian noise: guessing entropy.

Figure 1: Gaussian noise: demonstration and its influence on guessing entropy.

Algorithm 1 Add Gaussian Noise.
1: function add_gaussian_noise(trace, mean, variance)
2: new_trace← [] . container for new trace
3: i← 0
4: while i < len(trace) do
5: level←randomNumber(mean, variance)
6: new_trace[i]← traces[i] + level . add noise to the trace
7: i← i + 1
8: return new_trace

Next, we denoise the Gaussian noise with trace averaging as well as CAE proposed
in this paper. The GE of denoised traces with 10-trace averaging and CAE are shown in
Figures 2a and 2b, respectively. From the attack perspective, GE converges in both cases
when the number of trace increases. After denoising with either averaging or denoising
autoencoder, CNN attack performance is significantly improved over the noisy version:
1 754 averaged traces, or 8 751 denoised traces are sufficient to reach GE of 0. Interestingly,
TA and MLP perform similarly regardless of the pre-processing method, while CNN
introduces differences in attacking performance. It is worth noting that GE for averaged
traces is lower than GE for CAE, confirming that trace averaging is a successful method
in removing the Gaussian noise. Still, we confirm that CAE is capable of removing the
Gaussian noise and improve the attacking efficiency.

4.3 Desynchronization
Well-synchronized traces can significantly improve the correlation of the intermediate data.
The alignment of the traces is, therefore, an essential step for the side-channel attack. To
align the traces, usually, an attacker should select a distinguishable trigger/pattern from
the traces, so that the following part can be aligned using the selected part as a reference.
However, there are two limitations to this approach. First, the selected trigger/pattern
should be distinctive, so that it will not be obfuscated with other patterns and lead to
misalignment. Second, due to the existence of the signal jitters and other countermeasures,
the selected trigger should be sufficiently close to the points of interest, thus minimizing
the noise effect. A good reference that meets both limitations is not always easy to find

Lichao Wu and Stjepan Picek 399

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250
Gu

es
sin

g
En

tro
py

TA
MLP
CNN

(a) GE: denoise with averaging.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En

tro
py

TA
MLP
CNN

(b) GE: denoise with CAE.

Figure 2: Guessing entropy: denoising Gaussian noise with averaging (a) and CAE (b).

from a practical perspective. Even with an unprotected device, sometimes the traces
synchronization can be a challenging task.

Different from the Gaussian noise, the desynchronization of the traces adds randomness
to the time domain. To show the effect of the traces desynchronization, we use traces
with a maximum of 50 points of desynchronization. The pseudocode for constructing
traces with desynchronization is shown in Algorithm 2. An example of two zoom-in viewed
traces with different desynchronization levels is given in Figure 3a, while attack results are
shown in Figure 3b. From the attack results, CNN proves its ability to fight against the
desynchronization effect, as 9 627 traces are sufficient for the correct key when attacking
the noisy traces. Considering that the original “clean” traces only needed 831 traces on
average to retrieve the key, the desynchronization degraded the attack’s performance.
Additionally, one can expect that performance to become even worse with an increased
desynchronization level. Note that TA-PCA results do not converge at all, as PCA breaks
the information’s spatial ordering.

Algorithm 2 Add Desynchronization.
1: function add_desync(trace, desync_level)
2: new_trace← [] . container for new trace
3: level←randomNumber(0, desync_level)
4: i← 0
5: while i + level < len(trace) do
6: new_trace[i]← traces[i + level] . add desynchronization to the trace
7: i← i + 1
8: return new_trace

Next, we attack the denoised traces pre-processed by static alignment or CAE. The
GE are shown in Figures 4a and 4b. GE of the traces denoised by CAE converges faster
than for the static-aligned traces. CAE provides a generic approach to synchronizing the
traces, as by training a CAE with desynchronized-synchronized traces pairs, the model can
automatically align the traces. As a result, compared with static alignment, the number
of required traces to retrieve the key reduces from 1 180 to 822 with CNN (comparable
to the attack result with the original traces). For MLP and TA, the number of required
traces reduces from 8 905 to 7 168, and more than 10 000 to 6 398. Note that if attacking
traces with desynchronization (Figure 3b), we are successful with CNN only with more
than 9 000 attack traces to reach GE of 0.

400 Remove Some Noise: On Pre-processing of Side-channel Measurements with Autoencoders

300 320 340 360 380 400
Time Samples

−60

−40

−20

0

20

40
Am

pl
itu

de
Trace 1
Trace 2

(a) Desynchronization: zoom-in view.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En
tro

py

TA
TA_PCA
MLP
CNN
CNN_Noise

(b) Desynchronization: guessing entropy.

Figure 3: Desynchronization: demonstration and its influence on guessing entropy.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En

tro
py

TA
MLP
CNN

(a) GE: denoise with static alignment.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En

tro
py

TA
MLP
CNN

(b) GE: denoise with CAE.

Figure 4: Guessing entropy: denoising desynchronization with static alignment (a) and
CAE (b).

4.4 Random Delay Interrupts (RDIs)
Desynchronization introduces the global time-randomness to the entire trace. RDIs, on
the other hand, lead to the time-randomness locally. As a type of countermeasure typically
implemented in the software, the existence of RDIs breaks the traces into fragments, thus
significantly increasing the randomness of traces in the time domain and reducing the
correlation of the attacked intermediate data.

We simulate RDIs based on the Floating Mean method (with parameters a=5 and b=3)
introduced in [CK09]. The RDIs implemented in such a way can provide more variance
to the traces when compared with the uniform RDI distribution. To further increase the
randomness of the injected RDIs, a random number (uniformly distributed between 0 and
1) is first generated when scanning each point of a trace, then compared with a threshold
value. We set the threshold value to 0.5, so the probability of the RDIs in each feature
equals 50%. Moreover, in real implementations, instructions, such as nop, are used to
generate the random delay. This implementation will introduce specific patterns, such as
peaks, in the power traces whenever a random delay occurs. We consider this effect by
generating a small peak by adding a specific value (10) when injecting the random delays
to the traces. The pseudocode for constructing traces with RDIs is shown in Algorithm 3.
The manipulated traces are then padded with zero to keep the traces the same length.

A zoom-in view of two example traces with random RDIs is shown in Figure 5a. The
number of injected RDIs can be obtained by counting the number of peaks. From the

Lichao Wu and Stjepan Picek 401

Algorithm 3 Add Random Delay Interrupts.
1: function add_rdis(traces, a, b, rdi_amplitude)
2: new_trace← [] . container for new trace
3: i← 0
4: while i < len(trace) do
5: new_trace[i]← new_trace[i].append(trace[i])
6: rdi_occurrence←randomNumber(0, threshold ∗ 2)
7: if rdi_occurrence > threshold then
8: m←randomNumber(0, a− b)
9: rdi_num←randomNumber(m, m + b) . number of RDIs to be added
10: j ← 0
11: while j < rdi_num do . add RDIs to the trace
12: new_trace[i]← new_trace[i].append(trace[i])
13: new_trace[i]← new_trace[i].append(trace[i] + rdi_amplitude)
14: new_trace[i]← new_trace[i].append(trace[i + 1])
15: j ← j + 1
16: i← i + 1
17: return new_trace

traces, we observe that more randomness was introduced locally to the traces compared to
the traces with desynchronization, which further influenced the attack result of guessing
entropy. From Figure 5b, the best correct key rank of the traces with RDIs is 147 when
using 10 000 traces, indicating that even the CNNbest model (with or without adding
noise to the input layer) is not powerful enough to extract the useful patterns and retrieve
the key. We can conclude that RDIs implemented in this way dramatically increase the
attack difficulty. Note that CNN’s performance (with or without added noise) drastically
differs from that reported in [KPH+19]. There are several possible reasons for such a
difference: 1) we implement more difficult RDIs countermeasure, 2) we do not use as deep
CNN architecture, and 3) we do not conduct a detailed tuning of the noise level when
considering CNN with noise at the input. TA and TA with PCA perform similarly and do
not converge.

300 350 400 450 500 550 600
Time Samples

−60

−40

−20

0

20

40

Am
pl
itu

de

Trace 1
Trace 2

(a) RDIs: zoom-in view.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En
tro

py

TA
TA_PCA
MLP
CNN
CNN_Noise

(b) RDIs: guessing entropy.

Figure 5: RDIs: demonstration and its influence on guessing entropy.

The attack results with the frequency analysis (FA) and CAE are shown in Figures 6a
and 6b. With FA, GE slowly decreases when using CNN and TA for the attack, while
the key rank reaches 52 for TA’s best case. On the other hand, the effect of RDIs has
been reduced dramatically with the help of CAE: GE converges significantly faster when
attacking with TA, MLP, and CNN. CNN performance is especially good as it needs only
1 322 traces on average to reach GE of 0, while TA needs 8 952 traces and MLP 3398
traces. Note the attack results with CNN and MLP are close to the one with the original
dataset. Therefore, we can conclude that CAE can effectively recover the original traces

402 Remove Some Noise: On Pre-processing of Side-channel Measurements with Autoencoders

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250
Gu

es
sin

g
En

tro
py

TA
MLP
CNN

(a) GE: frequency analysis.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En

tro
py

TA
MLP
CNN

(b) GE: denoised with CAE.

Figure 6: Guessing entropy: denoise Random Delay Interrupts with frequency analysis vs
CAE.

from the noisy traces with RDIs countermeasure.

4.5 Clock Jitters
Clock jitters is a classical hardware countermeasure against side-channel attacks, realized
by introducing the instability in the clock [CDP17]. Comparable to the Gaussian noise
that introduces randomness to every point in the amplitude domain, the clock jitters
increase the randomness for each point in the time domain. The accumulation of the
deforming effect increases the misalignment of the traces and decreases the intermediate
data correlation. Here, we simulate the clock jitters by randomly adding or removing
points with a pre-defined range. Similar approaches are used in [CDP17]. More precisely,
we generate a random number r that is uniformly distributed between -4 to 4 to simulate
the clock variation in a magnitude of 8. When scanning each point in the trace, r points
will be added to the trace if r is larger than zero. Otherwise, the following r points in the
trace are deleted. The pseudocode for constructing traces with clock jitters is shown in
Algorithm 4. The manipulated traces are then padded with zero to keep the traces the
same length.

Algorithm 4 Add Clock Jitters.
1: function add_clock_jitters(trace, clock_jitters_level)
2: new_trace← [] . container for new trace
3: i← 0
4: while i < len(trace) do
5: new_trace[i]← new_trace[i].append(trace[i])
6: r ←randomNumber(0, clock_jitters_level) . level of clock jitters
7: if r < 0 then
8: i← i + r . skip points
9: else
10: j ← 0
11: average_amplitude← (trace[i] + trace[i + 1])/2
12: while j < r do
13: new_trace← new_trace.append(average_amplitude) . add points
14: j ← j + 1
15: i← i + 1
16: return new_trace

Zoom-in viewed traces with clock jitters are shown in Figure 7a. From Figure 7b, it is
clear that no classifiers are successful in retrieving the key with 10 000 attack traces. The
best results are achieved for CNN (with and without noise), followed closely by TA. A

Lichao Wu and Stjepan Picek 403

comparison of the attack results for FA and denoised traces with CAE is shown in Figure 8.
Like the previous attack results with the RDIs countermeasure, FA cannot retrieve the
key within 10 000 traces even for the best attack (MLP with rank 41). The proposed CAE,
on the other hand, successfully reduces the effect of clock jitters. Specifically, with the
best setting for CNN, 8 045 traces are sufficient to obtain the correct key.

300 320 340 360 380 400
Time Samples

−60

−40

−20

0

20

Am
pl
itu

de

Trace 1
Trace 2

(a) Clock Jitters: zoom-in view.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En
tro

py

TA
TA_PCA
MLP
CNN
CNN_Noise

(b) Clock Jitters: guessing entropy.

Figure 7: Clock Jitters: demonstration and its influence on guessing entropy.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En

tro
py

TA
MLP
CNN

(a) GE: frequency analysis.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En

tro
py

TA
MLP
CNN

(b) GE: denoised with CAE.

Figure 8: Guessing entropy: denoising clock jitters with frequency analysis vs CAE.

4.6 Shuffling
As a hiding countermeasure, a classical approach to realize shuffling is by randomizing
the access to the S-box [VCMKS12]. With this method, it becomes more difficult for
attackers to select points of interest or locate part of the traces that are correlated to the
S-box-related intermediate data. Here, we simulate the shuffling effect by gathering the
traces segments related to 16 S-box accesses and then cluster them into 16 groups. Next,
for traces to be manipulated, we randomly select one group and replace the attack traces
part (related to the S-box processing) with the segment in the group. The pseudocode is
shown in Algorithm 52

Note that shuffling does not change the shape of the traces dramatically, so we do
not demonstrate the shape of the traces here. Figure 9 shows the attack results for the

2We acknowledge that the described algorithm may not produce the same effect as the actual shuffling,
but we consider it to be a valid showcase for the experimental evaluation, and the closest option to simulate
the effect of shuffling.

404 Remove Some Noise: On Pre-processing of Side-channel Measurements with Autoencoders

Algorithm 5 Add shuffling.
1: function add_shuffling(trace, sbox_seg)
2: new_trace← [] . container for new trace
3: i← 0
4: while i < len(trace) do
5: sbox_idx←randomNumber(3, 16)
6: new_trace[i]← traces[i].replace(sbox_seg[sbox_idx]) . replace sboxs
7: i← i + 1
8: return new_trace

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250
Gu

es
sin

g
En
tro

py
TA
TA_PCA
MLP
CNN
CNN_Noise

Figure 9: Shuffling: guessing entropy.

shuffling countermeasure. PCA-based TA shows the best performance with 9 885 attack
traces required to reach the correct key. Compared with the baseline traces, the shuffling
countermeasure increases the attack difficulty. Although GE is slowly converging for all
attack methods except TA, (rank 32 for the best case with PCA-based TA), none of the
attacks reach GE equal to 0 within 10 000 traces.

The results improve when we use additional 10 000 traces for profiling. As shown in
Figure 10a, for the best case with MLP, we reach rank two after 10 000 traces, indicating
that deep learning attacks can combine complex features as well as to handle the trace
randomness. CNN is slightly worse, while TA does not manage to converge to a successful
attack (rank 30). The traces denoised with CAE give the best results (Figure 10b), as only
7 754 traces are needed for the correct key when using CNN (MLP behaves only marginally
worse). TA reaches rank equal to six after 10 000 traces. We emphasize that with CAE,
we use only 10 000 traces, and we get better results than with 20 000 traces without using
CAE.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En

tro
py

TA
MLP
CNN

(a) GE: profiling with additional 10 000 traces.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En

tro
py

TA
MLP
CNN

(b) GE: denoised with CAE.

Figure 10: Guessing entropy: denoising shuffling by applying more traces (a) or CAE (b)

Lichao Wu and Stjepan Picek 405

To conclude, the proposed CAE proves its ability to limit the Gaussian noise, desynchro-
nization, random delay interrupts, clock jitters, and shuffling. Traces denoised with CAE
show comparable, and in many cases, even better results than specific denoising/signal
processing techniques. Finally, denoising autoencoder works for TA, MLP, and CNN
attacks, but CNN’s performance is the best for most cases.

4.7 Combining the Effects of Gaussian Noise and Countermeasures

In the previous section, we add and denoise different types of noise individually. Next,
we investigate an extreme situation by adding all five noise/countermeasures discussed
in the previous section and verifying the CAE approach’s effectiveness. To maximize the
effectiveness of each type of noise and keep the simulated traces close to the realistic,
we added the noise in the order: shuffling - desynchronization - RDI - clock jitters -
Gaussian noise. Note there would be fewer countermeasures combined in the traces in
realistic settings. In such cases, we expect that the proposed CAE’s performance would be
better, as evident from scenarios when handling only a single countermeasure. We test
two different datasets: AES with a fixed key and AES with random keys. Since there are
no specific approaches in reducing the effect of combined noise sources, we evaluate GE of
the noisy traces and traces after applying frequency analysis and CAE. Note that we do
not, for instance, use averaging after frequency analysis as then, we do not have enough
measurements to conduct a successful attack.

Like the previous sections’ procedure, we calculated the GE of the noisy and denoised
traces and made a comparison. A demonstration of the manipulated traces with all types
of noise and countermeasures is presented in Figure 18, Appendix B. As expected, the
attack methods used in the paper cannot obtain the correct key within 10 000 traces. More
precisely, the noisy traces do not converge with the increasing number of traces.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En

tro
py

TA
MLP
CNN

(a) GE: frequency analysis.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En

tro
py

TA
MLP
CNN

(b) GE: denoised with CAE.

Figure 11: Guessing entropy: denoising combined noise with frequency analysis (a) and
CAE (b).

As shown in Figure 11a, FA is not working when dealing with the combination of
noise and countermeasures (which is not surprising as we now use noise sources where this
technique is insufficient). The GE of denoised traces with CAE (Figure 11b), on the other
hand, reaches 27 with 10 000 traces when using CNN. Somewhat worse is MLP, and it
reaches rank 61 after 10 000 traces. The attack performance converges slower than for the
denoised traces with a single type of noise, but CAE still proves its capability in removing
the combined effect of noise and countermeasures.

406 Remove Some Noise: On Pre-processing of Side-channel Measurements with Autoencoders

4.7.1 AES with Random Keys

Finally, we verify the CAE’s performance by trying to denoise the AES traces with random
keys. To retrieve the correct key from the leakage traces, we first train the model with
leakage with random but known keys, then use the trained model to attack the leakages
and try to retrieve the unknown key. In terms of attack settings, there are 1 400 features
in every trace. The attacked intermediate data is kept the same.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En

tro
py

TA
MLP
CNN

(a) GE: frequency analysis.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En

tro
py

TA
MLP
CNN

(b) GE: denoised with CAE

Figure 12: Guessing entropy: denoising combined noise with frequency analysis vs CAE.

From the attack results, the GE of the noisy traces fluctuates above 100 regardless
of the number of traces (Figure 19, Appendix B). On the other hand, guessing entropy
indicates improved performance as a result of FA and CAE. For the best cases shown in
Figure 12, GE value converges to 56 with 10 000 traces with FA and CNN, and 28 with
CAE and CNN. Finally, we conclude that the proposed CAE can denoise the leakage in
fixed and random key scenarios where the results are especially good when using CNNs as
the attack mechanism.

4.8 Case Study: From Noisy to Less Noisy – The Black-box Setting
The denoising strategy we proposed in this paper is orientated more toward white-box
settings, as the evaluator has the full control of the device so that the clean traces can
be easily obtained by turning off the countermeasures. The denoising strategy cannot
be directly applied when considering the difficulties in disabling the black-box settings’
countermeasures. Fortunately, CAE can denoise the traces even when the reference traces
are not entirely clean. The less noisy traces generated by the traditional denoising methods
can also be used as the “clean” traces for CAE training.

We investigate noisy-to-less-noisy scenarios with Gaussian noise and desynchronization.
The traces denoised by averaging (for Gaussian noise) and static alignment (for desynchro-
nization) are used as the “clean” traces at the CAE output to handle the noisy traces. To
quantify the remaining noise, CNN-based attacks were performed on these traces. There,
901 traces are required for realigned traces and 1 054 traces for averaged traces. Compared
with the original traces with 831 attack traces, the traces denoised by classical methods
are not perfectly denoised; one could expect a larger deviation of the attack traces value
with simpler attack methods such as TA and MLP. Still, CAE can reduce noise levels by
mapping the noisy traces to less noisy traces. First, we denoise the traces with Gaussian
noise and desynchronization separately. The results are given in Figure 13.

Compared with the denoised traces using the original clean traces as the reference,
the noise-to-less-noise cases’ attack performance is degraded. Specifically, 8 751 traces are
required to retrieve the correct key when using the clean traces to denoise the Gaussian
noise (white-box setting), while this reduces to 6 073 when denoised with averaged traces,

Lichao Wu and Stjepan Picek 407

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250
Gu

es
sin

g
En

tro
py

TA
MLP
CNN

(a) GE (Gaussian noise): train CAE from noisy
to averaged traces.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En

tro
py

TA
MLP
CNN

(b) GE (desynchronization): train CAE from
noisy to static aligned traces.

Figure 13: Guessing entropy: denoising Gaussian noise/desynchronization from less noisy
traces.

indicating that the averaged traces contain even less noise than the original clean traces.
The attack performance degradation is different when removing desynchronization: 822
traces to attack when denoised from the clean traces and 1 604 traces when denoised from
the static aligned traces. One can expect that with deeper (or improved) CAE models
with better denoising ability, the variation of the attack performance between different
clean references can be further minimized. Also, note that we do not specifically optimize
the denoising approach, so the CAE’s denoising performance can be improved with cleaner
traces (e.g., more traces for averaging).

Finally, we denoised the traces with Gaussian noise and desynchronization in a combined
setting. More precisely, 10 000 trace pairs with Gaussian noise (noisy-averaged) and 10 000
trace pairs with desynchronization (noisy-static aligned) are combined and used for training
the CAE. The results are presented in Figure 14.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En

tro
py

TA
MLP
CNN

(a) GE (Gaussian noise).

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En

tro
py

TA
MLP
CNN

(b) GE (desynchronization).

Figure 14: Guessing entropy: denoised Gaussian noise and desynchronization by combined
training of CAE.

The joint training method leads to comparable (or even better) performance than the
previous results on a single noise source. To be specific, 8 989 traces are needed for the
Gaussian noise and 942 for the desynchronization. This result again shows that the CAE
model can learn and remove different types of noise simultaneously. More precisely, we
can train CAE to remove various types of noise, and it will work even if using traces that
do not have all noise sources.

408 Remove Some Noise: On Pre-processing of Side-channel Measurements with Autoencoders

5 Conclusions and Future Work
We introduce a convolutional autoencoder to remove the noise and countermeasure from the
leakage traces. We consider different types of noise and countermeasures: Gaussian noise,
uniform noise, desynchronization, random delay interrupts, clock jitters, and shuffling.
Additionally, we simulate the scenario where all noise types and countermeasures are
combined into the measurements. We consider two types of leakage traces (one encrypted
with fixed and another with random keys) and three attacks (CNN, MLP, and TA). It is
interesting to note that in our experiments, adding noise to the input of CNN does not
provide as beneficial results as reported in [KPH+19]. Still, note that our CNN architecture
is much simpler and does not work as well as the architecture presented by Kim et al.
Consequently, it is not surprising that noise addition does not work as well, and that we
require less noise at the input. The obtained results show that the proposed CAE can
remove/reduce the noise and determine the underlying ground truth and significantly
improve the attack performance. Our approach is especially powerful in the white-box
settings, but we demonstrate it has potential also in black-box settings. We believe it is
especially interesting to consider denoising autoencoders as a generic denoiser technique
since our results indicate it gives good results, while it is easy to apply it. Our results
show that autoencoders reliably remove noise/countermeasures even if the measurements
do not contain all the noise sources the autoencoder used in the training process.

Denoising autoencoder provides an attacker with a powerful tool to pre-process the
traces. We expect this technique could help with problems like portability [BCH+19].
There, the biggest obstacle stems from the variance among different devices. These
variances introduce the trace variation, making the attack model generated for one device
challenging to transfer to another. With the help of an autoencoder, this problem can be
solved by considering the traces variation as noise and use denoising autoencoder to remove
it. This setting is similar to the scenario with added Gaussian noise, which indicates that
the CAE approach should be very useful in portability. Additionally, the trained denoising
autoencoder could be used for transfer learning. Then, the encoder part of the autoencoder
could be further trained and used to launch attacks. Finally, we plan to investigate whether
denoising autoencoder could also work for the masking countermeasures.

Availability
Implementations for reproducing our results are available at https://github.com/AISyLab/
Denoising-autoencoder.

Acknowledgement
We thank Jorai Rijsdijk and anonymous reviewers for their valuable comments. We thank
the shepherd for the suggestions on how to improve the paper.

References
[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda

https://github.com/AISyLab/Denoising-autoencoder
https://github.com/AISyLab/Denoising-autoencoder

Lichao Wu and Stjepan Picek 409

Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[Bal12] Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In
Proceedings of ICML workshop on unsupervised and transfer learning, pages
37–49, 2012.

[BCH+19] Shivam Bhasin, Anupam Chattopadhyay, Annelie Heuser, Dirmanto Jap,
Stjepan Picek, and Ritu Ranjan Shrivastwa. Mind the portability: A warriors
guide through realistic profiled side-channel analysis. Cryptology ePrint
Archive, Report 2019/661, 2019. https://eprint.iacr.org/2019/661.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 16–29. Springer, 2004.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel implementations
of masking schemes and the bounded moment leakage model. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 535–566. Springer, 2017.

[BHvW12] Lejla Batina, Jip Hogenboom, and Jasper GJ van Woudenberg. Getting more
from pca: first results of using principal component analysis for extensive
power analysis. In Cryptographers’ track at the RSA conference, pages 383–
397. Springer, 2012.

[BPS+18] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Study of deep learning techniques for side-channel analysis and
introduction to ascad database. ANSSI, France & CEA, LETI, MINATEC
Campus, France. Online verfügbar unter https://eprint. iacr. org/2018/053.
pdf, zuletzt geprüft am, 22:2018, 2018.

[C+15] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[CCD00] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential
power analysis in the presence of hardware countermeasures. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages 252–263.
Springer, 2000.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural
networks with data augmentation against jitter-based countermeasures. In
International Conference on Cryptographic Hardware and Embedded Systems,
pages 45–68. Springer, 2017.

[CJRR99] Suresh Chari, Charanjit S Jutla, Josyula R Rao, and Pankaj Rohatgi. To-
wards sound approaches to counteract power-analysis attacks. In Annual
International Cryptology Conference, pages 398–412. Springer, 1999.

[CK09] Jean-Sébastien Coron and Ilya Kizhvatov. An Efficient Method for Random
Delay Generation in Embedded Software. In Cryptographic Hardware and
Embedded Systems - CHES 2009, 11th International Workshop, Lausanne,
Switzerland, September 6-9, 2009, Proceedings, pages 156–170, 2009.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks. In
CHES, volume 2523 of LNCS, pages 13–28. Springer, August 2002. San
Francisco Bay (Redwood City), USA.

https://eprint.iacr.org/2019/661
https://github.com/fchollet/keras

410 Remove Some Noise: On Pre-processing of Side-channel Measurements with Autoencoders

[Fis22] Ronald A Fisher. On the mathematical foundations of theoretical statistics.
Philosophical Transactions of the Royal Society of London. Series A, Contain-
ing Papers of a Mathematical or Physical Character, 222(594-604):309–368,
1922.

[GD98] Matt W Gardner and SR Dorling. Artificial neural networks (the multilayer
perceptron)—a review of applications in the atmospheric sciences. Atmo-
spheric environment, 32(14-15):2627–2636, 1998.

[GHO15] Richard Gilmore, Neil Hanley, and Maire O’Neill. Neural network based attack
on a masked implementation of aes. In 2015 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pages 106–111. IEEE,
2015.

[Gon16] Lovedeep Gondara. Medical image denoising using convolutional denoising
autoencoders. In 2016 IEEE 16th International Conference on Data Mining
Workshops (ICDMW), pages 241–246. IEEE, 2016.

[HPGM16] Annelie Heuser, Stjepan Picek, Sylvain Guilley, and Nele Mentens. Side-
channel analysis of lightweight ciphers: Does lightweight equal easy? In Radio
Frequency Identification and IoT Security - 12th International Workshop,
RFIDSec 2016, Hong Kong, China, November 30 - December 2, 2016, Revised
Selected Papers, pages 91–104, 2016.

[HZ12] Annelie Heuser and Michael Zohner. Intelligent Machine Homicide - Breaking
Cryptographic Devices Using Support Vector Machines. In Werner Schindler
and Sorin A. Huss, editors, COSADE, volume 7275 of LNCS, pages 249–264.
Springer, 2012.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Proceedings of the 19th Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO ’99, pages 388–397, London, UK, UK,
1999. Springer-Verlag.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Han-
jalic. Make some noise. unleashing the power of convolutional neural networks
for profiled side-channel analysis. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pages 148–179, 2019.

[KUMH17] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochre-
iter. Self-normalizing neural networks. In Advances in neural information
processing systems, pages 971–980, 2017.

[LMBM13] Liran Lerman, Stephane Fernandes Medeiros, Gianluca Bontempi, and Olivier
Markowitch. A Machine Learning Approach Against a Masked AES. In
CARDIS, Lecture Notes in Computer Science. Springer, November 2013.
Berlin, Germany.

[LPB+15] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markowitch, and
François-Xavier Standaert. Template attacks vs. machine learning revisited
(and the curse of dimensionality in side-channel analysis). In International
Workshop on Constructive Side-Channel Analysis and Secure Design, pages
20–33. Springer, 2015.

[MOP06] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards. Springer, December 2006.
ISBN 0-387-30857-1, http://www.dpabook.org/.

http://www.dpabook.org/

Lichao Wu and Stjepan Picek 411

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In Interna-
tional Conference on Security, Privacy, and Applied Cryptography Engineer-
ing, pages 3–26. Springer, 2016.

[PHF08] Thomas Plos, Michael Hutter, and Martin Feldhofer. Evaluation of side-
channel preprocessing techniques on cryptographic-enabled hf and uhf rfid-tag
prototypes. In Workshop on RFID Security, pages 114–127, 2008.

[PHJ+17] Stjepan Picek, Annelie Heuser, Alan Jovic, Simone A. Ludwig, Sylvain Guilley,
Domagoj Jakobovic, and Nele Mentens. Side-channel analysis and machine
learning: A practical perspective. In 2017 International Joint Conference
on Neural Networks, IJCNN 2017, Anchorage, AK, USA, May 14-19, 2017,
pages 4095–4102, 2017.

[PHJ+19] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The curse of class imbalance and conflicting metrics with machine
learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2019(1):209–237, 2019.

[PHJB19] S. Picek, A. Heuser, A. Jovic, and L. Batina. A systematic evaluation of
profiling through focused feature selection. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 27(12):2802–2815, Dec 2019.

[PSK+18] Stjepan Picek, Ioannis Petros Samiotis, Jaehun Kim, Annelie Heuser, Shivam
Bhasin, and Axel Legay. On the performance of convolutional neural networks
for side-channel analysis. In Anupam Chattopadhyay, Chester Rebeiro,
and Yuval Yarom, editors, Security, Privacy, and Applied Cryptography
Engineering, pages 157–176, Cham, 2018. Springer International Publishing.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema):
Measures and counter-measures for smart cards. In Isabelle Attali and Thomas
Jensen, editors, Smart Card Programming and Security, pages 200–210, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[RHW85] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Technical report, California
Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[SMY09] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified frame-
work for the analysis of side-channel key recovery attacks. In Annual interna-
tional conference on the theory and applications of cryptographic techniques,
pages 443–461. Springer, 2009.

[SY14] Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoencoders
with nonlinear dimensionality reduction. In Proceedings of the MLSDA 2014
2nd Workshop on Machine Learning for Sensory Data Analysis, pages 4–11,
2014.

[TGWC18] Hugues Thiebeauld, Georges Gagnerot, Antoine Wurcker, and Christophe
Clavier. Scatter: A new dimension in side-channel. In International Workshop
on Constructive Side-Channel Analysis and Secure Design, pages 135–152.
Springer, 2018.

[Tiu05] Chin Chi Tiu. A new frequency-based side channel attack for embedded
systems. PhD thesis, University of Waterloo, 2005.

412 Remove Some Noise: On Pre-processing of Side-channel Measurements with Autoencoders

[TSCH17] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár.
Lossy image compression with compressive autoencoders. arXiv preprint
arXiv:1703.00395, 2017.

[TV03] Kris Tiri and Ingrid Verbauwhede. Securing encryption algorithms against
dpa at the logic level: Next generation smart card technology. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages 125–136.
Springer, 2003.

[VCMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against side-channel attacks: A comprehensive
study with cautionary note. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 740–757. Springer,
2012.

[WEG87] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.
Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[WLL+18] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. I know what you
see: Power side-channel attack on convolutional neural network accelerators.
In Proceedings of the 34th Annual Computer Security Applications Conference,
pages 393–406. ACM, 2018.

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient cnn architectures in profiling attacks. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2020(1):1–36,
Nov. 2019.

[ZDZC09] Peng Zhang, Gaoming Deng, Qiang Zhao, and Kaiyan Chen. Em frequency
domain correlation analysis on cipher chips. In 2009 First International
Conference on Information Science and Engineering, pages 1729–1732. IEEE,
2009.

[ZZY+15] Yingxian Zheng, Yongbin Zhou, Zhenmei Yu, Chengyu Hu, and Hailong
Zhang. How to compare selections of points of interest for side-channel
distinguishers in practice? In Lucas C. K. Hui, S. H. Qing, Elaine Shi, and
S. M. Yiu, editors, Information and Communications Security, pages 200–214,
Cham, 2015. Springer International Publishing.

A Attack Methods
A.1 Template Attack
Template attack uses Bayes theorem to obtain predictions, dealing with multivariate proba-
bility distributions as the leakage over consecutive time samples is not independent [CRR02].
In the state-of-the-art, template attack relies mostly on a normal distribution. It consists
of two phases: the offline phase during which the templates are built, and the online phase
where the matching between the templates and unseen power leakage happens.

A.2 Multilayer Perceptron
The multilayer perceptron (MLP) is a feed-forward neural network that maps sets of inputs
onto sets of appropriate outputs [GD98]. MLP consists of multiple layers of nodes in a
directed graph, where each layer is fully connected to the next one, and training of the
network is done with the backpropagation algorithm.

Lichao Wu and Stjepan Picek 413

A.3 Convolutional Neural Networks
CNN commonly consists of three types of layers: convolutional layers, pooling layers,
and fully-connected layers. Each layer of a network transforms one volume of activation
functions to another through a differentiable function. Convolution layer computes the
output of neurons that are connected to local regions in the input, each computing a
dot product between their weights and a small region they are connected to in the input
volume. Pooling decrease the number of extracted features by performing a down-sampling
operation along the spatial dimensions. The fully-connected layer computes either the
hidden activations or the class scores. To avoid the overfitting, batch normalization layer,
which normalizes the input layer by adjusting and scaling the activations is commonly
added to the network.

B Additional Results
B.1 Denoising the “Clean” Traces

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En
tro

py

TA
TA_PCA
MLP
CNN
CNN_Noise

(a) GE: Original traces.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250
Gu

es
sin

g
En
tro

py

TA
TA_PCA
MLP
CNN
CNN_Noise

(b) GE: traces denoised by CAE.

Figure 15: Guessing entropy: original traces vs “cleaned” traces by CAE.

B.2 Uniform Noise
Besides analyzing the denoising performance with Gaussian noise, we also consider the
uniform noise. A uniform-distributed random values ranging from -20 to 20 are added to
each point of the trace to simulate the uniform noise. The pseudocode for constructing
traces with uniform noise is shown in Algorithm 6. An example of the zoom-in view of
two manipulated traces is shown in Figure 16a; the attack results are shown in Figure 16b.
Similar to Gaussian noise, PCA-based TA performs the best with the correct key ranking
reaching 29. We also observe that adding noise to the input of CNN improves the attack
performance. Still, the uniform noise significantly increases the difficulties in obtaining the
correct key (Figure 16).

Next, we denoise the traces with averaging as well as CAE. The GE of denoised traces
with 10-trace averaging and CAE are shown in Figures 17a and 17b, respectively. From
the attack perspective, GE converges in both denoising cases when the number of trace
increases: 3 584 averaged traces or 4 880 denoised traces are sufficient to reach GE of 0.
Following this observation, we again confirm that trace averaging is a successful method in
removing the uniform noise. Additionally, TA is better than MLP in dealing with uniform
noise. Indeed, TA is a generic method that follows Bayes’ theorem and is resilient to the
noise’s interference. As the noise still exists in the denoised traces, we believe that the

414 Remove Some Noise: On Pre-processing of Side-channel Measurements with Autoencoders

300 320 340 360 380 400
Time Samples

−80

−60

−40

−20

0

20

40
Am

pl
itu

de
Trace 1
Trace 2

(a) Uniform noise: zoom-in view.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En
tro

py

TA
TA_PCA
MLP
CNN
CNN_Noise

(b) Uniform noise: guessing entropy.

Figure 16: Uniform noise: demonstration and its influence on guessing entropy.

Algorithm 6 Add Uniform Noise.
1: function add_uniform_noise(trace, range)
2: new_trace← [] . container for new trace
3: i← 0
4: while i < len(trace) do
5: level←randomNumber(−range, range)
6: new_trace[i]← traces[i] + level . add noise to the trace
7: i← i + 1
8: return new_trace

MLP model we used is less robust than TA in dealing with fluctuation from the amplitude
level. Compared with the denoising performance with the Gaussian noise, the uniform
noise seems easier to counteract.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En

tro
py

TA
MLP
CNN

(a) GE: denoised with averaging.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En

tro
py

TA
MLP
CNN

(b) GE: denoised with CAE.

Figure 17: Guessing entropy: denoise uniform noise with averaging vs CAE.

B.3 Results With Combined Noise
In Figure 18, we depict results for the AES with the fixed key where five noise sources are
combined. Observe that 10 000 traces is not enough to break the target with any of the
considered attacks. Similar behavior we observe when attacking AES with random keys
(Figure 19). Interestingly, when considering a fixed key, we see that MLP is by far the
best performing algorithm, while for the scenario with random keys, all three algorithms
perform similarly, where CNN performs the best. Finally, the best performing algorithm’s

Lichao Wu and Stjepan Picek 415

key rank is slightly lower when considering a fixed key setting, but the differences are small
enough to indicate that both scenarios are too difficult for tested attacks.

300 400 500 600 700 800 900 1000
Time Samples

−80

−60

−40

−20

0

20

40

60

Am
pl
itu

de

Trace 1
Trace 2

(a) All in one: zoom-in view.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En
tro

py

TA
TA_PCA
MLP
CNN
CNN_Noise

(b) All in one: guessing entropy.

Figure 18: All in one (fixed key): demonstration and its influence on guessing entropy.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g
En
tro

py

TA
TA_PCA
MLP
CNN
CNN_Noise

Figure 19: All in one (random key): guessing entropy.

	Introduction
	Related Work
	Our Contributions

	Background
	Profiled Side-channel Analysis
	Neural Networks
	The ASCAD Dataset

	Denoising with Convolutional Autoencoder
	Autoencoders
	Denoising Strategy
	Convolutional Autoencoder Architecture

	Experimental Results
	Denoising the ``Clean'' Traces
	Gaussian Noise
	Desynchronization
	Random Delay Interrupts (RDIs)
	Clock Jitters
	Shuffling
	Combining the Effects of Gaussian Noise and Countermeasures
	Case Study: From Noisy to Less Noisy – The Black-box Setting

	Conclusions and Future Work
	Attack Methods
	Template Attack
	Multilayer Perceptron
	Convolutional Neural Networks

	Additional Results
	Denoising the ``Clean'' Traces
	Uniform Noise
	Results With Combined Noise

