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Abstract. The security of Internet of Things (IoT) devices relies on fundamental
concepts such as cryptographically protected firmware updates. In this context
attackers usually have physical access to a device and therefore side-channel attacks
have to be considered. This makes the protection of required cryptographic keys
and implementations challenging, especially for commercial off-the-shelf (COTS)
microcontrollers that typically have no hardware countermeasures. In this work, we
demonstrate how unprotected hardware AES engines of COTS microcontrollers can
be efficiently protected against side-channel attacks by constructing a leakage resilient
pseudo random function (LR-PRF). Using this side-channel protected building block,
we implement a leakage resilient authenticated encryption with associated data
(AEAD) scheme that enables secured firmware updates. We use concepts from
leakage resilience to retrofit side-channel protection on unprotected hardware AES
engines by means of software-only modifications. The LR-PRF construction leverages
frequent key changes and low data complexity together with key dependent noise from
parallel hardware to protect against side-channel attacks. Contrary to most other
protection mechanisms such as time-based hiding, no additional true randomness is
required. Our concept relies on parallel S-boxes in the AES hardware implementation,
a feature that is fortunately present in many microcontrollers as a measure to increase
performance. In a case study, we implement the protected AEAD scheme for two
popular ARM Cortex-M microcontrollers with differing parallelism. We evaluate the
protection capabilities in realistic IoT attack scenarios, where non-invasive EM probes
or power consumption measurements are employed by the attacker. We show that
the concept provides the side-channel hardening that is required for the long-term
security of IoT devices.
Keywords: leakage resilience · SCA · AEAD · AES · microcontroller

1 Introduction
The information security of inexpensive IoT devices is especially important due to their
high quantity, prevalence, and high threat potential. Arguably the most important feature
for such devices are secure firmware updates. They are needed to mitigate software
vulnerabilities, which are likely uncovered while a device is in the field. Secured updates
can either be achieved by digital signatures or by symmetric AEAD schemes. In case of
symmetric cryptography, the secret keys are stored in memory that is protected against
malicious read-outs. The protection of secret keys against extraction is required in the
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IoT context because attackers are potentially capable of performing physical attacks such
as side-channel attacks on cryptographic operations. Ronen et al. [RSWO17] highlight
the implications of unprotected update mechanisms by using a side-channel attack to
extract an AES master key from a smart light bulb which is used to protect firmware
updates for an entire device family. Using the update master key, a worm is created that
automatically infects and maliciously replaces the firmware of similar devices within a
100 m radius. Evidently, the root of trust, i.e., cryptographic keys and operations used for
secured updates, requires hardening against hardware attacks. The authors of [RSWO17]
suggest using digital signatures as mitigation, however, that only provides authentication.
AEAD schemes have the additional benefit that they also provide confidentiality which is
often necessary to, e.g., protect intellectual property (IP) or credentials in the firmware.

Unfortunately, protecting cryptographic implementations against side-channel attacks
is challenging, especially when dealing with existing hardware implementations without
built-in protection. So far, the only countermeasure that can be retrofitted without giv-
ing up hardware acceleration and therefore significantly reducing performance is simple
time-based hiding, i.e., inserting random delays or dummy operations before or after the
critical operation. Such countermeasures require true randomness and are very limited in
their effectiveness because deliberate timing variations can be filtered by signal processing.
Particularly for COTS devices it has been shown that the cryptographic operation can be
identified despite hiding countermeasures [HHS14]. An alternative is to use a hardened
software implementation instead of the existing cryptographic hardware accelerator and
giving up its provided efficiency. The inherent difficulty of this task is evident in the fol-
lowing example. A team from the French ANSSI published an open-source implementation
of a side-channel protected AES targeted for COTS microcontrollers [BKPT7f]. As it is
state of the art, they combine masking and shuffling countermeasures to protect against
side-channel attacks and provide leakage tests that do not show significant leakage after
100,000 traces. Despite these seemingly positive results, Bronchain and Standaert [BS20]
published an attack that succeeds with only 2,000 traces, which highlights the issues of
combined countermeasures on these devices. In the same paper, they also put forward the
general difficulty of securing COTS microcontrollers using masking or shuffling due to the
lack of noise when countermeasures are implemented in software.

In this work, we therefore make use of existing hardware accelerators for cryptographic
operations and use concepts from leakage resilience that leverage algorithmic noise and
limited data complexity. We show the soundness of our proposal through actual side-
channel attacks and give concrete security levels. Contrary to the previous example, there
is no easy way to circumvent parts of the countermeasure. Our contribution is twofold:
First, we provide and analyze an LR-PRF as a side-channel secured building block. Second,
we implement a leakage resilient AEAD (LR-AEAD) scheme from this primitive to enable
applications such as secured firmware updates.

For the LR-PRF, we utilize the concept proposed by Medwed et al. [MSJ12,MSNF16]
that uses frequent key changes and low data complexity combined with key dependent
noise from parallel hardware to protect against side-channel attacks. The LR-PRF requires
parallelism of the implementation, e.g., parallel AES S-boxes. This is a feature that is
fortunately already present on many popular microcontrollers to increase performance.
Therefore, we propose leakage resilience as a countermeasure that is implemented purely in
software but uses existing hardware accelerators. The approach does not require changes
to the underlying block cipher and can be implemented using, e.g., AES accelerators.

Using this LR-PRF primitive we implement a full LR-AEAD scheme. Krämer and
Struck showed that an LR-AEAD scheme can be constructed from an LR-PRF, a pseudo
random generator (PRG) and a hash function [KS20]. Interestingly, the only part of
the scheme that needs to be protected against side-channel attacks is the LR-PRF. Our
proposed design uses an AES hardware accelerator to instantiate both the LR-PRF and
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the PRG, which means that most of the work load is handled in hardware. Existing
hardware accelerators for the hash function can be used where available, otherwise the hash
function can be implemented in software. The fact that the only hardware requirement is
an AES accelerator with parallel S-boxes makes this solution applicable to a wide range of
microcontrollers. It is therefore highly relevant when retrofitting side-channel protection
to existing devices, especially when no true random noise sources are available. In such
cases, masking or hiding is even impossible and this concept is without alternatives.

As a proof of concept we implement the AES-based LR-PRF on two ARM Cortex-M
microcontrollers and evaluate the side-channel security. We chose two representative
microcontrollers with 4 and 16 parallel S-boxes, two common implementation options. We
evaluate the security of the LR-PRF construction in both cases and find effective protection.
For comparison, the AES engines on both tested microcontrollers can be broken after
2,500 traces. After implementing the LR-PRF on the same hardware, the cryptographic
operation withstands similar side-channel attacks using the same measurement setup and
results in security levels above 100 bits at a reasonable security vs. efficiency trade-off.

We also provide an implementation1 and performance evaluation of the full LR-AEAD
scheme for both microcontrollers. On one controller we can make use of an existing
SHA-256 accelerator to instantiate the hash function, on the other we use an existing
software implementation. The resulting LR-AEAD construction serves as a crucial building
block for the root of trust of a device. It enables, e.g., side-channel secured firmware
updates which makes long-term security possible for IoT devices. Since all modifications
are software-only, our concept can be used to retrofit existing designs.

Outline In Sec. 2, we provide the background on LR-PRFs and the LR-AEAD scheme.
Section 3 defines the attacker model and explains how to assess the side-channel security
of such constructions. In Sec. 4 we outline the implementation details and trade-offs of LR-
PRFs on microcontrollers with hardware acceleration. We also describe the implementation
of the LR-AEAD scheme and discuss relevant attack vectors. Subsequently, Sec. 5 gives
details about the two microcontrollers that are evaluated. We present the results of our
side-channel evaluation in Sec. 6. After introducing the measurement setup in Sec. 6.1, we
show in Sec. 6.2 that the key transfer to the hardware accelerators is protected, which is
a necessary requirement for the proposed solution. Next, Sec. 6.3 demonstrates that the
accelerators are in fact vulnerable to Template Attacks (TAs) illustrating the need for
countermeasures. Finally, Sec. 6.4 discusses the side-channel evaluation of the LR-AEAD,
which is reduced to an analysis of the LR-PRF with different configurations. Section 7
assesses the runtime and code size of the implementations. We conclude our findings in
Sec. 8.

2 Background on leakage resilience
Side-channel analysis (SCA) exploits physical observations such as timing, power consump-
tion or EM emanations during the execution of a cryptographic algorithm to retrieve the
secret key. There are well-known side-channel countermeasures such as boolean masking,
threshold implementations and hiding to prevent or reduce this leakage. Leakage resilience
is a different approach to side-channel protection which does, contrary to the mentioned
measures, not require randomness or significant hardware overhead. Formally, the leakage
behavior of devices is captured in a generic model and algorithmic countermeasures are
designed that are provably secure in the established model. The goal is to limit the
exposure of the secret key such that it prevents an attacker from accumulating information
about the key over multiple observations. This is typically achieved by designing algorithms

1The code is available under Apache License Version 2.0 at https://github.com/fraunhofer-aisec/
leakres-aead-microcontroller.

https://github.com/fraunhofer-aisec/leakres-aead-microcontroller
https://github.com/fraunhofer-aisec/leakres-aead-microcontroller
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that limit the control an attacker has over the inputs of critical operations and incorporate
re-keying mechanisms.

2.1 Leakage resilient pseudo random functions
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Figure 1: Dataflow graph of an LR-PRF execution for n=1, i.e., with data complexity of
2n =2, and input x of length 128 bits. In each iteration only the AES path highlighted in
black is executed depending on the respective bit of x.

Pseudorandom functions are functions that take a key k and input x and output a fixed-
length pseudorandom string. They have an application in, e.g., the secure initialization
from public inputs or, as in our case, as building block for larger cryptographic protocols
such as AEAD. There have been multiple proposals for LR-PRFs, yet the one proposed by
Medwed et al. [MSJ12] and later improved in [MSNF16] is particularly relevant for our
use case because it is based on a standard block cipher (AES). It achieves side-channel
protection by frequently changing the encryption key and limiting the usage of each key to
a certain number of encryptions. The input of the LR-PRF x is processed in chunks of
n bits. Depending on the value of the n bits of x being processed in a given iteration, a
plaintext is chosen out of a set of 2n plaintexts and is encrypted. The number of possible
plaintexts 2n is also denoted as data complexity.

The execution in case of n=1 is depicted as a dataflow graph for an example input in
Fig. 1. In each iteration, one out of the 2n =2 possible plaintexts p0 and p1 is encrypted.
The plaintext is chosen dependent on the bits of the input x. For example, in iteration
1 the plaintext p1 is encrypted according to the first bit of x, which is 1. The initial
encryption uses the long-term secret key k, subsequently the ciphertext is used as the
key for the next iteration. Finally, after all bits of the input have been processed, an
additional whitening step is performed with a constant input. The whitening protects
against differential attacks on the output. The LR-PRF takes di/ne + 1 block cipher
encryptions to process an input with length of i bits. Consequently, the number of bits n
processed per iteration has a direct impact on the security and the performance of the
construction. On the one hand, the data complexity for an attack is determined by n, as



F. Unterstein, M. Schink, T. Schamberger, L. Tebelmann, M. Ilg, J. Heyszl 369

each key is only used with 2n different plaintexts. Therefore, from a security point of view,
n has to be kept low. On the other hand, the performance of the LR-PRF deteriorates
with lower n because more iterations are necessary to process the input.

In the original proposal of the LR-PRF [MSJ12], the set of input plaintexts to the
underlying block cipher are known to the attacker. Furthermore, all plaintext bytes have the
same value and the S-boxes are implemented in parallel hardware. As a result, an attacker
can not differentiate between the subkeys during a divide-and-conquer attack because the
plaintext input to each S-box is identical. Even if all key bytes are recovered, choosing
identical plaintext bytes adds enumeration effort to find the correct order. However, the
enumeration effort is only increased if the attacker can not resolve the processing of single
subkeys (i.e., S-boxes) in the measured traces. In case of the AES, all 16 S-boxes need
to be implemented in parallel hardware and are therefore computed at the same time.
An additional benefit of parallel hardware implementations is the added key dependent
algorithmic noise that reduces the signal-to-noise ratio of a side-channel attack. In case of
limited parallelism, i.e., if not all S-boxes are implemented in parallel and an AES round
is computed over multiple clock cycles, these effects are still present but with reduced
effectiveness.

In the improved LR-PRF with unknown inputs [MSNF16], the plaintexts are unknown
to an attacker because they are generated in an additional preprocessing step using a
leakage resilient pseudo random generator (LR-PRG) proposed by Standaert et al. [SPY13].
A PRG differs from a pseudorandom function (PRF) in that it takes no input except for
an initial seed or key of fixed length and that it outputs a pseudorandom string of variable
length. The LR-PRG by Standaert et al. [SPY13] can be implemented using AES and
is shown in Fig. 2. Similar to one stage of the LR-PRF, two plaintexts p0 and p1 are
initially encrypted with key k. The result of one encryption is used as key for the next
iteration, the result of the other forms the pseudorandom string y. In the unknown-input
LR-PRF construction, the LR-PRG generates the plaintexts that are used in the actual
LR-PRF stage. In contrast to the original proposal, these plaintexts are kept secret. As a
consequence, the attacker does not know the inputs to the block cipher operations and is
unable to perform attacks as in case of the original construction. Attackers instead have
to target the LR-PRG step where p0 and p1 are still public and known to them. This
attack is equivalent to attacking the original LR-PRF construction with n=1, i.e., a data
complexity of two. The advantage of this design is that it allows higher data complexities
in the LR-PRF stage, and therefore increased performance, without increasing the attack
surface.
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p0 AESAES

AESAES p1

p0 AESAES

AESAES p1
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AESAES
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Figure 2: AES based PRG based on [SPY13].

Both LR-PRF constructions are vulnerable to high-end invasive EM attacks with high
spatial resolution (sub-millimeter coils) when implemented on FPGA devices [UHDS17].
Unterstein et al. [UHDS17,UHD+18] demonstrate that the spatial localization and high
time resolution of such setups allows for the isolation of individual S-boxes in a divide-and-
conquer attack and additionally removes the key dependent noise from parallel S-boxes to
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a certain extent. The feasibility of such attacks is highly dependent on the integration
density of the device. Contrary to our use-case they analyze an FPGA device where the
integration density is generally low compared to ASIC designs. In a later work [UJH+19],
they provide results of a similar investigation on a newer FPGA with smaller feature
size and higher integration density where the security level is still high after the attack.
Therefore, we believe that the high integration density of an ASIC hardware accelerator
will provide at least some resistance to such attacks. In any case, we consider such costly
invasive attacks as presented in [UHDS17] out of scope for this work because we aim at
providing side-channel security to previously unprotected low-cost devices. To provide
protection against localized attacks, Unterstein et al. [UHD+18] add a method to the
LR-PRF construction that ’refills’ the key entropy by introducing additional key material
in a preprocessing step. This comes at the cost of increased key length and a significant
performance penalty because the data complexity in the PRF tree is fixed to 2. Similar to
the unknown-inputs LR-PRF, the relevant attack vector is an attack of data complexity 2
on the AES during preprocessing.

In summary, to implement any of the presented LR-PRF, the necessary requirement
is that an AES core resists side-channel attacks with a data complexity of 2. For our
analysis we use the original LR-PRF since it has the least implementation overhead and is
best suited to analyze the security impact of the different data complexity configuration.
However, we emphasize that the analysis of this LR-PRF with data complexity 2 also
covers the other two variants since the best attack vector is identical for all constructions.
As long as this case is shown to be appropriately secure for a given implementation, all
variants of the LR-PRF can be used. Furthermore, depending on the outcome of the SCA
for higher data complexities, more efficient configurations of the original LR-PRF can be
considered.

2.2 Leakage resilient authenticated encryption
Authenticated encryption (with associated data) schemes can be implemented using
dedicated constructions or built from common primitives such as block ciphers and message
authentication codes (MACs) through generic composition. An AEAD scheme takes a
key k, a message msg, associated data adata and a nonce nonce as input and outputs a
tag tag and a ciphertext ctxt. For our use case, we use a composition scheme that can be
instantiated using existing hardware accelerators and make use of the results of Krämer
and Struck [KS20]. In their work they revisit the so called FGHF ′ construction that was
proposed by Degabriele et al. [DJS19] in the context of sponge based constructions. The
FGHF ′ construction is an LR-AEAD scheme and comprises four building blocks: Two
functions F and F ′, a PRG G and a hash function H. In order for the construction to
be leakage resilient, the security analysis of Degabriele et al. originally requires both F
and F ′ to be pseudorandom under leakage and F ′ to be unpredictable under leakage in
addition2. The hash function and PRG can be instantiated with unprotected primitives.
However, Krämer and Struck simplify this and show that for the FGHF ′ construction
the unpredictability is actually not required and that both F and F ′ can be implemented
using LR-PRFs. In the context of our work, this allows us to use one of the AES based
LR-PRF that are discussed in Sec. 2.1 as building block for both F and F ′.

The PRG G can be implemented using the AES based LR-PRG of Standaert et al.
[SPY13] (Fig. 2). Note that following the security analysis of Degabriele et al., G is not
required to be leakage resilient. The main reason we use this LR-PRG is that it also makes
use of the AES hardware accelerator. We discuss the security implication of using a block
cipher based construction for G in Sec. 4. The hash function H, e.g., SHA-256, can either

2Without considering leakage these two notions imply each other. However, under leakage this is not
the case as discussed in, e.g., [KS20].



F. Unterstein, M. Schink, T. Schamberger, L. Tebelmann, M. Ilg, J. Heyszl 371

S
H
A
-2
56

LR-PRGnonce

adata

LR-PRF

LR-PRF

msg

tag

kenc

kmac

ctxt

Figure 3: LR-AEAD implementation (adapted from [KS20]).

be realized using hardware accelerators, if they are present, or implemented in software.
An overview of the FGHF ′ scheme when implemented with these building blocks is shown
in Fig. 3. Note that the key k in this case consists of two keys kenc and kmac which are
used for the stream cipher and MAC part of the scheme, respectively.

3 Attacker model and evaluation methodology
In this section we first define the attacker model and then outline the methodology for our
side-channel evaluations. Specifically, we describe the security assessment of the LR-PRF
construction. In practice, this assessment consists of profiled side-channel attacks against
AES with limited data complexity.

3.1 Attacker model
The intended targets for bringing leakage resilience to COTS microcontrollers are low-cost
IoT devices. Since these microcontrollers are not marketed, nor intended, to be used in high
security applications, modeling an attacker with high-end laboratory resources does not
seem justified. For that reason, we do not consider invasive, high-precision EM analyses,
as described in [UHD+18], that use equipment worth around 100,000 USD, excluding
the equipment for decapping the chips before analyses. Instead, we assume attackers
with considerable technical know-how, but moderate capabilities in terms of laboratory
equipment. We assume that attackers have access to EM measurement probes allowing
measurements close to the packaged chips with manual positioning of the probe. Along
with a preamplifier and a USB oscilloscope, such a setup can be built for a few thousand
USD.

Since the analyzed devices can be bought without restrictions, attackers can perform
profiling with known keys on one or more devices under their control. To reflect this fact
in our analysis and in order to avoid inter-device deviations, we perform profiling and
attacks on the same device (can be seen as worst case), even though this would not be
possible in a real scenario where an attacker has limited control over the attacked device.

3.2 Assessing the side-channel security
Considering the different variations of LR-PRFs, the side-channel security is always
reduced to a side-channel attack on the initial usage of the long-term key with varying
data complexity. In case of the original proposal [MSJ12], the available data complexity
in an attack depends on the configuration of the LR-PRF and ranges from 2 up to 256.
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For the unknown-input [MSNF16] and the key refreshing [UHD+18] LR-PRF, attacks are
limited to a data complexity of 2.

All proposed constructions are able to use a varying number of parallel S-boxes
that determine the amount of algorithmic noise. These contributions assume dedicated
hardware designs where this choice can be made deliberately, whereas in our case the
level of parallelism depends on the choice of the controller. Hence, an evaluator’s goal
is to determine the security of a hardware implementation (with a fixed number of
parallel S-boxes) in relation to the data complexity. Then, the LR-PRF construction with
the best trade-off between security (security level subject to an attack) and efficiency
(implementation cost and runtime) is chosen.

When implementing LR-PRFs on microcontrollers through the use of a hardware
accelerator, the key inevitably has to be transferred from the CPU over the bus to the
accelerator. In the case of commercial security controller, these bus transfers are masked by
random values. In our case of unprotected microcontrollers this attack vector needs to be
considered. Wouters et al. [WdHG+20] demonstrate the effectiveness of such attacks and
recover the transponder key of a car immobilizer in a profiled attack on the key transfer to
a coprocessor. Therefore, to establish SCA secure LR-PRFs on such microcontrollers we
evaluate two attack vectors in this work: i) Attacks on the bus transfer of the key in Sec. 6.2
and ii) attacks on the AES accelerator with different data complexity in Sec. 6.4. To have
a baseline for comparison, we attack the accelerator with unlimited data complexity in
Sec. 6.3.

3.3 Profiled side-channel attacks with limited data complexity
To assess the worst case security of a device it is common practice to use multivariate
Gaussian template attacks [CRR02,CK13]. Due to the high computational complexity,
the number of samples which are included in the multivariate templates has to be kept
low. The most informative time samples from a trace, called points of interest (POIs), are
extracted in a preprocessing step. We use the correlation-based leakage test described by
Durvaux and Standaert [DS16] as a first order, profiled leakage test.

After identifying POIs, Gaussian templates are calculated on the reduced trace. This
profiling phase requires that the attacker has full control over the device, most importantly
the secret key and the inputs, e.g., the plaintexts in case of encryption algorithms. Key
bytes are profiled and attacked separately in a divide-and-conquer manner. While profiling
one byte, all other bytes are randomized. During the attack phase, the attacker only
controls the inputs and matches the templates with the measured traces in order to find
the secret key. Due to the design of the LR-PRF, the input controlled by the attacker is
not directly used as input to the AES. Instead, each execution of the LR-PRF consists
of multiple AES executions and for each of those the plaintext is chosen depending on
certain bits of the LR-PRF input. Therefore, the input that is provided by the attacker
only allows to choose between a limited set of plaintexts for each execution of the AES.
This is different from a regular TA, where the input bytes can be chosen randomly by the
attacker. This random input allows a divide-and-conquer approach to work well because
each byte behaves independently of the others and the attacker may target specific bytes
one at a time. When the data complexity is limited, as in the LR-PRF case, the key bytes
are no longer independent and this separation is hindered. As a result, the individual
bytes are affected by each others correlated leakage and this so-called algorithmic noise
impedes side-channel attacks. It is therefore expected that correct key byte candidates are
not always determined without doubt and that the attacker has to try the most probable
combinations until the full key is recovered. Attacks on the key transfer can be considered
a corner case of this scenario where the data complexity is limited to one.

To assess the security level from the lists of key candidates, the key rank estimation
algorithm by Glowacz et al. [GGP+15] is used. It gives an estimation of the remaining
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Figure 4: Microcontroller running an LR-PRF using an integrated AES hardware acceler-
ator.

security level which we denote in bits. A security level of x bit means that an attacker has
to try 2x keys out of the most probable combinations until the correct one is found. An
additional side effect of the limited data complexity is that certain combinations of key
bytes are easier to attack than others, depending on the leakage behavior of the device.
Hence, we test several keys and estimate the distribution of the resulting security level.

4 Leakage resilient AEAD on COTS microcontrollers
This section describes how to achieve LR-AEAD for COTS microcontrollers. First, we
explain how to implement an LR-PRF and LR-PRG utilizing a hardware AES engine. We
specifically describe the partitioning between software and hardware accelerators. Second,
we describe how to use this protected building block together with an LR-PRG and hash
function in the LR-AEAD scheme of Degabriele et al. [DJS19]. We provide pseudo code
for all operations and point out the security critical operations which we analyze in the
side-channel evaluation in Sec. 6.

The main aspect of our proposal is to benefit from existing hardware accelerators with
parallel S-boxes on microcontrollers to realize an LR-PRF. A typical architecture of a
microcontroller with integrated cryptographic coprocessor is outlined in Fig. 4. The AES
coprocessor is attached to the main CPU via a bus and can run independently and in
parallel. It is typically controlled through memory-mapped registers. Commands and data
values are exchanged over the bus.

The LR-PRF program is executed on the CPU and the hardware accelerator is queried
for the necessary block cipher encryptions. The process follows Algorithm 1, where the
boxed operations are executed inside the hardware accelerator, while the rest is executed
by the CPU. Inputs are the key k, the data input x and the data complexity expressed in
the number of bits n that are processed per stage (e.g., for data complexity 4, n equals 2).
The expression (nbits| . . . |nbits)128 denotes a concatenation of bits nbits until the string
contains 128 bits, 0128 is an all zero bitstring with length 128.

We give the pseudocode description of the used LR-PRG in Algorithm 2. The func-
tionality is split in two functions: An initial seeding of the LR-PRG that sets the key
for the first iteration and an iterate function that returns one block of pseudorandom
data and updates the key internally. There are two types of security critical operations
in Algorithms 1 and 2. The first type are the AES encryptions (AES_encrypt). This is
expected from all conceptual considerations. The second type is implementation-specific,
i.e., the bus transfers (write_to/read_from_accelerator) of the key.

We give a detailed SCA of both types of operations in Sec. 6. Algorithm 3 puts the
building blocks together and describes the encrypt and decrypt operations of the LR-AEAD.
This does not add any additional attack vectors, as all sensitive operations are located
within the LR-PRF and LR-PRG.

A cautionary note According to the security analysis of the LR-AEAD scheme by the
authors of [DJS19] the PRG is not required to be secured against differential side-channel
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Algorithm 1: LR-PRF
1 Function LR-PRF(x, k, n):

/* Initialize with long term key */
2 key← k;

/* Iterate through the PRF stages */
3 for i ← 1 to 128/n do
4 nbits← read_next_n_bits(x);
5 plaintext← (nbits| . . . |nbits)128;
6 write_to_accelerator(key, plaintext);
7 ciphertext← AES_encrypt(key, plaintext) ;
8 read_from_accelerator(ciphertext);
9 key← ciphertext;

10 end
/* Whitening step */

11 plaintext← 0128;
12 write_to_accelerator(key, plaintext);
13 ciphertext← AES_encrypt(key, plaintext) ;
14 read_from_accelerator(ciphertext);
15 return ciphertext;

Algorithm 2: LR-PRG
1 global key;
2 Function LR-PRG_seed(s):

/* Initialize with seed */
3 key← s;
4 return

5 Function LR-PRG_iterate():
/* Update key */

6 plaintext← 0128;
7 write_to_accelerator(key, plaintext);
8 ciphertext← AES_encrypt(key, plaintext) ;
9 read_from_accelerator(ciphertext);

10 key← ciphertext;
/* Generate output block */

11 plaintext← 1128;
12 write_to_accelerator(key, plaintext);
13 ciphertext← AES_encrypt(key, plaintext) ;
14 read_from_accelerator(ciphertext);
15 return ciphertext;
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Algorithm 3: LR-AEAD
1 Function LR-AEAD_encrypt(msg, adata, nonce, kenc, kmac, n):

/* Encrypt message block by block */
2 seed← LR-PRF(nonce, kenc,n);
3 LR-PRG_seed(seed);
4 foreach msg_block in msg do
5 ctxt_block← LR-PRG_iterate()⊕msg_block;
6 ctxt← ctxt|ctxt_block;
7 end

/* Calculate tag */
8 hash← SHA-256(nonce, adata, ctxt);
9 tag← LR-PRF(hash, kmac,n);

10 return ctxt, tag;

11 Function LR-AEAD_decrypt(ctxt, adata, nonce, tag, kenc, kmac, n):
/* Calculate and compare tag */

12 hash← SHA-256(nonce, adata, ctxt);
13 tag′ ← LR-PRF(hash, kmac,n);
14 if tag′ 6= tag then
15 return ⊥;
16 end

/* Decrypt message block by block */
17 seed← LR-PRF(nonce, kenc,n);
18 LR-PRG_seed(seed);
19 foreach ctxt_block in ctxt do
20 msg_block← LR-PRG_iterate()⊕ ctxt_block;
21 msg← msg|msg_block;
22 end
23 return msg;
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attacks since its seed is generated on the fly and is only valid for one message. Thus, if
we consider the PRG as a black box, each seed is only used for one operation and the
only valid attacks are attacks with data complexity 1, i.e., simple power analysis (SPA)
attacks. However, since we use a block cipher based PRG, this single operation in fact
consists of multiple sensitive block cipher encryptions which increases the data complexity
for an attack. It is intuitively clear that the seed to the PRG, i.e., the initial key to the
AES, must not be leaked in order to protect the confidentiality of the individual message.
Note that leaking this seed would only disclose this one message, neither kenc nor kmac

are affected so an attack on the seed would have to be mounted for every message.
Fortunately, the practical security of the PRG equals the security of the LR-PRF in our

case because one iteration of the PRG has the identical side-channel attack surface as one
iteration of the LR-PRF in case of data complexity 2. The theoretical side-channel security
is not equivalent since the security proof for the LR-PRG requires use of the random oracle
model whereas the LR-PRF is provably secure in the standard model. However, this is
only to prevent so called future computation attacks and has no practical significance3. In
other words, if we can realize a secure LR-PRF with data complexity 2, and we successfully
do so, then it implies the security of the LR-PRG.

5 Devices under test: STM32 and EFM32
We chose two COTS microcontrollers for our proof of concept, namely the STM32F215RET6
(STM32) ARM Cortex-M3 and EFM32PG12B500F1024 (EFM32) ARM Cortex-M4 mi-
crocontrollers which are both widely used in IoT applications. Both devices feature a
32-bit processor manufactured in a 90 nm process and include an AES hardware cryp-
tographic accelerator that is not specifically hardened against side-channel attacks. The
cryptographic accelerators are different in their level of internal parallelism.

Based on the number of clock cycles the cryptographic coprocessors take for a single
AES operation we assume that the STM32 implements 16 parallel S-boxes to perform the
10 rounds of an 128-bit AES (AES-128) and the EFM32 implements four parallel S-boxes.
This assumption is confirmed by the results of a correlation-based leakage test shown in
Fig. 5a for the STM32 and in Fig. 5b for the EFM32.
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Figure 5: Correlation-based leakage test on the AES S-box input for 100,000 traces with
known plaintexts and keys.

In both figures the correlation for the input of the different S-boxes of an AES-128
3For a more detailed discussion see [YSPY10].
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encryption is depicted for known plaintext and key values. In Fig. 5a the maximum
correlations for all 16 S-boxes occur at the same point in time indicating a fully parallel
design. In Fig. 5b it can be observed that groups of 4 S-boxes behave similarly. This
confirms that the accelerator implementation of the EFM32 processes 32-bit words of the
AES state simultaneously which corresponds to four parallel S-boxes. The words exhibit
two distinct peaks in subsequent clock cycles which overlap with the following word. This
behavior is consistent with leakage caused by writing or overwriting a shared buffer register.
For some S-boxes, e.g., S-box 12-15 at clock cycle 6, additional correlation peaks can be
observed. This behavior is also visible several cycles after the computation of the current
AES round. A reasonable explanation for these additional peaks is the complex structure
of the cryptographic coprocessor of the EFM32, which contains an ALU with dedicated
instruction memory and data registers. The peaks could stem from internal buffers or the
switching of multiplexers between register banks.

In order to implement the LR-AEAD as described in Sec. 2.2 we utilize the SHA-256
hardware accelerator of the EFM32. In contrast, the STM32 only provides a SHA-1
accelerator that we opted to ignore, as practical attacks against SHA-1 have already been
shown [LP19]. Instead, we use a software implementation of SHA-256 provided by the
open source library tinycrypt [Mis0e], which is designed for constrained devices.

6 Side-channel evaluation
In this section we present the results of a side-channel analysis of LR-AEADs on two
microcontrollers. As explained in Sec. 4, the analysis of the LR-AEADs is reduced to an
analysis of the LR-PRFs with different data complexity configurations. We are covering two
attack vectors on the LR-PRF: Attacks on key transfers from CPU to hardware accelerator
and attacks on the AES accelerator which is used as part of the LR-PRF implementation.
In that regard we first demonstrate that the key can be fully recovered if the AES is used
in a standard mode where the data complexity for the attack is not limited. Within the
LR-PRF, however, the AES is only used with limited data complexity, i.e., with a limited
number of different plaintext inputs under one key. Thus, we provide results of attacks
with different data complexities and give estimates of the remaining security level. We find
that attacks on the key transfer do not lead to exploitable security levels. For the attacks
on the AES, we observe that the security level decreases with rising data complexity.
However, for both microcontrollers we find configurations that, under our test conditions,
lead to high security levels greater than 100 bit. We describe our measurement setup in
Sec. 6.1. In Sec. 6.2 we provide result of the attack on the key transfer, Sec. 6.3 and Sec. 6.4
cover attacks on the AES with unlimited and limited data complexity, respectively.

6.1 Measurement setups
The measurement setup for the STM32 is depicted in Fig. 6a and consists of a CW308T-
STM32F target board mounted on a CW308 UFO Board running at a clock frequency
of 10 MHz. A PicoScope 6402D USB-oscilloscope is used for the data acquisition at a
sampling rate of 1.25 GHz. The EM emanations are captured using a passive Langer
RF-U 2.5-2 near-field probe that is connected to a Langer PA 303 preamplifier adding a
gain of 30 dB. The EFM32 setup consists of an EFM32 Pearl Gecko PG12 Starter Kit
running at its default clock frequency of 19 MHz. A LeCroy WavePro 7 Zi-A 2.5 GHz
oscilloscope operating at a sampling rate of 5 GHz is used for the data acquisition. We use
the same near-field probe and preamplifier as in the STM32 setup.

According to the attacker model in Sec. 3.1 the probes are positioned manually. Different
positions close to pins, capacitors and on top of the package were tested by inspecting
signal amplitudes and qualitative indicators, e.g., if the AES round structure is visible. In



378 Retrofitting Leakage Resilient Authenticated Encryption to Microcontrollers

case of the CW308T-STM32F target board, the probe is located on Pin 31 (c.f. Fig. 6a).
For the EFM32 the probe is located in between two decoupling capacitors as shown in
Fig. 6b.

(a) STM32 (b) EFM32

Figure 6: Positioning of the EM probes.

6.2 Template attacks on key transfer
Protecting a cryptographic operation against physical attacks is only feasible if the key is
not easily recovered through SCA of the key transfer from the CPU to the cryptographic
accelerator. We perform an evaluation of the key transfer for both microcontrollers and
confirm that under our conditions, the leakage cannot be exploited to recover the key.

0.02
0.20
0.40

Key bytes 0-3

0.02
0.20
0.40

Key bytes 4-7

0.02
0.20
0.40

Key bytes 8-11

1 2 3 4 5 6 7 8 9
Time in clock cycles

0.02
0.20
0.40

Key bytes 12-15

C
or
re
la
tio

n
co

ef
fic

ie
nt

(a) STM32

0.05
0.20
0.40

Key bytes 0-3

0.02
0.20
0.40

Key bytes 4-7

0.02
0.20
0.40

Key bytes 8-11

1 5 10 15 20 25 30
Time in clock cycles

0.02
0.20
0.40

Key bytes 12-15

C
or
re
la
tio

n
co

ef
fic

ie
nt

(b) EFM32

Figure 7: Correlation-based leakage test on the key transfer for 100,000 traces with known
random keys.

The AES hardware accelerator on both devices is connected to the CPU as a memory-
mapped device. During the initialization the key has to be written to a register of the
accelerator as four 32-bit words for a key size of 128 bits. The key transfer on the internal
bus can be observed by an attacker, enabling a TA on the key bytes with a data complexity
of 1. As the key is static, differential attacks are excluded. Although the key is transferred
in words of 32 bits, building templates for 32-bit values, under the chosen conditions, is not
feasible due to the time which is required to collect a sufficient number of measurements
for all 232 templates. With the acquisition rate of our setup of about 50 traces per second,
it takes roughly 10,000 years to collect the required traces, even for 16-bit values it takes
over 60 days. The TAs carried out in the following sections are therefore based on 8-bit
templates instead.
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In a first step, a correlation-based leakage test on the key transfer is conducted to
find the POIs for the TA. The correlation for the values of the different key bytes is
depicted in Fig. 7a for the STM32, and in Fig. 7b for the EFM32. For both figures we use
100,000 traces with known random keys. Both devices show relatively high correlation
values of approximately 0.4, which is expected for unprotected microcontrollers. Figure 7a
shows that the duration of the entire key transfer is eight clock cycles and the leakage of
the words is partly overlapping. The leakage test for the EFM32 looks similar except for
the difference that the four 32-bit transfers do not overlap at all.

The POIs for the TA on the different words are obtained by using all samples that
exhibit a correlation higher than 0.02 for the STM32. For the EFM32 we use a threshold of
0.05 for the first four key bytes and 0.02 for the other key bytes. Both thresholds have been
determined visually as being just above the noise floor and are marked with a dashed line.
The templates for the 256 possible values are generated from a total of 2,000,000 traces
with known random keys in the case of the STM32, and 1,000,000 traces in the case of the
EFM32. The difference in the number of traces stems from different acquisition rates on
the two setups. To evaluate the entropy reduction by the TA, 1,000 attacks with different
random keys are performed where for each key 1,000 traces are recorded. We found that
already for this number of traces per key, the results are stable and more traces per key
do not further improve results.
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Figure 8: Security level for 1,000 random keys subject to a Template Attack on the key
transfer.

The results for both devices are depicted in Fig. 8. The median security level under
our attack conditions is 120.09 bits for the STM32 and 113.15 bits for the EFM32. Even
the key with the worst security level has a remaining entropy of 107 bits and 97 bits for the
STM32 and EFM32, respectively. Summing up, while a TA on the key transfer reduces the
entropy of the key, it does not compromise the security to an extent where a protection of
the cryptographic operation would be pointless.

6.3 Template attack on unprotected AES
The idea of retrofitting protection for AES hardware accelerators is motivated by the
assumption that the devices are vulnerable to SCA. Hence, we perform TAs on the hardware
AES of the EFM32 and the STM32 to verify this assumption. Additionally, a successful
attack result serves as a confirmation that the side-channel measurement setup including
the manual positioning of the probe is effective. The evaluation also provides a baseline
for comparison during the evaluation of the applied protection mechanism in Sec. 6.4.
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Figure 9: Median key rank of the 16 key bytes subject to a Template Attack on the AES
S-box input for 10 random keys with random plaintexts for varying number of traces.

As an intermediate value we target the S-box input of the first AES round, which is
common practice for attacks on AES. The results of a correlation-based leakage test depicted
in Figs. 5a and 5b are used to select suitable POIs. Again, the dashed line marks the
threshold for the POI selection. For the STM32 and the EFM32 the threshold is set to 0.04
and 0.017, respectively. In the profiling phase, we acquired 2,000,000 traces (STM32) and
1,000,000 traces (EFM32) with random keys and random plaintexts. Multivariate templates
are computed for each of the 256 possible intermediate values of all 8-bit templates. During
the attack phase, 10 random keys are evaluated using up to 30,000 traces with random
plaintext inputs.

In contrast to the attack on the key transfer in Sec. 6.2, where all processed values are
constant and increasing measurements merely reduce noise effects, variable input values
allow the attacker to increase the success probability by increasing the number of traces.
Figures 9a and 9b depict the median key rank based on 10 random keys for an increasing
number of traces. Each line represents the median key rank for one of the 16 key bytes
(S-boxes). The key rank denotes the position of the correct value if the results are sorted
according to their likelihoods. A rank of 1 equals a successful recovery, while higher ranks
require key enumeration effort by the attacker. For the STM32 the key byte ranks decrease
to 1 after about 2,500 traces, i.e., a full key recovery is achieved. In the case of the EFM32,
more traces are needed to achieve low key ranks. However, not all key bytes converge to a
rank of 1 and therefore a low effort in key rank enumeration is still necessary. Summarizing,
both AES engines are vulnerable to SCA and protection mechanisms are required.

6.4 Template attacks on LR-PRFs with different data complexities
This section provides the side-channel evaluation of the proposed retrofitted protection
mechanism based on LR-PRFs. As outlined in Sec. 2, the security is determined by a
side-channel attack on the initial use of the long-term secret. The number of different
plaintexts which are used in the LR-PRF construction is a trade-off and affects the data
complexity of a side-channel attack and the runtime. We analyze the security level of
the implemented concept for different trade-offs by performing TAs with different data
complexities.

The same profiling set as described in Sec. 6.3 can be used. Data complexities of
{2, 4, 8, 16, 32, 64, 128, 256} are used and for each 300 different random keys are attacked.
All plaintexts are of the form that all 16 bytes are equal as described by Medwed et al.
[MSJ12]. For each of the 300 attacked keys, we collected a high number of traces to reduce
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Figure 10: Median security levels from 300 random keys subject to a Template Attack on
the AES S-box input for varying number of traces and data complexities.

the measurement noise. Specifically, we recorded 30,000 traces in case of the STM32 and
10,000 traces in case of the EFM32. We found that the attack does not achieve further
significant improvement with higher numbers of traces.

Figures 10a and 10b present the attack results as a median security level4 of the full
key in bits (after key rank estimation) over the number of traces and for different data
complexities. As expected, the security level generally decreases with increased numbers
of traces. However, importantly, the security levels do not approach 0 bit security because
of the protection mechanism. Contrarily, the security levels stagnate and do not decrease
further after a certain number of traces, which proves that the protection mechanism
is effective. Note that a data complexity of 256 does mean that all values are used per
plaintext byte. However, all plaintext bytes are still equal. This is the important difference
to a regular attack scenario as described in Sec. 6.3 and the prevalent reason for the working
protection in these cases.
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Figure 11: Security levels of 300 random keys subject to a Template Attack on the AES
S-box input for 30,000 (STM32) respectively 10,000 (EFM32) traces and different data
complexities.

4The median is used instead of the mean as it denotes the security level that an attacker achieves in
50% of the cases. However, as the security levels are nearly normally distributed depicting the mean would
result in similar values.
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As explained in Sec. 3.3, the security level of individual keys depends on their concrete
value in the case of limited data complexity. Keys are chosen at random and the resulting
security levels of attacks vary accordingly. It is therefore important to not only consider
the median security level but the whole distribution as the outliers determine the worst
case security level. We show this variance in Figs. 11a and 11b. The figures present
attack results after the maximum number of traces, i.e., 30,000 traces for the STM32 and
10,000 traces for the EFM32. Hence, this focuses on the rightmost verticals of Fig. 10.
Each vertical on the x-axis contains the security levels from 300 attacks for this data
complexity and the fixed number of attack traces. The distribution of the 300 attack
results is visualized as a box plot. The red lines in the center of the boxes denote the
median for the respective data complexity (this corresponds to the data shown previously
on the rightmost vertical). The boxes include 50 % of the values within the quartiles Q1
and Q3. All whiskers of the boxplots are drawn at 1.5 Interquartile Range (IQR) or at
the extrema. Outliers that diverge more than 1.5 IQR from the box edges are denoted as
circles.

As most important observation it can be noted that for data complexities up to 16,
security levels including outliers are higher than 96 bits, which is a very positive result.
For this number of attack traces, the attack on the unprotected AES results in a security
level close to 0 bit. As expected and observed in the previous results, the security level
decreases with increasing data complexity, i.e., if the number of observable plaintexts is
extended. Interestingly, the distribution is rather broad with high differences between the
median security level and the worst case of individual keys. Considering, e.g., the STM32
with data complexity 128, a median security level above 90 bits is achieved under our
attack conditions but individual cases are as low as 70 bits. The variance is similar for
both microcontrollers which reinforces the assumption that the choice of key values, not
the measurement setup is the main reason for this observation.

The two AES engines have different numbers of parallel hardware S-boxes. The EFM32
includes four parallel S-boxes while the STM32 is fully parallel with 16 S-boxes. This
means that the desired key dependent noise (algorithmic noise) from parallel structures is
higher for the STM32. This explains the observation of higher resulting security levels at
lower data complexities (2 to 64) as can be observed when comparing Figs. 10a and 10b.
The results confirm that the higher parallelism provides better protection. For the EFM32
with four parallel S-boxes the algorithmic noise provides less protection. Nevertheless, the
security level still remains above 100 bits for data complexities smaller than 16.

Note that the median security level for the data complexity of 256 is lower for the
STM32. This is in contrast to the described reasoning and can in our opinion be explained
using Fig. 9, which shows that the TA on the unprotected EFM32 does not converge to a
key rank of 1 for single bytes. For higher data complexities, attacks generally become more
comparable to attacks on the unprotected AES. The results in Fig. 9 for the unprotected
case show that the EFM32 is harder to attack judging by the required number of traces
and the partially imperfect key recovery. This could be the reason why the security
level of the EFM32 does not decrease at the same rate for high data complexities. As
a conclusion, the device which was easier to attack without any countermeasures, the
STM32, proves to be the more secure platform to implement LR-PRFs due to the higher
level of parallelism of the hardware accelerator. In other words, the higher parallelism
clearly leads to comparably better protection with the LR-PRF concept despite the fact
that the same device is less secure when unprotected.

In summary this evaluation shows that secured LR-PRFs, and consequentially secured
LR-AEAD, can be achieved on both devices. High security levels above 100 bit are achieved
for all experiments with data complexities up to 16 on the STM32 and up to 8 on the
EFM32. This shows that for protection in the targeted IoT scenarios, it is sufficient to use
the original LR-PRF as long as the data complexity is within the discussed boundaries
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Figure 12: Performance evaluation of the LR-PRF implementation for different optimiza-
tion levels and varying data complexities.

for the targeted security level. The fully parallel AES implementation of the STM32
allows for more efficient constructions while retaining a higher security level. Naturally,
the unknown-inputs and key refreshing LR-PRF that are limited to data complexity 2 by
design could also be used, but come with the downside of additional preprocessing steps
and the requirement to temporarily store secret plaintexts.

7 Performance analysis
In this section we evaluate the performance of our LR-PRF and LR-AEAD implementation
with respect to execution time and code size on both microcontrollers. We analyze the
impact of different data complexities, however, we only consider LR-PRF configurations that
process a number of bits per stage that is a divider of 128 (i.e., n=1, 2, 4, 8 corresponding
to data complexities of 2, 4, 16, 256). This avoids having a last LR-PRF iteration that does
not use the full data complexity. In order to measure the execution time of the LR-PRF
and LR-AEAD, we use the data watchpoint and trace (DWT) debug component of the
Cortex-M processor. This feature allows for non-invasive and cycle accurate execution
time measurements. Non-invasive in this case means that it is not necessary to modify the
code under test to perform the timing measurements.

Single LR-PRF execution Figure 12 depicts the number of clock cycles required
for a single LR-PRF execution with varying data complexities and different compiler
optimization levels. We use three different optimization levels: no optimization (O0),
optimization for size (Os) and performance and size (O3). The results are also included in
tabular format in Table 3 in the appendix. Note that a particular optimization level choice
does not have an impact on the side-channel security, as the AES hardware accelerator is
not influenced by the compiler. The same holds for the key transfer over the bus. The
diagram shows that the number of clock cycles grows logarithmically with increasing data
complexity (i.e., linearly with the number of input bits processed per iteration). This is
expected since an increasing data complexity leads to a decreasing number of required
iterations in the LR-PRF tree. Contrary to our expectation, Fig. 12 does not reflect the
performance difference between the AES coprocessors of the devices. Even though the
STM32 has a fully parallel AES core, the LR-PRF implementation is only slightly faster
than the one on the EFM32. We would expect a factor of about four because a fully
parallel implementation is capable of calculating an AES round in one cycle whereas an
implementation with four S-boxes requires four cycles. We assume that the difference
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Figure 13: Performance evaluation of the LR-AEAD implementation for different data
complexities and varying ciphertext sizes.

results from the different low-level software libraries used on both devices and differences
in the interfacing. For both microcontrollers, the optimizations Os and O3 result in a
2 and 3 times faster execution time, respectively, in comparison to the baseline without
optimization (O0). Given the fact that the difference in performance is only marginal we
suggest using the optimization Os as it comes with the additional benefit of a reduced
code size. Therefore, we evaluate the LR-AEAD performance with optimization level Os.

Complete LR-AEAD execution For the evaluation of the complete LR-AEAD,
we measure its execution time for different data complexities and varying ciphertext sizes
on both microcontrollers. We use the Os optimization level for the evaluation depicted in
Fig. 13. We evaluate the LR-PRF with the minimum and maximum data complexity of 2
and 256 on both devices. Additionally, we evaluate the LR-PRF with a data complexity of
4 and 16 for the EFM32 and STM32, respectively. These values turned out to be a suitable
trade off between execution time and security in Sec. 6.4. These results and additionally
the required clock cycles to process a single 16-Byte block of data are also listed in Table 4.
The necessary clock cycles for the basic function calls, AES_encrypt(), LR-PRG_seed()
and LR-PRG_iterate(), are given in Table 2.

On the EFM32 the implementation makes use of the SHA-256 hardware accelerator
whereas on the STM32 the hash is implemented in software [Mis0e]. This leads to a
decreased performance of the STM32 in the LR-AEAD case despite the fact that it has a
slightly faster AES core. For smaller ciphertexts one can clearly see the advantage of a
higher data complexity, however, the difference vanishes with increasing ciphertext lengths.
The reason is that the LR-PRF is only evaluated twice, regardless of the length of the
ciphertext, and thus the overhead amortizes with increased length. In the context of
firmware updates, we usually deal with encrypted firmware images larger than 16 KiB,
hence, the performance penalty from decreased data complexity is low. Assuming a core
clock frequency of 4 MHz, a data complexity of two and a firmware update size of 64 KiB,
the decryption process take around two seconds on the STM32 and less than a second
on the EFM32. These results are quite practical for a secure firmware update in IoT
applications.

Code size Besides the execution time of the LR-PRF and the LR-AEAD, their code
size is an important parameter, especially for constrained embedded devices. In order
to determine the code size required to retrofit the LR-AEAD to an existing application,
we look at the additional code size of both functions when added to a simple baseline
application. This application consists of only a main function with an endless while loop
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together with the necessary initialization routines such as stack initialization. We use
the example code from the microcontroller manufacturers as a template for the baseline
application and implement both the LR-PRF and LR-AEAD on top. The additional code
size, i.e., the code size required for the LR-PRF and the LR-AEAD is listed in Table 1.

Table 1: Code size in bytes of the LR-PRF and LR-AEAD implementations.
STM32 EFM32

Code 0s 03 O0 Os O3 O0
LR-PRF 544 604 976 576 668 1,144
LR-AEAD 2,236 3,236 3,992 1,720 2,872 3,076

The LR-AEAD implementation occupies between 0.49 % and 0.76 % of the STM32’s
512 KiB flash memory, depending on the optimization level. For the EFM32, the implemen-
tation needs between 0.72 % and 1.04 % of the microcontroller’s 1024 KiB flash memory.

Comparison to protected software implementation As a comparison, we mea-
sure the performance of a side-channel protected software implementation of AES developed
by the ANSSI [BKPT7f]. They implement affine masking as described in [FMPR11] in
combination with several hiding countermeasures. We measured around 108,000 cycles for
one call to the protected aes() function on an ARM Cortex-M4 microcontroller similar to
their reference platform (optimization Os). For the example of 64 KiB firmware updates,
we can give a rough estimate of the runtime by considering only the AES calls that are
required to decrypt the firmware. This significantly underestimates the real runtime
because it neglects the overhead that arises when implementing a block cipher mode
of operation and the MAC calculation. It does also not include the collection of the
randomness that is required for the countermeasures. Nevertheless, with an estimate of
more than 442Mio. clock cycles this alone is a factor 208 and 45 slower compared to the
complete LR-AEAD with data complexity 2 on the EFM32 and STM32, respectively5.
This means that a secured firmware update would take in the range of minutes instead of
single seconds which is significant. The code size of 6,392 bytes is also about three times
larger.

In summary, the runtime overhead and the flash memory footprint of the LR-PRF
and the LR-AEAD implementation are low in comparison and thus applicable for secure
firmware updates in resource constrained scenarios such as IoT applications. The overhead
of using lower data complexities to achieve higher security levels becomes less significant if
the length of the payload increases.

8 Conclusion
In this work we use concepts from leakage resilient cryptography to tackle the difficult
problem of securing COTS microcontrollers against side-channel attacks. We propose to
implement an LR-AEAD scheme using a block cipher based LR-PRF as the underlying
side-channel hardened primitive. Specifically, we implement the LR-PRF in software and
use existing hardware accelerators to leverage the algorithmic noise of parallel implemen-
tations to protect against side-channel attacks. In a case study on two ARM Cortex-M
microcontrollers with AES accelerators we analyze the side-channel security of our con-
struction and find that it resists profiled attacks and retains security levels above 100 bits.
We give concrete results for a configuration parameter that allows a trade-off between
security level and performance. The overhead in code size is small and occupies only

5Note that none of our implementations were optimized for performance and our aim was not to
compare to the fastest possible implementation. The numbers given only serve the purpose of estimating
the overhead of our solution compared to software-only countermeasures.
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about 1 percent of the available memory on the two devices. Compared to an exemplary
side-channel protected software AES implementation, the runtime of our proposal is up
to 200 times faster with a memory footprint of only one third. Our solution is applicable
to any microcontroller that has an AES accelerator with parallel S-boxes. Therefore, it
enables retrofitting side-channel protection to a wide range of devices. This will help to
realize root of trust security mechanisms such as secured firmware updates for low-cost
IoT devices.
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A Performance numbers in tabular format

Table 2: Execution time in clock cycles of the function calls used by the LR-AEAD,
including input/output.

STM32 EFM32
Function call O3 Os O0 O3 Os O0
AES_encrypt() 87 87 207 126 132 319
LR-PRG_seed() 20 19 49 18 17 44
LR-PRG_iterate() 217 227 479 309 327 716

Table 3: Execution time in clock cycles of the LR-PRF implementation for different
optimization levels and varying data complexities.

STM32 EFM32
Data complexity O3 Os O0 O3 Os O0
256 2,491 3,908 11,973 3,094 4,636 12,750
16 4,875 7,668 24,149 6,134 9,036 25,469
4 10,411 16,244 51,861 13,142 18,892 53,790
2 24,558 37,620 120,725 30,573 42,847 121,972

Table 4: Execution time in clock cycles of the LR-AEAD implementation (optimization
level Os) for different data complexities (DCs) and varying ciphertext sizes.

STM32 EFM32
Ciphertext size DC 256 DC 16 DC 2 DC 256 DC 4 DC 2
16 B 15,194 22,746 82,842 10,429 19,214 21,165
0.5 KiB 80,777 88,329 148,425 27,578 55,898 103,514
1 KiB 145,441 152,993 213,089 44,008 72,328 119,944
2 KiB 274,769 282,321 342,417 76,968 105,288 152,904
4 KiB 533,425 540,977 601,073 142,888 171,208 218,824
8 KiB 1,050,737 1,058,289 1,118,385 274,728 303,048 350,664
16 KiB 2,085,361 2,092,913 2,153,009 538,408 566,728 614,344
32 KiB 4,154,609 4,162,161 4,222,257 1,065,768 1,094,088 1,141,704
64 KiB 8,293,105 8,300,657 8,360,753 2,120,488 2,148,808 2,196,424
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