
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 4, pp. 281–308. DOI:10.13154/tches.v2020.i4.281-308

Minerva: The curse of ECDSA nonces
Systematic analysis of lattice attacks on noisy leakage

of bit-length of ECDSA nonces ∗

Jan Jancar1, Vladimir Sedlacek1,2, Petr Svenda1 and Marek Sys1

1 Masaryk University, Brno, Czechia
2 Ca’ Foscari University of Venice, Italy

{j08ny,vlada.sedlacek}@mail.muni.cz;{svenda,syso}@fi.muni.cz

Abstract. We present our discovery of a group of side-channel vulnerabilities in imple-
mentations of the ECDSA signature algorithm in a widely used Atmel AT90SC FIPS
140-2 certified smartcard chip and five cryptographic libraries (libgcrypt, wolfSSL,
MatrixSSL, SunEC/OpenJDK/Oracle JDK, Crypto++). Vulnerable implementations
leak the bit-length of the scalar used in scalar multiplication via timing. Using leaked
bit-length, we mount a lattice attack on a 256-bit curve, after observing enough
signing operations. We propose two new methods to recover the full private key
requiring just 500 signatures for simulated leakage data, 1200 for real cryptographic
library data, and 2100 for smartcard data.
The number of signatures needed for a successful attack depends on the chosen
method and its parameters as well as on the noise profile, influenced by the type of
leakage and used computation platform. We use the set of vulnerabilities reported in
this paper, together with the recently published TPM-FAIL vulnerability [MSE+20]
as a basis for real-world benchmark datasets to systematically compare our newly
proposed methods and all previously published applicable lattice-based key recovery
methods. The resulting exhaustive comparison highlights the methods’ sensitivity
to its proper parametrization and demonstrates that our methods are more efficient
in most cases. For the TPM-FAIL dataset, we decreased the number of required
signatures from approximately 40 000 to mere 900.
Keywords: ECDSA · Hidden Number Problem · side-channel attack · lattice
attack · smartcards

1 Introduction
The Elliptic Curve Digital Signature Algorithm (ECDSA) is a very popular digital signature
algorithm, used among others in the TLS protocol [Res18], document signing and in
blockchain applications. One of its main pitfalls is that it requires a unique nonce per
signed message. Its fragility with regards to these nonces is well known. Any reuse of
the nonce for a different message trivially leads to key recovery, as was the case in the
PlayStation 3 game console [FAIL10], which utilized a fixed value for signing its binaries.

While nonce reuse problems are to a large extent mitigated by using deterministic
generation of nonces as specified in RFC 6979 [Por13] or used in EdDSA [BDL+12], other
potential issues can prove fatal. Knowing the nonce used for a single known message – or
being able to brute-force it, as was the case for the Chromebook H1 chip [CrOS19] used
for U2F authentication – leads to private key recovery as well. Even worse, ECDSA is
one of the Schnorr-like [Sch89] signature schemes, featuring a linear relation between the

∗Full details and paper supplementary material can be found at https://minerva.crocs.fi.muni.cz/

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-04-15 Accepted: 2020-06-15 Published: 2020-08-26

https://doi.org/10.13154/tches.v2020.i4.281-308
mailto:j08ny@mail.muni.cz,vlada.sedlacek@mail.muni.cz,svenda@fi.muni.cz,syso@fi.muni.cz
https://minerva.crocs.fi.muni.cz/
http://creativecommons.org/licenses/by/4.0/

282 Minerva: The curse of ECDSA nonces

nonce and the private key. Thus even partial information about the random nonces (such
as knowledge of certain bits) can be sufficient to recover the private key, often via the use
of lattice reduction techniques. The partial information can originate from implementation
issues (such as a faulty random number generator or a biased sampling method), or it
might be observed via side-channel attacks or even forced via fault injection.

The already large, yet still incomplete list of past ECDSA-related vulnerabilities
indicates a systemic difficulty in the implementation of secure, leakage-resistant ECDSA
code. We developed a new leakage-testing tool, analyzed a variety of cryptographic libraries
and devices, and found several with timing leakage during the ECDSA signing. In contrast
to the more commonly used proof-based approach intrinsic to lattices, we focused on
extensive heuristic comparison of existing and newly proposed methods on the benchmark
data as collected from several real-world vulnerabilities and having different noise profiles.

The paper brings the following contributions in the area of lattice-based attack methods
against real implementations of ECDSA:

1. Discovery and responsible disclosure of a set of vulnerabilities in the implementation
of ECDSA in a certified cryptographic chip and five cryptographic libraries that
allow to extract the private key used (Section 3 and Section 4).

2. Propositions of two new distinct methods for private key recovery, which can tolerate
a certain number of errors in the estimation of nonce’s known bits (Section 5).

3. A systematic and extensive comparison of the newly proposed and all previously
published methods and their parameterization on the benchmark created using noise
profiles observed in the real-world vulnerable implementations (Section 6). Notably,
we show that newly proposed methods require an order of magnitude fewer signatures
for a successful attack on the TPM-FAIL dataset [MSE+20].

4. Release of an open-source tool1 for extensive analysis of ECC implementations for
software cryptographic libraries and JavaCard smartcards.

2 Related work
The task of recovering the ECDSA private key given enough information about signature
nonces can be seen as an instance of the Hidden Number Problem (HNP). The HNP was
originally introduced by Boneh and Venkatesan [BV96] to prove the hardness of computing
Diffie-Hellman secrets. They showed a way to solve it by transforming it into a Closest
Vector Problem (CVP) instance, solvable via lattice reduction and Babai’s nearest plane
algorithm [Bab86]. Howgrave-Graham and Smart [HS01] and Nguyen and Shparlinski
[NS02; NS03] used the HNP to show that the (EC)DSA schemes are insecure if the attacker
can obtain information about the most significant bits of the nonces used. Since then,
the HNP was used in many attacks against biased or leaked nonces in (EC)DSA, often
utilizing side channels such as timing [ABuH+19; BT11; MSE+20], cache attacks [BH09;
BvdPS+14; vdPSY15; FWC16; Rya19a; DME+18; Rya19b; WSB20], electromagnetic
measurements and other side channels [PGuH+19; GPP+16; BFM+16].

Other attacks utilizing the HNP include using information about nonce distribution
[BH19] or fault injection in the case of the SM2 signature algorithm [LCL13]. There have
also been some theoretical extensions [FGR12; GRV16; HR06]. Finally, a very different
approach was taken by Mulder et al. [MHM+13], where lattice reduction is used just as
a processing step, and the core of the method lies in the Fast Fourier Transform. The
method, also known as Bleichenbacher’s approach, allows more input errors in exchange
for much more signatures than the lattice-based approach.

1ECTester:https://github.com/crocs-muni/ECTester.

https://github.com/crocs-muni/ECTester

Jan Jancar, Vladimir Sedlacek, Petr Svenda and Marek Sys 283

The real device leakage and measurement noise profiles largely influence the input
information and can cause errors, to which lattice-based methods are susceptible. Further-
more, the parameter space for these methods is extensive. Thus so far, there is only a
limited systematic comparison of the efficiency of existing methods, evaluated based on the
number of required input signatures (the fewer, the better). We addressed the situation
and created such a comparison based on real-world noise profiles.

3 The vulnerability
The vulnerable devices and libraries (see Table 1 for a list) leak the effective bit-length of
the scalar used in scalar multiplication on an elliptic curve through timing. The leakage is
insignificant for many applications of scalar multiplication such as ECDH or key generation
as only the bit-length of the private key is leaked, which represents a small amount of
information about the private key, which is always the same.

However, in ECDSA [NIST13], the bit-length of the random nonce is leaked. Such
leakage is much more significant as each signature represents new and usable information
about the private key. When enough leaked information is accumulated, the private key
can be completely recovered using lattice reduction techniques.

Table 1: Libraries and devices we analyzed with respect to their leakage.

Type Name Version/Model Scalar multiplier Leakage

Li
br
ar
y

OpenSSL 1.1.1d Montgomery ladder1 no
BouncyCasle 1.58 Comb method2 no

SunEC JDK 7 - JDK 12
Window-NAF no
Lopez-Dahab ladder yes

WolfSSL 4.0.0 Sliding window yes3

BoringSSL 974f4dddf Window method no
libtomcrypt v1.18.2 Sliding window no
libgcrypt 1.8.4 Double-and-add yes
Botan 2.11.0 Window method4 no
Microsoft CNG 10.0.17134.0 Window method no
mbedTLS 2.16.0 Comb method no
MatrixSSL 4.2.1 Sliding window yes
Intel PP Crypto 2020 Window-NAF no
Crypto++ 8.2 unknown yes

C
ar
d

Athena IDProtect 010b.0352.0005 unknown yes
NXP JCOP3 J2A081, J2D081, J3H145 unknown no
Infineon JTOP 52GLA080AL, SLE78 unknown no
G+D SmartCafe v6, v7 unknown no

1 Applies the fixed bit-length mitigation.
2 Uses many scalar multiplication algorithms.
3 Likely not exploitable, due to a small amount of leakage.
4 Uses additive scalar blinding.

284 Minerva: The curse of ECDSA nonces

3.1 Elliptic Curve Digital Signature Algorithm (ECDSA)
The public domain parameters of the ECDSA consist of a standardized elliptic curve E
over a finite field and a generator point G on E of prime order n. To sign a hashed message
H(m) with a private key x ∈ Z∗n, the signer:

1. generates a uniformly random value (“nonce”) k ∈ Z∗n,
2. computes r = ([k]G)x (mod n), the x-coordinate of the point [k]G 2,
3. computes s = k−1(H(m) + xr) (mod n) 2,
4. outputs (r, s) as the signature of H(m).

3.2 Leakage

248 249 250 251 252 253 254 255 256
nonce bit-length

148500

149000

149500

150000

150500

151000

151500

152000

sig
na

tu
re

 ti
m

e
(

s)

0

20

40

60

80

Figure 1: Heatmap of the signing duration and the bit-length of ECDSA nonces for
500 000 signatures using secp256r1 curve on the Athena IDProtect card.

For three out of five affected libraries in Table 1 (libgcrypt, MatrixSSL, SunEC) and
the affected smartcard (Athena), the signing runtime directly depends on the bit-length
of the nonce linearly: each additional bit represents one more iteration of a loop in
scalar multiplication, which increases the runtime. The leakage can be clearly seen from
powertraces of the card performing ECDSA signing in Figure 2.

For implementations leaking just the noisy bit-length (libgcrypt, SunEC, Athena) the
leakage can be modeled using three parameters: duration of constant time processing in
signing (e.g., hashing) (base), duration of one iteration of the scalar multiplication loop
(iter_time) and the standard deviation of the noise (sdev). On the secp256r1 curve, this
leakage L can be modelled as a random variable:

L = base+ iter_time ·B + N
B ∼ Geom(p = 1/2, (256, 255, . . . , 0))
N ∼ Norm(0, sdev2)

(1)

where B represents the bit-length with a truncated geometric distribution and N
the noise. Only two of the above parameters, iter_time and sdev, affect how much the
implementation leaks; we will use them to assess how easy it is to mount an attack.

In the case of wolfSSL and its sliding window scalar multiplication implementation,
the dependency is more complex, and the leakage much smaller. Thus we consider it to be
leaking, yet not likely exploitable. The MatrixSSL implementation also leaks the Hamming
weight of a scalar: each non-zero bit increases the computation runtime. The Crypto++
library leaks the bit-length and other unidentified information.

2And returns to step 1. if the value equals 0.

Jan Jancar, Vladimir Sedlacek, Petr Svenda and Marek Sys 285

Figure 2: The visible leakage of nonce’s bit-length on a power consumption trace of the
Athena IDProtect smartcard as captured by an ordinary oscilloscope at 40MHz
sampling frequency for three signatures (aligned) with nonces having 0, 1 and 5
leading zero bits. The zoomed region of the whole ECDSA operation displays
the difference at the end of the multiplication operation. The pattern
corresponding to a single iteration of the scalar multiplication algorithm is
clearly discernible, allowing an attacker with physical access to a card to
establish the bit-length of the nonces precisely and with no error. Note that
captured powertrace is presented only to highlight the root cause of
vulnerability – the oscilloscope is not required for the successful attack.

3.3 Causes
We identified two main categories of root causes for the reported group of vulnerabilities.
While the first one stems from an intricate relation between the ECDSA nonce, the
private key, and the resulting signature, the second one relates to the general difficulty of
implementing non-leaking scalar multiplication.

3.3.1 Nonce issues

The susceptibility of (EC)DSA nonces to lattice attacks does not seem to be widely known
amongst developers of cryptographic software. There are four main issues regarding nonce
use in (EC)DSA: nonce reuse, the bias in nonce randomness, nonce bit-length leaks, and
other leaks of partial information about nonces. Due to the aforementioned lattice attacks
and their variants, all of these issues might lead to a private key recovery attack.

Deterministic generation of nonces, as done in EdDSA2 [BDL+12] or RFC6979 [Por13]
mitigates the issues of nonce reuse and nonce bias. However, it does not address the latter
two in any significant way. Deterministic generation of nonces might help the attacker
in case the attacker has a noisy side-channel leaking information about the nonce. If the
attacker can observe the signing of the same message multiple times, they might use the
fact that the same nonce was used to reduce the noise in the side-channel significantly.

3.3.2 Leaky scalar multiplication

Not leaking the bit-length of the scalar used in scalar multiplication is surprisingly hard.
Take almost any algorithm that processes the scalar in a left to right fashion – e.g., the
Montgomery ladder [Mon87] – and instantiate it with incomplete addition formulas (that
cannot correctly compute∞+Q or 2∞ in a side-channel indistinguishable way from P +Q
and 2P). The result introduces a side-channel leaking the bit-length. At the start of the

2We remark that EdDSA is not vulnerable to our attack, as it uses a mitigation described in Section 3.4.

286 Minerva: The curse of ECDSA nonces

ladder that computes a multiple of a point G, the two ladder variables are initialised either
as R0 =∞, R1 = G or as R0 = G, R1 = 2G, depending on the used algorithm.

In the first case, the computation might start at any bit larger than the most significant
set bit in the scalar, i.e., it can be a fixed loop bound, for example, on the bit-length
of the order of the generator, as seen in Algorithm 1. However, until the first set bit
is encountered, all of the additions and doublings will involve the point at infinity, and
because of our assumption that the used formulas are incomplete, they will leak this
information through some side-channel. The leak might have the form of short-circuiting
addition formulas, which check whether the point at infinity was input and short circuit
accordingly to satisfy ∞+ P = P and 2∞ =∞. Such was the case for vulnerable versions
of libgcrypt and was the reason why merely fixing a loop bound in scalar multiplication
was not enough to fix the issue. The formulas might leak the fact that the point at infinity
is present through different channels than timing: power or EM side-channels come to
mind, as the point at infinity is often represented using only 0 or 1 values, which can often
be distinguishable in multiplication and addition on a powertrace.

Algorithm 1 Montgomery ladder (complete)
function Ladder(G, k = (kl, . . . , k0)2)

R0 =∞; R1 = G
for i = l downto 0 do

R¬ki
= R0 +R1; Rki

= 2Rkireturn R0

In the second case, the most significant bit of the scalar must be explicitly found
[BT11], as seen in Algorithm 2. The ladder must start at that bit because the variables are
initialized into a state such that the point at infinity will not appear (so that incomplete
formulas can be used).

Such an implementation clearly leaks the bit-length through timing alone, because of
the loop bound on the bit-length of the scalar.

Algorithm 2 Montgomery ladder (incomplete)
function Ladder(G, k = (kl, . . . , k0)2)

R0 = G; R1 = 2G
for i = |k| − 1 downto 0 do

R¬ki
= R0 +R1; Rki

= 2Rkireturn R0

The use of incomplete formulas or the direct computation of the bit-length of the scalar
for use as a loop bound in scalar multiplication was the source of leakage in all of the
vulnerable software cryptographic libraries. As the implementation on the vulnerable card
is closed source, we were not able to analyze it directly; however, a similar cause is likely,
given the nature of the leakage on the powertraces in Figure 2.

Both the vulnerable Athena IDProtect card and the used Atmel AT90SC chip and
cryptographic library are FIPS 140-2 [Sma12a] and Common Criteria (CC) [Sma12b;
Atm09] certified devices, respectively. The presence of such a vulnerability in certified
devices can be explained by noting that the CC security target of the AT90SC chip [Atm09]
contains mention of two versions of ECC functionality, fast and secure variants. It further
goes to mention that the fast variants are not protected against side-channel attacks and
should not be used on secure data. We hypothesize that these fast and insecure functions
were erroneously used by the Athena IDProtect card and resulted in the vulnerability.

Jan Jancar, Vladimir Sedlacek, Petr Svenda and Marek Sys 287

3.4 Mitigations
Below, we discuss several mitigations that can be applied to a leaking implementation
to fix the vulnerability. The mitigations either stop the leak or mask it with additional
randomness to prevent reconstruction of the private key.

3.4.1 Complete formulas

As described in Section 3.3.2, one of the root causes of the vulnerability was the usage of
incomplete addition formulas, which introduced a measurable time difference between the
case where one of the points being added is the point at infinity and the case where both
points are affine. This ultimately led to a leak of the nonce length. The use of complete
formulas [RCB16; SM16], which behave in the same way for all possible inputs, would
prevent such leak. Besides being constant-time, these formulas also make the addition
algorithm less complex. However, these formulas are slower than incomplete formulas, by
a factor of around 1.4 as reported by Renes, Costello, and Batina [RCB16], and until late,
they were not even available for all short Weierstrass curves.

Using complete formulas is likely the most systematic mitigation, so we recommend to
the developers of the affected systems to switch to complete formulas whenever possible.
The mitigation also requires that the scalar multiplication loop starts at a fixed bit and
that the bit-length of the scalar is not explicitly computed to shorten the loop.

3.4.2 Fixing the bit-length

Even if incomplete addition formulas are used, the vulnerability can still be removed by
making all the nonces the same bit-length. One option is to add a suitable multiple of the
group order to the nonce so that the result of multiplying a point by the nonce will not be
affected. For example, following the recommendation by Brumley and Tuveri [BT11], we
could compute the modified nonce as

k̂ =
{
k + 2n if dlog2(k + n)e = dlog2 ne
k + n otherwise.

This fixes the bit-length of k̂, ensuring that dlog2 k̂e = dlog2 ne+ 1. Subsequently, the
scalar multiplication loop will always run the same number of times (as both points being
added are already affine during the first addition), and the nonce length will not be leaked
through timing. As the computational cost of using k̂ over k is negligible, we recommend
the affected systems to do so as a second line of defense.

3.4.3 Scalar randomisation

Alternatively, there are various side-channel countermeasures utilizing scalar randomization
(i.e., performing the scalar multiplication without directly multiplying by the scalar). A
basic overview of these methods can be found in Danger et al. [DGH+13]. While introducing
some overhead, they also effectively protect against some power analysis attacks.

3.4.4 Long nonces

Finally, multiplication by much longer nonces (without prior reduction modulo the group
order n) should thwart these types of attacks, as learning the most significant bits of the
scalar seems to provide almost no information about the most significant bits of the scalar
modulo n. Such an approach is taken by EdDSA [BDL+12]: for example, when using
Ed25519, the nonce is deterministically created as a 512-bit hash, whereas n has only 255
bits. In principle, the countermeasure could be adapted for ECDSA as well.

288 Minerva: The curse of ECDSA nonces

3.5 Responsible disclosure
We disclosed the vulnerabilities to the affected vendors upon discovery; we also provided
assistance and patches fixing the vulnerability to several of them. Currently, all of the
vulnerabilities in the software products are fixed in their newer versions. The state of the
vulnerable chip AT90SC is unknown, as it is currently offered by the WiseKey company
[Wis], which did not confirm or deny our findings regarding the chip. The Athena IDProtect
card is no longer in production, as Athena was acquired by NXP Semiconductors, which
confirmed to us that no new products are based on the vulnerable code. However, existing
cards remain vulnerable as updates to JavaCards are often almost impossible to deploy.

We then disclosed the vulnerability publicly, together with a proof of concept and a
testing tool that can be used to verify that other implementations are not vulnerable.

4 The attack
In the case of (EC)DSA and even attestation systems such as EPID [DME+18] or ECDAA
[FIDO18; MSE+20], the knowledge of the most significant bits of nonces (with the goal
of computing the private key) can be turned into a HNP instance [BV96], which can be
turned into an instance of the Closest Vector Problem and solved using the methods of
lattice reduction. We will introduce the HNP and show how the knowledge of the most
significant bits of nonces translates into a HNP instance for the aforementioned systems.

4.1 Notation
We use bycq to denote the reduction of y ∈ Z modulo q (so the result lies in [0, q − 1]) and
|y|q := mina∈Z|y − aq| to denote the distance of y ∈ R to the closest integer multiple of q.

It is easy to see the following (in)equalities:

|y|q = |y| for all y ∈ [−q/2, q/2],
|y|q = |y − aq|q for all a ∈ Z,

|y − z/2| < z/2 for all z ∈ R, 0 < y < z

Definition 1 (Approximations). By APPl,q(y), we will denote any u ∈ Q satisfying

|y − u|q ≤ q/2l.

The most significant modular bits [BV96; NS03] are defined in the following way:

Definition 2 (Most Significant Modular Bits). The l > 0 most significant modular bits of
an element y ∈ Zq (regarded as an integer in [0, q − 1]) are the unique integer MSMBl,q(y)
such that

0 ≤ y −MSMBl,q(y) · q/2l < q/2l.

(Thus for l = 1, the most significant bit of y is 0 or 1 depending on whether y < q/2.)
As noted in [NS03], this definition is in contrast with the usual definition of the most

significant bits of an integer. In the lattice context, the modular bits are more convenient
to work with, but see Remark 1 in Section 4.3.

It is worth observing that the most significant modular bits give rise to a specific
approximation of y: the inequality

|y −MSMBl,q(y) · q/2l|q < q/2l

is equivalent to the in Definition 2, since y −MSMBl,q(y) · q/2l ∈ [−q/2, q/2].
Thus MSMBl,q(y) · q/2l may be taken as APPl,q(y). Also, after recentering the bits,

MSMBl,q(y) · q/2l − q/2l+1 may be taken as APPl+1,q(y) giving the exact approximation
used in Nguyen and Shparlinski [NS03].

Jan Jancar, Vladimir Sedlacek, Petr Svenda and Marek Sys 289

4.2 The Hidden Number Problem
Following [NS03], we state the HNP in the following way:

Definition 3 (Hidden Number Problem). Given approximations ai = APPli,q(ki), where
ki = bαti − uicq, for many known ti that are uniformly and independently distributed in
Z∗q , known ui and a fixed secret α ∈ Zq, find α.

In the text, we will use the more common definition where the problem is, given many
HNP inequalities |ki − ai|q < q/2li , find α.

In the (EC)DSA case, α is the fixed secret key, ti and ui are values constructed from
the signatures such that ki = bαti − uicq and ai = APPl,q(ki) is the information leaked,
in our case that is always 03, which claims that the l most-significant modular bits are
zero. This simplifies the above inequality to:

|αti − ui|q < q/2li . (2)

4.3 Constructing the HNP
Assume that we are given d (EC)DSA signatures (ri, si) of message hashes H(mi) such
that for each respective nonce ki > 0, we know that the most significant li > 0 bits of ki

are zero. Denoting the curve order by n and the private key by x, we have

bkicn < n/2li

|s−1
i (xri +H(mi))|n < n/2li

|xbs−1
i ricn + bs−1

i H(mi)cn|n < n/2li

(3)

Thus by setting q = n, α = x, ti = bs−1
i ricn and ui = b−s−1

i H(mi)cn, we have a HNP
instance.
Remark 1. The fact that the most significant li bits (in the classical sense) of ki are zero
translates into the inequality

bkicn < 2dlog2(n)e/2li ,

which is weaker than the used bkicn < n/2li . This means that the inequalities above might
not be true for all ki. However, as the ratio n/2dlog2(n)e is around 10−9 for the curve
secp256r1 that we are working with, we will use the more convenient stronger inequality
which will still be true with overwhelming probability. It is worth having this distinction
in mind though, as it would cause problems for example for the curve sect571k1, where
the ratio n/2dlog2(n)e is almost 2.

In our setup, the values li are estimated from timing only, so it may well happen that
the actual number of most significant zero bits is either higher or lower than li. The former
case is not a significant issue, as the attack will still work (although we are using less
information than available, so we need to balance this by a higher number of signatures).
However, the latter case is quite problematic, as we are utilizing false information in the
attack, and the lattice approach will very likely fail to compute the correct result. We
will refer to the second case as to “input errors” in the remainder of the text and discuss
some options of dealing with them in Section 5. For now, just note that there are two
basic ways of removing the errors: either lowering the li (which is a standard technique)
or subtracting a certain multiple of n/2li from ki, so that the first inequality in (3) will
hold. The latter option amounts to adding a certain multiple of n/2li to ui, which clears
the high bits of ki.

3We do not use the knowledge of the most-significant set bit, as it allows us to tolerate one-sided errors.

290 Minerva: The curse of ECDSA nonces

4.4 Solving the HNP
Given d HNP inequalities of the form

|αti − ui|n < n/2li ,

we can construct a lattice spanned by the rows of the (d+ 1)× (d+ 1) matrix B [NS02;
BvdPS+14]:

B =

2l1n 0 0 . . . 0 0

0 2l2n 0 . . . 0 0
...

...
0 0 0 . . . 2ldn 0

2l1t1 2l2t2 2l3t3 . . . 2ldtd 1

Then, by the HNP inequalities above, the vector

u = (2l1u1, . . . , 2ldud, 0)

is a vector unusually close to a lattice point. The closest lattice point often has a form

v = (2l1t1α, . . . , 2ldtdα, α),

in which case finding such lattice point reveals the private key α. To do so, one needs
to solve the Closest Vector Problem (CVP). There are several algorithms for solving the
CVP, the original paper [BV96] used Babai’s nearest plane algorithm [Bab86] with LLL
[LLL+82]. One could also use BKZ for lattice reduction or solve the CVP by enumeration.
There is also a technique of transforming an instance of CVP to a Shortest Vector Problem
(SVP) by embedding the target vector into a larger lattice:

C =
(
B 0
u n

)
Then, one can solve the SVP by lattice reduction and either looking directly at basis

vectors or by further enumeration to find the shortest vector. As we used several heuristic
arguments, the solution is not guaranteed to be found.

Generally, each inequality adds li bits of information and the problem starts to be
solvable (theoretically) as soon as the lattice contains more information than the unknown
information in the private key. The expected amount of information in N signatures can
be computed as N ·

∑dlog2(n)e
i=2 2−li−1 · li ≈ 3

4N assuming only signatures with li ≥ 2 are
used. Adding inequalities with li < 2 generally does not help, as those will not lead to the
desired vector being unusually close to a lattice point [AFG+14].

Using the above formula, we obtain the expected minimum of around N = 342
signatures for a 256-bit private key. Since the amount of information is linear in N it can
be computed as N ≈ 4

3 · |K| for size |K| of the private key. Adding dimensions is also
not for free, as the runtime of lattice algorithms grows significantly with an increase in
the number of dimensions. However, adding some overhead of information, such that the
lattice contains around 1.3 times the information of the private key, was shown to improve
the success rate [Rya19b].

4.5 Baseline attack
The baseline version of the attack, against which we will compare the variants, is an
application of the attack from Brumley and Tuveri [BT11]. We collect N signatures from
the library or card while measuring the duration of signing precisely. Then, we sort the

Jan Jancar, Vladimir Sedlacek, Petr Svenda and Marek Sys 291

signatures by their duration and take d of the fastest. For the basic attack, we then assume
these all have at least li = 3 most-significant bits of the nonce zero, we construct the HNP
and transform it into a CVP and then an SVP matrix. Given no noise (perfect dependency
of the signing duration on the bit-length), the assumption of li = 3 makes sense if the
collected number of signatures N is larger than d · 2li = 8d, as then the d fastest signatures
will likely have at least the required number of most-significant zero bits.

We use fplll [FPL16], an open-source implementation of the LLL and BKZ lattice
reduction algorithms, to perform LLL and progressive BKZ [AWH+16] reduction of the
SVP matrix with block sizes β ∈ {15, 20, 30, 40, 45, 48, 51, 53, 55}. After each reduction
step, we check if the second to last column of the matrix contains the private key by
multiplying the base-point by the column entries and testing equality to the public key.

5 Attack variants and new improvements
The main limitation of the attack described in Section 4.5 is the required number of
signatures and its sensitivity to input errors (as the time measurements are noisy). This
section offers a remedy: we present and discuss in detail the following methods, the last
two of which are new to the best of our knowledge:

• Measurement improvements (known)

• Random subsets (known) [BT11]

• Recentering (known) [BH19; MSE+20]

• The CVP/SVP methods (known)

• Nonce differences (partially discussed in [FGR12] and [BH19])

• Geometric bounds (new in this work, Section 5.6)

• CVP + changes in u (new in this work, Section 5.7)

In Section 6, we will systematically compare these to each other as well as to the
baseline attack on both simulated and real data.

As the listed methods are mostly independent of each other4, their combinations could
possibly provide improvement in the decreased number of necessary signatures. However,
the high number of computational experiments for all possible combinations makes an
exhaustive analysis prohibitively expensive.

5.1 Improving the input data
One straightforward way of improving a noise-sensitive method success rate is to lower
the noise via better measurements. In our context, this means either mounting a micro-
architectural side-channel attack on a vulnerable library or performing power/EM side-
channel attack on a vulnerable card.

In the former case, the attacker would use, for example, a cache side-channel as done by
Ryan [Rya19b], to count the number of calls to the point addition and doubling functions.
This would give him a much more precise measurement of bit-length than simply timing
the full ECDSA signing operation, which contains hashing, data processing, and other
library functions.

In the latter case, the attacker with physical access to a vulnerable card would obtain
power or EM traces as those shown in Figure 2 and use pattern matching to count the

4There are two notable exceptions: CVP + changes in u requires the use of the CVP method and the
recentering approach cannot be used in nonce differences.

292 Minerva: The curse of ECDSA nonces

number of addition and doubling operations in the trace. This will again give the attacker
a much more precise measurement of bit-length.

We expect both of the above approaches to lead to noise-free information about the
bit-length of the nonce and thus a much easier application of the HNP to obtain the private
key, leading to a similar success rate as in Figure 15.

5.2 Random subsets
The errors in the input can be mitigated by randomly selecting subsets of signatures from
the set of all signatures with relatively short duration as proposed by Brumley and Tuveri
[BT11]. If the number of errors is not too large, we can expect to find a subset without
any error after a reasonable number of tries. Note that this strategy is also trivially
parallelizable, unlike most of the other methods.

In practice, we can take a medium-sized subset of the fastest signatures (for example,
3
2d, where d is the dimension of the matrix we are aiming for) and repeatedly run the
attack with randomly selected d of these signatures. However, since the strategy does not
always use the d fastest signatures, it does not use the information in an optimal way. On
average less information is present in the randomly selected signatures, with the hope that
the increased number of tries will lead to both enough information and few errors being
present in at least one of them.

5.3 Recentering
To increase the the amount of information in each HNP inequality, one can use the fact that
the nonce is non-negative and that to gain a HNP inequality we only need to upper-bound
the absolute value, as only it affects the norm of the vector. Instead of using the inequality
in (3), one can use:

|xbs−1
i ricn + bs−1

i H(mi)cn − n/2li+1|n < n/2li+1.

5.4 CVP/SVP approach
Even though the HNP naturally translates into a CVP instance, such an approach is usually
believed to not be very suitable [BvdPS+14; BH19; vdPSY15]. Instead, the standard
approach is to further convert the CVP instance into an SVP instance by including the rows
of ui’s in the matrix and checking for a short vector after lattice reduction (as described in
Section 4.4). However, for reasons that will be explained in Section 5.7, we also evaluate
the CVP approach (using Babai’s nearest plane algorithm) and measure how it compares
to the SVP approach, even though we expect it to perform worse.

5.5 Differences of nonces
Instead of using information about the nonces ki themselves, we could instead use infor-
mation about their differences ki − kj , hoping that the most significant bits of ki and kj

might cancel out.
Assuming that li ≤ lj , we can make a similar computation as in (3). From the

inequality:
|bkicn − bkjcn|n < n/2min(li,lj) (4)

we get:

|bs−1
i (H(mi) + rix)cn − bs−1

j (H(mj) + rjx)cn|n < n/2min(li,lj)

|x(bs−1
i ri − s−1

j rjcn) + bs−1
i H(mi)− s−1

j H(mj)cn|n < n/2min(li,lj)

Jan Jancar, Vladimir Sedlacek, Petr Svenda and Marek Sys 293

Thus by setting ti = bs−1
i ri − s−1

j rjcn and ui = −bs−1
i H(mi) − s−1

j H(mj)cn we again
obtain a HNP instance.

When utilizing nonce differences in practice, we aim to create the pairs (i, j) in a way
that li = lj whenever possible to minimize information loss due to the bound being the
minimum. For the geometric bounds, it corresponds to taking differences of neighbouring
signatures. Note that if the number of bits li = lj was chosen erroneously too high in both
cases, the error is nullified in the difference.

We note that when using differences of nonces, recentering is not possible, as the
differences might be negative. This fact is, to some extent, mitigated by the aforementioned
effect of subtraction correcting some errors.

5.6 Bounds li

The bounds li state the minimal number of leading zero bits of nonces ki (ki = |αti−ui|n <
n/2li), representing the amount of information we gain from the nonces. They play a
crucial role in our attacks since the lattice-based methods used to solve the HNP are quite
sensitive to errors in li when the amount of information in the lattice is close to the size of
the private key.

We are facing the problem of how to assign the bounds li to a given set of unknown
nonces ki based only on the times of corresponding signatures. The goal is to assign
maximal values li to ki such that the number of errors (false inequalities) is small. The
values li should reflect the distribution of log2(ki) for a selected set of signatures (only
a subset of signatures is used in the attack). The selection of the signatures is natural –
only signatures with the shortest times are used in the attack, as corresponding to the
shortest ki and largest li.

The nonces ki are generated uniformly at random; we can thus expect that the number
of most significant zero bits follows a truncated geometric distribution when n is close to a
power of two. Thus roughly for one-half of the nonces li = 0, for one-quarter of nonces
li = 1, and so on. Assuming a one-to-one linear dependency between the bit-length of
ki and the duration of signing, we would obtain a clear method of assigning bounds to
the signatures, sort them by duration and apply the above distribution. However, the
real timing leakage is noisy and the distributions of duration for signatures with different
bit-lengths overlap (see Figures 1 and 14).

In the experiments, when assigning bounds to the fastest d signatures out of N
signatures collected, we used several strategies for the bound assignment:

• constant bounds – fixed value c ∈ {1, 2, 3, 4} is used for all bounds li,

• geometric bounds (new in this work) – bounds are calculated according to the
above truncated geometric distribunew in this worktion based on N , the number of
signatures collected. One half of signatures has li = 0, one quarter has li = 1, etc.
Then simply the fastest d signatures are taken with their calculated bounds.

Figure 3 shows that on simulated data with no noise, the geometric bounds constitute
the mean of the distribution of true leading zero bits, as the difference of the simulated
data and the bounds has zero mean.

5.7 CVP + changes in u
When using the SVP approach, the ui’s are incorporated into the matrix, and it is not
possible to change them without affecting the final result of lattice reduction. Thus any
error in the ui’s propagates to the reduced lattice. In contrast, taking the CVP approach,
the lattice can be reduced independently of the ui’s (which form the target). Such reduction
is beneficial as we can reduce the lattice just once (and potentially with better quality)

294 Minerva: The curse of ECDSA nonces

0 10 20 30 40 50 60 70 80 90 100
index

2

0

2

4

6

8

10
bo

un
d

sim (sample)
sim - geom
geom

Figure 3: Plot of the geometric bounds (geom) with N = 2000 for d = 100 fastest
signatures, along with a random sample of the true leading zero bits from
simulated data (sim) and boxplots of the distribution of the difference of the
simulated data and the bounds (sim - geom). Negative values imply an error;
positive implies some available information is unused.

and subsequently try to solve the CVP with many possible choices of ui’s (making changes
at the li-th positions where the errors are most likely to occur). Since the reduction is
the most computationally expensive part, if we are solving CVP via Babai’s nearest plane
algorithm, we can efficiently try many different changes and fix the input errors.

For each e-tuple, we could try flipping one bit at the li-th position simultaneously,
which should be feasible at least for e ≤ 3. Since the runtime of the method should not
depend on small changes in the ui’s, we expect that the total runtime for the strategy will
be one reduction of the matrix and

(
d
e

)
times the runtime of the CVP solving, for example

via Babai’s nearest plane algorithm, which is very fast. The advantage of the strategy is
that it is trivially parallelizable.

6 Systematic comparison of attack variants

We compare existing methods for private key recovery with our newly proposed ones for
the range of possible parameterizations. We run the methods while varying the number
of signatures collected (N) and varying the dimension of the matrix (d) for four datasets
with different noise profiles collected from the real-world leakages. For most experiments,
the number of signatures N covered the range [500, 7000] with a step size of 100 and
three additional steps at 8000, 9000, 10000. The dimension of the matrix and the number
of signatures used in the matrix d ranged from 50 to 140 with a step size of 2. Such
enumeration of the parameter space allowed us to evaluate the performance of the methods
with a significantly wider range of parameters than presented in the introductory papers.
Thus each variant of the attack goes through 3174 = 69 · 46 combinations of N and d
with a typical runtime in seconds to minutes. Because of the size of the parameter space,
we repeated each variant five times with random samples of N signatures from each of
the four datasets described in Section 6.1. In total, the presented results took over 18
core-years to compute on our university cluster.

We evaluate the success rate of the attack improvements with respect to the number N
of signatures available, which is frequently the biggest limitation for an attacker, influencing
the attack practicality and runtime. Another interesting point of evaluation is the minimal
number of signatures collected (min(N)), where a given attack variant succeeds for the
first time. When not explicitly specified, we use the base parameters and method, as
described in Section 4.5.

Jan Jancar, Vladimir Sedlacek, Petr Svenda and Marek Sys 295

6.1 Test data
The attack variants are evaluated using four separate data sets (denoted as sim, sw, card,
tpm) with varying levels of noise. All the datasets used consist of at least 50 000 ECDSA
signatures over the secp256r1 curve from which we randomly sample N signatures for the
evaluation of our attacks.

The sim dataset contains simulated data for which there is an exact one-to-one cor-
respondence between the signing duration and the bit-length of the random nonce
with no systematic noise. However, these simulated signatures were still generated
by uniformly randomly selecting the random nonce and computing the number of
most-signifcant zero bits. A given sample is thus a result of a random process and
varies naturally.

The sw dataset contains data from a vulnerable version of the software cryptographic
library libgcrypt collected from a simple C program on an ordinary Linux laptop.

The tpm dataset contains data from the recent work of Moghimi et al. [MSE+20]
collected from a vulnerable STMicroelectronics TPM (Trusted Platform Module).
The data was collected via a custom Linux kernel module and contained a relatively
small amount of noise.

The card dataset contains data from the vulnerable Athena IDProtect smartcard,
collected by a Python script running on an ordinary Linux laptop with a standard
standalone smartcard reader connected. Such measurements are particularly noisy
due to the complex software stack and hardware components between the script and
a card.

Table 2: Estimated parameters of the used datasets as given by the model in
Equation (1).

Dataset base (µs) iter_time (µs) sdev (µs)
sim 0 1 0
sw 453.4 12.7 17.2
tpm 27047.3 236.1 211.3
card 43578.4 371.5 451.3

6.2 Bounds li

The first experiment performed considered the types of bounds assignment discussed in
Section 5.6: constant with c ∈ {1, 2, 3, 4} and geometric.

As can be seen on the heatmaps in Figures 4 and 5 and on the plot in Figure 6,
geometric bounds perform better than constant bounds from the baseline attack on all
datasets (see Section 4.5). The geometric bounds utilize the leaked available information
much better as they follow the mean distribution of the actual leading zero bits.

Amongst the constant bounds, those with c = 4 performed the best (see Figure 7).
However, all constant bounds achieved only insignificant success rate on the most noisy
card dataset. We also note that constant bounds with c = 1 had a non-zero success rate
on the sim dataset (see Figure 7), which conflicts with the requirement for HNP solvability
of having more than one bit of explicit information per inequality [AFG+14].

The limits of improvement through changing the assignment of the bounds can be seen
on Figure 15, where bounds were assigned optimally, using the prior knowledge of the
actual nonces and the private key. Such a success rate can also be achieved by improvement
of the signal-to-noise ratio in input measurements as described in Section 5.1.

296 Minerva: The curse of ECDSA nonces

The best results for min(N) we obtained with geometric bounds were 1000, 1800, 1500
and 2600, for the sim, sw, tpm and card datasets, respectively.

500 2000 4000 6000 8000 10000

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

card

500 2000 4000 6000 8000 10000

60

80

100

120

140
sim

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

sw

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140
tpm

0

1

2

3

4

5

Figure 4: Heatmap of success rate (out of 5 tries) for constant bounds with c = 3.

500 2000 4000 6000 8000 10000

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

card

500 2000 4000 6000 8000 10000

60

80

100

120

140
sim

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

sw

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140
tpm

0

1

2

3

4

5

Figure 5: Heatmap of success rate (out of 5 tries) for geometric bounds.

Jan Jancar, Vladimir Sedlacek, Petr Svenda and Marek Sys 297

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of signatures (N)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s p

ro
ba

bi
lit

y card const3
card geom
sim const3
sim geom
sw const3
sw geom
tpm const3
tpm geom

Figure 6: Success rate (averaged over all analyzed dimensions) of geometric bounds and
constant c = 3 bounds on the various datasets. Note that better results would
be obtained if considering only dimensions above 70 according to Figure 4 and
5.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of signatures (N)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s p

ro
ba

bi
lit

y

card const1
card const2
card const3
card const4
sim const1
sim const2
sim const3
sim const4
sw const1
sw const2
sw const3
sw const4

Figure 7: Success rate (averaged over all analyzed dimensions) of constant bounds with
c ∈ {1, 2, 3, 4} on the various datasets.

6.3 CVP/SVP approach
In this experiment, we used the geometric bounds as described above together with either
solving the HNP via SVP and examination of the reduced basis or CVP via Babai’s nearest
plane algorithm.

As expected (e.g. from [BvdPS+14]), the Babai’s nearest plane algorithm always
performed worse than solving the HNP via SVP and direct search through the short basis
vectors. The negative shift in success rate can be seen in Figure 8. We note that there
are more methods of solving the SVP or CVP problems, such as enumeration [GNR10]
or sieving [ADH+19], that we did not use in this work, mainly due to their runtime
requirements. We expect these methods to provide better results than the simple Babai’s
nearest plane algorithm for CVP or the simple search through reduced lattice basis vectors
for SVP.

6.4 Recentering
The application of recentering, along with geometric bounds and SVP solving, presented
significant improvements to success rate for all but the card dataset (see Figure 9, in
comparison with not applying recentering. The improved min(N) values are 500, 1200,
900 and 2100 for the sim, sw, tpm and card datasets, respectively. The effect of recentering
on the noisiest card dataset increased the success rate only slightly, if at all.

Using the true number of leading zero bits as the bounds, together with recentering,
shows that with ideal input, the lattice attack achieves the theoretically expected minimum
amount of signatures as computed in Section 4.4. The attack first succeeds at 400 signatures
(see Figure 15), while the theoretical expected minimum is 342.

298 Minerva: The curse of ECDSA nonces

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of signatures (N)

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s p
ro

ba
bi

lit
y

card np
card svp
sim np
sim svp
sw np
sw svp
tpm np
tpm svp

Figure 8: Success rate (averaged over all analyzed dimensions) of SVP (dashed line) and
Babai’s nearest plane (NP, solid line) algorithm, using geometric bounds.

During our early experiments, we noted interesting behavior of recentering with biased
bounds, which we summarise in Appendix B.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of signatures (N)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s p

ro
ba

bi
lit

y

card no recentering
card recentering
sim no recentering
sim recentering
sw no recentering
sw recentering
tpm no recentering
tpm recentering

Figure 9: Success rate (averaged over all analyzed dimensions) of SVP with and without
recentering, using geometric bounds.

6.5 Random subsets
To evaluate the random subsets method, as introduced by Brumley and Tuveri [BT11], we
performed the attacks for each of the points (N, d) up to 5 times, taking the 1.5d fastest
signatures and using 100 random subsets of size d to construct the HNP, with geometric
bounds, SVP solving and recentering. Due to the high runtime requirements of this attack,
we chose to evaluate it only on dimensions D between 90 and 102. The comparison is
made to the same attack without taking the random subsets.

Taking random subsets decreased the success rate for all but the card datasets (see
Figure 10), where it produces quite better results, achieving a success probability close to
1 for N = 10000. The worse behavior for less noisy datasets can be explained by noting
that taking the d fastest signatures is optimal for the amount of information in them, and
taking a random subset of 1.5d fastest signatures decreases this amount of information.

6.6 Differences
In this experiment, we evaluate the effect of using nonce differences on the attack when
using geometric bounds and SVP solving but without recentering, as it is incompatible with
taking nonce differences. Performing nonce differences surprisingly resulted in performance
comparable to applying recentering to the baseline attack (see Figures 9 and 11). This
might be explained by the fact that taking nonce differences might correct errors if the two
nonces share the sequence of erroneous bits. These kinds of errors appear to be quite likely,
with most of them being just one bit past the bound, as shown on Figure 16. However,
the success rate for the noisiest card dataset decreased.

Jan Jancar, Vladimir Sedlacek, Petr Svenda and Marek Sys 299

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of signatures (N)

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s p
ro

ba
bi

lit
y

card 1
card 1.5
sim 1
sim 1.5
sw 1
sw 1.5
tpm 1
tpm 1.5

Figure 10: Success rate (averaged over all analyzed dimensions) of performing 100
random subsets from c · d fastest signatures, with c ∈ {1, 1.5}. The more
visible noise in the plot is caused by the smaller range of dimensions analysed.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of signatures (N)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
se

s

card no differences
card differences
sim no differences
sim differences
sw no differences
sw differences
tpm no differences
tpm differences

Figure 11: Success rate (averaged over the dimensions) of performing the attack using
nonce differences on the various datasets.

6.7 CVP + changes in u
In this experiment, we extended the block sizes of the progressive BKZ reduction with
57, 60, and 64 (as we want a more thoroughly reduced lattice than in the base approach) and
also applied recentering using geometric bounds. Subsequently, we tested all possibilities
of correcting errors occurring at either exactly 0, 1, 2 or 3 positions (thus running Babai’s
nearest plane algorithm up to 1 +

(140
1
)

+
(140

2
)

+
(140

3
)

= 457451 times).
The results show that even though the average number of errors is much higher than 3

(see Figure 17), successfully correcting three errors often makes the difference between the
successful or failed attack (see Figure 12). However, the method also increased runtime
significantly, with both the stronger BKZ reduction and the brute-forcing of changes taking
extra time. One attack run thus got prolonged from a few minutes to a maximum of four
hours. Even with the increased runtime, due to the parallelizable nature, this method is a
strong candidate for improving the attack through more computation power.

7 Conclusion
Our paper identified a set of practically exploitable vulnerabilities in ECDSA implementa-
tions in certified security chips, cryptographic libraries, and open-source security projects,
allowing for the extraction of the full private key using time observation of only several
thousands of signatures. We further significantly reduced the required number of signa-
tures in situations with noisy measurements by two new HNP-solving methods – using a
geometric assignment of bounds instead of a constant one and an exhaustive correction of
possible errors before the application of the HNP solver.

The existence of the real-world vulnerable implementations provided the opportunity
to create benchmark datasets with realistic noise profiles, used for a systematic comparison

300 Minerva: The curse of ECDSA nonces

500 2000 4000 6000 8000 10000

60

80

100

120

140
Di

m
en

sio
n

of
 m

at
rix

 (D
)

card

500 2000 4000 6000 8000 10000

60

80

100

120

140
sim

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

sw

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140
tpm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 12: Heatmap of average minimal amount of fixed errors required for attack success.
Babai’s nearest plane algorithm with recentering and geometric bounds was
used. Gray color marks areas where none of the attack tries succeeded.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of signatures (N)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s p

ro
ba

bi
lit

y card 0
card 3
sim 0
sim 3
sw 0
sw 3
tpm 0
tpm 3

Figure 13: Success rate (averaged over the dimensions) of performing the attack using
the Babai’s nearest plane algorithm, recentering and either with up to 3 errors
fixed (3), or with no error fixed (0).

of the existing and newly proposed HNP-solving methods. Using simulated and three
real-world datasets, we provide the most extensive comparison of variously parametrized
methods available so far in the research literature for this specific domain. The results
show that:

• Newly proposed geometric assignment of bounds better approximates the real distri-
bution of bit-lengths in the fastest signatures and leads to a decrease in the required
number of signatures for successful key recovery.

• HNP solving via SVP always outperforms CVP with Babai’s nearest plane algorithm.

• Using random subsets noticeably increases the success rate on noisy datasets.

• Recentering decreases the required number of signatures for the success of the attack
by 30% in some datasets.

• Using differences of nonces with the same estimated bit-length instead of original
nonces value works surprisingly well, as (potential) errors likely cancel out.

Jan Jancar, Vladimir Sedlacek, Petr Svenda and Marek Sys 301

• Exhaustive correction (up to some bound limited only by available computational
resources) of potential errors after the CVP lattice reduction significantly decreases
the required number of signatures for a successful attack.

Compared to the very recent work of Moghimi et al. [MSE+20] on a similar vulnerability
found in STMicroelectronics TPM chips, the new methods achieve key extraction with a
much smaller number of signatures required when compared using their original dataset.
Only 900 signatures (see Figure 9) are sufficient, though the success rate with such amount
of signatures is low. The success rate improves significantly at 2000 signatures, which is
still an order of magnitude lower than 40 000 signatures, as reported by [MSE+20].

While the actual private key extraction demands non-trivial methods, the leakage itself
is relatively easy to detect, showing surprising deficiencies in the testing of security devices
and cryptographic libraries – we release an open-source tester to support such assessment.

Acknowledgements
Work of V. Sedlacek, J. Jancar and M. Sys was supported by Czech Science Foundation
under the grant GA20-03426S. Some of the tools used and P. Svenda were supported by
the CyberSec4Europe Competence Network. Computational resources were supplied by
the project e-INFRA LM2018140.

References
[ABuH+19] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar

Pereida García, and Nicola Tuveri. Port contention for fun and profit. In
2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco,
CA, USA, May 19-23, 2019, pages 870–887. IEEE, 2019.

[ADH+19] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn
W. Postlethwaite, and Marc Stevens. The general sieve kernel and new
records in lattice reduction. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II, volume 11477
of Lecture Notes in Computer Science, pages 717–746. Springer, 2019.

[AFG+14] Diego F. Aranha, Pierre-Alain Fouque, Benoît Gérard, Jean-Gabriel Kam-
merer, Mehdi Tibouchi, and Jean-Christophe Zapalowicz. GLV/GLS Decom-
position, Power Analysis, and Attacks on ECDSA Signatures with Single-Bit
Nonce Bias. In Advances in Cryptology - ASIACRYPT 2014 - 20th In-
ternational Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
Proceedings, Part I, pages 262–281, 2014.

[Atm09] Atmel. Atmel toolbox 00.03.11.05 on the AT90SC Family of Devices: Security
target lite. June 2009. url: https://www.ssi.gouv.fr/uploads/IMG/
certificat/dcssi-cible_2009-11en.pdf.

[AWH+16] Yoshinori Aono, Yuntao Wang, Takuya Hayashi, and Tsuyoshi Takagi. Im-
proved Progressive BKZ Algorithms and Their Precise Cost Estimation
by Sharp Simulator. In Advances in Cryptology - EUROCRYPT 2016 -
35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part I, pages 789–819, 2016.

https://www.ssi.gouv.fr/uploads/IMG/certificat/dcssi-cible_2009-11en.pdf
https://www.ssi.gouv.fr/uploads/IMG/certificat/dcssi-cible_2009-11en.pdf

302 Minerva: The curse of ECDSA nonces

[Bab86] László Babai. On Lovász’ lattice reduction and the nearest lattice point
problem. Combinatorica, 6(1):1–13, 1986.

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. J. Cryptographic Engineering,
2(2):77–89, 2012.

[BFM+16] Pierre Belgarric, Pierre-Alain Fouque, Gilles Macario-Rat, and Mehdi Ti-
bouchi. Side-Channel Analysis of Weierstrass and Koblitz Curve ECDSA
on Android Smartphones. In Topics in Cryptology - CT-RSA 2016 - The
Cryptographers’ Track at the RSA Conference 2016, San Francisco, CA,
USA, February 29 - March 4, 2016, Proceedings, pages 236–252, 2016.

[BH09] Billy Bob Brumley and Risto M. Hakala. Cache-timing template attacks.
In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT 2009,
15th International Conference on the Theory and Application of Cryptology
and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings,
volume 5912 of Lecture Notes in Computer Science, pages 667–684. Springer,
2009.

[BH19] Joachim Breitner and Nadia Heninger. Biased nonce sense: lattice attacks
against weak ECDSA signatures in cryptocurrencies. In Ian Goldberg and
Tyler Moore, editors, Financial Cryptography and Data Security - 23rd In-
ternational Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February
18-22, 2019, Revised Selected Papers, volume 11598 of Lecture Notes in
Computer Science, pages 3–20. Springer, 2019.

[BT11] Billy Bob Brumley and Nicola Tuveri. Remote Timing Attacks Are Still
Practical. In Computer Security - ESORICS 2011 - 16th European Sympo-
sium on Research in Computer Security, Leuven, Belgium, September 12-14,
2011. Proceedings, pages 355–371, 2011.

[BV96] Dan Boneh and Ramarathnam Venkatesan. Hardness of Computing the
Most Significant Bits of Secret Keys in Diffie-Hellman and Related Schemes.
In Advances in Cryptology - CRYPTO ’96, 16th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 18-22, 1996,
Proceedings, pages 129–142, 1996.

[BvdPS+14] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. "Ooh
Aah... Just a Little Bit" : A Small Amount of Side Channel Can Go a Long
Way. In Cryptographic Hardware and Embedded Systems - CHES 2014 -
16th International Workshop, Busan, South Korea, September 23-26, 2014.
Proceedings, pages 75–92, 2014.

[CrOS19] Chromium OS. U2F ECDSA vulnerability - The Chromium Projects. url:
https://sites.google.com/a/chromium.org/dev/chromium- os/u2f-
ecdsa-vulnerability (visited on 09/12/2019).

[DGH+13] Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cédric Murdica, and
David Naccache. A synthesis of side-channel attacks on elliptic curve cryptog-
raphy in smart-cards. Journal of Cryptographic Engineering, 3(4):241–265,
2013.

[DME+18] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia
Heninger, Ahmad Moghimi, and Yuval Yarom. CacheQuote: Efficiently
Recovering Long-term Secrets of SGX EPID via Cache Attacks. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):171–191, 2018.

[FAIL10] failOverflow. Console Hacking 2010: PS3 Epic Fail. url: https://www.cs.
cmu.edu/~dst/GeoHot/1780_27c3_console_hacking_2010.pdf (visited on
09/12/2019).

https://sites.google.com/a/chromium.org/dev/chromium-os/u2f-ecdsa-vulnerability
https://sites.google.com/a/chromium.org/dev/chromium-os/u2f-ecdsa-vulnerability
https://www.cs.cmu.edu/~dst/GeoHot/1780_27c3_console_hacking_2010.pdf
https://www.cs.cmu.edu/~dst/GeoHot/1780_27c3_console_hacking_2010.pdf

Jan Jancar, Vladimir Sedlacek, Petr Svenda and Marek Sys 303

[FGR12] Jean-Charles Faugere, Christopher Goyet, and Guénaël Renault. Attacking
(EC)DSA given only an implicit hint. In International Conference on Selected
Areas in Cryptography, pages 252–274. Springer, 2012.

[FIDO18] FIDO Alliance. FIDO ECDAA Algorithm. February 2018. url: https:
/ / fidoalliance . org / specs / fido - v2 . 0 - id - 20180227 / fido - ecdaa -
algorithm-v2.0-id-20180227.html.

[FPL16] The FPLLL development team. fplll, a lattice reduction library. 2016. url:
https://github.com/fplll/fplll.

[FWC16] Shuqin Fan, Wenbo Wang, and Qingfeng Cheng. Attacking OpenSSL im-
plementation of ECDSA with a few signatures. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
pages 1505–1515. ACM, 2016.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice Enumeration
Using Extreme Pruning. In Henri Gilbert, editor, Advances in Cryptology -
EUROCRYPT 2010, 29th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Monaco / French Riviera,
May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in
Computer Science, pages 257–278. Springer, 2010.

[GPP+16] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yuval
Yarom. ECDSA key extraction from mobile devices via nonintrusive physical
side channels. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1626–1638. ACM, 2016.

[GRV16] Dahmun Goudarzi, Matthieu Rivain, and Damien Vergnaud. Lattice Attacks
Against Elliptic-Curve Signatures with Blinded Scalar Multiplication. In
Selected Areas in Cryptography - SAC 2016 - 23rd International Confer-
ence, St. John’s, NL, Canada, August 10-12, 2016, Revised Selected Papers,
pages 120–139, 2016.

[HR06] Martin Hlaváč and Tomáš Rosa. Extended Hidden Number Problem and
Its Cryptanalytic Applications. In Eli Biham and Amr M. Youssef, editors,
Selected Areas in Cryptography, 13th International Workshop, SAC 2006,
Montreal, Canada, August 17-18, 2006 Revised Selected Papers, volume 4356
of Lecture Notes in Computer Science, pages 114–133. Springer, 2006.

[HS01] Nick Howgrave-Graham and Nigel P. Smart. Lattice Attacks on Digital
Signature Schemes. Des. Codes Cryptogr., 23(3):283–290, 2001.

[LCL13] Mingjie Liu, Jiazhe Chen, and Hexin Li. Partially Known Nonces and Fault
Injection Attacks on SM2 Signature Algorithm. In Information Security
and Cryptology - 9th International Conference, Inscrypt 2013, Guangzhou,
China, November 27-30, 2013, Revised Selected Papers, pages 343–358, 2013.

[LLL+82] Hendrik Willem Lenstra, Arjen K Lenstra, L Lovfiasz, et al. Factoring
polynomials with rational coeficients, 1982.

[MHM+13] Elke De Mulder, Michael Hutter, Mark E. Marson, and Peter Pearson.
Using Bleichenbacher’s Solution to the Hidden Number Problem to Attack
Nonce Leaks in 384-Bit ECDSA. In Cryptographic Hardware and Embedded
Systems - CHES 2013 - 15th International Workshop, Santa Barbara, CA,
USA, August 20-23, 2013. Proceedings, pages 435–452, 2013.

[Mon87] Peter L Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of computation, 48(177):243–264, 1987.

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://github.com/fplll/fplll

304 Minerva: The curse of ECDSA nonces

[MSE+20] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger.
TPM-FAIL: TPM meets Timing and Lattice Attacks. In 29th USENIX
Security Symposium (USENIX Security 20), Boston, MA. USENIX As-
sociation, August 2020. url: https : / / www . usenix . org / conference /
usenixsecurity20/presentation/moghimi (visited on 11/12/2019).

[NIST13] FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION
186-4 Digital Signature Standard (DSS). Standard, National Institute for
Standards and Technology, January 2013.

[NS02] Phong Q. Nguyen and Igor E. Shparlinski. The Insecurity of the Digital
Signature Algorithm with Partially Known Nonces. J. Cryptology, 15(3):151–
176, 2002.

[NS03] Phong Q. Nguyen and Igor E. Shparlinski. The Insecurity of the Elliptic
Curve Digital Signature Algorithm with Partially Known Nonces. Des. Codes
Cryptogr., 30(2):201–217, 2003.

[PGuH+19] Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri, Iaroslav Gridin,
Alejandro Cabrera Aldaya, and Billy Bob Brumley. Certified Side Channels,
2019. arXiv: 1909.01785.

[Por13] Thomas Pornin. Deterministic Usage of the Digital Signature Algorithm
(DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA). RFC 6979,
RFC Editor, August 2013, pages 1–79. url: https://tools.ietf.org/
html/rfc6979.

[RCB16] Joost Renes, Craig Costello, and Lejla Batina. Complete Addition Formulas
for Prime Order Elliptic Curves. In Advances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part I, pages 403–428, 2016.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446, RFC Editor, August 2018, pages 1–160. url: https://tools.
ietf.org/html/rfc8446.

[Rya19a] Keegan Ryan. Hardware-Backed Heist: extracting ECDSA keys from Qual-
comm’s TrustZone. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019, pages 181–194. ACM, 2019.

[Rya19b] Keegan Ryan. Return of the Hidden Number Problem. A Widespread and
Novel Key Extraction Attack on ECDSA and DSA. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2019(1):146–168, 2019.

[Sch89] Claus-Peter Schnorr. Efficient Identification and Signatures for Smart Cards.
In Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings, pages 239–252, 1989.

[SM16] Ruggero Susella and Sofia Montrasio. A Compact and Exception-Free Ladder
for All Short Weierstrass Elliptic Curves. In Smart Card Research and
Advanced Applications - 15th International Conference, CARDIS 2016,
Cannes, France, November 7-9, 2016, Revised Selected Papers, pages 156–
173, 2016.

[Sma12a] Athena Smartcard. IDProtect with LASER PKI. April 2012. url: https://
csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-
program/documents/security-policies/140sp1711.pdf.

https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi
https://arxiv.org/abs/1909.01785
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp1711.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp1711.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp1711.pdf

Jan Jancar, Vladimir Sedlacek, Petr Svenda and Marek Sys 305

[Sma12b] Athena Smartcard. OS755/IDProtect v6 SSCD – Security Target. May 2012.
url: https://www.ssi.gouv.fr/uploads/IMG/certificat/ANSSI- CC-
cible_2012-23en.pdf.

[vdPSY15] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. Just a Little Bit More.
In Topics in Cryptology - CT-RSA 2015, The Cryptographer’s Track at
the RSA Conference 2015, San Francisco, CA, USA, April 20-24, 2015.
Proceedings, pages 3–21, 2015.

[Wis] WiseKey. Secure microcontrollers. url: https : / / www . wisekey . com /
vaultic/secure-microcontrollers/ (visited on 04/14/2020).

[WSB20] Samuel Weiser, David Schrammel, and Lukas Bodner. Big numbers - big
troubles: systematically analyzing nonce leakage in (ec)dsa implementa-
tions. In 29th USENIX Security Symposium (USENIX Security 20), Boston,
MA. USENIX Association, August 2020. url: https://www.usenix.org/
conference/usenixsecurity20/presentation/weiser.

https://www.ssi.gouv.fr/uploads/IMG/certificat/ANSSI-CC-cible_2012-23en.pdf
https://www.ssi.gouv.fr/uploads/IMG/certificat/ANSSI-CC-cible_2012-23en.pdf
https://www.wisekey.com/vaultic/secure-microcontrollers/
https://www.wisekey.com/vaultic/secure-microcontrollers/
https://www.usenix.org/conference/usenixsecurity20/presentation/weiser
https://www.usenix.org/conference/usenixsecurity20/presentation/weiser

306 Minerva: The curse of ECDSA nonces

Appendices
A Additional figures

3570000 3600000 3630000 3660000 3690000 3720000 3750000 3780000 3810000
time (ns)

0

200

400

600

800

1000

1200

1400

co
un

t

all
256b
255b
254b
253b
252b
251b
250b
249b

Figure 14: Histogram of signing duration for different number of leading zeros of the
random nonces on the secp256r1 curve using the libgcrypt library.

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

no recentering

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140
recentering

0

1

2

3

4

5

Figure 15: Heatmap of success rate (out of 5 tries) when the true leading zero bits are
used as bounds, thus showing the real minimum of the signatures required.

0 20 40 60 80 100
Index

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

er
ro

r i
nf

o
(b

its
)

card
sim
sw
tpm

Figure 16: Average amount of erroneous information per index with d = 100, when the
geometric bounds are used with the four datasets. Here, average erroneous
information means the average of error probability multiplied with the error
depth (e.g. by how many bits was the bound overstated) at each index.

Jan Jancar, Vladimir Sedlacek, Petr Svenda and Marek Sys 307

500 2000 4000 6000 8000 10000

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

card

500 2000 4000 6000 8000 10000

60

80

100

120

140
sim

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

sw

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140
tpm

20

30

40

50

60

Figure 17: Heatmap of average number of errors for the various datasets, when using
geometric bounds.

308 Minerva: The curse of ECDSA nonces

B Impact of recentering with biased bounds
During our early experiments, we observed a counter-intuitive behavior of the recentering
technique. Figure 18 illustrates the strange behavior – the success rate decreases with the
increasing number of signatures that represents the amount of gained information. This
behavior occurs when the upper bounds n/2li for the nonces ki are too conservative (too
large upper bound, too small li), i.e., when number of errors is lowered.

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

no recentering

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140
recentering

0

1

2

3

4

5

Figure 18: Heatmap of success rate (out of 5 tries) for recentering with biased bounds.
Geometric bounds were used as if N = 4d, which lead the bounds to be overly
conservative for large N .

We believe that the reason is a shift of the nonces caused by recentering when using
biased bounds. The bounded values of nonces bkicn < n/2li are shifted towards the
new bounds n/2li+1 for biased bounds. The recentered nonces are bounded as follows:
|ki − n/2li+1|n < n/2li+1. This shift and the distribution of ki for i = 50, N = 5000 is
illustrated by Figure 19. Note that ki represents the i-th nonce in the set of N nonces
sorted by their bit-length. The figure shows that the recentering acts as a shift of the
nonces towards the bound n/2li+1 when a conservative bound li is used.

n/22n/23n/24n/25n/26n/27
0

100

200

300

400

500

600

700

biased recentering

unbiased bound
unbiased recentered bound
biased bound
biased recentered bound
raw data
unbiased recentered data
biased recentered data

Figure 19: Distributions of the i = 50-th out of N = 5000 nonces, sorted by bit-length,
with both the biased bound li = 2 and unbiased bound li = 6. The effect of
biased recentering manifests as a shift of the raw data to the right.

The overall conclusion is that recentering is usually beneficial, but only if the bounds
are reasonable estimates of the actual ones, as seems to be the case for our geometric
bounds.

	Introduction
	Related work
	The vulnerability
	Elliptic Curve Digital Signature Algorithm (ECDSA)
	Leakage
	Causes
	Mitigations
	Responsible disclosure

	The attack
	Notation
	The Hidden Number Problem
	Constructing the HNP
	Solving the HNP
	Baseline attack

	Attack variants and new improvements
	Improving the input data
	Random subsets
	Recentering
	CVP/SVP approach
	Differences of nonces
	Bounds li
	CVP + changes in u

	Systematic comparison of attack variants
	Test data
	Bounds li
	CVP/SVP approach
	Recentering
	Random subsets
	Differences
	CVP + changes in u

	Conclusion
	Additional figures
	Impact of recentering with biased bounds

