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Abstract. Empowering electronic devices to support Post-Quantum Cryptography
(PQC) is a challenging task. PQC introduces new mathematical elements and opera-
tions which are usually not easy to implement on standard processors. Especially for
low cost and resource constraint devices, hardware acceleration is usually required. In
addition, as the standardization process of PQC is still ongoing, a focus on maintaining
flexibility is mandatory. To cope with such requirements, hardware/software co-design
techniques have been recently used for developing complex and highly customized
PQC solutions. However, while most of the previous works have developed loosely
coupled PQC accelerators, the design of tightly coupled accelerators and Instruction
Set Architecture (ISA) extensions for PQC have been barely explored. To this end, we
present RISQ-V, an enhanced RISC-V architecture that integrates a set of powerful
tightly coupled accelerators to speed up lattice-based PQC. RISQ-V efficiently reuses
processor resources and reduces the amount of memory accesses. This significantly
increases the performance while keeping the silicon area overhead low. We present
three contributions. First, we propose a set of powerful hardware accelerators deeply
integrated into the RISC-V pipeline. Second, we extended the RISC-V ISA with
29 new instructions to efficiently perform operations for lattice-based cryptography.
Third, we implemented our RISQ-V in ASIC technology and on FPGA. We evaluated
the performance of NewHope, Kyber, and Saber on RISQ-V. Compared to the pure
software implementation on RISC-V, our co-design implementations show a speedup
factor of up to 11.4 for NewHope, 9.6 for Kyber, and 2.7 for Saber. For the ASIC
implementation, the energy consumption was reduced by factors of up to 9.5 for
NewHope, 7.7 for Kyber, and 2.1 for Saber. The cell count of the CPU was increased
by a factor of 1.6 compared to the original RISC-V design, which can be considered
as a moderate increase for the achieved performance gain.
Keywords: Post-quantum cryptography · RISC-V · instruction set extension · lattice-
based cryptography

1 Introduction
Public-Key Cryptography (PKC) provides the basis for establishing secured communication
channels between multiple parties. The security of the PKC in use today is mainly based on
the hardness of two mathematical problems, the factorization of large numbers (e.g., RSA)
and the calculation of discrete logarithms (e.g., ECC). However, both problems can be
solved in polynomial time when a large-scale quantum computer is built. The foreseeable
breakthrough of quantum computers therefore represents a risk for all communication
systems. In order to ensure PKC security, cryptographic algorithms based on new hard
mathematical problems are required. Post-quantum cryptography refers to a set of
algorithms based on different hard mathematical problems that are considered secure
against traditional and quantum computer attacks. It can be deployed on both classical
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computers and today’s communication infrastructures. Among the different post-quantum
algorithms, proposals based on the hardness of lattice problems are one of the main
alternatives for practical implementations of post-quantum PKC as they offer a good
trade-off between security and efficiency [LPR10]. Among the 26 candidates of the NIST
second round post-quantum standardization process, 12 algorithms (9 KEM/encryption
and 3 signature algorithms) belong to the category of lattice-based cryptography [Nat19].
As a standard for post-quantum cryptography is not ready yet, a focus on maintaining
flexibility is mandatory in order to meet possible future developments.

Empowering electronic devices with strong security poses several design challenges due
to limited resources, strict performance and flexibility requirements, the vulnerability to
implementation attacks, and short time-to-market pressure. To cope with such challenges,
hardware/software co-design strategies are usually employed. For a given application, their
goal is to find an optimal assignment of tasks between software running on microprocessors
and hardware implemented on an ASIC or an FPGA. By splitting the tasks of an algorithm
into hardware and software elements, high speed and flexible implementations can be
developed.

Co-design is further fueled by the early success of open-source hardware initiatives (e.g.,
Sun OpenSPARC [Ora19], IBM OpenPOWER [Ope19], RISC-V [RIS19], Linux Foundation
CHIPS Alliance Project [Lin19]), allowing to shorten the design cycle for complex and
highly customized embedded systems. As a result, the final hardware architecture may
include a single or multiple processors, communication structure (bus or network-on-
chip), memory, peripherals, and application-specific hardware components, also known
as hardware accelerators. Two main models of hardware accelerators can be identified:
i) loosely coupled accelerators, which are implemented outside the processor cores. In
order to reduce the communication overhead, these coprocessors usually run the complete
cryptographic operation in hardware; and ii) tightly coupled accelerators, which are deeply
embedded within the processor architecture as application-specific functional units. While
the loosely coupled alternative is easy to integrate into the system, usually it involves
poor flexibility and high communication overhead. In contrast, the tightly alternative
reduces the communication overhead and presents a low silicon area overhead. However,
the Instruction Set Architecture (ISA) of the processor must be extended.

RISC-V is a free and open ISA, which enables a new era of processor innovation. An ISA
defines a hardware/software interface as a collection of basic operations the processor must
support, enabling software portability between different implementations of a particular
ISA. RISC-V allows the development of open-source hardware with hardware security
extensions and secure coprocessors.

Extending the ISA for post-quantum cryptography is recognized as an important task by
the cryptographic extensions task group of the RISC-V security standing committee [Hel20].
However, up to now this committee has not addressed an ISA extension for post-quantum
cryptography. Overall, while many efforts towards the design and implementation of
post-quantum loosely coupled accelerators for RISC-V architectures have gathered great
attention, tightly coupled accelerators through RISC-V ISA extensions have been barely
explored.

Related Work. Hardware/software co-design for accelerating post-quantum cryptography
has been the target of an increasing research effort. Loosely coupled post-quantum
accelerators are proposed in [FSF+18, FDNG19, FSMG+19, BUC19, WTJ+20, MTK+20].
The work of [FSF+18] was one of the first initiatives of post-quantum acceleration
through co-design. The authors implemented the IEEE-1363.1 standardized version of
NTRUEncrypt. The software tasks were executed on an ARM Cortex-A53 and a loosely
coupled coprocessor was used to accelerate the polynomial multiplication. A similar
approach and platform was used in [FDNG19] for implementing several NTRU variants
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submitted to the NIST standardization process. In [MTK+20], Saber was implemented.
The software tasks were executed on an ARM Cortex-A9 and the polynomial multiplication,
based on Toom-Cook, was accelerated through a hardware coprocessor.

Several post-quantum implementations based on RISC-V and loosely coupled hardware
accelerators have been proposed. In [WJW+18], XMSS was accelerated through the
integration of a SHA-256 hardware core. Almost simultaneously in [FSMG+19], the
authors implemented the CPA version of NewHope accelerated through an NTT and
Keccak coprocessor. In [BUC19], a flexible crypto-processor, able to support several lattice-
based algorithms, was proposed. This work supports Frodo, NewHope, qTESLA and
CRYSTALS-Kyber/Dilithium. Low-power modular arithmetic, NTT, and Keccak cores
were used to accelerate lattice-based cryptography. In [WTJ+20], the authors developed
hardware accelerators for cSHAKE, Gaussian sampling, NTT, and sparse polynomial
multiplication to accelerate qTESLA.

These previous RISC-V implementations that use loosely coupled accelerators for
post-quantum cryptography present three disadvantages:

• High data transfer overhead: caused by the intense communication among cores.
Most designs use memory-mapped accelerators, which are connected through a bus,
e.g., an AXI bus, to the processing element. Data that is sent to the accelerator has
to be first loaded from the main memory into the processing element, i.e., into the
register file, from where it is forwarded to the memory of the accelerator. When
the accelerator finished the execution, the processed data has to be sent from the
processing element back to the main memory. A Direct Memory Access (DMA)
controller could speed up the data transfer as done in [FSF+18], but will also increase
the complexity and the area of the design.

• High amount of hardware resources: they require large buffers to store the
input and output data of the accelerator. In particular, the NTT module usually
requires a huge amount of memory for storing input data, output data, and LUTs
for the Twiddle factors of the forward and inverse NTT. Previously proposed works
use up to four separate memory blocks to execute the NTT transform. While this
excessive use of resources might be acceptable for high performance devices, it is
questionable if it is suitable for small embedded devices. The usage of multiple
memories unnecessarily increases the design complexity and cost.

• Low flexibility: since standalone hardware accelerators usually run a complete
cryptographic algorithm, they are inflexible and hard to update.

The transition from loosely to tightly coupled accelerators for post-quantum cryptog-
raphy was shown in the work of [FSS20]. The authors integrated hardware accelerators
already into a RISC-V core but still use large accelerators with input and output buffers.
Their approach is a highly customized solution for a single scheme (LAC [LLJ+19]). The
accelerators described in [FSS20] include a SHA-256 core and cores able to perform the
ternary polynomial multiplications as well as the error correction in LAC. For the best of
our knowledge, only a single work has exploited the full potential of tightly coupled accel-
erators for post-quantum cryptography [AEL+20]. In [AEL+20], the authors integrated a
finite field multiplier into the RISC-V processor to accelerate polynomial multiplications
in NewHope and Kyber. Their proposed finite field multiplier already leads to a good
performance improvement. In contrast to the work of [AEL+20], in this work we present
a set of more powerful hardware accelerators capable of performing vectorized modular
arithmetic, NTT computations, and efficient generation of random polynomials. Polyno-
mial generation has been pointed by several previous works [KRSS19, AEL+20, ABCG20]
as one of the main reasons for performance degradation. This bottleneck is usually even
more critical than the polynomial arithmetic.
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Contributions. In this work, we propose RISQ-V, an enhanced RISC-V architecture
that embeds a set of powerful tightly coupled accelerators to speed up lattice-based post-
quantum cryptography. Their implementation nature, directly integrated into the RISC-V
processing element, eliminates the drawbacks of loosely coupled accelerators by sharing
the existing processor resources. Our results show that our proposal combines a good
performance with flexibility and has a small silicon footprint. Thus, our solution is suitable
for a wide range of applications, from constrained devices, such as smartcards or IoT
platforms, to a powerful Multi-Processor System-on-Chip (MPSoC). In summary, this
paper presents three contributions:

First, we propose a set of tightly coupled hardware accelerators capable of performing: i)
two butterfly operations in parallel; ii) on-the-fly Twiddle factor generation; iii) vectorized
modular arithmetic; and iv) efficient generation of random polynomials. These accelerators
are deeply integrated into the RISC-V pipeline.

Second, we create 29 new instructions for performing packed modular arithmetic
(addition, subtraction, multiplication, multiply-accumulate), butterfly operations, update of
Twiddle factors, update/multiplication with scaling factors, bit-reversal, hash computations,
and binomial sampling.

Third, we developed a RISQ-V FPGA prototype and an ASIC implementation to
evaluate its performance and cost. We exploit the RISQ-V capabilities to implement the
post-quantum algorithms NewHope, Kyber and Saber with different security levels.

The implementation of this work with simulation environment is publicly available at
https://gitlab.lrz.de/tueisec/post-quantum-crypto.
Organization. The remainder of this article is structured as follows: In Section 2,
lattice-based cryptography and its performance bottlenecks are described. In Section 3,
we present the design decisions and hardware architectures of the developed post-quantum
accelerators. In Section 4, the integration of these accelerators into the RISC-V platform
and the new ISA extension are discussed. In Section 5, evaluation results of RISQ-V for
an FPGA prototype and an ASIC implementation are presented. A conclusion and further
discussions are given in Section 6 and Section 7.

2 Background
2.1 Lattice-based Cryptography
Most lattice-based cryptosystems are built upon the Learning With Errors (LWE) problem.
Among the different alternatives, the algebraically structured variants Ring-LWE (R-
LWE) and Module-LWE (M-LWE), and the deterministic variant Module-Learning With
Rounding (M-LWR) are very attractive since they offer performance advantages and
smaller key sizes over the plain LWE problem [AD17, BPR12].

The R-LWE problem was introduced in [LPR10]. In contrast to the plain LWE problem,
R-LWE replaces n-dimensional vectors by polynomials of degree smaller than n. These
polynomials are an element of the ring R = Zq/〈φ(x)〉, with integers n and q, and the
cyclotomic polynomial φ(x) that is usually chosen to be xn + 1. This substitution allows
to increase the computational performance and to decrease key and ciphertext sizes. The
basic R-LWE instance can be written as in Eq. (1), where a is a public polynomial, s a
secret polynomial and e an error polynomial.

b = a · s+ e (1)

All arithmetic operations are performed in the ring R. The hardness of the R-LWE
problem is based on the difficulty to recover s when a and the result b are given (search
problem). Moreover, it is known to be a hard problem to distinguish between the pair
(a, b) and a truly uniform and independent sample pair (decision problem). Usually, a

https://gitlab.lrz.de/tueisec/post-quantum-crypto
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is sampled from a uniform distribution Uq whose outcome ranges between 0 and q − 1.
The polynomials s and e are sampled from an error distribution Ψk, which is usually a
binomial or Gaussian distribution. NewHope [AAB+19] is a second round post-quantum
NIST candidate built upon the R-LWE problem.

The M-LWE problem was introduced in [LS15]. In contrast to R-LWE, the M-LWE
problem replaces the single ring elements with module elements over the same ring. Instead
of using a single large ring element, it uses matrices of smaller ring elements for constructing
the public element, and vectors of smaller ring elements for the secret and error elements.
R-LWE can be considered to be a special case of the M-LWE problem where the width of
the matrix A over the ring R is always 1 [ABD+19]. To increase the security level, it is
sufficient to increase the dimension of the matrices and vectors while the ring is always the
same. That is, the underlying ring operations do not change, instead the amount that these
operations are performed changes (more or fewer). One of the main advantages of M-LWE
is that the concrete security/efficiency trade-off is highly tunable [AD17]. Kyber [ABD+19]
is a second round post-quantum NIST candidate built upon M-LWE.

The LWR problem was introduced in [BPR12] as a derandomized version of the LWE
problem. It uses the rounding operator bxep with respect to some modulus p < q, which
scales x by p/q and then rounds the result to the nearest integer modulus p. Therefore, in
contrast to the LWE problem, the noise in the LWR problem is generated deterministically.
LWR replaces a·s+e (given in Eq. 1) by the rounding function ba·sep with respect to some
modulus p. The module version M-LWR is a straightforward generalization of M-LWE. As
a result, the schemes based on M-LWR are characterized by reduced bandwidth for keys
and ciphertexts. Saber [DKRV19] is a second round NIST candidate based on M-LWR.

The tightly coupled hardware accelerators developed in this work were used for enhanc-
ing the performance of the three promising NIST post-quantum candidates: NewHope
(R-LWE), Kyber (M-LWE), and Saber (M-LWR). The developed hardware accelerators
are able to support multiple security levels (from I to V). For the performance evaluation,
the following instances were evaluated: NewHope-512 (Level I), NewHope-1024 (Level V),
Kyber-512 (Level I), Kyber-768 (Level III), Kyber-1024 (Level V), Lightsaber (Level I),
Saber (Level III), and Firesaber (Level V). The following chapters describe the performance
bottlenecks of these schemes and the proposed hardware accelerators.

2.2 Performance Bottlenecks
The matrix/polynomial generation, addition, subtraction, and multiplication are the basic
operations required to encrypt, decrypt, sign, and verify information in lattice-based
cryptosystems.

Polynomial generation. Structured LWE-based cryptography requires the sampling of
large random polynomials. The standard way to create the public, secret and error
polynomials is to use uniformly distributed random numbers and model each coefficient
according to the desired distribution. The coefficients of the public polynomial can
be obtained through the rejection sampling process. This technique selects (accepts)
the uniform samples that fit to the target distribution (desired range), otherwise the
sample is rejected. The coefficients of the secret and error polynomials must be binomially
distributed. Although turning uniform random numbers into binomial samples just requires
few computational cycles for a single polynomial coefficient, this operation does not scale
well. Usually, to achieve the amount of randomness required to implement these two
types of sampling processes, a Pseudo Random Number Generator (PRNG), e.g., a hash
function, is included. This PRNG expands a small random seed extracted from a physical
source of entropy in an electronic device. In [KRSS19], the authors report that the cycles
spent for hash computations are for the optimized NewHope and Kyber implementations
on ARM Cortex-M4 between 60% and 73% of the total cycle count and for the Saber



244 RISQ-V: Tightly Coupled Accelerators for Post-Quantum Cryptography

implementations between 40% and 57%. In [BKS19], the authors report that for their
Kyber implementations even between 64% and 81% of the total cycle count is required
for hash computations.

Polynomial multiplication using the NTT. Besides the generation of random polyno-
mials, polynomial multiplication has been identified as the other most computationally
intensive operation [PG12, DB16]. While polynomial addition can be performed with
O(n) operations, a naive polynomial multiplication requires O(n2) operations [FS19].
Thus, it becomes specially prohibitive for high dimensional polynomials (larger values of
n). However, when polynomials are expressed in the spectral domain, the multiplication
operation between a pair of polynomials can be performed coefficient-wise.

The Discrete Fourier Transform (DFT) is a general method to transform a polynomial
a into the spectral domain. The coefficients of a are transformed as in Eq. 2, where n− 1
is the degree of the polynomial and ωn the n-th root of unity.

âi =
n−1∑
j=0

ωij
n · aj (2)

To transform the result vector from the spectral domain into the normal domain, the
inverse must be applied as in Eq. 3.

ai = 1
n

n−1∑
j=0

ω−ij
n · âj (3)

The Number Theoretic Transform (NTT) is a specialized version of the DFT where ωn

is an element of the finite ring Zq instead of a complex number. For the NTT computation,
the coefficient ring must contain primitive roots of unity. The n-th root of unity ωn ∈ Zq,
while ωn

n = 1 mod q and ωi
n 6= 1 mod q for ∀i ∈ [0, n− 1]. The polynomial multiplication

c between a pair of polynomials a and s through the NTT is calculated as in Eq. 4

c = NTT−1(NTT(a)�NTT(s)) , (4)

where � denotes a coefficient-wise multiplication and NTT−1 is the inverse NTT.
The product polynomial is reduced after the polynomial multiplication by the cyclotomic

polynomial φ(x) = xn + 1. In this way, the 2n-length product polynomial is reduced to
a n-length polynomial. When the 2n-th root of unity γn = √ωn exists, the reduction in
the spectral domain simply corresponds to scaling the i-th coefficient of the polynomials
with the factor γi

n before the NTT and with γ−i
n after the NTT−1. Thus, padding the

polynomials a and s in Eq. 4 with zeros can be avoided. The 2n-th root of unity exits
when q ≡ 1 mod 2n holds. The NTT (forward) and NTT−1 (inverse) reduced by φ(x)
can be written as in Eq. 5 and Eq. 6, respectively.

âi =
n−1∑
j=0

γj
n · ωij

n · aj (5)

ai = 1
n
· γ−i

n

n−1∑
j=0

ω−ij
n · âj (6)

To speed up the DFT from a complexity of O(n2) to O(n · log(n)), the Fast Fourier
Transform (FFT) can be used. This is also true for the NTT, while the name remains in
this case. The FFT exploits the symmetric structure of the Fourier transform by splitting
one DFT into smaller DFTs. The computation that breaks a larger DFT into smaller
DFTs (subtransforms) is called butterfly operation. The butterfly operation is also used
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to combine the smaller DFTs into a larger DFT. Two of the most used algorithms to
realize the fast NTT and NTT−1 operations are the Cooley-Tukey (CT) [CT65] and the
Gentleman-Sande (GS) [GS66] algorithms. While the arithmetic of both algorithms is
similar, they mainly differ in the way they store and access data and in the way how the
butterfly operation is performed. The butterfly operation consists of a multiplication by a
power of ωn, an addition, and a subtraction in Zq. The powers of ωn are called Twiddle
factors. While the Cooley-Tukey algorithm follows the decimation-in-time approach, i.e.,
x′ ← x+yωn and y′ ← x−yωn with ωn, x, y ∈ Zq, the Gentleman-Sande algorithm follows
the decimation-in-frequency approach, i.e., x′ ← x+ y and y′ ← (x− y)ωn.

NTT with general modulus. Polynomial multiplications using the NTT are very efficient.
However, not all lattice-based algorithms have ’NTT-friendly’ primes, such that xn− 1 can
be expressed as a product of linear factors. For example, Saber does not use a prime at all
for its modular reductions and sets q = 213. This leads to an efficient modular arithmetic
but prevents the possibility of a direct application of the NTT.

The original modulus of a lattice-based algorithm does not necessarily have to be a
prime in order to allow the application of the NTT as the NTT can be calculated with any
prime q′ > n · q2, where q is the original modulus. Choosing the prime q′ sufficiently large
can avoid precision errors caused by the modular arithmetic [PNPM15]. It has to be noted
that the resulting coefficients of the polynomial multiplication are not larger than n · q2.
For the parameter set of Saber (n = 256 and q = 213), the prime for the NTT should be
q′ > 17179869184 when both polynomials have coefficients in the range [0, q − 1]. While
the moduli of NewHope and Kyber fit in one halfword (16 bit), the new modulus for Saber
would require more than 34 bits. To use for Saber the same hardware architecture as for
NewHope and Kyber, we calculate the polynomial multiplication using several smaller
moduli and retrieve the final result using the Chinese Remainder Theorem (CRT). The
large value of q′ could be reduced when considering that for each polynomial multiplication
one polynomial is sampled from the error distribution. Therefore, one polynomial has
coefficients in the range of [−5, 5] (Lightsaber), [−4, 4] (Saber) or [−3, 3] (Firesaber). There
are different ways to represent negative numbers in hardware. One approach is to reduce
the negative value directly by q, which does not lead to a decrease of q′. An alternative is
to represent the numbers as a combination of one sign bit and three bits for the absolute
value. When considering the latter approach q′ > 256 · 5 · 213 = 10485760 for Saber.
However, the signed representation must be supported by the hardware circuit or special
treatment in software is required.

At least three primes (with direct reduction of negative numbers) or two primes (with
signed representation) smaller than 16 bits are required to compose q′ such that overflows
are avoided. The NTT with composed primes should be calculated without reductions
by the cyclotomic polynomial φ(x) = xn + 1. Therefore, the polynomial length is set to
n′ = 2 · n and polynomials are padded with zeros.

In the remainder of this article, we choose for the NTT in Saber, n′ = 512, q′ = q′1 ·q′2 ·q′3
with q′1 = 12289, q′2 = 13313, and q′3 = 15361 (q′3 is not required for signed representation).
These primes are the smallest value fulfilling q ≡ 1 mod 2n such that the corresponding
n-th root of unity exists (e.g., 3 for q′1, 15 for q′2, and 98 for q′3).

Chinese Remainder Theorem. Let q′1, q′2, . . . , q′k be pairwise coprime, q′ =
∏k

i=1 q
′
i, and

c1, c2, . . . , ck integers with 0 ≤ ci < q′i. Then, the system of linear congruences

x ≡ c1 mod q′1

x ≡ c2 mod q′2

. . .

x ≡ ck mod q′k
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has a unique solution solving all congruences simultaneously. The CRT problem can be
solved using Gauss’s algorithm with

x ≡ c1d1 + c2d2 + · · ·+ ckdk mod q′ , (7)

where di = (q′
/q′

i)−1 mod q′i. As di can be precomputed, the results of the polynomial
multiplication with smaller primes can be combined by multiplications, additions, and one
reduction by q′ as in Eq. 7.

Polynomial multiplication using Karatsuba and Toom-Cook. There are other alterna-
tives to efficiently multiply polynomials. Two of the most used algorithms for performing
flexible and efficient multiplications are Karatsuba and Toom-Cook. These algorithms
iteratively split a large polynomial multiplication into several smaller polynomial multi-
plications. Karatsuba outperforms Toom-Cook for low to medium degree polynomials.
Otherwise, Toom-Cook performs more efficiently.

Karatsuba multiplication: The Karatsuba algorithm reduces the quadratic runtime of
the polynomial multiplication to a complexity of O(nlog2(3)) ≈ O(n1.58). The length-m
polynomials a and s are split into two length-m/2 polynomials: i) lower part (al, sl); and
ii) higher part (ah, sh). Instead of four polynomial multiplications of these length-half
polynomials, Karatsuba’s tweak requires only three different multiplications

c = as = alsl + ((ah + al)(sh + sl)− ahsh − alsl)xm/2 + ahshxm . (8)

Toom-Cook multiplication: The Toom-Cook multiplication is a generalization of the
Karatsuba algorithm. Instead of splitting polynomials into two smaller polynomials, the
polynomial is split into k parts. For the case k = 2, the k-way Toom-Cook algorithm is
identical to the Karatsuba algorithm.

3 Hardware Accelerators
In order to enhance the performance of lattice-based cryptography, in this work the following
hardware accelerators were designed: i) an NTT and modular arithmetic accelerator; ii)
an accelerator used for Karatsuba/Toom-Cook multiplications; iii) a Keccak accelerator
for the pseudo random number generation; and iv) a binomial sampling accelerator. These
modules reduce the performance bottlenecks discussed in Section 2 and speed up the
overall performance.

3.1 Number Theoretic Transform (NTT) Design
In this subsection, the optimization techniques and design choices for our NTT architecture
are presented. The performance and size of the architecture for the NTT described in
Section 2 are highly influenced by: i) the calculation of Twiddle factors; ii) the bit-reversal
computation; and iii) the memory access strategy.

Our NTT architecture is mainly designed for the NewHope instances NewHope-512
and NewHope-1024, but also supports the Kyber instances Kyber-512, Kyber-768, and
Kyber-1024. For the NTT calculations in Saber, we use the same design as for NewHope-
512. Therefore, all optimizations and design choices for NewHope-512 hold also for the
NTT design of Saber. Since the use of the NTT in Saber is a special case, the following
description does not explicitly mention Saber. While NewHope-512 and NewHope-1024
have a polynomial length of n = 512 and n = 1024, respectively, Kyber has the same
polynomial length of n = 256 for all instances. As the polynomial length highly affects the
NTT costs, different design decisions were made for NewHope and Kyber.
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Calculation of Twiddle factors (powers of ωn). Most of the optimized software im-
plementations for performing the NTT precompute the Twiddle factors and store them
into separate memory. As the generated tables for storing these Twiddle factors are very
large for high-degree polynomials, previous hardware architectures devised an approach
to compute these values (powers of ωn) on-the-fly [RVM+14, FS19]. Due to the high
memory access latency of large tables, calculating the Twiddle factors on-the-fly can be
even faster than loading them from memory. In order to combine the advantages of
precomputation and on-the-fly Twiddle factors computation, in this work we propose a
hybrid approach. For larger polynomials, such as in NewHope-512 and NewHope-1024,
on-the-fly computation is used. Otherwise, precomputed tables are used, i.e., for all Kyber
instances.

Bit-reversal computation. Performing a reorder or bit-reversal step before or after the
NTT computation can be an expensive operation. There are several in-place variants of the
Cooley-Tukey and Gentleman-Sande algorithms, in the following referred to as NTTCT

br→no,
NTTCT

no→br, NTTGS
br→no, and NTTGS

no→br. The difference between these variants is the
order of the input and output data. At the bit-reversed to normal order (br → no)
variant, the input coefficients must be loaded in bit-reversed order and the output is
given in normal order. For the (no → br) variant, the input is in normal order and
the output in bit-reversed order. Previous works avoid the bit-reversal step by using a
combination of different algorithms for the forward and inverse transform, e.g., NTTCT

no→br

and INV-NTTGS
br→no [POG15]. However, this combination requires that the Twiddle

factors are loaded during the NTT computation in bit-reversed order, which increases the
complexity of the on-the-fly computation. In order to avoid large memories, we decided
to use the basic NTTCT

br→no algorithm for the forward as well as the inverse transform of
NewHope. The input coefficients of the forward transform are randomly sampled from the
error distribution, consequently no bit-reversal is required for the forward transform. As for
Kyber, the precomputation of the Twiddle factors is due to the smaller polynomial length
less expensive, we use the combination of NTTCT

no→br and INV-NTTGS
br→no to completely

avoid the bit-reversal step. This approach follows the reference implementation of Kyber,
which uses these two NTT variants.

Memory access strategy. The main performance bottlenecks of the NTT are the load and
store operations to transfer the coefficients between the main memory and the processing
element. A non-optimized NTT architecture always loads two coefficients from the memory
into the register file, performs the butterfly operation, and stores the result. The NTT
can be divided into log2(n) layers, with n being the polynomial length. A naive approach
requires to load and store all n coefficients in each layer, resulting in total in n · log2(n) load
and store operations, respectively. To decrease the memory access overhead two methods
can be used: merging of NTT layers and storing two coefficients in one memory word.
While both techniques were already used in previous works, to the best of our knowledge,
the combination of them without restricting on-the-fly computations has not been applied
for hardware designs.

Merging the NTT layers was already discussed in [GOPS13, AJS16, BKS19, ABCG20].
The goal is to keep a certain amount of coefficients as long as possible within the register
file. Let l denote the total amount of coefficients that can be stored within the register file.
After computing the butterfly operations for the l coefficients within the first layer, the
results are not written back to the main memory. Instead of completing the first layer, the
next layer is already processed. This method saves the memory accesses for the next layer.
When l coefficients can be loaded into the registers, up to log2(l) layers can be merged.
Previous works loaded up to 16 coefficients into the registers to process up to four NTT
levels without reloading coefficients between the layers. In [ABCG20], for NewHope-512
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3 + 3 + 3 layers of in total 9 layers and for Kyber 3 + 3 + 1 layers of in total 7 layers
were merged. In this work, we use the complete floating point register set of the RISC-V
core (32 × 32 bit) to store l = 2 × 32 = 64 coefficients (each 16 bit) for NewHope. An
address controller loads the coefficients directly from the floating point register set into
two butterfly units such that the calculation of multiple NTT levels can be performed. As
Kyber requires different algorithms for the forward and inverse transforms, no dedicated
address controllers are developed. This means, for Kyber, the general purpose register set
was used to store l = 16 coefficients (each 16 bit) allowing to merge 3 + 3 + 1 layers.

To further reduce the amount of load and store operations, multiple coefficients can
be stored in a single memory word (32 bit). As the polynomial coefficients of NewHope
and Kyber can be expressed with at most 16 bit, two coefficients are stored in a single
word. After performing the butterfly operation, the intermediate results of the coefficients
are swapped in order to prepare them for the next layer. Note that precalculated Twiddle
factors can be stored in any desired order. Such particularity enhances the traverse
possibilities through the NTT structure and allows to avoid the swapping operation.

Figure 1 illustrates an example of the applied NTT layer merging and swapping
techniques for the NTTCT

br←no variant that we use for NewHope. In the small example
for n = 16, eight coefficients can be loaded from the main memory into the registers
(l = 8). Moreover, two butterfly operations can be processed in parallel within the
units BF0 and BF1. The red rectangles show the order in which the coefficient pairs
are processed by the two butterfly units. At the beginning, the first eight coefficients
a0, a8, a4, a12, a2, a10, a6, a14 are loaded pairwise into the register file. In the following, we
use the term distance to describe the difference between the positions of two coefficients
in an array. In the first layer, the distance between the coefficients that are processed
together is equal to one, i.e., they are located in the same register. The coefficient pairs
(a0, a8), (a4, a12) are processed first using the two butterfly units and (a2, a10), (a6, a14)
are processed next. Instead of storing the result back to the main memory, the second
layer is already processed. In the second layer, the distance between the coefficients that
are processed together is equal to two. It requires the results of the first layer for the
coefficient pairs (a0, a4), (a2, a6) and (a8,a12), (a10,a14). As these coefficient pairs are
not next to each other, i.e., they are not within the same register, a swap is performed
by the butterfly units indicated in Figure 1 by the blue arrows. This swapping operation,
which is an exchange of 16 bit values in two registers, can be performed in hardware
almost for free. In the third layer, the distance between the coefficients that are processed
together is four, which means that some required coefficients would still be within the
register set. However, not all coefficients required for the swapping operation to prepare
the content of the registers for the next layer are located in the register set. Therefore, the
amount of layers that can be merged is log2(l)− 1 and in the example shown in Figure 1
two. However, the swapping technique allows to have always the right coefficients in the
same memory word, which significantly decreases the access to the main memory. Table 1
illustrates the register content and the input values for the butterfly units BF0 and BF1
for the small example in Figure 1. An unoptimized version of the NTT diagram is shown
in Figure 9 (Appendix A). This unoptimized version only loads two coefficients at the
same time, has only one butterfly unit, and processes layer after layer. While in this small
example the unoptimized version shown in Figure 9 requires n · log2(n) = 16 · 4 = 64
memory accesses, the optimized version shown in Figure 1 (n = 16, l = 8) requires
n/2 · (log2(n) + 1− (log2(l)− 1)) = 24 memory accesses.

Algorithm 1 shows the NTTCT
br←no algorithm with the discussed optimizations: on-

the-fly Twiddle factor calculation, storing two coefficients in one memory word, and the
swapping operation. The merging technique is not directly included in this algorithm, but
will be discussed as well. The algorithm can be divided into three steps: input preparation,
calculation of the first NTT layers, and calculations of the last NTT layer.
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â2

â3
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Figure 1: Example NTTCT
br←no with n = 16. In this case, two coefficients are stored in

a single word, eight coefficients can be loaded to the register file (l = 8), and two pairs
of coefficients can be executed in parallel. The red boxes indicate which coefficients are
stored together in one word and in which order the coefficients are processed by the two
butterfly units. The blue arrows show the coefficients which are swapped after the butterfly
operations. For l = 8, log2(l)− 1 = 2 layers were merged.

Table 1: Register content and input for the two butterfly units BF0 and BF1 for the
example n = 16, l = 8.

Register Step 0 Step 1 Step 2 Step 3 Store Coeffs./
Content Load coeffs. BF0 BF1 BF0 BF1 BF0 BF1 BF0 BF1 Load Coeffs. . . .

R0 a0, a8 a0, a8 a0, a4 a1, a9
R1 a4, a12 a4, a12 a8, a12 a5, a13
R2 a2, a10 a2, a10 a2, a6 a3, a11
R3 a6, a14 a6, a14 a10, a14 a7, a15
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Algorithm 1: NTT transform
Input: Coefficients ai, with i = 0, 1, . . . , n− 1, precalculated values of ωm

Result: Coefficients âi, with i = 0, 1, . . . , n− 1
1 a← BitReversal(a)
2 for m = 2 to n/2 by m = 2m do
3 ωm ← ω

n/m
n

4 ω ← ω
n/(2m)
n or 1 for NTT−1

5 for j = 0 to m/2− 1 by 1 do
6 for k = 0 to n/2− 1 by m do
7 ak+j+m/2, ak+j ← MEMk+j // Load first coefficient pair
8 H1, L1 ← ak+j+m/2, ak+j

9 ak+j+3m/2, ak+m+j ← MEMk+j+m/2 // Load second coefficient pair
10 H2, L2 ← ak+j+3m/2, ak+m+j

11 H1, H2 ← (H1 · ω) mod q, (H2 · ω) mod q
12 ak+j+m/2, ak+j ← (L1 −H1) mod q, (L1 + H1) mod q
13 ak+j+3m/2, ak+m+j ← (L2 −H2) mod q, (L2 + H2) mod q
14 MEMk+j ← ak+j+m, ak+j // Store and swap coefficients
15 MEMk+j+m/2 ← ak+j+3m/2, ak+j+m/2 // Store and swap coefficients
16 end
17 ω ← (ω · ωm) mod q

18 end
19 end
20 m← n // Prepare last round

21 ωm ← ω
n/m
n

22 ω ← ω
n/(2m)
n or 1 for NTT−1

23 for j = 0 to m/2− 1 by 1 do
24 aj+m/2, aj ← MEMj // Load coefficient pair
25 H1, L1 ← aj+m/2, aj

26 H1 ← (H1 · ω) mod q
27 aj+m/2, aj ← (L1 −H1) mod q, (L1 + H1) mod q
28 MEMj ← aj+m/2, aj // Store without swap
29 ω ← (ω · ωm) mod q

30 end
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In the first step, the coefficients of polynomial a are stored in a bit-reversed order in
the main memory (line 1). The input coefficients are stored in a way that two coefficients
are always stored in a single word.

In the second step (line 2-19), the first log2(n) − 1 NTT layers are calculated. The
Twiddle factor ω is initialized in line 4, and always updated during runtime by a modular
multiplication with ωm (line 17). The value of ωm depends on the current NTT layer
indicated by the variable m. In practice, the values for ωm still need to be precomputed.
However, only one entry for each layer is required, resulting in log2(n) precomputations.
To merge the multiplication by powers of γ, ω is initialized with the square root of ωm

(line 4). The same precomputations as for ωm can be used because ω1/2
m and ωm from the

previous layer have the same value. Only for the first layer (m = 2), the value ω1/2
m has to

be computed.
The most important part of Algorithm 1 are the butterfly operations, described in

the inner loop (line 7-15). At the beginning, two coefficient pairs are loaded from the
main memory locations MEMk+j and MEMk+j+m/2 and are assigned to two temporary
variables each consisting of a lower halfword L1/L2 and a higher halfword H1/H2 (line 7-
10). Then, two butterfly operations are performed (line 11-13). Finally, the result is
swapped and stored in the respective memory location (line 14-15).

The third and last step is the computation of the last NTT layer (line 20-30). The
operations of the last layer are similar to the operations of the other layers. The main
difference is that no swapping operation is required.

The algorithmic modifications required for the merging technique include the manip-
ulation of the start and end values of the outer and inner loop (lines 2 and 6). For the
hardware architecture, we consider 32 registers available from the floating point register
set for storing l = 64 coefficients. In this way, five layers can be merged. The nested loops
can be split into n/64 parts. The outer loop, which indicates the current layer, starts for
each part from 21 and terminates at the value 25, i.e., m = {2, 4, 8, 16, 32}. The inner loop
iterates for the i-th part from k = 32i to k = 32i+ 31, where i ∈ [0, . . . , n/64− 1]. Instead
of loading and storing the coefficients from the main memory, the coefficients are kept
within the register set and are only refreshed between the n/64 parts.

3.2 Number Theoretic Transform (NTT) Architecture
Our proposed hardware architecture for the NTT and Modular Arithmetic Unit is shown
in Figure 2. It is composed of three main modules: Address Unit, Twiddle Update Unit,
and Modular Arithmetic Unit. The architecture is optimized for the NTTCT

br←no algorithm,
which is used in NewHope. However, it also supports different NTT algorithms. The
input of the NTT and Modular Arithmetic Unit is the content of two registers from the
processor’s register bank (with lower halfwords L1/L2 and higher halfwords H1/H2), and
the control signals from the instruction decoder. The output consists of the processed
input values and the control signals for the register bank.

Address Unit. This module controls the merging operation by setting the two read and
write addresses for the register bank according to Algorithm 1 (with the modified loop start
and end values) in order to merge five NTT layers. In this work, the automatic address
calculation is only supported for NTTCT

br←no and therefore only for NewHope. Supporting
different NTT variants would be possible but would also lead to a non-negligible increase of
area. The address calculation is triggered by the multiple_bf signal. At each clock cycle
three sets of signals are updated: the read addresses raddr, the write addresses waddr,
and the write enable signal wen. The Address Unit is also responsible for selecting the
correct index for the small LUT of the precalculated values of ωm and for triggering the
Twiddle factor update. When the NTT and Modular Arithmetic Unit is in single operation
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Figure 2: NTT and Modular Arithmetic Unit

mode, the Address Unit remains in idle state.

Twiddle Update Unit. This module calculates the Twiddle factors ω on-the-fly. The
update of ω is always triggered by the update_w signal, which is either set by the Address
Unit or by the corresponding signal from the instruction decoder. The current Twiddle
factor ω = ω · ωm mod q is updated as described in lines 17 and 29 of Algorithm 1. The
value of ω is initialized according to lines 4 and 22. The value for ωm is determined through
the current NTT layer. All log2(n) possible values for ωm are precalculated and stored
in a LUT within the hardware accelerator. The index signal is used to select the correct
value from the LUT. Depending on the value of the inv_ntt signal, either the LUT for
the forward NTT or the inverse NTT is selected.

Modular Arithmetic Unit. This module performs the arithmetic for the following op-
erations: Butterfly Operation (decimation-in-time and decimation-in-frequency), Post-
Processing Operation (mul_gamma1, mul_gamma2, update_gamma), and Vectorized Modular
Arithmetic (mod_mul, mod_add, mod_sub). It is composed of a set of arithmetic elements,
registers, and a Reordering MUX. A detailed microarchitecture of the Modular Arithmetic
Unit in the Butterfly Operation mode is shown in Figure 3. The architectures of the Modu-
lar Arithmetic Unit in the Post-Processing Operation and Vectorized Modular Arithmetic
operation mode look very similar and are shown in Figure 10 and Figure 11 (Appendix B).
The only difference between these figures are the signals which are forwarded by the
multiplexers.

The Butterfly Operation calculates two butterfly operations {L1 −H1 · ω, L1 +H1 · ω}
and {L2 −H2 · ω, L2 +H2 · ω} in parallel. The calculation is triggered by the butterfly
signal. In order to calculate two butterfly operations in parallel within the last NTT
layer (Algorithm 1, line 23-30), the previous Twiddle factor ω′ is also forwarded to the
Modular Arithmetic Unit. As a result, the utilization of the Modular Arithmetic Unit can
be increased and the execution time of the inverse NTT can be decreased. The Reordering
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Figure 3: Modular Arithmetic Unit – Butterfly Operation decimation-in-time (DIT)

MUX is responsible for preparing the coefficients to the next round (layer) by swapping
the coefficients after the butterfly operation for all rounds, except for the last one. The
architecture was extended in order to support the calculation of the decimation-in-frequency
butterfly operation, i.e., the calculation of {(L1 −H1) · ω, L1 +H1} and {(L2 −H2) · ω,
L2 +H2}. For reasons of better visibility, this extension is not shown in Figure 3. The
calculation of L1 + H1 and L2 + H2 can be done by the existing modular adders. To
avoid any combinatorial loop in the circuit, either two additional modular multipliers or
modular subtractors are required. As the modular subtractors are more compact (less
area consuming) than the modular multipliers, they were used in this work to enhance
the design. These subtractors were placed on top of the existing multipliers. The input
of the additional subtractors are (L1, H1) and (L2, H2). The output is connected to the
multiplexers of the left input of the existing multipliers.

The Post-Processing Operation (mul_gamma1, mul_gamma2, update_gamma) is used to
calculate the multiplications with n−1 and γ−i at the inverse NTT operation. These
multiplications can be merged with the last layer of the inverse NTT. Therefore, first the
control signal mul_gamma1 ensures that the coefficients ai and ai+n/2 of the first input
(L1, H1) are multiplied with γ1 = n−1γ−i and γ2 = n−1γ−i−n/2, respectively. Before
the multiplication with the first coefficients a0 and an/2 starts, γ1 is initialized with
n−1γ−1

n mod q and γ2 with n−1γ
−n/2
n mod q. The mul_gamma2 control signal is used

to perform the multiplications with the next coefficient pair ai+1 and ai+1+n/2. The
Reordering MUX brings the results of the mul_gamma1 and mul_gamma2 operation in the
desired order {ai+1, ai} and {ai+1+n/2, ai+n/2} and assigns the result to the output. The
update_gamma signal is used to update γ1 = γ1γ

−1
n and γ2 = γ2γ

−1
n after each mul_gamma1

and mul_gamma2 operation.
The Vectorized Modular Arithmetic (mod_mul, mod_add, mod_sub) operation uses the

Modular Arithmetic Unit to calculate vectorized modular multiplications (L1 · L2 mod q
and H1 ·H2 mod q); additions (L1 + L2 mod q and H1 +H2 mod q); and subtractions
(L1 − L2 mod q and H1 −H2 mod q), where L1 and L2 are the lower 16 bit of the two
forwarded registers from the register set and H1 and H2 are the higher 16 bit. The two
results from the modular multipliers, adders, or subtractors are combined in the Reordering
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MUX and are assigned to the output signal. The corresponding control signals mod_mul,
mod_add, and mod_sub are used to perform the vectorized modular arithmetic and to
output the desired result. Similar to the Butterfly Operation, the Vectorized Modular
Arithmetic belongs to the category of packed (vectorized) arithmetic and follows the Single
Instruction Multiple Data (SIMD) principle. This means a single instruction is used to
process multiple data elements in parallel.

3.3 Bit-Reversal
The bit-reversal operation is a particular permutation of a sequence of elements. As dis-
cussed in Section 3.1, it is a key part of the NTT. Consider an array of n elements, the index
of the i-th element ai can also be represented in binary notation i = {b0, b1, . . . , blog2(n)−1}.
The bit-reversal operation swaps the i-th element with the j-th element which has the
bit-reversed index j = {blog2(n)−1, blog2(n)−2, . . . , b0}. Reversing the bits is an expensive
software task. A straightforward approach with a runtime of O(m) is looping through all
m = log2(n) bits of an integer. The fastest solution is to use a LUT. This LUT requires n
entries, each consisting of m bits. In particular, for large arrays, i.e., for large polynomial
lengths, this approach will lead to a high memory footprint (large LUT). In order to have
a better trade-off between memory footprint and performance, we extend the RISC-V
ISA and develop special instructions for the bit-reversal operation. These instructions
are derived from the store word/halfword operations sw, sh. In addition to the value
to be stored and the destination address, the new instructions also take an offset. This
offset is added in a bit-reversed order to the destination address. The functionality of the
new instructions can be expressed as MEMrs1+bitrev(rs2) ← rd, where rs1 contains the
destination address, rs2 the offset, and rd the value that is stored. Reversing the offset
in hardware can be efficiently solved through a rewiring process. The bit-reversal of a
whole polynomial can be performed by loading in a loop each coefficient, and storing the
coefficient with the new instruction. In this case, the offset simply corresponds to the loop
counter.

3.4 Results for the NTT Accelerator
In this paper, we use the PULP RISC-V Toolchain1 (version 7.1.1) with the optimization
flag ’O3’ (optimization for speed) to compile the code. A description of the used RISC-V
platform is given in Section 4. Table 2 summarizes the clock cycle count required for
performing the NTT, inverse NTT, and bit-reversal step in NewHope and Kyber. While
in NewHope different polynomial lengths are used for different security levels (n = 512
and 1024), Kyber uses the same polynomial length for all security levels (n = 256). In
all implementations mentioned in Table 2, the bit-reversal step was eliminated for Kyber
by using two different NTT variants. The baseline implementations for our optimized
implementations are the clean C-code versions of the PQ-M4 project in [KRSS19], which
are based on the reference implementations in [AAB+19] and [ABD+19].

In comparison to the baseline implementation on RISC-V, the optimized NewHope
implementation achieves a speedup factor of 13.18/12.40 (NTT/NTT−1) for length-512
polynomials and a speed up factor of 13.01/11.95 (NTT/NTT−1) for length-1024 poly-
nomials. The integrated optimization techniques (on-the-fly Twiddle factor calculation,
merge of five NTT layers with direct access of the NTT and Modular Arithmetic Unit
to the processor’s floating point register set, and the storage of two coefficients in one
word) result in a significant performance improvement when compared to the baseline
implementation. The new bit-reversal instruction does not only eliminate the LUT for this
step (1024 bytes for NewHope-512 and 2048 bytes for NewHope-1024), but also leads to an

1https://github.com/pulp-platform/pulp-riscv-gnu-toolchain

https://github.com/pulp-platform/pulp-riscv-gnu-toolchain
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improvement in speed. Although the architecture of the NTT and Modular Arithmetic Unit
is not optimized for the NTTCT

no→br and INV-NTTGS
br→no variants, Kyber also achieves a

considerable speedup factor of 17.93/27.79 (NTT/NTT−1) when compared to the baseline
implementation. In fact, only the parallel decimation-in-frequency butterfly operations
and the vectorized modular multiplication of the NTT and Modular Arithmetic Unit are
used.

Our results show that our architecture beats the clock cycle count of the latest assembler
optimized ARM Cortex-M4 implementations in [ABCG20], the RISC-V implementation
in [AEL+20], which uses a finite field multiplier to accelerate the NTT, and the hard-
ware/software co-design architecture of NewHope in [FSMG+19], which uses a loosely
coupled NTT accelerator. In [AEL+20], the bit-reversal step was also eliminated for
NewHope. However, two different NTT variants have to be used, which might lead to
an increase of code size. In [FSMG+19], the bit-reversal costs were hidden by a re-wiring
during the transfer of the coefficients to the memory of the NTT accelerator.

In addition, in contrast to the NewHope baseline implementation and the implemen-
tations presented in [ABCG20], our proposed architecture does not require large LUTs.
While the NewHope reference implementation in [AAB+19] requires 7n-bytes (n denotes
the polynomial length) for storing LUTs for the bit-reversal step, Twiddle factors and
pre-/post processing, our implementation only requires 4 · log2(n) + 4 bytes. In concrete
numbers, the LUTs were reduced from 7168 to 44 bytes for NewHope-1024 and from 3584
to 40 bytes for NewHope-512. In contrast to the design in [FSMG+19], no additional data
memory is required for the accelerator. A summary of the required hardware costs for the
NTT as well as the whole NewHope and Kyber implementations is presented in Section 5.

Table 2: Clock cycle count for the NTT

Device NTT NTT−1 BR
NewHope-512 [ABCG20] ARM Cortex-M4 31, 217 23, 439 –
NewHope-512 [AEL+20] RISC-V (VexRiscv) 14, 787 14, 893 0
NewHope-512 baseline RISC-V (PULPino) 107, 666 107, 668 6, 623
NewHope-512 opt. RISC-V (PULPino) 8, 169 8, 684 2, 056
NewHope-1024 [FSMG+19] RISC-V (PULPino) 24, 609 24, 609 0
NewHope-1024 [ABCG20] ARM Cortex-M4 68, 131 51, 231 –
NewHope-1024 [AEL+20] RISC-V (VexRiscv) 31, 295 31, 735 0
NewHope-1024 baseline RISC-V (PULPino) 241, 121 241, 123 13, 279
NewHope-1024 opt. RISC-V (PULPino) 18, 537 20, 171 4, 105
Kyber [ABCG20] ARM Cortex-M4 6, 855 6, 983 0
Kyber [AEL+20] RISC-V (VexRiscv) 6, 868 6, 367 0
Kyber baseline RISC-V (PULPino) 34, 703 53, 636 0
Kyber opt. RISC-V (PULPino) 1, 935 1, 930 0

3.5 Results for Polynomial Multiplication using NTT and CRT
As discussed in Section 2.2, the polynomial multiplication for a large modulus can be
calculated with polynomial multiplications of several smaller moduli and a recombination
using the CRT. Since the NTT with signed representation would require larger hardware
changes to the proposed NTT architecture, the input of the NTT is in the following
cycle count analysis supposed to be in the range [0, q − 1], i.e., negative numbers are
directly reduced by q. For calculating the NTT for Saber, we use a similar approach
as for NewHope-512. The differences are: i) each share uses a different modulus and a
different n-th root of unity; ii) zero-padding is applied; and iii) scaling by γi

n and γ−i
n is

not performed.
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Table 3 summarizes the results for the polynomial multiplication in Saber using the
optimized NTTCT

br←no algorithm. The complete polynomial multiplication of one share
with zero-padding requires 36, 102 cycles. Since the polynomial multiplication is computed
for the three shares with q′1 = 12289, q′2 = 13313, and q′3 = 15361, a total of six NTT,
three NTT−1, and three point-wise multiplication operations is required. The results show
that 108, 306 cycles are necessary for calculating the three polynomial multiplications. The
recombination of the intermediate results using the CRT and the reduction by xn + 1 turns
out to be costly in software. A dedicated hardware accelerator for Eq. 7 with the modular
reduction by the large prime q′ (42 bits) would improve the performance. However, as
shown in the next section, the approach using Toom-Cook/Karatsuba turns out to be
more efficient for our setting. This might change when the NTTs are computed in parallel
and hardware support for larger moduli is provided. It seems to be not sufficient to use the
signed representation, which reduces the number of complete polynomial multiplications
from three to two. When assuming that supporting the signed representation has a
negligible overhead compared to the current NTT design, the amount of cycles required to
perform the two polynomial multiplications is 2 ·36, 102 = 72, 204. As described in the next
section, the complete polynomial multiplication using Karatsuba/Toom-Cook requires only
71, 349 cycles when using our proposed modular arithmetic hardware accelerator. It has
to be noted that schemes like NewHope and Kyber reduce the amount of NTT operations
by transmitting polynomials in the NTT domain and by avoiding the NTT transformation
for the uniformly distributed public polynomials. These optimizations cannot be applied
to Saber without changing the protocol and test vectors.

Table 3: Clock cycle count for the NTT with CRT

Device Cycles
Complete mul. Saber with NTT/CRT RISC-V (PULPino) 226, 081
- NTT (512) with bit reversal RISC-V (PULPino) 10, 452
- NTT−1 (512) with bit reversal RISC-V (PULPino) 11, 053
- NTT multiplication (one share) RISC-V (PULPino) 36, 102
- CRT with reduction by xn + 1 (no HW support) RISC-V (PULPino) 117, 836

3.6 Hardware Accelerator for Karatsuba/Toom-Cook Polynomial Mul-
tiplication

Recent works propose a combination of the Karatsuba and Toom-Cook methods to perform
the polynomial multiplication in Saber [DKRV18, DKRV19, MKV20]. Using the four-way
Toom-Cook method, the product of a pair of 256-coefficient polynomials is split into
seven polynomial multiplications with polynomials of length 64. These 64× 64-coefficient
multiplications are then further split into 16 × 16-coefficient multiplications using two
levels of Karatsuba. After performing the recursive splittings, the polynomial length is
small enough to efficiently perform the schoolbook multiplication. At a certain point,
further splitting the polynomials does not bring any performance advantage since the
savings derived from the multiplication do not outweigh the increasing number of additions.
Similar to [DKRV18] and the reference implementation provided to NIST, in this work we
stop the recursive splitting at a polynomial length of 16.

Since the coefficients in Saber are, similar to NewHope and Kyber, smaller than 16 bit,
they are suitable for packed (vectorized) arithmetic. Although the ISA extension of the
RISC-V specification2 for packed arithmetic is still in draft mode, the RISC-V core used
in this work already supports some packed operations [TGS19]. In the following, useful
instructions for the polynomial multiplication in Saber are listed:

2Document Version 20191213: https://riscv.org/specifications/isa-spec-pdf/

https://riscv.org/specifications/isa-spec-pdf/
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pv.add.h: rd[15:0] = (rs1[15:0] + rs2[15:0]) mod 216

rd[31:16] = (rs1[31:16] + rs2[31:16]) mod 216

p.mulu: rd[31:0] = rs1[15:0] · rs2[15:0]
p.mulhhu: rd[31:0] = rs1[31:15] · rs2[31:15]
p.macuN : rd[31:0] = (rs1[15:0] · rs2[15:0] + rd) >> Is3
p.machhuN : rd[31:0] = (rs1[31:16] · rs2[31:16] + rd) >> Is3

These instructions are comparable to the ARM Cortex-M4. Saber and also other post-
quantum NIST candidates, such as some NTRU variants, use a modulus that is a power of
two and q ≤ 216. For this reason, it is possible to calculate and store two multiplications
in parallel. Moreover, the schoolbook multiplication as well as the Karatsuba step in
Eq. 8 can benefit from a Multiply Accumulate (MAC) function. Therefore, we develop
a vectorized modular multiply accumulate function, in the following denoted as pq.mac.
The functionality of pq.mac can be expressed with:

pq.mac: rd[15:0] = (rs1[15:0] · rs2[15:0] + rd[15:0]) mod q′

rd[31:16] = (rs1[31:16] · rs2[31:16] + rd[31:16]) mod q′

In this work, the parameter q′ in pq.mac was set to 216. In this way, it is suitable for
all schemes that use a power of two modulus smaller or equal to 216. After performing the
polynomial multiplication, the result can be reduced with the original modulus q (simple
masking operation) because (a mod q′) mod q ≡ a mod q as long as both moduli are a
power of two and q′ ≥ q. The hardware architecture for the pq.mac operation is shown
in Figure 4. Using the pq.mac operation, the amount of clock cycles for the polynomial
multiplication in Saber was reduced from 104, 074 to 71, 349. In our setting, this result
clearly beats the multiplication approach using multiple NTTs and CRT recombination. For
the remainder of this article, we use the pq.mac operation for the performance optimizations
of the polynomial multiplication in Saber.

Figure 4: Vectorized Modular Multiply Accumulate (pq.mac)

3.7 Pseudo Random Number Generation
Most post-quantum cryptosystems require a huge amount of randomness. This is partic-
ularly true for the generation of random polynomials in lattice-based cryptography. To
produce this large amount of randomness, usually a small seed is expanded using a PRNG.
Three primitives are especially suitable for this task: SHA-3, AES and ChaCha20. Among
these three alternatives, SHA-3 is the most energy-efficient option because it generates
the highest amount of pseudo-random bits per round [BUC19]. SHA-3 is a subset of the
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Keccak family standardized by NIST. The standard lists four specific instances of SHA-3
and two extendable-output functions (SHAKE128 and SHAKE256). While the SHA-3
functions have a specified output length, the two SHAKE variants permit extracting a
variable length of output data, which makes it a suitable candidate for the pseudorandom
bit generation. All instances are based on a 1600-bit state. This state can be represented in
a three-dimensional array containing 25 words, each with a length of 64 bits. These words
can be structured in a cube with x and y coordinates that are indexed from 0 ≤ x < 5 and
0 ≤ y < 5. Each bit of this cube can be addressed with A[x, y, z]. In order to facilitate the
description of the applied functions, the following conventions are used: the part of the
state which presents the word is also called lane, a two-dimensional part of the state with
fixed z is called a slice, and all lanes with the same x-coordinate form a sheet.

The most important part of the SHA-3 and SHAKE primitives is the Keccak permuta-
tion function, which calls in each of in total 24 rounds the f-1600 function. Each round is
characterized by the five consecutive steps θ, ρ, π, χ and ι. These steps have a state array
A as input and output B, a processed new state array.

Theta Step (θ). This step first computes the parity of each sheet of the state C[x] =
A[x, 0]⊕ A[x, 1]⊕ A[x, 2]⊕ A[x, 3]⊕ A[x, 4] for x in [0, 4]. The output of the θ step can
then be computed with B[x, y] = A[x, y]⊕ (C[x− 1]⊕ rot(C[x+ 1], 1)) for x and y in [0, 4],
where rot defines the rotation.

Rho/Pi Step (ρ/π). The ρ and π steps work on the lanes of the state A[x, y]. That
is, they are usually processed together. The ρ step rotates the lane by a constant
offset r[x, y] which depends on the x and y positions. This can be formulated as
B[x, y] = rot(A[x, y], r[x, y]) for x and y in [0, 4]. The π step swaps the complete lanes of
the state according to B[y, 2x+ 3y] = A[x, y] for x and y in [0,4].

Chi/Iota Step (χ/ι). The non-linear χ step can be computed according to B[x, y] =
A[x, y]⊕ (A[x+ 1, y] &A[x+ 2, y]) for x and y in [0,4]. At the ι step, a round constant Rc

is XORed to the lane A[0, 0], i.e., B[0, 0] = A[0, 0]⊕Rc[i]. This round constant depends
on the current round i. Also the χ and ι step can be combined.

3.8 Hardware Accelerator – Pseudo Random Number Generation
The Keccak team presented three different optimized hardware implementations of Keccak:
a high speed core, a mid-range core (trade-off between speed and area), and a low area
coprocessor [BDH+20]. A description of these implementations can be found on their
website3. The high speed core operates in a standalone fashion and requires no further
resources for the Keccak calculations. Chunks of a message can be sent to the accelerator
and the core will output the hash value. This approach was also used in [FSMG+19]. The
authors connected a loosely coupled high performance Keccak accelerator to the AHB
in order to accelerate the Keccak operations in NewHope. The low area solution (of the
Keccak team) is a coprocessor which uses the system memory as data storage instead of
storing the Keccak state internally. Only temporary results are kept internally in registers.
As a trade-off between the high speed and low area solution, the Keccak team presented
the mid-range core which is based on some of the ideas presented in [JA11]. This core
rearranges the order of the permutation function such that the two slice oriented steps χ
and θ are processed closer together. In order to reduce the required area, the core only

3https://keccak.team/files/Keccak-implementation-3.2.pdf

https://keccak.team/files/Keccak-implementation-3.2.pdf
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works on a subset of the slices that compose the state. This approach requires a different
initial and final round. However, as the ρ, π and ι steps work on lanes and the χ and θ
steps on slices, it is not the optimal solution to split the state as the state must be loaded
multiple times from the memory.

In this work, we develop an alternative solution for Keccak which presents a trade-off
between performance and area. It can be classified between the high speed and low area
Keccak solutions of the Keccak team. To avoid a high access rate to the main memory,
the state is not split into multiple parts. However, instead of a standalone loosely coupled
Keccak accelerator, we design a hardware accelerator for a single round of the Keccak
permutation. To reuse existing resources from the RISC-V core, the complete Floating
Point Register Set (FPR) with 32 × 32 bit registers and a part of the General Purpose
Register Set (GPR) with 18× 32 bits are used. In the following, this combination of FPR
and GPR is denoted as Post-Quantum Register Set (PQR). To be precise, the temporary
registers t0 to t6 and the saved registers s1 to s11 are used from the GPR. In this way,
enough remaining registers exist in the GPR to guarantee a normal operation of the
RISC-V core and also enough registers are used to store the complete Keccak state in the
PQR. The saved registers have to be stored on the stack before the Keccak function starts.
Similar to the NTT and Modular Arithmetic Unit, the registers can be accessed in parallel.

Figure 5 illustrates our Keccak hardware accelerator. The input of this accelerator is
the content of the PQR, the current round constant (rnd), a start signal (keccak_wen)
and a reset signal (keccak_rst). Triggered by the start signal, the accelerator will perform
one round of the f-1600 function, where the round signal selects the corresponding round
constant. The result of the processed state is written back to the PQR. This step can be
repeated for all 24 rounds. The permuted state can then be stored from the PQR to the
main memory.

To reduce the memory access during the generation of random polynomials, we keep the
state in the registers as long as possible. The following steps are used for the generation of
random polynomials. First, the state is set to zero with the keccak_rst signal and written
into the PQR, which also resets the related registers. After setting all registers to zero,
the Keccak absorption phase begins. During this phase, the input message or a message
block is written into a subset of the state. The state permutation will then transform this
state. Depending on the rate, a certain number of bits is squeezed out while a part of the
state, the capacity, remains untouched. The squeezed output is then processed in order
to generate the desired random polynomials. Thereby, the state registers must remain
untouched when the state is not written back to the memory. To obtain fresh randomness,
the state is permuted and squeezed again. Keeping the state for the whole polynomial
sampling process within the PQR leads to a significant performance improvement as the
access to the main memory for saving the state is eliminated in this case.

Figure 5: Keccak Accelerator
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3.9 Binomial Sampling
Many LWE-based schemes, such as NewHope, Kyber and Saber, replaced the discrete
Gaussian error distribution by a centered binomial distribution. This significantly increases
the efficiency, avoids complex arithmetic or large LUTs, and offers better protection against
Side-Channel Attacks (SCA). Let Ψk be a binomial distribution which is centered at
zero and has a standard deviation of σ =

√
k/2. The distribution is determined by

Ψk =
∑k−1

i=0 (bi − b′i) mod q, where bi, b
′
i ∈ {0, 1} are uniform independent bits. This is

similar to taking two k-bit integers b and b′, calculating the respective Hamming weight
and subtracting one Hamming weight from the other (modular subtraction).

Figure 6 shows the developed hardware architecture of the Binomial Sampling Unit,
which turns uniformly distributed samples into binomially distributed ones. The Binomial
Sampling Unit reads the uniform samples contained in the two registers rs1 and rs2
from the GPR and calculates the result rd. As the modulus is smaller than 16 bit for
the considered schemes, the output register can concatenate two samples. The Binomial
Sampling Unit supports different parameters of k: for NewHope k = 8 [AAB+19], for Kyber
k = 2 [ABD+19], for Lightsaber k = 5, for Saber k = 4, and for Firesaber k = 3 [DKRV19].
Depending on the mode signal, the multiplexers forward two sums of k bits to the modular
subtractors. The two output samples of the subtractors will be combined and written back
to the GPR.

Figure 6: Binomial Sampling Unit

3.10 Results for Keccak and Polynomial Sampling
Table 4 summarizes the clock cycle count of the SHAKE256 implementation, the uniform
sampling, and the binomial sampling. While the uniform rejection sampling is used in
LWE-based schemes to generate the random public polynomial, the binomial sampling
is used to generate the secret and error polynomials for R-LWE/M-LWE schemes. For
M-LWR schemes, the binomial sampling is only used for generating the secret polynomials.
The results show that the SHAKE256 function was accelerated by a factor of 103.59
in comparison to the software baseline implementation. Also compared to the baseline
implementation, the uniform sampling was accelerated by a factor of 26.90 for NewHope-
512 (n = 512), 27.12 for NewHope-1024 (n = 1024), 22.37 for Kyber-512 (n = 256 for all
Kyber security levels), and 31.74 for Lightsaber (n = 256 for all Saber security levels).
The optimized binomial sampling makes use of the fast Keccak Accelerator described
in Section 3.8 as well as the Binomial Sampling Unit described in Section 3.9. With
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these optimizations, we achieve a speedup factor of 35.69, 35.80, 14.27, and 40.15 for
NewHope-512, NewHope-1024, Kyber-512, and Lightsaber, respectively. The speedup
factor for Kyber is smaller when compared to NewHope or Lightsaber due to the low
variance of the error distribution.

Although, we aimed for a mid-range Keccak solution, the results show that our design
outperforms the uniform and binomial sampling of [FSMG+19], which uses a loosely coupled
standalone high performance Keccak implementation. Their architecture is able to calculate
two Keccak rounds in one clock cycle. However, the large communication overhead poses a
substantial drawback of their architecture. In this work, the communication overhead was
nearly eliminated. During the Keccak absorption phase the message initializes the state.
Afterwards, the Keccak state is hold in the registers for the complete sampling process.
The required hardware costs are summarized in Section 5.

Table 4: Cycle count of SHAKE256 (32 byte input/output length), uniform sampling, and
binomial sampling. Kyber and Saber have for all security strengths the same polynomial
length. The results for Poly Uniform and Poly Binomial are given with respect to
generating one polynomial.

SHAKE256 Poly Uniform Poly Binomial
NewHope-512 CCA baseline 31, 907 272, 615 280, 079
NewHope-512 CCA opt. 308 10, 136 7, 847
NewHope-1024 CPA [FSMG+19] – 42, 050 75, 682
NewHope-1024 CCA baseline 31, 907 548, 019 560, 058
NewHope-1024 CCA opt. 308 20, 205 15, 643
Kyber-512 CCA baseline (n = 256) 31, 907 501, 300 33, 902
Kyber-512 CCA opt. (n = 256) 308 22, 414 2, 375
Lightsaber CCA baseline (n = 256) – 306, 387 130, 896
Lightsaber CCA opt. (n = 256) – 9, 652 3, 260

4 Integration of Accelerators into RISC-V Platform and
ISA Extension

RISC-V is an open Instruction Set Architecture (ISA) based on the concepts of the Reduced
Instruction Set Computer (RISC) principles. The RISC-V initiative started in 2010 by the
University of California, Berkley and has meanwhile grown to a large non-profit corporation.
RISC-V provides a free, open, flexible, and extensible ISA usable for embedded systems
as well as high performance computers. Several open-source hardware implementations
supporting the RISC-V ISA exist. Implementations which have drawn particular attention
are Rocket Chip4, VexRiscv5, and the RISC-V cores from PULP6.

Rocket Chip was constructed using the hardware construction language Chisel7. The
implementation offers a dedicated interface, called Rocket Custom Coprocessor (RCC), to
extend the system with hardware accelerators. However, the presented design does not
allow to easily change the pipeline stage and is therefore less suitable for the development
of tightly coupled accelerators. VexRiscv was developed using another high level hardware
description language called SpinalHDL8. The VexRiscv project allows modifications of the
pipeline stage. This platform was used in [AEL+20] to integrate a tightly coupled finite
field multiplier and in [WTJ+20] for developing loosely coupled qTESLA accelerators.
The PULP project features three different RISC-V cores designed using the hardware

4https://github.com/chipsalliance/rocket-chip
5https://github.com/SpinalHDL/VexRiscv
6https://github.com/pulp-platform
7https://www.chisel-lang.org
8https://github.com/SpinalHDL

https://github.com/chipsalliance/rocket-chip
https://github.com/SpinalHDL/VexRiscv
https://github.com/pulp-platform
https://www.chisel-lang.org
https://github.com/SpinalHDL
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description language SystemVerilog. The Ariane core is a 6-stages 64-bit solution. For
smaller embedded devices, the PULP team offers the 2-stages 32-bit solution Ibex (formerly
Zero-riscy) and the 4-stages 32-bit solution CV32E40P (formerly RI5CY). The RISC-V
cores CV32E40P and Ibex can be integrated into the single-core microcontroller platform
PULPino9 offering a rich set of peripherals such as I2C, SPI, UART, and GPIO.

Similar to [FSMG+19], we decided to use the CV32E40P core and integrated this
core into the PULPino platform. As the core and platform are written in SytemVerilog,
we have the full control over the whole architecture, which makes it ideally suitable for
our modifications of the core and pipeline stage. The CV32E40P core has a comparable
performance to the widely deployed ARM Cortex-M4, but a less advanced compiler and
instruction set.

4.1 Integration of PQ Hardware Accelerators
Figure 7 shows the architecture of the CV32E40P core with post-quantum extensions,
which we name RISQ-V. The CV32E40P processor has a four stages in-order pipeline.
The main components are a prefetch buffer, an instruction decoder, a General Purpose
Register Bank (GPR), a Floating Point Register Bank (FPR), an Arithmetic Logic Unit
(ALU), a Multiplication Unit (MULT), a Control and Status Register Unit (CSR), and a
Load-Store Unit (LSU). The core is extended by two completely new components: the
PQR-ALU and the PQ-ALU.

The PQR-ALU consists of the NTT and Modular Arithmetic Unit and the Keccak
Accelerator. These two modules require parallel access to the register banks. Therefore,
the PQR-ALU is directly located within the Decoding Stage. This avoids to route the
register signals to the Execution Stage. The PQ-ALU contains the Binomial Sampling
Unit. This accelerator requires only two input and one output register and has a similar
construction like the MULT unit and the ALU. To reuse existing hardware resources, we
integrate the pq.mac operation, described in Section 3.6, directly into the MULT unit.
The hardware resources for performing the multiplications are already available in the
MULT unit and an extension for the pq.mac support comes with a negligible overhead of
multiplexers and two additions. Enhancing or downsizing our developed PQR-ALU and
PQ-ALU is straightforward. All accelerators are added as modules and can be selected
using dedicated define directives. Thus the accelerators can be selected according to the
application requirements.

4.2 RISC-V ISA Extension
To enhance the basic integer instruction set (I), RISC-V defines several standard extensions,
including the extensions for multiplication/division (M); single, double, and quad precision
floating point operations (F, D, Q); atomic operations (A); and compressed instructions
(C).

The CV32E40P core fully supports the I instruction set and the extensions M, F, and
C. In addition, this core provides the PULP specific extension Xpulp, which includes
hardware loops, SIMD extensions, bit manipulation and post-increment instructions. In
this work, we develop the PQ extension. Figure 8 shows the RISC-V base instruction
format types R, I, S, and U. Depending on the instruction type, the instruction structure
consists of an opcode, function fields, immediate values, the source registers rs1 and
rs2, and the destination register rd. We decided to use the R-type for all post-quantum
instructions. This allows the use of multiple operations with only a single opcode. The
opcode chosen in this work is the unused value 0x77.

9https://github.com/pulp-platform/pulpino

https://github.com/pulp-platform/pulpino
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Figure 7: RISQ-V

31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 rs1 funct3 rd opcode R

imm[11:0] rs1 funct3 rd opcode I

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S

imm[31:12] rd opcode U

Figure 8: Base RISC-V instruction formats
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The developed post-quantum instructions can be divided into seven main classes:
NTT Configuration, NTT Operation, Modular Arithmetic Unit, Bit-Reversal, PQ-MAC,
Keccak Operation, and Binomial Sampling. All instructions which do not require rs1,
rs2, or rd can use the value zero for the unused position. A full list of all post-quantum
instructions is provided in Table 10 (Appendix C). It also has to be noted that except of
the pq.ntt_multiple_bf function, all operations are single cycled. The pq.ntt_multiple_bf
function requires 83 clock cycles (80 cycles for the functionality and 3 cycles delay in the
Address Unit) to complete the automized NTT operations for the merged layers. This
value does not dependent on the chosen scheme (NewHope-512 or NewHope-1024) but
would change with the size of the applied register set. While the pq.ntt_multiple_bf writes
the last results to the registers, the processing element can already read the first results
after 68 cycles.

NTT Configuration Class. This class performs the following functionalities: i) setting
the selected scheme: NewHope-512, NewHope-1024, or Kyber (all security categories);
ii) setting the forward or inverse NTT; and iii) setting either the first rounds or the last
round of the NTT. When NewHope-512 or NewHope-1024 is selected, the parameters
for the optimized NTTCT

br←no calculation will be set accordingly. Moreover, selecting one
of the NewHope variants configures the modulus to q = 12289 and the Montgomery
parameter for the modular multipliers to −q−1 mod R = 12287 with R = 218 for all
schemes. When Kyber is selected the modular parameters are configured to q = 3329 and
−q−1 mod R = 199935. Setting the forward or inverse NTT will select the corresponding
precomputed values for ωm of the Twiddle Update Unit. Finally, the selection of the first
rounds or last round will affect the Reordering MUX of the Modular Arithmetic Unit, more
specifically, the swapping of the coefficients.

NTT Operation Class. This class contains all instructions for the optimized NTTCT
br←no

calculation. The pq.ntt_multiple_bf instruction triggers the automatic calculation of the
first five merged NTT rounds. The pq.ntt_single_bf instruction is used to calculate two
parallel decimation-in-time butterfly operations. The instructions pq.update_m (rs1 is
used for the index signal) and pq.update_omega are used to control the Twiddle Update
Unit. The pq.mul_gamma1, pq.mul_gamma2, and pq.update_gamma instructions are used
for calculating the scaling by n−1 and γ−i within the inverse NTT.

Modular Arithmetic Operation Class. This class is used for the vectorized modular
multiplication, addition, subtraction, and the butterfly operations decimation-in-time and
decimation-in-frequency. In this context, rs1 and rs2 are used as source registers and rd as
destination register (for the butterfly instructions rs1 is also used for the second output).
In contrast to the pq.ntt_single_bf operation, which is used for the optimized NTTCT

br←no,
the pq.bf_dit operation does not use the registers from the FPR but from the GPR.

Bit-Reversal Class. This class contains the bit-reversal instructions for the polynomial
lengths n = 256, n = 512, and n = 1024. The register rd contains the value that has to
be stored, rs1 the base address of the store location, and rs2 the value of the offset. The
offset value will be added to the base address in bit-reversed order. The Load Store Unit
will then store the coefficient to the desired location.

PQ MAC Class. This class contains the vectorized modular multiply accumulate function
described in Section 3.6.
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Keccak Operation Class. This class is used to perform one round of the Keccak permu-
tation. The keccak_wen signal, described in Section 3.8 is set to one when the keccak.f1600
instruction is executed. In this context, rs1 selects the current Keccak round and rs2 is
used to reset the state.

Binomial Sampling Class. This class is used to turn uniform samples in rs1 and rs2 into
binomially distributed coefficients in rd.

5 Experimental Results
This section presents our experimental results for NewHope, Kyber and Saber. The
evaluation was performed for the Chosen Ciphertext Attacks (CCA) variants with different
security levels. The software baseline measurements use the clean C-code versions of the PQ-
M4 project in [KRSS19], which are based on the reference implementations in [AAB+19],
[ABD+19], and [DKRV19].

5.1 Cycle Count and Code Size

This subsection provides a cycle count and code size comparison for NewHope, Kyber,
and Saber. The results of our clock cycle benchmarks are summarized in Table 5. To
analyze the influence of our accelerators on the two performance bottlenecks, we provide
for each scheme and parameter set four implementations: i) baseline implementation; ii)
implementation with optimized modular arithmetic and NTT computations (using NTT
and Modular Arithmetic Unit, bit reversal, and pq.mac); iii) implementation with optimized
polynomial sampling (using Keccak and Binomial Sampling Unit); and iv) implementation
with all optimizations presented in this work.

Comparison with baseline implementations. In comparison to the software baseline
implementation, a cycle count speedup factor of 10.75 (NewHope-512), 11.39 (NewHope-
1024), 7.68 (Kyber-512), 7.77 (Kyber-768), 9.62 (Kyber-1024), 2.65 (Lightsaber), 2.58
(Saber), and 2.48 (Firesaber) for a complete algorithm run was achieved. Despite the
baseline implementations already include several optimizations, they have not the primary
goal to achieve the highest performance. Therefore, it has to be noted that with careful
assembler optimizations improvements can be achieved also without ISA extensions and
dedicated hardware support.

Although the NTT and Modular Arithmetic Unit was not particularly designed for
the NTT types used in Kyber, a significant performance improvement was measured.
The second round Kyber submission chooses a prime q for which the condition q ≡ 1
mod 2n does not hold and an early termination of the NTT is required. This reduces
the cost for the NTT, but a so called basecase multiplication consisting of 128 products
is necessary. For this basecase multiplication, the vectorized modular arithmetic of the
Modular Arithmetic Unit was exploited.

For the Saber instances, the polynomial multiplication remains the performance bot-
tleneck although the pq.mac operation already brings a considerable improvement. Just
recently, the authors in [MKV20] proposed a technique called lazy interpolation in order
to accelerate the evaluation and interpolation phase during the Toom-Cook multiplication.
The integration of this optimization technique into our approach would probably result in
a further performance improvement but also to a larger memory utilization. An analysis
about this optimization technique has been left as future work.
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Comparison with ARM Cortex-M4 implementations. Our work beats the cycle count
of the latest assembler optimized ARM Cortex-M4 implementations of NewHope and
Kyber in [ABCG20, KRSS19]. In comparison to [ABCG20], a clock cycle speedup factor
of 4.30 (NewHope-512), 4.46 (NewHope-1024), 2.89 (Kyber-512), 3.05 (Kyber-768), and
3.84 (Kyber-1024) was achieved. When comparing our implementation with the latest
Saber implementations on ARM Cortex-M4 [MKV20], the achieved speedup factors are
lower: 1.16 (Lightsaber), 1.04 (Saber), 0.97 (Firesaber). For this comparison it has to
be considered that the applied RISC-V compiler is less advanced than commercial ARM
compilers and assembler optimizations for RISC-V are still largely unexplored.

Comparison with RISC-V implementations. In comparison to the RISC-V implementa-
tion of Kyber in [Gre20], a cycle count speedup factor of 8.90 (Kyber-512), 8.21 (Kyber-768),
and 10.25 (Kyber-1024) was achieved. To use accelerators and ISA extensions for RISC-V
has shown good performance improvements as demonstrated in [AEL+20] with the inte-
gration of a finite field multiplier. In our work, we show that more powerful accelerators
can be integrated into RISC-V platforms in order to further speed up several lattice-based
algorithms. In comparison to their RISC-V work, our results show that we achieve a cycle
count speedup factor of 6.95 (NewHope-512), 7.11 (NewHope-1024), 4.65 (Kyber-512),
and 6.15 (Kyber-1024). The authors in [AEL+20] use a Barrett multiplier to accelerate
the modular arithmetic. We use the Montgomery algorithm for performing the modular
multiplications. The multiplication through the Montgomery algorithm is very common in
most of the available software and hardware implementations of lattice-based cryptography.
While the Montgomery multiplication turns out to be more efficient in most settings when
compared to the Barrett multiplication, it requires the conversion into the Montgomery
domain [AEL+20]. In contrast to the work in [AEL+20], which can calculate one modular
multiplication at a time, our solution is more powerful and flexible. Our approach is able
to calculate complete vectorized butterfly operations and vectorized modular additions,
subtractions, and multiplications. Unfortunately, a fair comparison between the modular
and NTT arithmetic used in our work and the one used in [AEL+20] was not possible
for the complete algorithm runs. The authors use an optimized unrolled assembler im-
plementation of Keccak. This implementation was not publicly available at the time of
finalizing this paper. In our work, the Keccak software implementation is based on an
unoptimized reference implementation in [KRSS19]10. As the Keccak implementation has
a high influence on the performance, we can only refer to the results in Section 3.4 for a
comparison between both approaches.

Optimizing the modular and NTT arithmetic turns out to be not sufficient to alleviate
all performance bottlenecks. For all schemes and security levels, the ISA extensions for
accelerating the polynomial sampling have shown a larger impact on the performance
when compared to the extensions for the modular and NTT arithmetic. Using the
sampling extensions alone will already beat the cycle count of the latest ARM Cortex-M4
implementations for NewHope and Kyber.

Furthermore, our design is faster than the CPA version of the NewHope-1024 implemen-
tation in [FSMG+19], which uses loosely coupled accelerators, although the CPA version
has no costly re-encryption step (991, 469 vs. 1, 113, 984 cycles). The better performance
can be explained by the reduced communication overhead due to the tight coupling of
the NTT and Keccak accelerators to the register banks and by the additional usage the
new accelerators developed in this work (Modular Arithmetic Unit and Binomial Sampling
Unit).

10https://github.com/mupq/mupq/tree/master/common

https://github.com/mupq/mupq/tree/master/common
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Update of NewHope specification. Just recently, the authors of NewHope announced in
the NIST PQC Forum11 that a new reference code is available. This new version appeared
as a response of the work presented in [BDG20], which exploits the incorrect oracle cloning
of some NIST KEM PQC candidates to perform key-recovery attacks. The new version of
NewHope includes a domain separation for the SHAKE calls in order to make each hash
call independent. That is, all hash calls with the same input size use a domain separator
label (e.g., a nonce). It is estimated by the NewHope team that this modification will have
a negligible influence on the performance results of NewHope. RISQ-V is able to support
efficiently the new version of NewHope. The absorption of the input message is completely
controlled by software and can be easily modified. The integration of a complete domain
separation has been left as future work.

Code size. Table 6 summarizes the measured code size for both the baseline and the
optimized implementations. In particular for the optimized NewHope implementations,
the code size was significantly decreased compared to the baseline implementation. This is
mainly due to the fact that the large LUTs for the Twiddle factors and bit-reversal were
eliminated. Moreover, the ISA extensions have the side effect that fewer instructions for
complex operations are required. It should also be noted that the Saber implementations
in [KRSS19] have a significantly larger memory consumption. This is caused by the fact
that the authors developed a tool for the automatic generation of an optimized assembler
code for the polynomial multiplication in Saber. While the optimized assembler code leads
to a very fast polynomial multiplication, the code size is large (nearly 10,000 lines12).

5.2 FPGA Results
RISQ-V can be synthesized for FPGAs as well as ASICs. For the FPGA evaluation,
the Xilinx Zynq-7000 programmable SoC was chosen. The resource utilization of the
complete RISQ-V implementation and the costs for the single accelerators are provided in
Table 7. Since the design hierarchy was not completely preserved during synthesis, the
single accelerators were synthesized separately for the resource utilization reports. For the
complete cores with default synthesis settings, the circuit size of RISQ-V is 9,058 LUTs
and 1,268 registers larger than the circuit size of the original PULPino platform. For this
comparison, we omitted the FPU of the original PULPino platform as it is not necessarily
required for the considered post-quantum algorithms. When setting at the synthesis step
the optimization target to low area, the amount of LUTs was reduced in both designs but
at a cost of an increased number of DSP instances.

Compared to the loosely coupled NTT accelerator in [FSMG+19], our accelerator has a
higher number of LUTs, but a lower number of registers. The higher number of LUTs can
be explained by the higher flexibility of the NTT and Modular Arithmetic Unit. Instead of
only being capable of calculating the decimation-in-time butterfly operation, the proposed
architecture also supports parallel calculations of the decimation-in-frequency butterfly
operation and packed modular arithmetic. It also has to be noted that our design does
not need any further BRAM block for storing the input and output data as well as storing
the Twiddle factors. Instead of hiding the post-processing step (scaling by n−1γ−i) by
using extra multipliers, we use the same multipliers for this operation as for the butterfly
calculation.

The tightly coupled Keccak implementation only uses combinatorial logic. No further
registers are used in this design as the state is stored in the FPR and GPR. The tight
coupling saves all logic and registers that are used for buffering the input/output data, and
the Keccak absorption and squeezing phase. In contrast to the Keccak implementation

11https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum
12https://github.com/mupq/pqm4/blob/master/crypto_kem/lightsaber/m4

https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum
https://github.com/mupq/pqm4/blob/master/crypto_kem/lightsaber/m4
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Table 5: Cycle count (O3, riscv32-unknown-elf-gcc 7.1.1 20170509, PULPino)

Algorithm Device Key gen. Encaps. Decaps.
NewHope-512 CCA [ABCG20] ARM Cortex-M4 578, 890 858, 982 806, 300
NewHope-512 CCA [AEL+20] RISC-V (VexRiscv) 904, 000 1, 424, 000 1, 302, 000
NewHope-512 CCA baseline RISC-V (PULPino) 1, 370, 735 2, 153, 075 2, 091, 823
NewHope-512 CCA opt. arithmetic RISC-V (PULPino) 1, 144, 997 1, 781, 652 1, 585, 400
NewHope-512 CCA opt. sampling RISC-V (PULPino) 350, 939 569, 945 719, 027
NewHope-512 CCA opt. (all) RISC-V (PULPino) 116, 991 195, 449 209, 915
NewHope-1024 CPA [FSMG+19] RISC-V (PULPino) 357, 052 a) 589, 285 a) 167, 647 a)

NewHope-1024 CCA [KRSS19] ARM Cortex-M4 1, 219, 908 1, 903, 231 1, 927, 505
NewHope-1024 CCA [ABCG20] ARM Cortex-M4 1, 157, 222 1, 674, 899 1, 587, 107
NewHope-1024 CCA [AEL+20] RISC-V (VexRiscv) 1, 776, 000 2, 742, 000 2, 528, 000
NewHope-1024 CCA baseline RISC-V (PULPino) 2, 767, 270 4, 282, 504 4, 239, 534
NewHope-1024 CCA opt. arithmetic RISC-V (PULPino) 2, 238, 982 3, 425, 458 3, 076, 761
NewHope-1024 CCA opt. sampling RISC-V (PULPino) 751, 826 1, 220, 705 1, 572, 218
NewHope-1024 CCA opt. (all) RISC-V (PULPino) 218, 367 363, 658 409, 444
Kyber-512 CCA [KRSS19] ARM Cortex-M4 514, 291 652, 769 621, 245
Kyber-512 CCA [ABCG20] ARM Cortex-M4 455, 191 586, 334 543, 500
Kyber-512 CCA [Gre20] RISC-V (VexRiscv) 1, 218, 557 1, 592, 689 1, 515, 876
Kyber-512 CCA [AEL+20] RISC-V (VexRiscv) 710, 000 971, 000 870, 000
Kyber-512 CCA baseline RISC-V (PULPino) 1, 137, 052 1, 547, 789 1, 525, 621
Kyber-512 CCA opt. arithmetic RISC-V (PULPino) 939, 932 1, 223, 887 1, 051, 003
Kyber-512 CCA opt. sampling RISC-V (PULPino) 356, 758 514, 652 678, 938
Kyber-512 CCA opt. (all) RISC-V (PULPino) 150, 106 193, 076 204, 843
Kyber-768 CCA [KRSS19] ARM Cortex-M4 976, 757 1, 146, 556 1, 094, 849
Kyber-768 CCA [ABCG20] ARM Cortex-M4 864, 008 1, 032, 540 969, 867
Kyber-768 CCA [Gre20] RISC-V (VexRiscv) 2, 288, 109 2, 771, 517 2, 653, 584
Kyber-768 CCA baseline RISC-V (PULPino) 2, 102, 505 2, 625, 824 2, 573, 963
Kyber-768 CCA opt. arithmetic RISC-V (PULPino) 1, 768, 400 2, 138, 810 1, 889, 930
Kyber-768 CCA opt. sampling RISC-V (PULPino) 625, 943 832, 137 1, 048, 473
Kyber-768 CCA opt. (all) RISC-V (PULPino) 273, 370 325, 888 340, 418
Kyber-1024 CCA [KRSS19] ARM Cortex-M4 1, 575, 052 1, 779, 848 1, 709, 348
Kyber-1024 CCA [ABCG20] ARM Cortex-M4 1, 404, 695 1, 605, 707 1, 525, 805
Kyber-1024 CCA [Gre20] RISC-V (VexRiscv) 3, 686, 344 4, 280, 420 4, 123, 722
Kyber-1024 CCA [AEL+20] RISC-V (VexRiscv) 2, 203, 000 2, 619, 000 2, 429, 000
Kyber-1024 CCA baseline RISC-V (PULPino) 3, 378, 603 4, 024, 887 3, 949, 039
Kyber-1024 CCA opt. arithmetic RISC-V (PULPino) 2, 856, 302 3, 312, 957 2, 989, 896
Kyber-1024 CCA opt. sampling RISC-V (PULPino) 872, 686 1, 118, 704 1, 385, 263
Kyber-1024 CCA opt. (all) RISC-V (PULPino) 349, 673 405, 477 424, 682
Lightsaber CCA [MKV20] ARM Cortex-M4 466, 000 653, 000 678, 000
Lightsaber CCA [KRSS19] ARM Cortex-M4 459, 965 651, 273 678, 810
Lightsaber CCA baseline RISC-V (PULPino) 1, 071, 836 1, 503, 594 1, 537, 939
Lightsaber CCA opt. arithmetic RISC-V (PULPino) 947, 777 1, 317, 503 1, 289, 533
Lightsaber CCA opt. sampling RISC-V (PULPino) 495, 211 719, 084 914, 072
Lightsaber CCA opt. (all) RISC-V (PULPino) 366, 837 526, 496 657, 583
Saber CCA [MKV20] ARM Cortex-M4 853, 000 1, 103, 000 1, 127, 000
Saber CCA [KRSS19] ARM Cortex-M4 896, 035 1, 161, 849 1, 204, 633
Saber CCA baseline RISC-V (PULPino) 2, 110, 283 2, 737, 181 2, 797, 400
Saber CCA opt. arithmetic RISC-V (PULPino) 1, 824, 799 2, 354, 078 2, 317, 110
Saber CCA opt. sampling RISC-V (PULPino) 1, 036, 707 1, 367, 795 1, 661, 214
Saber CCA opt. (all) RISC-V (PULPino) 760, 893 1, 000, 043 1, 201, 524
Firesaber CCA [MKV20] ARM Cortex-M4 1, 340, 000 1, 642, 000 1, 679, 000
Firesaber CCA [KRSS19] ARM Cortex-M4 1, 448, 776 1, 786, 930 1, 853, 339
Firesaber CCA baseline RISC-V (PULPino) 3, 427, 099 4, 215, 630 4, 328, 885
Firesaber CCA opt. arithmetic RISC-V (PULPino) 2, 918, 509 3, 576, 818 3, 560, 557
Firesaber CCA opt. sampling RISC-V (PULPino) 1, 790, 609 2, 235, 737 2, 633, 554
Firesaber CCA opt. (all) RISC-V (PULPino) 1, 300, 272 1, 622, 818 1, 898, 051

a) Cycle count was only reported for the CPA-secure version. Due to the missing re-encryption step, the CPA
version is significantly faster during the decapsulation compared to the CCA-secure versions.
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Table 6: Code size in bytes

Algorithm Device Code Size
NewHope-512 CCA [KRSS19] ARM Cortex-M4 11, 000
NewHope-512 CCA baseline RISC-V (PULPino) 17, 658
NewHope-512 CCA opt. RISC-V (PULPino) 9, 998
NewHope-1024 CCA [KRSS19] ARM Cortex-M4 12, 176
NewHope-1024 CCA baseline RISC-V (PULPino) 21, 548
NewHope-1024 CCA opt RISC-V (PULPino) 11, 688
Kyber-512 CCA [KRSS19] ARM Cortex-M4 11, 000
Kyber-512 CCA baseline RISC-V (PULPino) 16, 928
Kyber-512 CCA opt. RISC-V (PULPino) 12, 532
Kyber-768 CCA [KRSS19] ARM Cortex-M4 11, 400
Kyber-768 CCA baseline RISC-V (PULPino) 17, 266
Kyber-768 CCA opt. RISC-V (PULPino) 11, 658
Kyber-1024 CCA [KRSS19] ARM Cortex-M4 12, 424
Kyber-1024 CCA baseline RISC-V (PULPino) 17, 670
Kyber-1024 CCA opt. RISC-V (PULPino) 12, 874
Lightsaber CCA [KRSS19] ARM Cortex-M4 44, 916
Lightsaber CCA baseline RISC-V (PULPino) 18, 772
Lightsaber CCA opt. RISC-V (PULPino) 12, 544
Saber CCA [KRSS19] ARM Cortex-M4 44, 468
Saber CCA baseline RISC-V (PULPino) 17, 912
Saber CCA opt. RISC-V (PULPino) 11, 802
Firesaber CCA [KRSS19] ARM Cortex-M4 44, 184
Firesaber CCA baseline RISC-V (PULPino) 17, 794
Firesaber CCA opt. RISC-V (PULPino) 11, 680
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in [FSMG+19], we decided to use a variant which calculates one round of the permutation
function per clock cycle instead of two. This is significantly faster than the low-area
solution of the Keccak Team and is comparable to their high speed solution [BDH+20].

The two hardware accelerators of the Execution Stage have a negligible hardware
overhead. While the Binomial Sampling Unit only requires 124 LUTs, the overhead for
supporting the pq.mac operation was nearly eliminated by reusing the resources of the
MULT unit.

Table 7: Resource utilization FPGA (synthesis optimization settings default if not otherwise
noted)

Complete Cores
LUTs Registers BRAMs DSPs

PULPino orig. (w/o FPU) 15, 248 9, 569 32 6
PULPino orig. (w/o FPU, optimization target low area) 14, 715 9, 583 32 8
RISQ-V 24, 306 10, 837 32 18
RISQ-V (optimization target low area) 23, 947 10, 847 32 21

Single Accelerators
LUTs Registers BRAMs DSPs

NTT accelerator [FSMG+19] 886 618 1 26
NTT and Modular Arithmetic Unit (PQR-ALU) 2, 908 170 0 9
Keccak accelerator [FSMG+19], 0.5 cycle/round 10, 435 4, 225 0 0
Keccak low areaa) [BDH+20], 375 cycle/round 1, 159 236 0 0
Keccak high speeda) [BDH+20], 1 cycle/round 4, 189 2, 641 0 0
Keccak (PQR-ALU), 1 cycle/round 3, 847 0 0 0
Binom. Sampling Unit (PQ-ALU) 124 0 0 0
Mult. Unit with PQ-MAC 304 4 0 5

a) VHDL-Design of [BDH+20] was synthesized for the same FPGA (Xilinx Zynq-7000). Resources do not
include the costs for the connection to the system bus.

5.3 ASIC Results
We synthesized the ASIC design with the UMC 65nm technology. The main objective
of this work was to achieve a low energy design. Therefore, a low leakage standard cell
library with high threshold voltage was chosen. Table 8 shows the amount of logic cells
and the area consumption of the original PULPino and RISQ-V. When both designs
are compared, an increase of logic cells for RISQ-V can be observed. The cell area was
increased by 64, 522µm2 for the combinatorial logic and by 9, 969µm2 for the sequential
logic. However, this increase does not have a large impact on the overall area because the
memory is by far the largest part for both designs. The maximum clock frequency was
reduced from 79.66MHz to 45.47MHz as the Modular Arithmetic Unit has a relatively
long critical path. A solution to break this critical path could be to add pipeline registers
within the modular multipliers. However, this would increase the latency by one cycle.
As the achieved frequency is acceptable for most embedded applications, we omit these
registers.

Table 8: Area ASIC synthesis (UMC 65nm)

Cell Count Cell Area Cell Area Cell Area
Combinatorial [µm2] Sequential [µm2] Memory [µm2]

PULPino orig. (w/o FPU) 36, 173 78, 676 92, 304 669, 346
RISQ-V 57, 413 143, 198 102, 273 669, 346

Our simulated measurements for the power and energy consumption were performed
at a frequency of 10MHz, a nominal supply voltage of 1.2V, and a temperature of 25◦C.
To obtain realistic results, we extracted the dynamic post-synthesis power consumption by
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means of gate level switching activity files. The Switching Activity Interchange Format
(SAIF) file for the dynamic power calculation was generated using Cadence’s Incisive
Enterprise Simulator and the power consumption was calculated using the Cadence power
analyzer Joules. The results regarding the power measurements of the original PULPino
and our developed RISQ-V implementation are summarized in Table 9. The leakage power
belongs to the category of static power consumption. Due to the higher area consumption,
the leakage power is marginally higher for RISQ-V compared to the original PULPino.
An interesting aspect is that the total power consumption is mainly dependent on the
applied scheme but not on the security level. For instance, the optimized NewHope-512
implementation has a power consumption of 2.43mW whereas the optimized NewHope-
1024 implementation has a power consumption of 2.42mW . This can be explained by the
fact that both instances basically use the same operations and only the execution time
differs. Due to the shorter execution time, the energy consumption is significantly lower
when using our tightly coupled accelerators.

Table 9: Power and energy results for the ASIC synthesis (UMC 65nm)

Leackage Internal Switching Tot. Power Cycles Energy [µJ ]
NewHope-512 CCA (baseline) 3.00e-04W 1.35e-03W 3.87e-04W 2.04e-03W 5, 615, 725 1, 145.61
NewHope-512 CCA (opt.) 3.07e-04W 1.51e-03W 6.07e-04W 2.43e-03W 522, 687 127.01
NewHope-1024 CCA (baseline) 3.00e-04W 1.34e-03W 3.85e-04W 2.02e-03W 11, 289, 402 2, 280.46
NewHope-1024 CCA (opt.) 3.09e-04W 1.51e-03W 6.06e-04W 2.42e-03W 991, 801 240.02
KYBER-512 CCA (baseline) 2.96e-04W 1.38e-03W 3.96e-04W 2.07e-03W 4, 210, 556 871.59
Kyber-512 CCA (opt.) 2.98e-04W 1.59e-03W 6.89e-04W 2.57e-03W 548, 119 140.87
KYBER-768 CCA (baseline) 2.92e-04W 1.39e-03W 3.96e-04W 2.08e-03W 7, 302, 385 1, 518.90
Kyber-768 CCA (opt.) 2.94e-04W 1.60e-03W 6.97e-04W 2.59e-03W 940, 008 243.46
KYBER-1024 CCA (baseline) 2.90e-04W 1.39e-03W 3.95e-04W 2.08e-03W 11, 352, 622 2, 361.35
Kyber-1024 CCA (opt.) 2.93e-04W 1.60e-03W 7.04e-04W 2.60e-03W 1, 183, 372 307.68
Lightsaber CCA (baseline) 2.98e-04W 1.48e-03W 3.85e-04W 2.16e-03W 4, 113, 463 888.51
Lightsaber CCA (opt.) 3.09e-04W 1.78e-03W 6.85e-04W 2.77e-03W 1, 551, 010 429.63
Saber cca (baseline) 2.95e-04W 1.48e-03W 3.83e-04W 2.16e-03W 7, 645, 196 1, 651.36
Saber CCA (opt.) 3.04e-04W 1.78e-03W 6.84e-04W 2.77e-03W 2, 962, 792 820.69
Firesaber CCA (baseline) 2.94e-04W 1.48e-03W 3.83e-04W 2.16e-03W 11, 971, 708 2, 585.80
Firesaber CCA (opt.) 3.01e-04W 1.79e-03W 6.80e-04W 2.77e-03W 4, 821, 233 1, 335.48

6 Discussion and Future Work
In the next two subsections, the applicability of our approach to other post-quantum
algorithms and the vulnerability against SCA are discussed.

6.1 Applicability to other Post-Quantum Algorithms
We have shown in this work that the performance of NewHope, Kyber, and Saber can be
significantly improved. Although the developed ISA extensions are optimized for these
three schemes, they can also be partially applied to other lattice-based candidates. The
Keccak extension is designed in a flexible fashion and can be applied to all other lattice-
based schemes as well. In particular, LWE based schemes, which require a high amount
of randomness, profit from fast hash computations. The pq.mac operation might also be
suited for the Karatsuba-based schemes NTRU-HPS/NTRU-HRSS as well as Round5. The
Binomial Sampling Unit is particularly efficient for schemes with larger error distribution,
but is less suitable for schemes with ternary distributions. The modular arithmetic is
optimized for 16-bit coefficients in this work. This limits the applicability for computations
with 32-bit coefficients (e.g., as required for Dilithium and qTESLA). Nevertheless, the
same vectorized methodologies of this work can be applied for 32-bit coefficients when a
64-bit processor architecture is used. Also setting arbitrary values for q is not supported
on purpose to keep the area overhead small. The ideas of this article may be used to
design a more general (but larger) solution.
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6.2 Side-Channel Attacks
SCA exploit physical leakages to retrieve information about a secret element of an algorithm.
A thorough analysis of our design with respect to SCA is left as future work. However, a
small discussion is provided in the following paragraphs.

The polynomial multiplication and NTT has been the target for recent attacks [ATT+18,
PPM17]. For example, in [PPM17] the authors gain information about the secret polyno-
mial of LWE based schemes through the execution time of the modular arithmetic within
the NTT. The authors exploit the fact that the execution time of the integrated ARM
Cortex-M4 hardware divider depends on the bit size of the dividend. To prevent such kinds
of attacks, constant-time implementations and ISA extensions are essential. Therefore, in
this article all instructions have a constant runtime. Cache attacks, which has shown to be
a major concern for post-quantum cryptography in [FGL+18], are completely circumvented
in this work as the deployed platform has a deterministic on-chip memory access.

Typical countermeasures to harden implementations against SCA are masking and hid-
ing [RRdC+16, OSPG18]. An approach to mask the NTT is to split the secret polynomial
into two shares and perform the NTT computations on each share individually [RRdC+16].
For instance in [OSPG18], the authors suggested to randomize the execution order of the
point-wise multiplication. The advantage of our co-design is that such countermeasures
can also be integrated on SW level. Most countermeasures on SW level will already lead
to a good improvement against SCA. The costs for countermeasures and the identification
of hardening methods that are more effective in HW have to be evaluated in future work.

7 Conclusion
The generation of uniformly and binomially distributed random polynomials and the poly-
nomial arithmetic are the performance bottlenecks of lattice-based cryptography. Previous
works developed loosely coupled accelerators to improve the performance characteristics of
several lattice-based schemes. However, loosely coupled accelerators usually have a high
data transfer overhead, require a high amount of hardware resources, and suffer from a
low flexibility. In this work we developed RISQ-V, an enhanced RISC-V architecture that
integrates powerful tightly coupled accelerators directly into the processing pipeline to
speed up lattice-based cryptography. The accelerators include an arithmetic unit for vector-
ized modular arithmetic and NTT operations, a vectorized modular multiply accumulate
unit, a Keccak accelerator for the pseudo-random bit generation, and a binomial sampling
unit for the generation of binomially distributed samples. To control the tightly coupled
accelerators, we extended the RISC-V ISA and developed 29 post-quantum instructions.
The design strategy of this work was to reuse existing hardware resources of the system
processor, such as the register banks and multipliers, in order to keep the area footprint
small. Moreover, we developed design strategies to decrease the access rates to the system
memory during the NTT and Keccak computations. Holding data as long as possible
within the processor’s registers resulted in a significant performance improvement. RISQ-V
was synthesized for an FPGA prototype and an ASIC. Compared to the baseline software
implementation, the performance evaluation has shown that the developed tightly coupled
accelerators lead to a significant reduction of the clock cycle count and energy consumption
for NewHope, Kyber, and Saber.
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â3

â4
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â9

â10
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Figure 9: Example NTTCT
br←no with n = 16 (unoptimized). In this case, one coefficient is

stored in a single memory word, two coefficients can be loaded to the register file (l = 2),
and one pair of coefficients can be executed in parallel. The red boxes indicate which
coefficients are stored together in one word (in this case they are not stored together) and
in which order the coefficients are processed by a single butterfly unit.
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B Hardware Accelerator – Modular Arithmetic Unit
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Figure 10: Modular Arithmetic Unit – Post-Processing Operation (mul_gamma1,
mul_gamma2, update_gamma)

Figure 11: Modular Arithmetic Unit – Vectorized Modular Arithmetic
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C ISA Extension

Table 10: PQ ISA extension.

Opcode Funct3 Funct7 Operation Name Cycles
111 0111 000 0000000 NTT Configuration: pq.set_kyber 1
111 0111 001 0000000 NTT Configuration: pq.set_newhope512 1
111 0111 010 0000000 NTT Configuration: pq.set_newhope1024 1
111 0111 011 0000000 NTT Configuration: pq.set_fwd_ntt 1
111 0111 100 0000000 NTT Configuration: pq.set_inv_ntt 1
111 0111 101 0000000 NTT Configuration: pq.set_first_rounds 1
111 0111 110 0000000 NTT Configuration: pq.set_last_round 1
111 0111 000 0000001 NTT Operation: pq.ntt_multiple_bf 83
111 0111 001 0000001 NTT Operation: pq.ntt_single_bf 1
111 0111 010 0000001 NTT Operation: pq.update_m 1
111 0111 011 0000001 NTT Operation: pq.update_omega 1
111 0111 100 0000001 NTT Operation: pq.mul_gamma1 1
111 0111 101 0000001 NTT Operation: pq.mul_gamma2 1
111 0111 110 0000001 NTT Operation: pq.update_gamma 1
111 0111 000 0000010 Modular Arithmetic Operation: pq.mod_mul 1
111 0111 001 0000010 Modular Arithmetic Operation: pq.mod_add 1
111 0111 010 0000010 Modular Arithmetic Operation: pq.mod_sub 1
111 0111 011 0000010 Modular Arithmetic Operation: pq.bf_dit 1
111 0111 100 0000010 Modular Arithmetic Operation: pq.bf_dif 1
111 0111 000 0000011 Bit-reversal: pq.br256 1
111 0111 001 0000011 Bit-reversal: pq.br512 1
111 0111 010 0000011 Bit-reversal: pq.br1024 1
111 0111 000 0000100 Keccak Operation: keccak.f1600 1
111 0111 000 0000101 Binomial Sampling: pq.bs_k2 1
111 0111 001 0000101 Binomial Sampling: pq.bs_k3 1
111 0111 010 0000101 Binomial Sampling: pq.bs_k4 1
111 0111 011 0000101 Binomial Sampling: pq.bs_k5 1
111 0111 100 0000101 Binomial Sampling: pq.bs_k8 1
111 0111 000 0000110 Vectorized Modular Multiply Accumulate: pq.mac 1
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