
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 4, pp. 209–238. DOI:10.13154/tches.v2020.i4.209-238

Modeling Soft Analytical Side-Channel Attacks
from a Coding Theory Viewpoint

Qian Guo1,2,3, Vincent Grosso4 and
François-Xavier Standaert3, Olivier Bronchain3

1 Department of Electrical and Information Technology, Lund University, Sweden
2 Department of Informatics, University of Bergen, Norway

3 Crypto Group, ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium
4 CNRS/Laboratoire Hubert Curien, Université de Lyon, France

qian.guo@eit.lth.se,grosso.vincent@gmail.com,fstandae@uclouvain.be

Abstract. One important open question in side-channel analysis is to find out whether
all the leakage samples in an implementation can be exploited by an adversary, as
suggested by masking security proofs. For attacks exploiting a divide-and-conquer
strategy, the answer is negative: only the leakages corresponding to the first/last
rounds of a block cipher can be exploited. Soft Analytical Side-Channel Attacks
(SASCA) have been introduced as a powerful solution to mitigate this limitation.
They represent the target implementation and its leakages as a code (similar to a Low
Density Parity Check code) that is decoded thanks to belief propagation. Previous
works have shown the low data complexities that SASCA can reach in practice.
In this paper, we revisit these attacks by modeling them with a variation of the
Random Probing Model used in masking security proofs, that we denote as the
Local Random Probing Model (LRPM). Our study establishes interesting connec-
tions between this model and the erasure channel used in coding theory, leading to
the following benefits. First, the LRPM allows bounding the security of concrete
implementations against SASCA in a fast and intuitive manner. We use it in order
to confirm that the leakage of any operation in a block cipher can be exploited,
although the leakages of external operations dominate in known-plaintext/ciphertext
attack scenarios. Second, we show that the LRPM is a tool of choice for the (nearly
worst-case) analysis of masked implementations in the noisy leakage model, taking
advantage of all the operations performed, and leading to new tradeoffs between
their amount of randomness and physical noise level. Third, we show that it can
considerably speed up the evaluation of other countermeasures such as shuffling.

Keywords: Side-Channel Analysis · Worst-Case Security Evaluations · Horizontal
(aka Multi-Target) Attacks · Belief Propagation · Masking · Shuffling

1 Introduction
A recent line of works started the investigation of masking security proofs as an ingre-
dient of concrete side-channel security evaluations [PR13,DDF14,DFS19,GS18]. These
papers concluded that for all the “accessible” leakage samples of an implementation (i.e.,
corresponding to a target value that can be guessed by the adversary) these proofs are
tight and can be matched by a standard DPA [MOS11]. Yet, the security bounds (e.g.,
in [DDF14,DFS19]) suggest that the adversary’s success probability grows with the circuit
size. It implies that all the leakage samples of an implementation should be exploitable,
independent of whether they can be exploited via a divide-and-conquer strategy or not.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-04-15 Accepted: 2020-06-15 Published: 2020-08-26

https://doi.org/10.13154/tches.v2020.i4.209-238
mailto:qian.guo@eit.lth.se, grosso.vincent@gmail.com, fstandae@uclouvain.be
http://creativecommons.org/licenses/by/4.0/

210 Modeling Soft Analytical Side-Channel Attacks from a Coding Theory Viewpoint

In this paper, we tackle this important question of whether any leakage sample in
an implementation can be efficiently exploited by a determined adversary. We answer it
by proposing a model for the Soft Analytical Side-Channel Attacks (SASCA) introduced
in [VGS14] and further developed in [GS15,GS18,GRO18]. These attacks are natural
candidates for capturing the circuit size parameter of masking security proofs since they
aim at exploiting the total amount of information leaked by an implementation. Yet, the
systematic exploitation of SASCA for physical security analyzes is limited by their heuristic
nature and high time complexity. Our model – that we denote as the Local Random
Probing Model (LRPM) – specializes the Random Probing Model used in masking proofs
to local decoding rules similar to those used in SASCA. It enables interesting connections
with the erasure channel used in coding theory, leading to the following benefits.

First, the LRPM allows speeding up the evaluation of SASCA (which is computationally
intensive). For example, we show that we can bound the results of a SASCA against an
AES implementation from [VGS14,GS15] in seconds (rather than hours) of computations.
These results confirm that the leakage of any operation within a block cipher can be
exploited. More precisely, and despite the first and last rounds’ leakages are more useful
than the inner rounds in known-plaintext/ciphertext attacks, inner rounds’ leakages cannot
be neglected in other cases (e.g., in unknown-plaintext/ciphertext attacks). We insist that
these computational gains become even more relevant when considering high-end devices.
For example, propagating information through a XOR operation on a b-bit bus requires
O(b · 2b) operations in SASCA, but this propagation has constant cost in the LRPM. So
while our model already leads to considerable speed ups in the simple case of 8-bit devices
investigated in previous works (due to the code size of the target implementations), these
gains significantly increase if targeting a 32-bit or larger architecture. In this respect,
we note that it is always possible to trade time for data, by targeting only a part of the
bus and considering that the untargeted bits of the architecture produce “algorithmic
noise”. Yet, this would understate the security level since performing up to 250 operations
is achievable for determined adversaries [VGRS12,MOW14]. As a result, a tool that allows
evaluating the worst-case data complexity of a SASCA is handy for security analysts.

Second, the LRPM allows revisiting masking security proofs and the evaluation of
actual implementations in a flexible manner. More precisely, the RPM was so far mostly
used as a technical ingredient in order to connect (abstract) probing security and (concrete)
noisy leakage security [ISW03,PR13,DDF14]. We show that combining it with the factor
graph describing an implementation and local decoding rules, we can analyze security in
the noisy leakage model using easy-to-estimate approximations of the leakages in hand in
a nearly worst-case manner. By nearly worst-case, we mean that our following tools can be
used to bound the complexity of SASCA by estimating the information leakage that can be
obtained when decoding the factor graph of an implementation using the Belief Propagation
(BP) algorithm. A worst-case attack would apply Bayes on the full (multivariate) leakage
distribution of the implementation, which rapidly leads to unrealistic time complexities as
the size of protected implementations increase [GS18]. The latter is particularly interesting
for two main reasons. On the one hand, it highlights that there may be a gap between
the concrete security of simple gadgets and the one of complex combinations of gadgets
such as S-boxes, cipher rounds, . . . For example, we exhibit new attack paths in masked
implementations based on the merging of some nodes in the factor graph that are connected
by linear operations. On the other hand, recent works have optimized masking schemes
in order to minimize their randomness requirements [BBP+16,BBP+17]. But ultimately,
side-channel security is a tradeoff between physical noise and mathematical randomness.
The current state-of-the-art typically optimizes this tradeoff based on qualitative arguments
(i.e., trying to minimize the manipulation of the shares) or thanks to time-consuming
heuristics such as SASCA [BCPZ16,GS18], which can hardly be used to analyze the noise vs.
randomness tradeoff in a systematic manner. The LRPM is appealing for this purpose: in a

Qian Guo, Vincent Grosso and François-Xavier Standaert, Olivier Bronchain 211

recent work, it has been used as a tool to guide the design of new multiplication algorithms
optimized globally and jointly based on these ingredients (i.e., noise and randomness), for
example enabling the identification of efficient gadgets with constant noise rate [CS19].

Finally, the LRPM can also be used to speed up the evaluation of other practically-
relevant countermeasures such as shuffling [HOM06], for which the worst-case analysis
implies computing expensive high-dimensional integrals [VMKS12]. We propose a simple
modeling that captures the intuitions of previous analyzes at minimum evaluation cost.

Paper structure. After providing the necessary background in Section 2, our results are
structured in three parts. We start by introducing the LRPM and outlining the general
ideas behind our modeling in an intuitive manner in Section 3. Its goal is to describe
easy-to-reproduce toy examples of implementations and security evaluations. Next our
first main contribution is in Section 4 where we use the LRPM in order to analyze the
practically-relevant case study of an AES implementation. As previously mentioned, it
allows us to considerably speed up the analysis of SASCA, and to clarify the extent to
which all the leakage samples in an implementation can be exploited by an adversary.
Finally, we present our second main contribution in Section 5 where we show how the
LRPM applied to protected (masked or shuffled) implementations can be used to exhibit
new security threats (e.g., due to a so-far unreported lack of refreshing of linear operations),
and to analyze their (nearly) worst-case security and noise vs. randomness tradeoff.

2 Background
We first describe the different technical tools needed for our modeling.

2.1 Template attacks and MI metric
Template Attacks (TA) are a standard tool for extracting information from physical side-
channels. They model the leakages using a set of distributions corresponding to intermediate
computations in the target implementation. In the seminal TA paper [CRR02], Chari
et al. use normal distributions for this purpose (but any distribution is eligible). For an
adversary targeting an intermediate value y, the leakage Probability Density Function
(PDF) is then evaluated as:

f[L = l|Y = y] := f[l|y] ∼ N (l|µy, σ2
y).

This approach requires estimating the sample means and variances for each value y (and
mean vectors / covariance matrices in case of multivariate attacks).1 As a result, concrete
attacks usually extract information for target values of 8 to 32 bits (so that it is possible
to build the so-called “templates” f[l|y] for each y). In a divide-and-conquer attack, one
additionally requires that the targets only depend on 8 to 32 key bits (so that the models
for an enumerable part of the key can be tested exhaustively). Based on such a leakage
model, the probability of a candidate y given a leakage l is computed thanks to Bayes:

Pr[y|l] = f[l|y]∑
y∗∈Y f[l|y∗] ·

The amount of information collected on y is then usually measured in terms of the mutual
information between the random variables Y and L [SMY09]:

MI(Y ;L) = H[Y] +
∑
y∈Y

Pr[y]
∑
l∈L

f[l|y]. log2 Pr[y|l], (1)

1 Alternatively, leakage models can also be built by exploiting linear regression [SLP05].

212 Modeling Soft Analytical Side-Channel Attacks from a Coding Theory Viewpoint

where H[·] is the entropy function. As discussed in [DFS19,dCGRP19] such a metric can
be used in order to bound the success rate of a divide-and-conquer side-channel attack.
Considering the typical context where the target intermediate value y is the XOR between
a (known) plaintext byte x and an (unknown) key byte k, we have MI(K;X,L) = MI(Y ;L).
The number of traces N required in order to perform a successful key recovery can then
be bounded as follows:

N ≥ H[K]
MI(K;X,L) = H[K]

MI(Y ;L) · (2)

Note that in practice, the modeling of the leakage PDF is prone to (estimation and assump-
tion) errors, which may reduce the amount of information extracted: see the discussion
about leakage certification in [DSV14,BHM+19]. Our investigations are orthogonal to this
modeling issue and just require to be fed with the best possible approximation of the MI
metric, as for the evaluation of any (e.g., divide-and-conquer) side-channel attack.

2.2 Soft Analytical Side-Channel Attacks
While TA aim to optimally extract information from actual leakage samples thanks to an
accurate leakage model obtained though profiling, they are still limited in two important
directions. First, they can only target the leakage of target intermediate computations that
depend on an enumerable part of the key. This implies that only the leakage of the first/last
rounds of a block cipher implementation can be exploited in this way [MOW14]. Second,
estimating the optimal (mixture) model for a masked implementation becomes prohibitively
expensive as the number of shares increases [GS18]. SASCA were first introduced as a
solution in order to mitigate the first issue [VGS14,GS15], and were recently considered
as an efficient heuristic in order to deal with the second one [BCPZ16,GS18]. Roughly,
they work by describing the target implementation and its leakages in a way similar to a
Low-Density Parity Check code (LDPC) [Gal62], which the adversary then tries to decode
using posterior probabilities obtained thanks to a TA on all the intermediate values of the
leaking implementation. More precisely, they work in three main steps:
1. Construction. The cipher is represented as a so-called “factor graph” with two types
of nodes and bidirectional edges. First, variable nodes represent the intermediate values.
Second, function nodes represent the a-priori knowledge about the variables (e.g., the
known plaintexts and leakages) and the operations connecting the different variables.
Those nodes are connected with bidirectional edges that carry two types of messages (i.e.,
propagate the information) through the graph: the type q messages are from variables to
functions and the type r messages are from functions to variables [Mac03].
2. Information extraction. The probabilities provided by performing TA on all the
intermediate variables of the target implementation are added as function nodes to the
factor graph. For this purpose, one can use exactly the same profiling tools as in the
divide-and-conquer case [GS15] (but for more target intermediate variables).
3. Decoding. Similar to LDPC codes, the factor graph is decoded using a BP algo-
rithm [Pea82], which iterates the local propagation of the information about the variable
nodes of the target implementation. The BP algorithm has guaranteed convergence when
the factor graph is a tree and only converges heuristically if it contains cycles.

2.3 The Belief Propagation (BP) algorithm
Our description is inspired by the description of [Mac03, Chapter 26]. For this purpose,
we denote by αi the ith intermediate value and by fi the ith function node. The nodes
will be connected by edges that carry two types of messages. The first ones go from a
variable node to a function node, and are denoted as qvn→fm . The second ones go from
a function node to a variable node, and are denoted as rfn→vm . In both cases, n is the

Qian Guo, Vincent Grosso and François-Xavier Standaert, Olivier Bronchain 213

index of the sending node and m the index of the recipient node. The messages carried
correspond to the scores for the different values of the variable nodes. At the beginning of
the algorithm execution, the messages from variable nodes to function nodes are initialized
with no information on the variable. That is, for all n,m and for all αn we have:

qvn→fm(αn) = 1.

The scores are then updated for all αi’s according to two rules (one per message type):

rfm→vn(αn) =
∑

αm\αn

(
fm(αm, αn)

∏
n′∈N (fm)\n

pvn′→fm(αn′)
)
. (3)

pvn→fm(αn) =
∏

m′∈M(vn)\m

rfm′→vn(αn). (4)

In Equation 4,M(vn) denotes all the neighbors of the variable node vn. The variable node
sends to fm the product of the messages about αn received from all its neighbors excluding
fm. In Equation 3, the function node fm sends to vn a sum over all the possible values
(denoted as αm) of its neighbors (denoted as N (vn)), excepted for vn which is fixed to αn.
Each element of the sum is a product over the messages received from all its neighbors
(once again excluding vn) about their value in αm. The BP algorithm essentially works by
iteratively applying these rules on all nodes. If the factor graph is a tree (i.e., if it has
no loop), a convergence should occur after a number of iterations at most equal to the
diameter of the graph. In case the graph includes loops (e.g., as in the case of a SASCA
against an AES implementation), convergence is not guaranteed, but usually occurs after
a number of iterations slightly larger than the graph diameter. The main parameters
influencing the time and memory complexity of the BP algorithm are the number of
possible values for each variable (e.g., 28 for 8-bit target intermediate computations) and
the number of edges in the factor graph. The time complexity additionally depends on the
number of inputs of the function nodes representing the (e.g., block cipher) operations,
since the first rule sums over all the input combinations of these operations.

2.4 Basics in coding theory
This subsection briefly recalls some basic terminology from coding theory.

Definition 1 (Linear code). We define an [η, κ]q linear code C as a linear subspace over Fq
of length η and dimension κ. Its (information) rate, denoted as R, is κ

η . The redundancy
of the code is worth η − κ. We write [η, κ] linear code if there is no ambiguity.

Definition 2 (Parity-check matrix). Let C ⊆ Fηq be a linear code of dimension κ. If C is
the kernel of a matrix H ∈ F(η−κ)×κ

q , that is:

C = ker(H) =
{

v ∈ Fηq : HvT = 0
}
,

then, we say that H is a parity-check matrix of the linear code C.

Definition 3 (LDPC codes [Gal62]). We define a Low-Density Parity-Check (LDPC)
code as a linear code C with a very sparse parity-check matrix H.

We note that LDPC codes have been an important topic in the coding community
during the past twenty years due to their capacity-approaching feature (i.e., the fact that
their decoding performance has been shown to be close to the channel capacity).

214 Modeling Soft Analytical Side-Channel Attacks from a Coding Theory Viewpoint

2.4.1 Tanner Graphs.

One core feature of LDPC codes is their efficient decoding thanks to the BP algorithm on
the Tanner graph [Tan81,RU08] representation of the code. A Tanner graph is a bipartite
graph representation of the code, where each edge corresponds to a non-zero element in
the parity-check matrix H. Sparse H’s are expected to lead to sparse Tanner graphs. In
the coding literature, a function node in a Tanner graph is usually called a check node.

2.4.2 Erasure Channel / Random Probing Model (RPM).

An erasure channel is a communication channel model used in coding theory and information
theory. In this model, a transmitter sends a value (usually a bit) and the receiver either
receives the bit in full or it receives a message that the bit was not received (“erased” or ⊥).
It can be characterized by an erasure probability, or by the mutual information between
the bit and the receiver’s signal. For a q-ary channel, the leaked information can be
bounded by log2(q) bits, and this bound can be normalized to 1. After the normalization,
the capacity for a q-ary erasure channel with erasure probability p is exactly 1 − p. As
a result, the RPM in [DDF14] can be viewed as consisting of many independent erasure
channels with a bound on the erasure probability. Concretely, each channel corresponds to
some leakage obtained on an intermediate value computed by a leaking device.

3 A toy example of unprotected implementation
In this section, we introduce our modeling and illustrate it by evaluating the side-channel
security of a toy unprotected implementation. We first show how to analyze its leakage
with state-of-the-art tools exploiting a divide-and-conquer strategy. We then define the
LRPM and evaluate the security of our toy example against a SASCA exploiting all its
target intermediate computations, by exploiting tools from the coding theory literature.

3.1 Target implementation
We consider an implementation with four plaintext bytes x1, x2, x3 and x4, four key bytes
k1, k2, k3 and k4, and the leaking computations in Figure 1, with S an 8-bit S-box and
 ly denoting the generation of a leakage ly when computing an intermediate result y
within the implementation. In this setting, a divide-and-conquer adversary targets the four
key bytes k1 to k4 independently and therefore exploits the leakages that only depend on
them (e.g., ly1 and lz1 when targeting k1). The analytical adversary additionally exploits
the leakages lv1 , lv2 , lw1 , lw2 , la and lb that depend on several key bytes. More precisely,
we will consider a so-called 1-round analytical adversary that (only) exploits lv1 and lw1 (in
the grey box of the figure) or lv2 and lw2 , and a 2-round analytical adversary that exploits
all the leakages. We refer to univariate attacks when the adversary only exploits the S-box
output leakages and bivariate attacks when exploiting both the S-box input and output
leakages. For simplicity, we assume that the information leakage on each intermediate
computation is identical. Measured with the mutual information metric of Section 2.1,
it means that MI(Y1;LY1) = MI(Y2;LY2) = . . . = ε. Yet, the following evaluations could
capture situations where the information leakage on each intermediate value differs.

3.2 A divide-and-conquer evaluation
A bivariate divide-and-conquer adversary targeting k1 to k4 proceeds as follows. For each
(known) plaintext byte x1, he first combines the leakages ly1 and lz1 , leading to a mutual
information leakage of 2ε bits on k1 (using the worst-case Independent Operation Leakage
assumption from [GS18]). He then does the same with the plaintext bytes xn and the
leakages lyn and lzn with n = 2, 3, 4, leading to the same information on each key byte kn.

Qian Guo, Vincent Grosso and François-Xavier Standaert, Olivier Bronchain 215

Divide-and-conquer targets:

• y1 := x1 ⊕ k1 ly1 ,

• y2 := x2 ⊕ k2 ly2 ,

• y3 := x3 ⊕ k3 ly3 ,

• y4 := x4 ⊕ k4 ly4 ,

• z1 := S(y1) lz1 ,

• z2 := S(y2) lz2 ,

• z3 := S(y3) lz3 ,

• z4 := S(y4) lz4 ,

1-round SASCA targets:

• v1 := z1 ⊕ z2 lv1 ,

• v2 := z3 ⊕ z4 lv2 ,

• w1 := S(v1) lw1 ,

• w2 := S(v2) lw2 ,

2-round SASCA targets:

• a := w1 ⊕ w2 la,

• b := S(a) lb.

Figure 1: Toy unprotected implementation.

Assuming independent and uniformly distributed plaintexts, the (data) complexity Ndc of
a key recovery attack against each key byte can then be bounded thanks to Equation 2 as
Ndc ≥

⌊ 8
2ε
⌋
. Taking a value of ε = 0.1 bits for example, this means that one can guarantee

that complete key recovery requires the observation of at least 40 leakages. Moreover,
considering the normalized mutual information leakage denoted by λ (e.g., here λ = ε

8),
we could re-write the bound as Ndc ≥

⌊ 1
2λ
⌋
, where the unit for λ becomes a byte.

3.3 A SASCA evaluation with the LRPM
In order to characterize the increased amount of information that a SASCA can extract
from the example of Figure 1, we model an implementation with a factor graph (1), its
side-channel leakages with the RPM (2) and their exploitation with (local) information
propagation rules that can be viewed as a variation of the piling up lemma (3). The LRPM
then simply corresponds to the model combing these three ingredients.

Factor graph. The factor graph to use in the LRPM is built in the same was as the
factor graph of a SASCA. The factor graph corresponding to the toy example of Figure 1
is illustrated in Figure 2 (for the case where N = 3). It is based on two principles:

On the one hand, and most importantly, there are two types of leakage (function)
nodes in the graph. The first ones are “continuous” leakage nodes and are represented in
dark gray (with the Lc symbol). They correspond to target intermediate variables that
can be exploited via a divide-and-conquer attack and for which the leakage is accumulated
based on an additive channel (thanks to the uniform plaintext assumption). The second

216 Modeling Soft Analytical Side-Channel Attacks from a Coding Theory Viewpoint

Figure 2: Example of factor graph corresponding to Figure 1 (N = 3).

ones are “one-shot” leakage nodes and are represented in light gray (with the L1 symbol).
They correspond to the target intermediate variables that cannot be exploited via a divide-
and-conquer attack and for which the leakage is exploited thanks to the BP algorithm.

On the other hand, whenever two intermediate variables X and F(X) are connected
through a bijection F (e.g., the identity function, an S-box or the Xtimes function in the
AES), the information on X (i.e., MI(X;L)) can be turned into information on F(X) (i.e.,
MI(F(X);L)) and vice versa. Therefore, we can treat these variables as a single node and
accumulate their information based on an additive channel. This combination of targets is
reflected by the value before the L symbols in Figure 2. For example, the 2Lc node attached
to k1 means that there are two continuous channels (i.e., the S-box’s input and output)
leaking information on this value. Similarly, the 1L1 node attached to wn(i) and b(i) means
that there is a single one-shot leakage attached to each wn(i) and b(i) intermediate variable
(with i ∈ [1, N] the index of the manipulated plaintext). So this graph corresponds to
an attack exploiting bivariate leakages for the divide-and-conquer targets, and univariate
leakages for the SASCA targets. From a coding theory viewpoint, these two types of
leakages have a simple interpretation. The first (information-accumulating) nodes can be
viewed as “noise reduction”, the second ones can be viewed as a “code expansion”.2

Side-channel leakage modeling. The next LRPM step is to compute the information
leakage on each node. For the toy graph of Figure 2, and assuming a mutual information
of ε bits on every intermediate computation (as in the previous subsection), the leakage on
kn for n ∈ [1, 4] is bounded by 2Nε bits (with the factor 2 coming from the combination
of the S-boxes’ input and output) and therefore λ = Nε

4 bytes. Similarly, the one-shot
leakages on the wn(i) and b(i) nodes are bounded by ε bits and λ = ε

8 bytes.

2 It is interesting to note that the S-box in Figure 1 is important for the effectiveness of the SASCA.
For example, replacing the S-box by an identity function, the first-round intermediate value w1 is worth
x1 ⊕ k1 ⊕ x2 ⊕ k2. As a result, a SASCA guessing only one byte of key will be unable to exploit
this information, since w1 depends on k1 ⊕ k2 rather than on k1 and k2. Adding the S-box allows
w1 = S(x1 ⊕ k1) ⊕ S(x2 ⊕ k2) to depend on k1 and k2 jointly (since it is non-linear).

Qian Guo, Vincent Grosso and François-Xavier Standaert, Olivier Bronchain 217

Local information propagation rules. The BP algorithm works locally. That is,
a (variable or function) node computes the output distribution on an edge according
to the input probability distributions coming from its neighbors. In the LRPM, these
computations on probability distributions are replaced by estimations of the output MI
values on an edge from the input MI values on the other connected edges. We use the
normalized mutual information in order to leverage the analogy of Section 2.4.2.

These local rules are illustrated in Figure 3: the left part is for the variable nodes
and the right part for the function nodes, assuming a degree-3 node in both cases. Based

v

λa,in

λb,in λc,out +
λa,in

λb,in

λc,out

Figure 3: Illustration of the local rules for estimating the normalized MI values.

on this figure, we need to compute the normalized mutual information leakage bound
λc,out from two input probability distributions with the normalized MI bounds, λa,in and
λb,in. More generally, given the edges (with index set I) connected to a node, we need to
compute λe,out from {λe′,in|e′ ∈ I}, for every edge e ∈ I. Assuming that the probability
distribution on each edge is independent, the rule at the variable node is given by:

λe,out =
∑

e′∈I\{e}

λe′,in. (5)

This rule is similar to the rule of measuring information from independent traces in
the divide-and-conquer approach. As for the rule at the function node, we adopt an
approximation frequently employed in coding theory [RU08] which is similar to the bounds
in the masking security proof papers [DDF14, DFS19]. That is, we approximate the
probability distribution on each edge e ∈ I by a distribution from a q-ary erasure channel
(which, as previously mentioned, corresponds to the random-probing model), with erasure
probability at least 1− λe,in. Assuming the independence of the distributions on the input
edges, we can observe an erasure channel at the output edge, with erasure probability at
least (1−

∏
e′∈I\{e} λe′,in). The capacity of the channel is at most

∏
e′∈I\{e} λe′,in, and

we can therefore derive a normalized MI leakage bound λe,out as:

λe,out =
∏

e′∈I\{e}

λe′,in. (6)

Illustrations. Based on the previous ingredients, we can now bound the information
leakage in function of the amount of operations exploited by the adversary. For this
purpose, we start by considering the 1-round analytical adversary targeting the key bytes
k1 and k2 (of which the leakages exploited are in the light gray boxes of Figures 1 and 2).
We use the following notations. After (t) iterations of the message passing rules of the BP
algorithm, the information (in bytes) from the key variable node kn to the check node cm
is denoted as p(t)

kn→cm
(as per the notations of Appendix 2.3). Similarly, the information (in

bytes) from the check node cm to the key variable node kn is denoted r(t)
cm→kn

. Additionally
denoting the information bound (in bytes) on the key bytes k1 or k2 with B(t), we can

218 Modeling Soft Analytical Side-Channel Attacks from a Coding Theory Viewpoint

Figure 4: Leakage bounds for the factor graph of Figure 2.

then derive the following set of equations describing the bound:

r
(0)
cm→kn

= 0, (7)

p
(t)
kn→cm

= Nε

4 + (N − 1) · r(t−1)
cm→kn

, (8)

r
(t)
cm→kn

= p
(t)
kn→cm

· ε8 , (9)

B(t) = Nε

4 +N · r(t)
cm→kn

. (10)

Note that the goal of SASCA is to recover key bytes, so the information bounds on
other intermediate variable nodes are excluded in these equations. A pseudo-code for
this example is given in Appendix A. Taking a value of ε = 0.1 bits as in the previous
subsection, and using a similar approximation for the data complexity of an analytical
attack Na ≥ 1

B(∞) , we can see in the left part of Figure 4 that the bound becomes larger
than one for Na ≥ 27. Note that the gain of the analytical strategy over the divide-and-
conquer one only appears when the number of measurements becomes sufficient for the
decoding to become effective. Note also that for Na such that B(t) = 1, the additional
leakage of w1 is essentially equivalent to the addition of a third continuous channel on the
key bytes in this case (since 27 ≈ 8

0.3). In this respect, a natural question is whether the
same intuition holds when digging further into a cipher’s internal operations? We answer
it by analyzing the 2-round adversary described by the equations:

r
(0)
cm→kn

= 0, (11)

r(0)
cm→wn

= 0, (12)

r
(0)
dm→wn

= 0, (13)

p
(t)
kn→cm

= Nε

4 + (N − 1) · r(t−1)
cm→kn

, (14)

p(t)
wn→cm

= ε

8 + r
(t−1)
dm→wn

, (15)

p
(t)
wn→dm

= ε

8 + r(t−1)
cm→wn

, (16)

r
(t)
cm→kn

= p
(t)
kn→cm

· p(t)
wn→cm

, (17)

r(t)
cm→wn

= p
(t)
kn→cm

· p(t)
kn→cm

, (18)

r
(t)
dm→wn

= p
(t)
wn→dm

· ε8 , (19)

B(t) = Nε

4 +N · r(t)
cm→kn

. (20)

Qian Guo, Vincent Grosso and François-Xavier Standaert, Olivier Bronchain 219

Taking again a value of ε = 0.1 bits, and using the approximation for the data complexity
of an analytical attack Na ≥ 1

B(∞) , we can see in the right part of Figure 4 that the bound
becomes larger than one for Na ≥ 21. So here as well, the addition of the leakages of
w1 and v in the bounds is very close to the addition of two continuous channels on the
key bytes (since 20 = 8

0.4). The latter toy experiments therefore provide a preliminary
confirmation of the security proofs in [DDF14,DFS19] from a coding theory viewpoint, and
in particular of the fact that the security of an implementation in the LRPM may decrease
linearly with its circuit size Γ (reflected by the number of leaking operations), independent
of whether these operations are exploitable via divide-and-conquer attacks or not.

3.4 Discussion & definition
The next section will provide a more definitive confirmation that our modeling based on
the RPM can serve as an excellent (and very fast) predictor of the complexity of SASCA,
by studying the practically-relevant case study of an AES implementation. Beforehand,
we briefly discuss the worst-case nature of these predictions. There are two important
observations in this respect. First, SASCA applied to complex factor graphs with cycles,
such as the ones of a block cipher implementation, may suffer for convergence issues. The
LRPM optimistically prevents these issues since it assumes that all the information is
accumulated (as described by the local information propagation rules). Second, Equation 6
is an approximation employed in coding theory and is similar to the bounds used in
masking security proofs. Yet, the notion of tightness considered in investigations such
as [DFS19,GS18] is up to constant factors. A bound with constant factors becomes:

λe,out = α ·
∏

e′∈I\{e}

λe′,in. (21)

The α value proposed in [DFS19] is 1
log(2) (see footnote 3). As will be seen next, this choice

is conservative and approximations can become tighter with more heuristic choices of α.

Based on the previous descriptions, we define the LRPM as a model in which an
implementation is represented by a factor graph, its leakages are captured by the RPM
and the exploitation of its leakages is quantified thanks to the local propagation rules of
Equations 5, 6 and 21 (and possibly extension thereof for other operations).

4 The AES case study
We now move to our first main contribution and show how to formalize a realistic case study
based on an unprotected AES implementation. For this purpose, we start by considering
the implementation of four S-boxes with the MixColumns operation in Figure 5.

4.1 Factor graph generation
In the original SASCA description of [VGS14,GS15], the function nodes can be classified
in three categories: leakage nodes, 1-input nodes (e.g., corresponding to the S-box and
Xtimes operations), and nodes with two or more inputs (e.g., corresponding to the XOR
operations). We have seen in Section 3 that if we locally combine the information leakages
of variable nodes connected via 1-input function nodes before running the BP algorithm,
then the decoding problem can be reduced to a simpler bipartite factor graph, called Tanner
graph in coding theory. Figure 6 illustrates this “merge trick” with a simple example.
In the left part of the plot, showing a sub-graph of Figure 5, we have that z1 = S(y1)
for the two variables z1 and y1 with distinct continuous leakages, and y1 = XOR(x1, k1).
Since the plaintext x1 is known, we also have a bijection between k1 and y1. Therefore,

220 Modeling Soft Analytical Side-Channel Attacks from a Coding Theory Viewpoint

XOR

y1k1

x1

SBOX

z1

XOR

y2k2
x2

SBOX

z2

XOR

mc1

XTIMES

xt1

P
Lc

P
Lc

Lc

Lc

L1 L1

P

x3

XOR

k3 y3

Lc

SBOX

z3

Lc

XOR

x4

P

k4 y4

Lc

SBOX

z4

Lc

XOR

a1

L1

XOR

mc2

XTIMES

xt2

XOR

a2

XOR

b2

L1L1L1 L1

XOR

mc4

XTIMES

xt4

XOR

a4

XOR

b4

L1L1L1 L1

XOR

mc3

XTIMES

xt3

XOR

a3

XOR

b3

L1L1L1 L1

XOR

b1

L1

XOR h1 XOR h2 XOR h3

L1

L1

L1

AddRoundKey Sbox MixColumns

Figure 5: Factor graph for the first round / first column of the AES (adapted from [GS15]).

we can merge these variables according to the two bijections, and create a new variable
v1 to represent them, with a single bivariate leakage function node corresponding to two
continuous leakage channels. This merge trick actually generalizes the “average trick”
that combines the information on identical random variables obtained from many leakage
traces in standard DPA. That is, say two leaking intermediate variables are connected by a
function F: averaging is possible if F is the identity function. But in general, the merging
trick straightforwardly applies to any function or bijection. As will be discussed in the
next section, this generalization turns out to be very useful in order to improve attacks
against masked implementations of the AES S-box by reducing their noise level.

Figure 7 shows the simplified Tanner graph from the factor graph in Figure 5 cor-
responding to the first column of the first AES round. We explain in the bottom part
of Figure 7 the correspondence between the merged nodes in Figure 7 and the original
variable nodes in Figure 5. For instance, its first row of the first column means that
the node v1 in Figure 7 is the merger of three random variables in Figure 5: k1, y1 and

Qian Guo, Vincent Grosso and François-Xavier Standaert, Olivier Bronchain 221

XOR

y1k1
x1

SBOX

z1

LcLc

=⇒
v1

2Lc

Figure 6: Illustration of the merging trick.

z1. The leakages are combined accordingly. As in the previous section, all the leakages
are single-shot except the (continuous) ones that correspond to variable nodes and can
be targeted by a divide-and-conquer attack (i.e., the nodes vn for n ∈ {1, 2, 3, 4} that
represent the key bytes). The figure also includes the number of leakage channels. We can
see that the factor graph used for the BP algorithm is simplified. In contrast with the
factor graph representation in Figure 5, which includes 35 variable nodes, the new one in
Figure 7 consists of only 18 variable nodes. Moreover, if one has N traces, the number of
variable nodes in the extended graph corresponding to multiple traces drops from 4 + 31N
to 4 + 14N , leading to reduced time and memory complexities for the decoding.

4.2 Analysis and results
Following the usual approach in simulated side-channel attacks, we analyzed the case
where all the target intermediate variables leak some deterministic function of their value,
with some additive Gaussian noise. From this simple setting, we can compute a MI value
according to Definition 1 and normalize it. We investigated the following parameters:

1. Different number of rounds of leakage exploited. We evaluated how the data com-
plexity of SASCA is reduced by using the leakage of more block cipher rounds.

2. Different deterministic parts of the leakage function. We considered the standard
Hamming weight leakage function and a random one (the same as used in [DFS19]),
with the goal to identify possible dependencies of the model on this function.

3. Different noise levels. We considered lower and higher noise levels, in order to
evaluate how the improvements of SASCA over TA depend on this parameter.

4. Known or unknown plaintext attacks. We considered both the case of an attack with
known plaintexts as in the standard DPA setting and the unknown plaintext context
which may be considered in certain applications of side-channel attacks [HTM09].

A pseudo-code corresponding to one AES round is given in Appenxix B. The result of
our first set of experiments is given in Figure 8. It corresponds to the simplest case of an
attack in the known plaintext context, for a value of ε = 0.05. We launched the attacks
with both Hamming weight and random leakages. The success rate curves in the right
part of the figure confirm that both for TA (which is known [MOS11]) and for SASCA, the
attack complexity is independent of the shape of the leakage function. They also confirm
the observation in [GRO18] that digging beyond the second round of the block cipher
implementation does not lead to significant improvements in the known plaintext context.
The model predictions are given on the left part of the figure. They provide the same
intuitions and are conservative (as expected due to their worst-case nature).3

The result of our second set of experiments is given in Figure 9. It considers the same
(known plaintext) attack context with a higher noise level (i.e., ε = 0.01). The main

3 Practical attacks are reported with their success rate while the model is expressed with information
bounds. Yet, we note that in the case where the information is bounded in function of the number of
measurements, as in the LRPM, the success rate is directly bounded by the MI (see [DFS19], Equation 19).

222 Modeling Soft Analytical Side-Channel Attacks from a Coding Theory Viewpoint

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18

L L L L L L L L L L L L L L L L L L

+

C1
+

C2
+

C3
+

C4
+

C5
+

C6
+

C7
+

C8
+

C9
+

C10
+

C11
+

C12
+

C13
+

C14

• v1:= y1, z1, k1;
leakage := 2Lc;

• v2:= y2, z2, k2;
leakage := 2Lc;

• v3:= y3, z3, k3;
leakage := 2Lc;

• v4:= y4, z4, k4;
leakage := 2Lc;

• v5:= xt1, mc1, h1;
leakage := 3L1;

• v6:= xt2, mc2;
leakage := 2L1;

• v7:= xt3, mc3;
leakage := 2L1;

• v8:= xt4, mc4;
leakage := 2L1;

• v9:= a1;
leakage := L1;

• v10:= a2;
leakage := L1;

• v11:= a3;
leakage := L1;

• v12:= a4;
leakage := L1;

• v13:= b1;
leakage := L1;

• v14:= b2;
leakage := L1;

• v15:= b3;
leakage := L1;

• v16:= b4;
leakage := L1;

• v17:= h2;
leakage := L1;

• v18:= h3.
leakage := L1;

Figure 7: Tanner graph associated with one column of the first AES round.

conclusion of these plots is that while the increased noise increases the complexity of the
attacks (as reflected by the X axes), the improvement that SASCA brings over TA is
independent of the noise. This was already observed in [VGS14] for practical attacks and
is confirmed with the model. This observation is particularly relevant in practice because
it implies that less conservative estimates than our worst-case predictions can generally be
considered by adding some factor to the data complexity predicted by the model.

Next, the move to an unknown plaintext scenario is reported in Figure 10 (for ε = 0.5).
This time, the main conclusion is that digging deeper in the block cipher rounds is
significantly more useful (confirming the observations in [RSV09]), which matches the
intuition that in this case, all the cipher rounds are equally useful to the adversary.

This last set of experiment is also a good one to confirm the significant gains in
evaluation time that the model allows. For example, running a single 10-round SASCA on
the 32 cores of an Intel Haswell architecture takes 7.5 minutes on average with our prototype
code (and the success rate curve which is computed over 40 independent experiments for
this number of rounds therefore took 5 hours to be generated). The bounds provided by
the model are produced in seconds of computation on the same platform.

We finally checked the impact of the α parameter (from Section 3.4) in these various
experiments and concluded that small variations of it have limited impact on our conclusions.
For simplicity, we therefore use a value of α = 1 in the remaining of the paper.

Qian Guo, Vincent Grosso and François-Xavier Standaert, Olivier Bronchain 223

Figure 8: Leakage bounds and success rates of experimental SASCA with up to two rounds
against an unprotected AES implementation in a known plaintext scenario (I).

Figure 9: Leakage bounds and success rates of experimental SASCA with up to two rounds
against an unprotected AES implementation in a known plaintext scenario (II).

4.3 Connections to coding theory
We conclude this section by highlighting interesting connections between SASCA and
coding theory. In particular, the Tanner graph derived from one column of the first AES
round (in Figure 7) defines an LDPC code with a parity-check matrix H14×18 shown in
Figure 11, whose row weight is a constant 3, and the column weight vector (i.e., the degree
vector of variable nodes) equals:

(3 3 4 4 3 2 2 2 2 2 2 2 1 1 1 1 2 5).

The sparsity of this parity-check matrix H14×18 explains why BP performs well. Note
that this parity-check matrix becomes larger if we have more traces, but its sparsity
remains. Supposing N traces are observed, from one column of the first AES round
we could generate a parity-check matrix of row size 14N and column size (4 + 14N),
leading to a [4 + 14N, 4]q LDPC code. Note also that this transformation does not mean
that the description of AES is no longer non-linear. It only means that this transform
could hide the non-linearity of AES by the merge trick that locally combines the leakages
connected by a non-linear operation (e.g., an S-box). Therefore, the (in)vulnerability of
AES against SASCA can be characterized by the decoding performances of one particular
LDPC code derived from the inherent structure of the cipher. When N increases, the
dimension of the derived code is invariant, i.e., equivalent to the key size. Its length,

224 Modeling Soft Analytical Side-Channel Attacks from a Coding Theory Viewpoint

Figure 10: Leakage bounds and success rates of experimental SASCA with up to ten
rounds against an unprotected AES implementation in a unknown plaintext scenario.

however, increases and the additive channels associated to some positions (i.e., connected
to so-called continuous channels) become less noisy. The latter explains why more traces
lead to better attacks (and in particular SASCA) from a coding theory viewpoint, since
both low-rate codes and low-noise channels generally imply better decoding performances.
The coding theory literature contains tools (e.g., EXIT charts) developed for designing
codes with near-optimal decoding performances (called capacity-approaching codes). Since
the goal of a cryptographic designer is to guarantee that high number of measurements
N are needed for decoding, it is an interesting open problem to investigate whether the
analogies in this section may lead to better solutions to counteract side-channel attacks
(e.g., implementations of which the codes have provably poor decoding performances).



1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1


Figure 11: Parity-check matrix of the LDPC code corresponding to Figure 7.

5 Protected implementations
We next move to our second main contribution and extend our analysis and modeling
of SASCA to the more challenging case of protected implementations, for which higher
security levels can be expected and therefore shortcut approaches to simplify the security
evaluations are increasingly needed. We start with masking and show that our concrete

Qian Guo, Vincent Grosso and François-Xavier Standaert, Olivier Bronchain 225

x x0 x1 x2

L1 L1 L1

+

C

Figure 12: Masked encoding with d = 3 shares.

use of the RPM can lead to new insights (e.g., unreported attack paths against a masked
AES S-box due to a lack of refreshing of its linear parts) and serve as a tool to discuss and
optimize the tradeoff between the amount of physical noise and mathematical randomness
in masked gadgets. We follow with shuffling and demonstrate similar gains.

5.1 Masked encoding
The Tanner graph of a masked encoding with three shares is given in Figure 12. In general,
it corresponds to a secret value x represented as an XOR of d shares x = x0⊕x1⊕ . . .⊕xd−1.
The adversary can access d leakages corresponding to all the shares. For simplicity, we
assume that each share’s leakage has a similar mutual information (per byte) of λ, leading
to a set of equations:

pxi→c = λ (22)
rc→x = pdxi→c · α

(d−1), (23)
B = N · rc→x, (24)

where N is the number of measurements used in the attack. The resulting approximation
is similar to the bounds given in masking proofs (excepted that our modeling considers the
leakages per byte rather than the mutual information). Note that in this simple context,
the application of the BP algorithm is equivalent (from the information theoretic viewpoint)
to the application of a multivariate TA if the noise covariance matrix is diagonal.

5.2 Masked multiplication
Given some encoded values, masked multiplications usually apply some processing to the
shares, based on secure addition and multiplication algorithms [ISW03]. For illustration,
we first consider a factor graph for a secure multiplication algorithm similar to the one
investigated in [GS18] and depicted in Figure 13 for three shares. The adversary can
observe the leakages of the d2 partial products (denoted as Lp), together with the shares of
the leakages (denoted as Ls).4 We can consider two leakage assumptions for this purpose:

• First assumption: single 1-shot leakages (i.e., Ls = λ).

• Second assumption: multiple 1-shot leakages (i.e., Ls = d · λ) due to the need to
manipulate each share d times in the secure multiplication algorithm of [ISW03].

The g function in Figure 13 corresponds to the (bijective) square operations of an AES
S-box implementation (see Section 5.3). Hence, we employ the merge trick to have the
following equations, where the check nodes of the XOR operations used for the encoding
of x and y are denoted s, and the ones of the multiplication functions are denoted p:

4 As discussed in [GS18], the latter are necessary to initialize the shares’ leakage.

226 Modeling Soft Analytical Side-Channel Attacks from a Coding Theory Viewpoint

Figure 13: Factor graph for a secure multiplication with three shares.

r(0)
s→xi

= 0 (25)
r(0)
s→x = 0 (26)

r(0)
p→xi

= 0 (27)

p(t)
xi→s = Ls + d · r(t−1)

p→xi
(28)

p(t)
xi→p = Ls + (d− 1) · r(t−1)

p→xi
+ r(t−1)

s→xi
(29)

p(t)
x→s = (2N − 1) · r(t−1)

s→x (30)

r(t)
s→x = (p(t)

xi→s)
d
· α(d−1) (31)

r(t)
s→xi

= (p(t)
xi→s)

(d−1)
· p(t)
x→s · α(d−1) (32)

r(t)
p→xi

= p(t)
xi→p · Lp · β (33)

B(t) = 2N · r(t)
s→x (34)

Thanks to the symmetry of Figure 13 , we only need to write equations for the x variables.
The β factor plays the same role as the α for the multiplications (we set both to one for
simplicity in this experiment – small variations do not affect our conclusions). We also
mention the factor (2N − 1) in Equation 30 for which N edges come from the y shares
and (N − 1) edges come from the x shares. Similarly in Equation 34, the factor 2 comes
from the combination of the leakages on x and y thanks to the bijective g.

One possibly suprising element of these equations is the multiplicative local estimation
rule of Equation 33. One could indeed expect a higher extrinsic information than predicted
by this rule due to the well-known “zero problem” of multiplicative masking schemes [GT02].
However, a reasoning based on the random probing model shows that the situation is
actually different here. Suppose that we have three random variables X, Y and Z over

Qian Guo, Vincent Grosso and François-Xavier Standaert, Olivier Bronchain 227

Figure 14: Information gain of masked multiplications.

GF(q), where Z = X · Y and we have two independent leakages L(Z) and L(X) from
two erasure channels with erasure probabilities e1 and e2 (i.e., capacity MI1 = 1− e1 and
MI2 = 1− e2). The question is: how much information can we gain about Y ?

Since we know the value y of Y if and only if L(X) ∈ GF(q) \ {0} and L(Z) 6=⊥, the
two observations L(Z) and L(Y) form a new erasure channel of X with erasure probability
at least 1− (1−e1)(1−e2) which is reported as 1−MI1 ·MI2 in the LRPM. So the capacity
of the new channel is at most MI1 ·MI2, therefore justifying Equation 33.

Based on these equations, we first show in Figure 14 the reduction of the data complexity
when exploiting the leakages of the partial products Lp, expressed as the ratio with the
data complexity of the attack exploiting only the shares’ leakages Ls. It clearly illustrates
that as the noise level increases (i.e., the leakage per share ε decreases), the impact of these
partial product vanishes, independent of the leakage assumptions stated earlier in this
section. By contrast, for too low noise levels these additional leakages become significant,
especially for large d values. A similar view can be extracted from Figure 15 where the
information leakages of different masked multiplications are given, for two noise levels. The
latter additionally shows the positive impact of increasing d when the noise level is large
enough, and its detrimental effect when the noise is too low (due to the higher complexity
ratio illustrated in Figure 14). Overall, these experiments illustrate that the LRPM allows
us to revisit the key intuitions of masking security proofs [PR13,DDF14,DFS19,GS18], but
in a much more flexible manner: we are indeed able to immediately gauge the impact of
the repeated manipulation of a share, or a variation of information leakage for a complete
factor graph accurately describing a leaking target implementation.

A note on the BP algorithm for masked implementations. In the case of un-
protected implementations like reported in Section 4.2, running the BP algorithm on a
factor graph connecting all the manipulated plaintexts (i.e., so-called graph extension)
usually leads to better results than running it on several smaller factor graphs that are
then re-combined (i.e., so-called graph combination). Interestingly, we observed that the
latter fact does not hold for higher-order masked implementation with more than two
shares. The key reason of this observation is that in a masked implementation, we can only
extend the graph thanks to the unshared values which can potentially accumulate leakages
continuously (all other intermediate variables are ephemeral). These unshared variables are
then injected in each sub-graph by passing through the sharing node (e.g., a d-input XOR
in the case of Boolean masking). This means that the information that the unshared values
are able to send to each share essentially corresponds to the information of a (d− 1)-share
encoding. As a result, graph extension can be effective for unprotected implementations

228 Modeling Soft Analytical Side-Channel Attacks from a Coding Theory Viewpoint

Figure 15: Leakage bounds for the factor graph of Figure 13 (leakage assumption 1).

and first-order masked implementations, but becomes useless for higher orders.
We confirmed this theoretical explanation by running again the experimental SASCA

against a (3-share) masked multiplication carried out in [GS18], Section 5.4. The latter
was performed with graph combination. We evaluated the impact of graph extension and
did not observe any improvement, as predicted. This limited positive impact of graph
extension is a plausible reason for the slightly worse performances of the BP algorithm in
a masked context (and the fact the gain of a SASCA over a TA decreases with the noise
level in [GS18], contrary to what is observed for unprotected implementations). In an
unprotected implementation, the accumulation of continuous leakages presumably allows
optimal information extraction by the BP algorithm, despite the presence of cycles in the
factor graph that do not guarantee convergence. In a masked implementation, the lack of
continuous leakages presumably makes the presence of cycles more detrimental.

5.3 Masked S-box implementations
We complement this discussion on masking by illustrating that our modeling does not only
allow confirming existing analyzes and connecting the RPM with coding theory tools and
SASCA, but can also put forward attacks that were not directly captured by theoretical
analysis so far. For this purpose, we consider the case study of an AES S-box as represented
in Figure 16 (originally proposed in [RP10] but here tweaked with the refreshing gadgets
of [ISW03] to avoid the attacks put forward in [CPRR13]). Considering asymptotic analysis
for readability, our main observation is that the merge trick discussed in Section 4.1 applied
to the case of a masked implementation can bring a powerful generalization of the horizontal
attacks in [BCPZ16]. For this purpose, first consider an attack targeting the shares of y1.
Given a leakage λ on each share (and ignoring the loss factors for simplicity), we obtain a
leakage bound of λd on y1. But by merging the node of y1 with the one of y2 (which is
feasible since these linear functions are operated share by share), one reduces this bound to
(2 · λ)d. Additionally considering the fact that the shares of y1 and y2 are loaded d times
when being multiplied, it is further reduced to (2 ·λ+ 2d ·λ)d, meaning a security reduction
by a factor (2 + 2d)d, which grows exponentially in d. We leave the application of this
attack to concrete implementations as an interesting direction for further investigations.

The latter observation naturally becomes even more critical if all the S-box (and
possibly MixColumns) operations are combined in a similar manner. In this respect,
one important message is that besides being useful for composability issues [BBD+16],
the addition of refreshing gadgets may also be needed to mitigate the noise reduction in
masked implementations that SASCA enables. That is, adding refreshing gadgets (which

Qian Guo, Vincent Grosso and François-Xavier Standaert, Olivier Bronchain 229

Figure 16: AES S-box from [RP10] (black rectangles are refreshing gadgets from [ISW03]).

are represented by the black rectangles in Figure 16) is necessary whenever multiplying
dependent values. The requirements for such (composable) refreshing gadgets are typically
high in randomness. But adding a simpler refreshing (e.g., a sharing of zero) after each
operation in Figure 16 would also prevent the combination of certain leakages. That is,
the merge of y1 and y2 would remain unavoidable (leading to a security reduction of 2d),
just as the combination of the d manipulations of each share during the multiplication
(leading to a security reduction of dd), but further combinations would be prevented.

5.4 Other (follow up) results
Improving the security of multiplication algorithms against horizontal attacks and op-
timizing the tradeoff between physical noise and mathematical randomness is one of
the main research challenges in masking and leakage-resilience. First progresses in this
direction have been made by Batistello et al. [BCPZ16]. Their analysis is based on the
qualitative criteria that minimizing the number times each share is manipulated limits the
aforementioned noise reductions, and it was validated using concrete (SASCA-like) attacks
on a few representative examples (due to the high complexity of mounting these attacks).

In a recent work from TCHES 2019, it was shown that the LRPM can be used to
systematize this analysis and making it quantitative, and as a result to identify efficient
multiplication gadgets with constant noise rate [CS19] – hence confirming its relevance for
reasoning formally about the concrete security of masked implementations.

5.5 Shuffling
We conclude the paper by analyzing the security of another popular countermeasure against
side-channel attacks, namely the shuffling introduced in [HOM06]. Its goal is to randomize
the execution of the operations: we next study the standard case of a shuffling over Ns = 16
S-box executions. For this purpose, we assume that a permutation P is picked up at the
beginning of each cipher execution. Then, the first plaintext and subkey manipulated are
xP(1) and kP(1), followed by xP(2) and kP(2), and so on. Two types of permutations are
frequently considered in the literature: either the permutation is picked up from the set of
all permutations, or a Random Start Index (RSI) is used, in which case the operations are
performed in fixed order, but for each execution the first operation is different.

As analyzed in [VMKS12], the worst-case evaluation of the shuffling countermeasure
requires computing intensive (Ns-dimension) integrals. We next detail how a much
simplified analysis can be based on the LRPM. For this purpose, we first observe that in a
shuffled implementation, the key is not used at a fixed time. Hence, the attacker cannot
directly accumulate information on it, and has to exploit two kinds of leakages. First,
so-called permutation leakages LPi

 P(i) that give hints about the execution time. We
consider that the attacker can observe εP bits of information on each P(i) value. Next, the
S-boxes computation leakages: using our previous notations (e.g., from Figure 1), it leads
to Lti zP(i). The use of the permutation P is here to highlight the fact that at position
ti in the trace we have leakage about the P(i)-th variable and not the (i)-th variable. We
consider that the attacker can observe ε bits of information on each S-box output. Based

230 Modeling Soft Analytical Side-Channel Attacks from a Coding Theory Viewpoint

on these notations, we can bound the information exploited by different attacks against a
shuffled implementation. We study the next cases from [VMKS12]:

1. A TA against an unprotected device (UNP-TA) for reference. In this case, the
operations are performed in a fix order and B = N · ε

8 as previously.

2. A TA against a shuffled implementation without information on the permutation
(UNI-TA). In this case, εP = 0 and the attacker assumes that all permutations
are equally likely, which boils down to divide the information on the S-box by the
permutation size Ns, leading to an information leakage bound B = N · ε

8 ·Ns
·

3. A TA against a shuffled implementation with an adversary exploiting the εP bits
of “direct permutation leakage” (DPLEAK-TA). In the case, the factor Ns in the
previous bound is replaced by 2log2(Ns)−εP , which corresponds to the uncertainty
remaining on the execution times after the observation of the permutation leakages,
leading to another information leakage bound B = N · ε

8 · 2log2(Ns)−εP
·

4. A similar TA against an implementation shuffled with a RSI (RSIENUM-TA). In
this case, due to the structure of the RSI, there is only log2(Ns) bits of secret for
all the Ns S-box executions and all the permutation leakages can be combined to
learn it. This essentially provides Ns times more information on the execution time,
leading to a last information leakage bound B = N · ε

8 · 2log2(Ns)−Ns·εP
·

Figure 17 illustrates our analyzes with this model. For simplicity, we set the S-box leakages
to ε = 0.1 and vary the permutation leakages. We observe that the conclusions of [VMKS12]
are reached in a very efficient manner. In high information (i.e., low-noise) contexts, the
security level is low, the RSI shuffling is as weak as an unprotected implementation and
the shuffling with uniform permutation does not deliver the expected gains (its security
is closer from the UNP-TA than from the UNI-TA). In low information contexts, the
opposite observation holds and all shufflings lead to a similar amplification of the noise
by a factor Ns. In view of these results and the one in the previous subsection, designing
gadgets combining masking and shuffling in order to improve security against horizontal
attacks, and evaluating them with the LRPM, is an interesting research direction.

6 Summarizing remarks
In this work, we proposed to model SASCA from a coding theory viewpoint, leveraging
the analogy between the random probing model used in masking security proofs and an
erasure channel. The model leads to a collection of new results and simpler interpretations
of known facts. Its main concrete interest is to provide a considerably faster approach
to analyze the security of practical implementations against (horizontal, multi-target)
SASCA. By enabling the exploration of a larger design space, it can also lead to better
optimizations of the tradeoff between the noise level and the randomness complexity of such
implementations. Other contributions include the better interpretation of masking security
bounds (e.g., how much the security of an implementation decreases with its number of
operations, in the known and unknown plaintext scenarios), and new evaluations of the
shuffling countermeasure. We hope these results can serve as a seed for the systematic
investigation of combined countermeasures against (nearly worst-case) SASCA.

Qian Guo, Vincent Grosso and François-Xavier Standaert, Olivier Bronchain 231

Figure 17: Leakage bounds for shuffled implementations.

Acknowledgments
The main part of Qian Guo’s work was done when he was a post-doctoral researcher at
the ICTEAM/ELEN/Crypto Group, UCL, Louvain-la-Neuve, Belgium. François-Xavier
Standaert is a senior associate researcher of the Belgian Fund for Scientific Research
(FNRS-F.R.S.). This work has been funded in parts by the ERC project 724725 (acronym
SWORD), the EU project REASSURE and the CHIST-ERA project SECODE. Qian Guo
was also partially supported by the Norwegian Research Council (Grant No. 247742/070),
and by the Wallenberg Autonomous Systems and Software Program (WASP) funded by
the Knut and Alice Wallenberg Foundation.

References
[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-

jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, Vienna, Austria, October 24-28, 2016,
pages 116–129. ACM, 2016.

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Randomness complexity of private
circuits for multiplication. In Marc Fischlin and Jean-Sébastien Coron, editors,

232 Modeling Soft Analytical Side-Channel Attacks from a Coding Theory Viewpoint

Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II, volume 9666 of LNCS,
pages 616–648. Springer, 2016.

[BBP+17] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Private multiplication over finite
fields. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
- CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III, volume 10403
of LNCS, pages 397–426. Springer, 2017.

[BCPZ16] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina
Zeitoun. Horizontal side-channel attacks and countermeasures on the ISW
masking scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th Interna-
tional Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings,
volume 9813 of LNCS, pages 23–39. Springer, 2016.

[BHM+19] Olivier Bronchain, Julien M. Hendrickx, Clément Massart, Alex Olshevsky,
and François-Xavier Standaert. Leakage certification revisited: Bounding
model errors in side-channel security evaluations. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019 -
39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part I, volume 11692 of Lecture Notes in
Computer Science, pages 713–737. Springer, 2019.

[CPRR13] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas
Roche. Higher-order side channel security and mask refreshing. In Shiho
Moriai, editor, Fast Software Encryption - 20th International Workshop, FSE
2013, Singapore, March 11-13, 2013. Revised Selected Papers, volume 8424 of
LNCS, pages 410–424. Springer, 2013.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Jr.
et al. [JKP03], pages 13–28.

[CS19] Gaetan Cassiers and François-Xavier Standaert. Towards globally optimized
masking: From low randomness to low noise rate or probe isolating multi-
plications with reduced randomness and security against horizontal attacks.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):162–198, 2019.

[dCGRP19] Eloi de Chérisey, Sylvain Guilley, Olivier Rioul, and Pablo Piantanida. Best
information is most successful mutual information and success rate in side-
channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):49–79,
2019.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: From probing attacks to noisy leakage. In Nguyen and Oswald [NO14],
pages 423–440.

[DFS19] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making
masking security proofs concrete (or how to evaluate the security of any
leaking device), extended version. J. Cryptology, 32(4):1263–1297, 2019.

[DSV14] François Durvaux, François-Xavier Standaert, and Nicolas Veyrat-Charvillon.
How to certify the leakage of a chip? In Nguyen and Oswald [NO14], pages
459–476.

Qian Guo, Vincent Grosso and François-Xavier Standaert, Olivier Bronchain 233

[Gal62] Robert G. Gallager. Low-density parity-check codes. IRE Trans. Information
Theory, 8(1):21–28, 1962.

[GRO18] Joey Green, Arnab Roy, and Elisabeth Oswald. A systematic study of the
impact of graphical models on inference-based attacks on AES. In Begül
Bilgin and Jean-Bernard Fischer, editors, Smart Card Research and Advanced
Applications, 17th International Conference, CARDIS 2018, Montpellier,
France, November 12-14, 2018, Revised Selected Papers, volume 11389 of
LNCS, pages 18–34. Springer, 2018.

[GS15] Vincent Grosso and François-Xavier Standaert. ASCA, SASCA and DPA
with enumeration: Which one beats the other and when? In Tetsu Iwata and
Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 - 21st
International Conference on the Theory and Application of Cryptology and
Information Security, Auckland, New Zealand, November 29 - December 3,
2015, Proceedings, Part II, volume 9453 of LNCS, pages 291–312. Springer,
2015.

[GS18] Vincent Grosso and François-Xavier Standaert. Masking proofs are tight and
how to exploit it in security evaluations. In Jesper Buus Nielsen and Vincent
Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II,
volume 10821 of LNCS, pages 385–412. Springer, 2018.

[GT02] Jovan Dj. Golic and Christophe Tymen. Multiplicative masking and power
analysis of AES. In Jr. et al. [JKP03], pages 198–212.

[HOM06] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES smart card
implementation resistant to power analysis attacks. In Jianying Zhou, Moti
Yung, and Feng Bao, editors, Applied Cryptography and Network Security, 4th
International Conference, ACNS 2006, Singapore, June 6-9, 2006, Proceedings,
volume 3989 of LNCS, pages 239–252, 2006.

[HTM09] Neil Hanley, Michael Tunstall, and William P. Marnane. Unknown plaintext
template attacks. In Heung Youl Youm and Moti Yung, editors, Information
Security Applications, 10th International Workshop, WISA 2009, Busan,
Korea, August 25-27, 2009, Revised Selected Papers, volume 5932 of Lecture
Notes in Computer Science, pages 148–162. Springer, 2009.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in Cryp-
tology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume
2729 of LNCS, pages 463–481. Springer, 2003.

[JKP03] Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors. Crypto-
graphic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers,
volume 2523 of LNCS. Springer, 2003.

[Mac03] David J. C. MacKay. Information theory, inference, and learning algorithms.
Cambridge University Press, 2003.

[MOS11] Stefan Mangard, Elisabeth Oswald, and François-Xavier Standaert. One for
all - all for one: unifying standard differential power analysis attacks. IET
Information Security, 5(2):100–110, 2011.

234 Modeling Soft Analytical Side-Channel Attacks from a Coding Theory Viewpoint

[MOW14] Luke Mather, Elisabeth Oswald, and Carolyn Whitnall. Multi-target DPA
attacks: Pushing DPA beyond the limits of a desktop computer. In Sarkar
and Iwata [SI14], pages 243–261.

[NO14] Phong Q. Nguyen and Elisabeth Oswald, editors. Advances in Cryptology -
EUROCRYPT 2014 - 33rd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings, volume 8441 of LNCS. Springer, 2014.

[Pea82] Judea Pearl. Reverend bayes on inference engines: A distributed hierarchical
approach. In David L. Waltz, editor, Proceedings of the National Conference
on Artificial Intelligence. Pittsburgh, PA, August 18-20, 1982., pages 133–136.
AAAI Press, 1982.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of LNCS, pages
142–159. Springer, 2013.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of AES. In Stefan Mangard and François-Xavier Standaert, editors, Cryp-
tographic Hardware and Embedded Systems, CHES 2010, 12th International
Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, volume
6225 of LNCS, pages 413–427. Springer, 2010.

[RSV09] Mathieu Renauld, François-Xavier Standaert, and Nicolas Veyrat-Charvillon.
Algebraic side-channel attacks on the AES: why time also matters in DPA.
In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and
Embedded Systems - CHES 2009, 11th International Workshop, Lausanne,
Switzerland, September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes
in Computer Science, pages 97–111. Springer, 2009.

[RU08] Thomas J. Richardson and Rüdiger L. Urbanke. Modern Coding Theory.
Cambridge University Press, 2008.

[SI14] Palash Sarkar and Tetsu Iwata, editors. Advances in Cryptology - ASI-
ACRYPT 2014 - 20th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014. Proceedings, Part I, volume 8873 of LNCS. Springer,
2014.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for
differential side channel cryptanalysis. In Josyula R. Rao and Berk Sunar,
editors, Cryptographic Hardware and Embedded Systems - CHES 2005, 7th
International Workshop, Edinburgh, UK, August 29 - September 1, 2005,
Proceedings, volume 3659 of LNCS, pages 30–46. Springer, 2005.

[SMY09] François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework
for the analysis of side-channel key recovery attacks. In Antoine Joux, editor,
Advances in Cryptology - EUROCRYPT 2009, 28th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Cologne, Germany, April 26-30, 2009. Proceedings, volume 5479 of LNCS,
pages 443–461. Springer, 2009.

Qian Guo, Vincent Grosso and François-Xavier Standaert, Olivier Bronchain 235

[Tan81] Robert Michael Tanner. A recursive approach to low complexity codes. IEEE
Trans. Information Theory, 27(5):533–547, 1981.

[VGRS12] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-
Xavier Standaert. An optimal key enumeration algorithm and its application
to side-channel attacks. In Lars R. Knudsen and Huapeng Wu, editors, Selected
Areas in Cryptography, 19th International Conference, SAC 2012, Windsor,
ON, Canada, August 15-16, 2012, Revised Selected Papers, volume 7707 of
LNCS, pages 390–406. Springer, 2012.

[VGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert.
Soft analytical side-channel attacks. In Sarkar and Iwata [SI14], pages 282–296.

[VMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against side-channel attacks: A comprehensive
study with cautionary note. In Xiaoyun Wang and Kazue Sako, editors,
Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference
on the Theory and Application of Cryptology and Information Security, Beijing,
China, December 2-6, 2012. Proceedings, volume 7658 of LNCS, pages 740–757.
Springer, 2012.

A Pseudo-code of a toy example
n = 8; – n-bit targets
e = 0.1; – MI per target operation
Nd = 2; – 1 for univariate, 2 for bivariate
Nmax = n/(Nd ∗ e); – max. data complexity for the plots)
Nmax = ceil(Nmax ∗ (1.1));

– Divide-and-conquer approach:
MIdc(1) = 0;
for i = 1 : Nmax

MIdc(i+ 1) = MIdc(i) + (Nd ∗ e/n);
end

– Analytical approach:
Nit = 10; – # of iterations (2 x graph diam.)
MIa(1) = 0;
for i = 1 : Nmax

Rck(1) = 0;
for j = 1 : Nit

Pkc(j + 1) = i ∗ (Nd ∗ e/n) + (i− 1) ∗Rck(j);
Rck(j + 1) = Pkc(j + 1) ∗ (e/n);
B(j + 1) = i ∗ (Nd ∗ e/n) + i ∗Rck(j + 1);

end
MIa(i+ 1) = max(B);

end

B Pseudo-code for the first AES round
n = 8; – n-bit targets
e = 0.1; – MI per target operation
Nmax = n/(Nd ∗ e); – max. data complexity for the plots

236 Modeling Soft Analytical Side-Channel Attacks from a Coding Theory Viewpoint

Nmax = ceil(Nmax ∗ (1.1));
e = e/n; – MI per target operation measured by bytes

– Analytical approach:
Nit = 100; – # of iterations (a safe choice.)
MIa(1) = 0;
e1 = 2 ∗ e; – Leakages from Variable v1
e2 = 2 ∗ e;
e3 = 2 ∗ e;
e4 = 2 ∗ e;
e5 = 3 ∗ e;
e6 = 2 ∗ e;
e7 = 2 ∗ e;
e8 = 2 ∗ e;
e9 = e;
e10 = e;
e11 = e;
e12 = e;
e13 = e;
e14 = e;
e15 = e;
e16 = e;
e17 = e;
e18 = e;
for i = 1 : Nmax

Rc1v1 = 0; – MI from Check C1 to Variable v1
Rc1v2 = 0;
Rc1v5 = 0;
Rc2v2 = 0;
Rc2v6 = 0;
Rc2v3 = 0;
Rc3v3 = 0;
Rc3v4 = 0;
Rc3v7 = 0;
Rc4v1 = 0;
Rc4v4 = 0;
Rc4v8 = 0;
Rc5v1 = 0;
Rc5v5 = 0;
Rc5v9 = 0;
Rc6v2 = 0;
Rc6v6 = 0;
Rc6v10 = 0;
Rc7v3 = 0;
Rc7v7 = 0;
Rc7v11 = 0;
Rc8v4 = 0;
Rc8v8 = 0;
Rc8v12 = 0;
Rc9v9 = 0;
Rc9v18 = 0;
Rc10v10 = 0;

Qian Guo, Vincent Grosso and François-Xavier Standaert, Olivier Bronchain 237

Rc10v18 = 0;
Rc11v11 = 0;
Rc11v18 = 0;
Rc12v12 = 0;
Rc12v18 = 0;
Rc13v3 = 0;
Rc13v5 = 0;
Rc13v17 = 0;
Rc14v4 = 0;
Rc14v17 = 0;
Rc14v18 = 0;
for j = 1 : Nit

Pv1c1 = i ∗ e1 + (i− 1) ∗Rc1v1 + i ∗Rc4v1 + i ∗Rc5v1;
– MI from Variable v1 to Check C1

Pv1c4 = i ∗ e1 + (i− 1) ∗Rc4v1 + i ∗Rc1v1 + i ∗Rc5v1;
Pv1c5 = i ∗ e1 + (i− 1) ∗Rc5v1 + i ∗Rc1v1 + i ∗Rc4v1;
Pv2c1 = i ∗ e2 + (i− 1) ∗Rc1v2 + i ∗Rc2v2 + i ∗Rc6v2;
Pv2c2 = i ∗ e2 + (i− 1) ∗Rc2v2 + i ∗Rc1v2 + i ∗Rc6v2;
Pv2c6 = i ∗ e2 + (i− 1) ∗Rc6v2 + i ∗Rc2v2 + i ∗Rc1v2;
Pv3c2 = i ∗ e3 + (i− 1) ∗Rc2v3 + i ∗Rc3v3 + i ∗Rc7v3 + i ∗Rc13v3;
Pv3c3 = i ∗ e3 + (i− 1) ∗Rc3v3 + i ∗Rc2v3 + i ∗Rc7v3 + i ∗Rc13v3;
Pv3c7 = i ∗ e3 + (i− 1) ∗Rc7v3 + i ∗Rc3v3 + i ∗Rc2v3 + i ∗Rc13v3;
Pv3c13 = i ∗ e3 + (i− 1) ∗Rc13v3 + i ∗Rc3v3 + i ∗Rc7v3 + i ∗Rc2v3;
Pv4c3 = i ∗ e4 + (i− 1) ∗Rc3v4 + i ∗Rc4v4 + i ∗Rc8v4 + i ∗Rc14v4;
Pv4c4 = i ∗ e4 + (i− 1) ∗Rc4v4 + i ∗Rc3v4 + i ∗Rc8v4 + i ∗Rc14v4;
Pv4c8 = i ∗ e4 + (i− 1) ∗Rc8v4 + i ∗Rc4v4 + i ∗Rc3v4 + i ∗Rc14v4;
Pv4c14 = i ∗ e4 + (i− 1) ∗Rc14v4 + i ∗Rc4v4 + i ∗Rc8v4 + i ∗Rc3v4;
Pv5c1 = e5 +Rc5v5 +Rc13v5;
Pv5c5 = e5 +Rc1v5 +Rc13v5;
Pv5c13 = e5 +Rc5v5 +Rc1v5;
Pv6c2 = e6 +Rc6v6;
Pv6c6 = e6 +Rc2v6;
Pv7c3 = e7 +Rc7v7;
Pv7c7 = e7 +Rc3v7;
Pv8c4 = e8 +Rc8v8;
Pv8c8 = e8 +Rc4v8;
Pv9c5 = e9 +Rc9v9;
Pv9c9 = e9 +Rc5v9;
Pv10c6 = e10 +Rc10v10;
Pv10c10 = e10 +Rc6v10;
Pv11c7 = e11 +Rc11v11;
Pv11c11 = e11 +Rc7v11;
Pv12c8 = e12 +Rc12v12;
Pv12c12 = e12 +Rc8v12;
Pv17c13 = e17 +Rc14v17;
Pv17c14 = e17 +Rc13v17;
Pv18c9 = e18 +Rc10v18 +Rc11v18 +Rc12v18 +Rc14v18;
Pv18c10 = e18 +Rc9v18 +Rc11v18 +Rc12v18 +Rc14v18;
Pv18c11 = e18 +Rc10v18 +Rc9v18 +Rc12v18 +Rc14v18;
Pv18c12 = e18 +Rc10v18 +Rc11v18 +Rc9v18 +Rc14v18;
Pv18c14 = e18 +Rc10v18 +Rc11v18 +Rc12v18 +Rc9v18;
Rc1v1 = Pv2c1 ∗ Pv5c1 ∗ α;

238 Modeling Soft Analytical Side-Channel Attacks from a Coding Theory Viewpoint

Rc1v2 = Pv1c1 ∗ Pv5c1 ∗ α;
Rc1v5 = Pv2c1 ∗ Pv1c1 ∗ α;
Rc2v2 = Pv3c2 ∗ Pv6c2 ∗ α;
Rc2v6 = Pv3c2 ∗ Pv2c2 ∗ α;
Rc2v3 = Pv2c2 ∗ Pv6c2 ∗ α;
Rc3v3 = Pv4c3 ∗ Pv7c3 ∗ α;
Rc3v4 = Pv3c3 ∗ Pv7c3 ∗ α;
Rc3v7 = Pv4c3 ∗ Pv3c3 ∗ α;
Rc4v1 = Pv4c4 ∗ Pv8c4 ∗ α;
Rc4v4 = Pv1c4 ∗ Pv8c4 ∗ α;
Rc4v8 = Pv4c4 ∗ Pv1c4 ∗ α;
Rc5v1 = Pv5c5 ∗ Pv9c5 ∗ α;
Rc5v5 = Pv1c5 ∗ Pv9c5 ∗ α;
Rc5v9 = Pv5c5 ∗ Pv1c5 ∗ α;
Rc6v2 = Pv6c6 ∗ Pv10c6 ∗ α;
Rc6v6 = Pv2c6 ∗ Pv10c6 ∗ α;
Rc6v10 = Pv6c6 ∗ Pv2c6 ∗ α;
Rc7v3 = Pv7c7 ∗ Pv11c7 ∗ α;
Rc7v7 = Pv3c7 ∗ Pv11c7 ∗ α;
Rc7v11 = Pv7c7 ∗ Pv3c7 ∗ α;
Rc8v4 = Pv8c8 ∗ Pv12c8 ∗ α;
Rc8v8 = Pv4c8 ∗ Pv12c8 ∗ α;
Rc8v12 = Pv8c8 ∗ Pv4c8 ∗ α;
Rc9v9 = e13 ∗ Pv18c9 ∗ α;
Rc9v18 = e13 ∗ Pv9c9 ∗ α;
Rc10v10 = e14 ∗ Pv18c10 ∗ α;
Rc10v18 = e14 ∗ Pv10c10 ∗ α;
Rc11v11 = e15 ∗ Pv18c11 ∗ α;
Rc11v18 = e15 ∗ Pv11c11 ∗ α;
Rc12v12 = e16 ∗ Pv18c12 ∗ α;
Rc12v18 = e16 ∗ Pv12c12 ∗ α;
Rc13v3 = Pv5c13 ∗ Pv17c13 ∗ α;
Rc13v5 = Pv3c13 ∗ Pv17c13 ∗ α;
Rc13v17 = Pv5c13 ∗ Pv3c13 ∗ α;
Rc14v4 = Pv18c14 ∗ Pv17c14 ∗ α;
Rc14v17 = Pv18c14 ∗ Pv4c14 ∗ α;
Rc14v18 = Pv4c14 ∗ Pv17c14 ∗ α;
B(j + 1) = i ∗ e1 + i ∗Rc1v1 + i ∗Rc4v1 + i ∗Rc5v1;

end
MIa(i+ 1) = max(B);

end

	Introduction
	Background
	Template attacks and MI metric
	Soft Analytical Side-Channel Attacks
	The Belief Propagation (BP) algorithm
	Basics in coding theory

	A toy example of unprotected implementation
	Target implementation
	A divide-and-conquer evaluation
	A SASCA evaluation with the LRPM
	Discussion & definition

	The AES case study
	Factor graph generation
	Analysis and results
	Connections to coding theory

	Protected implementations
	Masked encoding
	Masked multiplication
	Masked S-box implementations
	Other (follow up) results
	Shuffling

	Summarizing remarks
	Pseudo-code of a toy example
	Pseudo-code for the first AES round

