
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 4, pp. 189–208. DOI:10.13154/tches.v2020.i4.189-208

Faster Montgomery and double-add ladders for
short Weierstrass curves

Mike Hamburg

Rambus mhamburg@rambus.com

Abstract. The Montgomery ladder and Joye ladder are well-known algorithms
for elliptic curve scalar multiplication with a regular structure. The Montgomery
ladder is best known for its implementation on Montgomery curves, which requires
5M + 4S + 1m + 8A per scalar bit, and 6 field registers. Here (M, S, m, A) represent
respectively field Multiplications, Squarings, multiplications by a curve constant,
and Additions or subtractions. This ladder is also complete, meaning that it works
on all input points and all scalars.
Many protocols do not use Montgomery curves, but instead use prime-order curves
in short Weierstrass form. These have historically been much slower, with ladders
costing at least 14 multiplications or squarings per bit: 8M + 6S + 27A for the
Montgomery ladder and 8M + 6S + 30A for the Joye ladder. In 2017, Kim et al.
improved the Montgomery ladder to 8M + 4S + 12A + 1H per bit using 9 registers,
where the H represents a halving. Hamburg simplified Kim et al.’s formulas to
8M + 4S + 8A + 1H per bit using 6 registers.
Here we present improved formulas which compute the Montgomery ladder on short
Weierstrass curves using 8M + 3S + 7A per bit, and requiring 6 registers. We also
give formulas for the Joye ladder that use 9M + 3S + 7A per bit, requiring 5 registers.
One of our new formulas supports very efficient 4-way vectorization.
We also discuss curve invariants, exceptional points, side-channel protection and how
to set up and finish these ladder operations. Finally, we show a novel technique to
make these ladders complete when the curve order is not divisible by 2 or 3, at a
modest increase in cost.
A sample implementation of these techniques is given in the supplementary material,
also posted at https://github.com/bitwiseshiftleft/ladder_formulas.
Keywords: Elliptic Curve Cryptography, Montgomery Ladder, Joye Ladder, Short
Weierstrass Curve, Scalar Multiplication

1 Introduction and related work
The core operation of most elliptic curve cryptography algorithms is scalar multiplication,
in which an element P0 of an elliptic curve group is multiplied by an integer (“scalar”) k.
Considerable study has been devoted to optimizing scalar multiplication algorithms.

This paper is mainly concerned with variable-base scalar multiplication algorithms,
meaning that P0 is not known ahead of time, so no precomputation has been done on
it. Typically k is secret. To avoid side-channel attacks, the algorithm should be regular,
meaning that its timing and control flow should not depend on k.

1.1 The Montgomery and Joye ladders
The Montgomery ladder [Mon87] is a general algorithm for computing a power or scalar
multiple of a group element. This algorithm’s regular structure is conducive to implemen-
tations that resist side-channel attack. This technique is fastest on elliptic curves in the

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-04-15 Accepted: 2020-06-15 Published: 2020-08-26

https://doi.org/10.13154/tches.v2020.i4.189-208
mailto:mhamburg@rambus.com
https://github.com/bitwiseshiftleft/ladder_formulas
http://creativecommons.org/licenses/by/4.0/

190 Faster Montgomery and double-add ladders for short Weierstrass curves

Montgomery ladder Joye ladder

1 Requires: curve order q ≤ 2n

2 Rewrite k ← 2n + (k − 2n mod q)
3 (Q, R)← (P0, 2P0)
4 For i = n− 1 down to 0:
5 If ki = 0: (Q, R)← (2Q, Q + R)
6 Else: (Q, R)← (Q + R, 2R)
7 Output Q = k · P0

1 Requires: curve order q is odd
2 Rewrite k ← 2 · (k−1

2 mod q) + 1
3 (P, Q)← (P0, P0)
4 For i = 1 to n:
5 If ki = 0: Q← 2Q + P

6 Else: P ← 2P + Q

7 Output P = k · P0

Figure 1: The Montgomery and Joye ladders, modified for nonzero initial state.

Montgomery form
y2 = x3 + Ax2 + x.

But it can be efficiently applied on any elliptic curve, in particular those in the short
Weierstrass form

y2 = x3 + ax + b.

Joye’s double-add ladder [Joy07] — hereafter called the Joye ladder — is a similar algorithm,
which is also used in efficient implementations of elliptic curve scalar multiplication.

The Joye ladder can be viewed as the dual of the Montgomery ladder [Wal17]. Both
ladders apply a sequence of linear transformations over the group. The transformations
applied by the Joye ladder are adjoint to those in the Montgomery ladder, and are applied
in the opposite order.

Each algorithm takes as input a group element P0 and a scalar k, and computes k · P0.
Let k have a binary representation

k :=
n∑

i=0
2iki where each ki ∈ {0, 1}.

The two ladder algorithms are typically presented as starting with the state (O, P0),
where O is the identity element (or neutral point) of the curve. However, the neutral
point is at infinity, which causes problems for some formulas. So in this paper we use a
variant which rewrites k into an equivalent scalar, such that the first bit (the most- or
least-significant bit for the Montgomery or Joye ladder, respectively) is 1. For the Joye
ladder, this requires that the order q of the curve (or at least the order of P0) is odd. The
ladder then starts after the first step, when the state no longer contains the neutral point.
These algorithms are shown in Figure 1.

While the Montgomery ladder can be implemented using only Q and R, many imple-
mentations also use the base point P := R −Q = P0. Likewise, implementations of the
Joye ladder often track a third point

R := P + Q = 2i · P0

in the ith iteration. In these cases, the Montgomery and Joye ladder update steps are
rearrangements of each other: both map triples of points (P, Q, R) to (P, P + Q, 2 ·R) in
some order. This often makes it possible to convert between formulas for the Montgomery
ladder and those for the Joye ladder.

However, the converted formulas aren’t always equally performant or side-channel resis-
tant. They also may need adjustment if the three points don’t use the same representation
in the ladder state. For example, the base point never changes in the Montgomery ladder,
so it might be stored in affine coordinates; or the ladder might track the y-coordinates of
some points but not others.

Mike Hamburg 191

For most ladder formulas, the fastest version has a state containing enough information
to recover the x-coordinate of each point, but not the y-coordinate. As a consequence, the
formulas work in x-only protocols such as elliptic curve Diffie-Hellman, where only the
x-coordinate of P is given and only the x-coordinate of the output is required.

Additional work is required to recover y. For the Montgomery ladder, the state contains
points (Q, R) such that R − Q = P0, and possibly a representation of P0 itself. If P0
is given as (x, y) then enough information is present to efficiently solve for the output
y-coordinate as well [LD99]. For an n-iteration Joye ladder, the final state instead contains
R = 2n+1P0. If R is known (e.g. if P0 is a fixed generator of the curve and R has been
precomputed) then y can be recovered in the same way. Otherwise, in order to recover y,
the ladder must track additional information such as a Z-coordinate, typically at a cost of
1-2 registers and 1M per bit.

This pattern holds for the ladder formulas we present here. For the Montgomery ladder,
minimal additional work is required to recover y; only the y-coordinate of P0 must be
remembered. For the Joye ladder, if y is needed and R hasn’t been precomputed, then
additional work is required to track the Z-coordinate.

1.2 Co-Z coordinates
Elliptic curve implementations typically calculate using a projective version of the elliptic
curve for efficiency. Instead of storing (x, y), points are represented in either projective
coordinates as (xZ : yZ : Z) or in Jacobian coordinates as (xZ2 : yZ3 : Z), where Z is an
arbitrary scaling factor. This avoids costly finite-field divisions except at the end of the
computation. When storing multiple points in a ladder, the straightforward way is to use
a separate Z-coordinate for each point.

Co-Z formulas [Mel07, GJM10, GJM+11] instead use the same Z-coordinate for all
points in the ladder state. This reduces memory usage. It can also improve performance,
because often the first step in a point addition is to rescale both points to have the same
Z-coordinate, and that step is not needed for co-Z representations. In some cases, the
common Z-coordinate doesn’t need to be calculated or stored, since having the scaled X
and Y coordinates for multiple points is enough information to solve for Z.

Most formulas on short Weierstrass curves need special cases around the curve’s neutral
point O, which is written with Z = 0. This is especially true for co-Z formulas, because
if one point has Z = 0 then they all do; the finite points would then be represented as
(0 : 0 : 0), which is indeterminate. Thus, co-Z ladders always start with a nonzero state,
as shown in Figure 1.

1.3 The Kim et al. formulas
In 2017, Kim et al. published a variant of the Montgomery ladder with “on-the-fly adaptive
coordinates” [KCK+17] defined by (X1, X2, K, L, A, S, T) and a bit b, where:

(X1, X2, L, S, T) = (Z2x1, Z2x2,−2Z6y1y2, Z2x0, Z3y0)
(K, A) = (2Z6y2

1 , 2Z5y1(x1 − x2)) if b = 0
(K, A) = (2Z6y2

2 , 2Z5y1(x2 − x1)) if b = 1

Note that these coordinates are scaled by powers of a Z-coordinate, but do not include Z
itself. The Kim et al. formulas improved the previous state of the art of 9M + 5S + 18A
per bit [GJM+11] to 8M + 4S + 12A + 1H per bit, using 9 registers which each hold one
field element. The formulas are quite complex, with each operation depending on two bits
of the key instead of one.

Hamburg presented a simplified and optimized version of Kim et al.’s main ladder
formula at the CHES 2017 rump session [Ham17]. These formulas use the fact that the

192 Faster Montgomery and double-add ladders for short Weierstrass curves

points in a ladder state or their negations lie on a line y = m(x − x0) + y0. They use
modified Jacobian co-Z coordinates of the form (3X0, 2Y0, X1 −X0, X2 −X0, 2M) where

Xi = xi · Z2, Yi = yi · Z3, M = m · Z.

Hamburg’s formulas require 8M + 4S + 8A + 1H per bit, and 6 field registers.

1.4 Our contribution
In Section 2.1 we give two new formulas for the Montgomery ladder. Both use 8M+3S+7A
and 6 field registers. The formula in Figure 3 is closely related to Hamburg’s rump session
formula. It keeps a ladder state of (XQP , XRP , YP , M) where XQP = (xQ − xP) · Z2 and
likewise for XRP . Thus, it drops the the XP coordinate from [Ham17], which is called
X0 in that presentation. In addition to improving performance, this change gives an
improvement in resistance to side-channel attacks, as discussed in Section 4.

An alternative formula1 in Figure 4 instead tracks (XQP , XRP , X2
RQ, YQ, YR). This

formula has the same performance as the one in Figure 3 except that it requires an extra
conditional swap for YQ and YR. It can be parallelized efficiently over four multiplication
units instead of three, making it comparable to recent vectorized implementations of the
Montgomery ladder on Montgomery curves [HEY20, NS20].

In Section 2.2 we show a Joye ladder formula, based on our first Montgomery ladder
formula, using 9M+3S+7A and 5 registers. We are not aware of any previous Montgomery
or Joye ladder formula that requires only 5 field registers.

Counting registers is somewhat tricky. Our register counts are given for x-only scalar
multiplication; recovering the y-coordinate requires one more register, and for the Joye
ladder, also additional computation. They do not count the scalar itself, the curve
constants, or small constants such as 2 and 3. They also assume that the processor
supports “multiplication in place” (X ← X · Y) and for the complete Joye formulas,
“reverse subtraction in place” (X ← Y −X). If it does not support these operations, an
additional register is required.

In Sections 2.3 and 2.4 we show how to set up and finalize the ladder state for either
x-only or (x, y) calculations. For the Joye ladder, (x, y) calculations generally require an
extra M per bit to track the Z coordinate. We also give invariants on the ladder state
and a discussion of side-channel protection.

See Figure 2 for a comparison of our new formulas to past work. They are still
not as fast as the Montgomery ladder on Montgomery curves [Mon87]: approximating2

1S ≈ 0.75M, 1m ≈ 0.25M, 1A ≈ 1H ≈ 0.1M gives an estimate of 21% more compute
time per scalar bit, excluding the final division. This is an improvement from [Ham17] and
[Riv11], which use respectively 31% and 61% more compute time per bit than [Mon87].
Our new formulas also support the usual S−M tradeoffs at the cost of extra additions
and registers, but we present them in their simplest and most compact form.

Our new Montgomery ladder is faster even than a variable-time non-adjacent form
(NAF) algorithm with a = −3 [HMV06], by about 4% using the above estimates. More
S −M tradeoffs are known for Jacobian operations, so NAF would still be faster with
sufficiently high M : S : A ratios.

1A preprint of this paper presents the formulas in Figure 4 as tracking (XQP , XRP , M, M̄) where M̄
is an additional slope variable. The present version performs the same calculations, but has a different
boundary between the end of one iteration and the beginning of the next. We have chosen to use the
present version because it is more similar to the calculations in the rest of the paper.

2More or less arbitrarily, but this is typical of an IOT implementation, such as a 256-bit curve on a 32-bit
processor. This is where the M : S : A ratio is most relevant: for lightweight implementations, memory
usage is more important, and for high-performance implementations, parallelism is more important. Note
that with these cost estimates, the typical tradeoff xy = 1

2 ((x + y)2 − x2 − y2) doesn’t help performance if
xy is needed, but it does help if instead 2xy is needed.

Mike Hamburg 193

Curve Ladder Ref Cost per scalar bit Swap Regs
Prior serial formulas

Mont Mont† [Mon87] 5M + 4S + 1m + 8A 2 6
Weier Mont [Riv11] 9M + 5S + 18A 2 9
Weier Mont [GJM+11] 8M + 6S + 27A 2 8
Weier Joye [GJM+11] 9M + 7S + 27A 2 8
Weier Joye [GJ16] 8M + 6S + 30A 2 7
Weier Mont [HJS11] 9M + 5S + 2m + 14A 1 9
Weier Mont† [SM16] 10M + 5S + 2m + 17A 2 9
Weier Mont [KCK+17] 8M + 4S + 12A + 1H ∗ 9
Weier Mont [Ham17] 8M + 4S + 8A + 1H 1 6

New serial formulas
Weier Mont Figure 3 8M + 3S + 7A 1 6
Weier Mont Figure 3 7M + 4S + 10A + 1H 1 6
Weier Mont Figure 4 8M + 3S + 7A 2 6
Weier Mont† Suppl. 9M + 3S + 8A + 1C 6 6
Weier Joye Figure 5 9M + 3S + 7A 2 5
Weier Joye Figure 5 8M + 4S + 10A + 1H 2 6
Weier Joye† Suppl. 9M + 3S + 9A + 1C 6 5

Prior parallel formulas
Mont Mont [HEY20] 2M4 + 1S4 + 4A4 2 8
Mont Mont [NS20] 3M4 + 3A4 2 7
Mont Mont [NS20] 2M4 + 1S2 + 1m + 3A4 2 7
Weier Mont [FGKS02] 10M2 + 8A2 2 8

New parallel formulas
Weier Mont Figure 4 3M4 + 3A3 2 7

Prior non-constant-time formulas
Weier NAF‡ [HMV06] 6 2

3 M + 5S + 9 1
3 A + 1H 0 8

Notes:
• † These ladders are complete, at least for a subset of curves.
• ∗ The Kim et al. ladder is not written using conditional swaps, and we did not attempt to convert it.
• ‡ Binary NAF is included for comparison purposes only, since unlike the other algorithms in the table it

isn’t regular or constant-time. The expected costs per bit are listed. Here we assume that the curve
constant a = −3, and that the doubling formula is improved beyond [HMV06] to 4M + 4S + 7A + 1H
using the identity 3

2 x = x + 1
2 x.

• The costs are given in Multiplications, Squarings, Additions or subtractions, multiplications by a curve
constant, Halvings and Comparisons. Multiplication by numbers ≤ 4 is decomposed into additions.

• Mn, Sn and An mean the cost of at most n multiplications, squarings or additions in parallel. Parallel
register counts assume that these operations can be done in place.

• The costs do not include setup or finalization. Setup may include an on-curve check and finalization
always includes a division. Division typically costs between 1S/bit and (1S + 1M)/bit, depending on
the modulus and on memory constraints.

• The register counts for our new formulas are also sufficient for setup and finalization, using the technique
from Section 2.4.2.

• [Riv11] is superseded by [GJM+11], but we believe the former’s Montgomery ladder formulas are actually
faster, because usually 1S + 9A > 1M.

• These costs are for x-only ladders; recovering y requires extra storage. It also costs an extra 1M/bit for
our Joye ladders but not our Montgomery ladders.

Figure 2: Comparison to selected previous work.

194 Faster Montgomery and double-add ladders for short Weierstrass curves

The formulas in Section 2.1 and Section 2.2 are not complete: they break down if the
neutral point appears in the ladder state, but not in any other case. In Section 3 we give
an analysis of this problem and a novel solution, which is not specific to our formulas: it
potentially allows other ladders to implement complete scalar multiplication at a modest
performance cost. These formulas are given in the supplementary material.

2 Ladder Formulas
Our ladder works on short Weierstrass curves over large-characteristic fields. They are
derived from the following theorem:

Theorem 1 (Ladder formulas with differences of x-coordinates). Let

P = (xP , yP), Q := (xQ, yQ), R := P + Q := (xR, yR)

be the state of the Montgomery ladder on an elliptic curve y2 = x3 + ax + b defined over a
field of characteristic other than 2. The three points (P, Q,−R) lie on a line with slope
m := (yQ + yR)/(xQ − xR). Let

P = (xP , yP), S := Q + R = (xS, yS), T := 2R = (xT , yT)

be the state after a ladder operation, where (P, S,−T) lie on a line of slope m′. Let

r := xQ − xR

2yR

, s := (xR − xP) · r, t := 2yR

xQ − xR

, u := 2yQ

xQ − xR

.

Then

xS − xP = −t · u = t · (t− 2m)
xT − xP = s2 − 2yP · r

m′ = t−m− s.

Proof. Deferred to Appendix A.

Theorem 1 may seem somewhat unintuitive, and in fact was reverse engineered from the
new formulas, rather than being the motivation for them. The formulas are improvements
of [Ham17], which are derived from [KCK+17]. However, the new formulas are quite
different from [KCK+17], so the motivation for that work likely does not apply here.

These formulas in Theorem 1 are compatible with Jacobian coordinates: if (m, x, y) are
replaced by (mZ, xZ2, yZ3) then the outputs will also be in that form, with the same Z.
Note that to avoid extra additions and subtractions, in some cases it is more efficient to
calculate with the variables m and y multiplied by a small constant, such as −1, 2 or −2.

2.1 Formulas for the Montgomery ladder
Theorem 1 gives a straightforward strategy to implement the Montgomery ladder. We
begin with Jacobian versions of xQ − xP , xR − xP , yP and m. We can calculate yR =
yP + m · (xR − xP), and then follow Theorem 1 to get xS − xP , xT − xP and m′. Finally,
yP stays the same, but with a new Jacobian denominator Z.

In Jacobian coordinates, the state variables will be

XQP := (xQ − xP) · Z2

XRP := (xR − xP) · Z2,

M := m · Z
YP := 2yP · Z3

https://github.com/bitwiseshiftleft/ladder_formulas

Mike Hamburg 195

For most curves, the value of Z need not be represented; see Section 2.4. On each step,
we calculate the negated y-coordinate ȲR := −2yRZ3 = YP + 2MXRP . Then Z will be
multiplied by a local denominator z := ȲR · (XQP −XRP). We can then easily compute
rz, sz, tz and mz, from which the rest of the terms follow homogeneously. An optimized
implementation is shown in Figure 3.

It is also possible to perform a Montgomery ladder whose state incorporates YQ and
YR, instead of YP and M . The ladder state comprises

XQP := (xQ − xP) · Z2

XRP := (xR − xP) · Z2

G := (xR − xQ)2 · Z4

YQ := 2yQ · Z3

YR := 2yR · Z3

Here G is included in the ladder state just to avoid an extra subtraction from re-
computing XRP −XQP at the beginning of the ladder step. This formula also requires
8M + 3S + 7A per bit, and is shown in Figure 4.

This ladder’s multiplications can be parallelized 4 ways, which improves performance
on vector processors. With the minor changes shown in Figure 4’s notes, the cost rises to
9M + 2S + 8A, but the additions can also be parallelized. Therefore on a parallel machine
it can be implemented in 3M4 + 3A3 per bit, where M4 and A3 are the cost of 4 parallel
multiplications and 3 parallel additions, respectively.

2.2 Formulas for the Joye ladder
For the Joye ladder, the same outline works, but we are conditionally swapping (xP , yP)↔
(xQ, yQ) instead of (xQ, yQ)↔ (xR, yR). The x-coordinates are easily rearranged to support
this by tracking XRP := XR − XP and XRQ := XR − XQ. For y-coordinates, we now
need to track both yP and yQ. Conveniently, we can use both coordinates to compute
xS − xP = −tu from Theorem 1. The Joye ladder state is:

XRP := (xR − xP) · Z2

XRQ := (xR − xQ) · Z2,

M̄ := −2m · Z
YP := 2yP · Z3

YQ := 2yQ · Z3

An optimized Joye ladder is shown in Figure 5.

2.3 Ladder setup
The initial state of the ladder encodes the points P = (xP , yP) and R = 2P = (xR, yR). Let
(x, y) lie on the elliptic curve y2 = x3 + ax + b. We need to compute (xR − xP)Z2, 2yP Z3

and mZ, where m = (3x2
P + a)/(2yP) is the slope of the tangent at P .

Since xR + 2xP = m2, we have (xR − xP)Z2 = (mZ)2 − 3xP Z2. Setting Z = 2yP , we
get

Z2 = 4y2
P = 4(x3

P + axP + b)
mZ = 3x2

P + a

XRP = (mZ)2 − 3xP Z2

2yP Z3 = (Z2)2.

196 Faster Montgomery and double-add ladders for short Weierstrass curves

Montgomery ladder. Input: ladder state (XQP , XRP , M, YP)

1 ȲR = YP + 2 ·M ·XRP

2 E = XQP −XRP

3 F = ȲR · E
4 G = E2

5 X ′RP = XRP ·G
6 H = Ȳ 2

R

7 M ′ = M · F

8 Y ′P = YP · F ·G
9 K = H + M ′

10 L = K + M ′

11 M ′′ = X ′RP −K

12 XSP = H · L
13 XT P = X ′RP

2 + Y ′P
14 Y ′′P = Y ′P ·H

Output: ladder state (XSP , XT P , M ′′, Y ′′P)

Notes:
• This formula uses 8M + 3S + 7A and two temporary registers for a total of 6. Here M, S, A represent

the costs of field multiplication, squaring, and addition or subtraction, respectively.
• An S − M tradeoff is available by computing F = 1

2 · ((ȲR + E)2 − G − H) instead of F = ȲR · E. This
yields 7M + 4S + 10A + 1H, where H is the cost of a halving, and costs no extra registers.

• The multiplications can easily be parallelized over 2 or 3 units.
• If Z is to be tracked, it should be multiplied by F .

Figure 3: Improved (XQP , XRP , M, YP) Montgomery ladder.

Montgomery ladder. Input: ladder state (XQP , XRP , G, YQ, YR)

1 X ′QP = XQP ·G
2 X ′RP = XRP ·G
3 L = YQ · YR

4 H = Y 2
R

5 J = X ′RP − L
6 M = J + X ′RP −H
7 XSP = H · L

8 K = J2

9 XT P = X ′RP · J + X ′QP ·H
10 XT S = XT P −XSP

11 YS = (XT S −K) ·H
12 YT = M ·XT S + YS

13 G′ = X2
T S

Output: ladder state (XSP , XT P , G′, YS , YT)

Notes:
• This formula uses 8M + 3S + 7A and 6 field registers. Here M, S, A represent the costs of field

multiplication, squaring, and addition or subtraction, respectively.
• The formula can be parallelized over 2, 3 or 4 multiplication units.
• This formula may be rearranged to compute

V = H · (X′QP − L); XT S = X′RP · J + V ; YS = (J · L + V) · H; XT P = XT S + XSP

instead of lines 8-11. This uses 9M + 2S + 8A, and allows the multiplications to be parallelized 4 ways
and the additions 3 ways, for a total latency of 3M4 + 3A3 per bit.

• The Z value is multiplied by XT S · YR in each iteration, so the value of Z2 is multiplied by G · H. Thus
Z2 can be tracked with only 1M extra per iteration by rewriting X′QP · H = XQP · (G · H), but the
resulting formula does not appear to parallelize 4 ways.

Figure 4: Parallelizable (XQP , XRQ, YQ, YR) Montgomery ladder.

Mike Hamburg 197

Joye ladder. Input: ladder state (XRP , XRQ, YP , YQ, M̄)

1 YR = M̄ ·XRP − YP

2 G = X2
RQ

3 X ′RP = XRP ·G
4 Y ′P = YP ·XRQ · YR ·G
5 Y ′Q = YQ · YR

6 H = Y 2
R

7 M̄ ′ = H − Y ′Q − 2 ·X ′RP

8 XT P = X ′RP

2 + Y ′P
9 Y ′′Q = Y ′Q ·H

10 Y ′′P = Y ′P ·H
11 XT S = XT P + Y ′′Q

12 YS = M̄ ′ · Y ′′Q + Y ′′P

Output: ladder state (XT P , XT S , Y ′′P , YS , M̄ ′)

Notes:
• This formula uses 9M + 3S + 7A, and no temporary registers for a total of 5. Here M, S, A represent

the costs of field multiplication, squaring, and addition or subtraction, respectively.
• An S − M tradeoff is available by computing XRQ · YR = 1

2 · ((YR + XRQ)2 − G − H), thus replacing
line 4 with Y ′P = 1

2 · YP · ((YR + XRQ)2 − G − H) · G. This changes the cost to 8M + 4S + 10A + 1H,
and requires one extra register for a total of 6.

• If Z is to be tracked, it should be multiplied by XRQ · YR.
• The calculation of YR can be moved to the end of the round, so that YR is a state variable instead of M̄ .
• The multiplications can easily be parallelized over 2 or 3 units.

Figure 5: Improved Joye ladder.

Since these formulas depend on y2
P rather than yP , they still work if yP is not given, which

is common for elliptic curve Diffie-Hellman protocols. However, if the elliptic curve is not
twist-secure, then the implementation must check that the putative Z2 is actually square.
Otherwise the ladder will still work, but with arithmetic on the curve’s quadratic twist. If
power analysis is not a concern, or if the twist has no small subgroups, then the check can
be implemented in a batch with the final division [Ham12].

The ladder setup can easily be accomplished in 5 registers, including the check that Z2

is actually square. So the setup routine doesn’t increase the memory footprint of either
implementation.

2.4 Finalization
2.4.1 Simple technique

To complete the ladder, we must recover the final xQ, and possibly also yQ, from the ladder
state. In the Montgomery ladder, if the original coordinates (xP , yP) are retained and
nonzero, this is easy. We have both yP Z3 = YP /2 and xP Z2 = (M2 −XQP −XRP)/3, so
we can calculate3

1
Z

= yP · xP Z2

xP · yP Z3 .

We can then recover the final point

(xQ, yQ) =
(

XP + XQP

Z2 ,
YP + 2MXQP

2Z3

)
.

Likewise, if only the original xP is retained, we can calculate xQ using 1/Z2 = xP /(xP Z2).
This technique naturally works for the Montgomery ladder, but not the Joye ladder

because the initial point P0 isn’t part of the ladder state. However, it can be applied to the
Joye ladder if the final point R = 2n+1P0 is precomputed, where n is the number of ladder

3These calculations require trivial modifications if the constants 1/2 and 1/3 are not available.

198 Faster Montgomery and double-add ladders for short Weierstrass curves

steps. This is convenient to do if P0 is a standard generator on the curve, or perhaps a
frequently-used static public key.

However, the simple finalization technique requires remembering xP . It also doesn’t
work if xP = 0, which can happen on certain curves [AT03], so we will propose an improved
technique. The improved technique doesn’t work with curves of j-invariant 0 or 1728. The
most popular curve with j-invariant 0, NIST’s secp256k1, has no points with x = 0 or
y = 0, so the simple technique can be used for the Montgomery ladder on that curve.

2.4.2 Improved technique

We want to avoid incompleteness when the starting point has xy = 0. We also need
an alternative technique for the Joye ladder: the point P in the ladder isn’t the base
point P0, but instead on the nth step the ladder has R = 2n+1P0. Unless that point has
been precomputed, we cannot take advantage of a known point to determine Z. Likewise,
low-memory implementations of the Montgomery ladder may wish to discard the base
point.

If the curve doesn’t have j-invariant 0 (meaning that a = 0) or 1728 (meaning that
b = 0), then we have an improved technique to recover Z2, which allows us to recover xQ

but not yQ. Let c := yP −mxP be the y-intercept of the line connecting (P, Q,−R). Then
(xP , xQ, xR) are the roots of

y2 = (mx + c)2 = x3 + ax + b,

meaning that

x3 −m2x2 + (a− 2mc)x + (b− c2) = (x− xP) · (x− xQ) · (x− xR).

Rearranging, we get

a = 2mc + xP xQ + xQxR + xRxP

b = c2 − xP xQxR.

Note that in the ladder state, the values of m, xi and c are scaled by Z, Z2 and Z3

respectively, so these formulas compute A := aZ4 and B := bZ6 instead. This allows us to
calculate 1/Z2 = Ab/(aB), which is enough to calculate xQ but not yQ. The division will
be 0/0 if and only if a = 0, b = 0 or Z = 0.

For the Montgomery ladder, if yP is available we can compute 1/Z = aByP /(AbyP Z3)
and thus recover the y-coordinate of the output. This would fail if yP = 0, but in that
case even the starting state of the ladder contains the point at infinity.

If only the x-coordinate of the input point is given, it is possible that the initial y isn’t
in the base field F but instead in a quadratic extension. In this case, y and Z are in the
extension, but the values actually computed by the setup routine — y2, Z2 and yZ3 — are
still in F. Because Y = 2yZ3, the true value of y is in F if and only if this putative Z2

is actually square. Its Jacobi symbol can be checked during the inversion at little extra
cost using the batching technique in [Ham12]. This means that if power analysis is not
a concern, or if the curve is twist-secure, then the initial on-curve check can be deferred
until finalization.

With careful use of the identity xP + xQ + xR = m2, the improved finalization step can
also be calculated in 5 registers, including the invariant and Jacobi symbol checks. This
is shown in the supplementary material. As a result, using our Joye ladder formulas it
is possible to calculate an entire x-only variable-base scalar multiplication using only 5
mutable field registers, plus the scalar and the curve constants a and b.

https://github.com/bitwiseshiftleft/ladder_formulas

Mike Hamburg 199

2.4.3 Tracking Z

It is also possible to track the Z coordinate through the ladder steps, and then to invert it
in the finalization step. The starting Z-coordinate is 2yP , which is known if the initial
point is given with a y-coordinate.

This is simplest for the Montgomery ladder formula in Figure 3. In each ladder step
Z is multiplied by the intermediate value F , so this technique costs 1M per bit and one
register to store Z.

Likewise, for the Joye ladder formulas in Section 2.2, in each ladder step Z is multiplied
by XRQ · YR. This can be computed as an intermediate value, but doing so requires 6
registers instead of 5, plus one register to hold Z for a total of 7. So tracking Z costs
either 1M and 2 registers, or 2M and one register.

For the parallel Montgomery ladder formulas in Figure 4, Z is multiplied by XT S · YR,
which does not appear as an intermediate. Therefore tracking Z would cost 2M and one
register. However, the formulas can be rewritten to track Z2 instead at a cost of 1M and
one register; see the notes in that figure.

If the initial y-coordinate is not given, then in the starting state Z is not known, so we
could instead use two registers to track Ẑ := Z/yP (which begins at 2), and to remember
the starting y2

P . At the end, we can calculate Z2 = Ẑ2 · y2
P ; this suffices to recover xQ but

not yQ. Or, we could track Z2 directly. This saves a register but costs an additional 1S
per bit, except for the parallel Montgomery ladder where tracking Z2 is cheaper.

Overall, tracking Z is more expensive, but it should not be necessary for the Montgomery
ladder unless the curve has j ∈ {0, 1728} and also has a point with x = 0. Tracking
Z is necessary for the Joye ladder if the y-coordinate of the output is required, or if
j ∈ {0, 1728}, unless xR and/or yR have been precomputed.

2.5 Ladder state invariants
The improved technique’s formulas for A = aZ4 and B = bZ6 also serve as a ladder state
invariant: we must have

A3b2 = a3B2.

This equation can be checked during finalization, or periodically between ladder steps, as a
fault attack countermeasure. If Z or Z2 is tracked, then the stronger conditions A = aZ4

and B = bZ6 can be checked instead.

3 Completeness
3.1 Completeness of the Montgomery and Joye formulas
Our new ladder formulas are complete unless they encounter the curve’s neutral point O.
Recall that the ladder operation computes

(P, Q, R)→ (P, Q + R, 2R).

The Montgomery and Joye ladders will resolve to 0/0 if the (possibly untracked) Z-
coordinate ever becomes 0. In each iteration, Z is scaled by 2YR(XR −XQ). This is zero if
and only if either YR = 0 (meaning that 2R = O), or XR = XQ (meaning that Q = ±R).
This condition cannot begin with Q = R, because then P = R−Q would already be the
neutral point and we would already have Z = 0.

If the curve has odd prime order q and P0 6= 0, and if the minimum number of steps
(dlog2 qe) is used, then the neutral point cannot be reached until the last two ladder steps.
This is because in the Montgomery ladder, the ladder state is

(P, Q, R) = (P0, kiP0, (ki + 1)P0)

200 Faster Montgomery and double-add ladders for short Weierstrass curves

for ki an initial segment of k, which has i + 1 bits after i iterations. Likewise in the Joye
ladder, the ladder state is

(P, Q, R) = (kiP0, (2i+1 − ki)P0, 2i+1P0),

where ki and 2i+1−ki also have i+1 bits after i iterations. So for any of these values to be a
multiple of q, at least dlog2 qe−1 iterations (i.e. the last or second-last iteration) must have
passed. A trivial case analysis on ki shows that the dangerous scalars for the Montgomery
ladder are {−2,−1, 0, 1} mod q, and for the Joye ladder they are {−2n, 0, 2n, 2n+1} mod
q. So a complete implementation in this case can focus on either the last two ladder steps,
or on avoiding those 4 problematic scalars.

Overall, the entire operation will be correct when the ladder never reaches the neutral
point, and one of the following finalization techniques is used:
• The simple technique in Section 2.4.1 for the Montgomery ladder on curves with no
point of the form (0, y).

• The improved technique in Section 2.4.2 on curves with j-invariant neither 0 nor
1728.

• The Z-tracking technique in Section 2.4.3.
In turn, the probability that the neutral point is reached is negligible if all the following
conditions are all met:
• The curve’s order q is a large prime.

• The initial point P0 isn’t the neutral point.

• The scalar is uniformly random mod q, or at least has sufficiently high min-entropy.

• If the scalar is represented using more bits than the curve order, then the repre-
sentation’s initial segments of length at least ≥ dlog2 qe − 2 must also have high
min-entropy.

• Either the twist also has prime order, or the calculation begins with an on-curve
check.

If power analysis isn’t a concern, then reaching the neutral point on the twist may not
matter, so long as the result is rejected by a timing-invariant check at the end of the
calculation.

3.2 Avoiding the neutral point
Some applications do not meet the above criteria. For example, the scalar might not be
random, or the curve’s order might not be prime. In this section, we will show a technique
which avoids the neutral point when the curve’s order (and its twist’s order, if there is
no on-curve check) is not divisible by 2 or 3. This technique is generally applicable, and
for some ladders (e.g. our Joye ladder) it adds no extra multiplications. However, it does
require extra adds and conditional swaps, and it doesn’t prevent an attacker from using
power analysis to determine whether the neutral point was reached.

3.2.1 Notation change: ladder state sums to O

For both the Joye and Montgomery ladder, the state (P, Q, R) normally satisfies R =
P + Q. However, the state is typically permuted between ladder steps, and we will further
permute it here. To ensure that the ladder state satisfies a consistent invariant without
introducing additional cases, we will write it as (P, Q, R̄) where R̄ = −R, so that no
matter how the state is permuted, P + Q + R̄ = O. This changes the ladder operation to
(P, Q, R̄)→ (P, Q− R̄, 2R̄).

Mike Hamburg 201

3.2.2 Entering and leaving the neutral zone

We call the set of states where O ∈ {P, Q, R̄} the “neutral zone”.
Our key observation is that there are only a few, highly constrained paths for the

ladder state to pass through the neutral zone. We can recognize whether the ladder state
is on one of these paths, and in what state S it will exit the neutral zone. In that case, we
can reach S by a different sequence of ladder steps, of the same length, which doesn’t pass
through the neutral zone.

This idea might work on curves of any order. But for simplicity, we will only consider
curves of order not divisible by 2 or by 3. Even-order curves are less interesting anyway,
because most cryptographic examples are Montgomery curves, and the Montgomery ladder
on these curves is already complete [BL17].

On odd-order curves, if the ladder does not start in the neutral zone (i.e. if P0 6= O)
then the only way to enter it is by the ladder step

(−2Q, Q, Q)→ (−2Q, O, 2Q).

On the next step, the Montgomery ladder either stays in this state or exits the neutral
zone to (−2Q,−2Q, 4Q). Likewise, the Joye ladder either doubles to (−4Q, O, 4Q) or exits
to (−2Q,−2Q, 4Q).

3.2.3 The shadow state

We propose to avoid this set of transitions by recognizing that Q = R̄ and instead using an
equivalent, equally long sequence of transitions that avoids the neutral zone. Specifically,
we permute the state (−2Q, Q, Q) to (Q,−2Q, Q), so that the ladder operation moves it
to the state (Q,−3Q, 2Q). Since we intend to follow the correct ladder state at a distance
(“shadow” it), we will call this state, and others which are proportional to permutations of
(1 : 2 : −3), a “shadow state”. The shadow state is outside the neutral zone if Q 6= O and
the curve’s order is not divisible by 2 or 3.

Via a permutation and a ladder step, a shadow state can transition to (2Q,−4Q, 2Q),
which can be negated and permuted into the state (−2Q,−2Q, 4Q) at which the ordinary
Montgomery or Joye ladder would leave the neutral zone. Via different permutations and
ladder steps, the shadow step can remain the same (as the Montgomery ladder does in the
neutral zone) or double (as the Joye ladder does). States proportional to permutations of
(1, 2,−3) are the only states outside the neutral zone with either of these properties. If
the ladder should end in the neutral zone, then the final output is either the neutral point
or ±2Q, which can also be extracted from the shadow state.

Our full technique can be described at a high level as follows:

• Before each ladder step, check whether Q = R̄. If not, then perform the ladder step
(P, Q, R̄)→ (P, Q− R̄, 2R̄) as normal. It won’t go to the neutral zone if q is odd.

• If Q = R̄, then a ladder step would move the state into the neutral zone. Instead
permute the state to (Q,−2Q, Q). Then apply the ladder step, which moves to the
shadow state (Q,−3Q, 2Q) instead of the neutral zone.

• On the next step, determine from the key bits whether the ladder state will exit the
neutral zone, which it does to (−2Q,−2Q, 4Q). If so, permute the shadow state to
(2Q,−3Q, Q) and then apply a ladder step to reach (2Q,−4Q, 2Q). Permute and
negate this result into the correct exit state.

• If instead the Montgomery ladder would remain in the neutral zone, permute the
shadow state to (−3Q, 2Q, Q); after the ladder step it will be (−3Q, Q, 2Q).

202 Faster Montgomery and double-add ladders for short Weierstrass curves

• If the Joye ladder would remain in the neutral zone, permute the shadow state to
(2Q, Q,−3Q); after the ladder step it will be the doubled shadow state (2Q, 4Q,−6Q).

• If the ladder completes while in the neutral zone, the correct answer is either O or
±2Q, which may be extracted from the shadow state.

For the Joye ladder, is is slightly preferable to negate the state on entering the shadow
state instead of leaving, so that the shadow state contains the correct output −2Q instead
of +2Q. State diagrams of the ladder avoidance technique is shown in Figure 6.

The diagrams in Figure 6 show paths that pass through the neutral zone on the left,
and on the right they show equivalent paths that do not pass through the neutral zone.
Each thick arrow denotes a ladder step, and the state is permuted between ladder steps.
For example, consider the following sequence of Montgomery ladder steps, which passes
through the neutral zone:

(−2Q, Q, Q) (−2Q, O, 2Q); (−2Q, 2Q, O) (−2Q, 2Q, O); (−2Q, O, 2Q) (−2Q, −2Q, 4Q).

This sequence can be traced out on the left side of the Montgomery ladder state diagram.
We can avoid the neutral point by using different permutations between the steps, as
shown on the right side of the upper state diagram:

(Q, −2Q, Q) (Q, −3Q, 2Q); (−3Q, 2Q, Q) (−3Q, Q, 2Q); (2Q, −3Q, Q) (2Q, −4Q, 2Q).

This ending state on the second path can then be permuted and negated to reach the same
ending state from the first path.

3.2.4 Implementation

The detailed algorithm requires a large number of conditional swaps, and is given in the
supplementary material. This technique is simplest to implement using our Joye ladder
formulas with a state of

XP R = (xP − xR) · Z2

XQR = (xQ − xR) · Z2

YP = 2yP · Z3

YQ = 2yQ · Z3

YR = 2yR · Z3

and optionally Z. This allows permutations of the Y -coordinates to be done directly.
Negating the state requires only negating Z, if it is present, and is free if Z is not
present. The only tricky part is how to permute the X-coordinates. The simple case is
condswap(P, Q), which is equivalent to

condswap(XP R, XQR); condswap(YP , YQ).

The other swaps require arithmetic on the X-coordinates, and it is preferable not to perform
that conditionally. But we can build these swaps using only unconditional arithmetic and
conditional swaps. For example, we can implement condswap(P, R) as

swap(Q, R); condswap(P, Q); swap(Q, R).

Though they are described as Joye ladder formulas, these formulas could also be used
for the Montgomery ladder, except that we would track the x-coordinates XQP and XRP .
These complete formulas do not require any extra registers, at least if a “reverse subtraction”
operation X ← Y −X is available.

https://github.com/bitwiseshiftleft/ladder_formulas

Mike Hamburg 203

(−2, 1, 1)

(−2, 0, 2)(−2, 2, 0)

(1,−2, 1)

(1,−3, 2)

(2,−3, 1)

(2,−4, 2)

(−3, 2, 1)

(−3, 1, 2)

(−2,−2, 4)
neg.

Montgomery Avoid neutral

(−2, 1, 1)

(−2, 0, 2)(0,−2, 2)

(0,−4, 4)

(−1, 2,−1)

(−1, 3,−2)

(−2, 3,−1)

(−2, 4,−2)

(−2,−1, 3)

(−2,−4, 6)

(−2,−2, 4)

neg.
Joye Avoid neutral

Notes:
• The left sides show the transitions into, within and out of the neutral zone. The right sides show the

corresponding transitions using our neutral-point avoidance technique.
• All ladder states are given multiples of Q, with the last point R negated to R̄.

• Thick arrows denote the ladder operation (P, Q, R̄) (P, Q − R, 2R̄).

• Thin arrows denote permutations, and with the marking “neg”, negations.
• Double arrows mean that one state is a permutation of another, except with all points doubled. So the

state transitions are the same from there, but with Q replaced by 2Q.

Figure 6: Avoiding the neutral point.

204 Faster Montgomery and double-add ladders for short Weierstrass curves

4 Side-Channel Protections
The present work is not primarily focused on side-channel attacks or defenses. However,
we can offer a few brief observations.

Simple power analysis: In a straightforward implementation of the Montgomery or Joye
ladder, the ladder steps and states depend deterministically on the initial point P0, and
on the initial segment of the scalar which has been processed to that point. This leads to
simple power analysis (SPA) attacks [KJJ99]. These attacks can be mitigated in part by
projectively blinding the starting state. That is, we can choose a random nonzero r from
the field and multiply (X, Y, Z, M) by (r2, r3, r, r) respectively, so that they are a different,
random representation of the same points. This defense is included in the supplementary
material.

Horizontal attacks: Horizontal attacks are power analysis attacks which look for cor-
relations between power consumption at different steps in the algorithm. This enables
the attacker to determine whether the points have been swapped between rounds or not,
which determines the key bit. These attacks are easiest if a single value is used in two
different ladder steps with a conditional swap in between, because the two instances of that
value being read from memory or operated on may have highly-correlated power traces
[BJPW14]. Otherwise, correlations may occur between reading and writing a value, but
these correlations are typically smaller, which makes the attack more difficult.

The new Montgomery ladder in Figure 3 should resist horizontal attack better than
our other new formulas, because it does not use any of the round output variables within
the round. If the signal-to-noise ratio is low enough, then this attack might thwart a
horizontal collision attack. Otherwise, additional countermeasures might be required, such
as re-randomizing the projective blinding between rounds, or blinding the secret scalar.

Fault attacks: Fault attacks work by causing computation errors in a device that is
computing using some secret value. Comprehensive defenses against fault attacks are very
complex, and far beyond the scope of this work. However, one possible component of these
defenses is to check invariants of the algorithm’s state. The integrity of the ladder state
can be checked using the invariants in Section 2.5.

5 Conclusions and Future Work
We have presented new, optimized formulas for the Montgomery and Joye ladders on
short Weierstrass curves. Our Montgomery ladder formulas are faster and slightly more
side-channel-resistant than our Joye ladder formula, and we hope that future work can
improve the Joye formula to match. We have not attempted a computer search for more
optimal formulas with this representation or similar representations, which might well be
fruitful. It may also be interesting to search for further S−M tradeoffs.

For typical applications such as the NIST and Brainpool curves, our ladders are
complete except with negligible probability, and even that negligible probability can be
avoided at a reasonable additional cost. However, the avoidance technique would be more
useful if it could be simplified.

Our new formulas are amenable to parallel implementations, which would be an
interesting line of future work. It is not immediately clear whether we can combine the
full benefits of parallelism with zero avoidance and/or Z-coordinate tracking.

https://github.com/bitwiseshiftleft/ladder_formulas
https://github.com/bitwiseshiftleft/ladder_formulas

Mike Hamburg 205

Acknowledgments
Thanks to Mark Marson, Cyril Hugounenq, Ruggero Susella and the anonymous reviewers
for feedback on this work.

Intellectual property disclosure
Some of these techniques may be covered by US and/or international patents.

References
[AT03] Toru Akishita and Tsuyoshi Takagi. Zero-value point attacks on elliptic curve

cryptosystem. In Colin Boyd and Wenbo Mao, editors, ISC 2003, volume 2851
of LNCS, pages 218–233. Springer, Heidelberg, October 2003.

[BJPW14] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, and Justine Wild. Horizontal
collision correlation attack on elliptic curves. In Tanja Lange, Kristin Lauter,
and Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS, pages 553–570.
Springer, Heidelberg, August 2014.

[BL17] Daniel J. Bernstein and Tanja Lange. Montgomery curves and the Montgomery
ladder. In Joppe W. Bos and Arjen K. Lenstra, editors, Topics in Computational
Number Theory Inspired by Peter L. Montgomery, page 82–115. Cambridge
University Press, 2017.

[FGKS02] Wieland Fischer, Christophe Giraud, Erik Woodward Knudsen, and Jean-Pierre
Seifert. Parallel scalar multiplication on general elliptic curves over Fp hedged
against non-differential side-channel attacks. Cryptology ePrint Archive, Report
2002/007, 2002. http://eprint.iacr.org/2002/007.

[GJ16] Raveen R. Goundar and Marc Joye. Inversion-free arithmetic on elliptic curves
through isomorphisms. Journal of Cryptographic Engineering, 6(3):187–199,
September 2016.

[GJM10] Raveen R. Goundar, Marc Joye, and Atsuko Miyaji. Co-Z addition formulae
and binary ladders on elliptic curves. In S. Mangard and F.-X. Standaert,
editors, Cryptographic Hardware and Embedded Systems – CHES 2010, vol.
6225 of Lecture Notes in Computer Science, pages 65–79. Springer, 2010.

[GJM+11] Raveen R. Goundar, Marc Joye, Atsuko Miyaji, Matthieu Rivain, and Alexandre
Venelli. Scalar multiplication on Weierstraß elliptic curves from co-Z arithmetic.
Journal of Cryptographic Engineering, 1(2):161–176, August 2011.

[Ham12] Mike Hamburg. Fast and compact elliptic-curve cryptography. Cryptology
ePrint Archive, Report 2012/309, 2012. http://eprint.iacr.org/2012/309.

[Ham17] Mike Hamburg. Speeding up elliptic curve scalar multiplication without either
precomputation or adaptive coordinates, 2017. https://ches.2017.rump.cr.
yp.to/a1933e522beb16591d9dc8e373ad7079.pdf.

[HEY20] Huseyin Hisil, Berkan Egrice, and Mert Yassi. Fast 4 way vectorized ladder for
the complete set of montgomery curves. Cryptology ePrint Archive, Report
2020/388, 2020. https://eprint.iacr.org/2020/388.

http://eprint.iacr.org/2002/007
http://eprint.iacr.org/2012/309
https://ches.2017.rump.cr.yp.to/a1933e522beb16591d9dc8e373ad7079.pdf
https://ches.2017.rump.cr.yp.to/a1933e522beb16591d9dc8e373ad7079.pdf
https://eprint.iacr.org/2020/388

206 Faster Montgomery and double-add ladders for short Weierstrass curves

[HJS11] Michael Hutter, Marc Joye, and Yannick Sierra. Memory-constrained imple-
mentations of elliptic curve cryptography in co-Z coordinate representation.
In Abderrahmane Nitaj and David Pointcheval, editors, AFRICACRYPT 11,
volume 6737 of LNCS, pages 170–187. Springer, Heidelberg, July 2011.

[HMV06] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. Guide to elliptic
curve cryptography. Springer Science & Business Media, 2006.

[Joy07] Marc Joye. Highly regular right-to-left algorithms for scalar multiplication. In
Pascal Paillier and Ingrid Verbauwhede, editors, CHES 2007, volume 4727 of
LNCS, pages 135–147. Springer, Heidelberg, September 2007.

[KCK+17] Kwang Ho Kim, Junyop Choe, Song Yun Kim, Namsu Kim, and Sekung
Hong. Speeding up elliptic curve scalar multiplication without precomputation.
Cryptology ePrint Archive, Report 2017/669, 2017. http://eprint.iacr.
org/2017/669.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 388–397.
Springer, Heidelberg, August 1999.

[LD99] Julio Cesar López-Hernández and Ricardo Dahab. Fast multiplication on
elliptic curves over GF(2m) without precomputation. In Çetin Kaya Koç
and Christof Paar, editors, CHES’99, volume 1717 of LNCS, pages 316–327.
Springer, Heidelberg, August 1999.

[Mel07] Nicolas Meloni. New point addition formulae for ECC applications. In Inter-
national Workshop on the Arithmetic of Finite Fields, pages 189–201. Springer,
2007.

[Mon87] Peter L Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of computation, 48(177):243–264, 1987.

[NS20] Kaushik Nath and Palash Sarkar. Efficient 4-way vectorizations of the
montgomery ladder. Cryptology ePrint Archive, Report 2020/378, 2020.
https://eprint.iacr.org/2020/378.

[Riv11] Matthieu Rivain. Fast and regular algorithms for scalar multiplication over
elliptic curves. Cryptology ePrint Archive, Report 2011/338, 2011. http:
//eprint.iacr.org/2011/338.

[SM16] Ruggero Susella and Sofia Montrasio. A compact and exception-free ladder
for all short Weierstrass elliptic curves. In International Conference on Smart
Card Research and Advanced Applications, pages 156–173. Springer, 2016.

[Wal17] Colin D. Walter. The Montgomery and Joye powering ladders are dual. Cryp-
tology ePrint Archive, Report 2017/1081, 2017. https://eprint.iacr.org/
2017/1081.

A Proof of ladder formulas
Theorem 1 (Ladder formulas with differences of x-coordinates). Let

P = (xP , yP), Q := (xQ, yQ), R := P + Q := (xR, yR)

http://eprint.iacr.org/2017/669
http://eprint.iacr.org/2017/669
https://eprint.iacr.org/2020/378
http://eprint.iacr.org/2011/338
http://eprint.iacr.org/2011/338
https://eprint.iacr.org/2017/1081
https://eprint.iacr.org/2017/1081

Mike Hamburg 207

be the state of the Montgomery ladder on an elliptic curve y2 = x3 + ax + b defined over a
field of characteristic other than 2. The three points (P, Q,−R) lie on a line with slope
m := (yQ + yR)/(xQ − xR). Let

P = (xP , yP), S := Q + R = (xS, yS), T := 2R = (xT , yT)

be the state after a ladder operation, where (P, S,−T) lie on a line of slope m′. Let

r := xQ − xR

2yR

, s := (xR − xP) · r, t := 2yR

xQ − xR

, u := 2yQ

xQ − xR

.

Then

xS − xP = −t · u = t · (t− 2m)
xT − xP = s2 − 2yP · r

m′ = t−m− s.

Proof. The three points P, Q,−P −Q lie on the intersection

y2 = (mx + c)2 = x3 + ax + b.

for some c. The solutions to this equation are roots of a polynomial of the form x3 −
m2x2 + O(x), so that

xP + xQ + xR = m2.

Let m̄ := (yQ − yR)/(xQ − xR) be the slope of the line connecting Q, R and −(Q + R) =
(xS,−yS). We have

m̄2 = xQ + xR + xS; m̄−m = −t; m̄ + m = u.

Therefore

xS − xP = m̄2 − xQ − xR − xP

= m̄2 −m2

= (m̄ + m) · (m̄−m)
= −tu.

We also have −u = −(m̄ + m) = (m− m̄)− 2m = t− 2m. Next, we have

yS − yP = −(−yS − yR) + (−yR − yP)
= −m̄ · (xS − xR) + m · (xR − xP)
= −m̄ · (xS − xP) + (m̄ + m) · (xR − xP)
= −m̄ · (xS − xP) + u · (xR − xP)

whence the output slope from P to Q + R is

mout := yS − yP

xS − xP

= −m̄ + u(xR − xP)
−tu

= −m̄− s

= t−m− s

Finally, let’s calculate xT − xP . We have mout = −m̄ − s. In calculating xT − xP =
m2

out − 2xP − xS, we may expand

m2
out = m̄2 + 2m̄s + s2 = xQ + xR + xS + 2m̄s + s2

208 Faster Montgomery and double-add ladders for short Weierstrass curves

wherein
2m̄s = 2 yQ − yR

xQ − xR

(xR − xP)(xQ − xR)
2yR

= (yQ − yR)(xR − xP)
yR

.

We also have the cross product identity

(xQ − xP)yR + (xR − xP)yQ = (xQ − xP)(−yP −m(xR − xP))
+(xR − xP)(yP + m(xQ − xP))

= (xR − xQ)yP .

Combining these,

xT − xP = m2
out − 2xP − xS

= xQ + xR + xS + 2m̄r + s2 − 2xP − xS

= (xQ − xP) + (xR − xP) + (yQ − yR)(xR − xP)
yR

+ s2

= (xQ − xP)yR + (xR − xP)yR + (yQ − yR)(xR − xP)
yR

+ s2

= (xQ − xP)yR + (xR − xP)yQ

yR

+ s2

= (xR − xQ)yP

yR

+ s2

= s2 − 2 · yP · r

This completes the proof.

	Introduction and related work
	The Montgomery and Joye ladders
	Co-Z coordinates
	The Kim et al. formulas
	Our contribution

	Ladder Formulas
	Formulas for the Montgomery ladder
	Formulas for the Joye ladder
	Ladder setup
	Finalization
	Ladder state invariants

	Completeness
	Completeness of the Montgomery and Joye formulas
	Avoiding the neutral point

	Side-Channel Protections
	Conclusions and Future Work
	Proof of ladder formulas

