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Abstract. This paper presents an efficient fuzzy extractor (FE) construction for
secure cryptographic key generation from physically unclonable functions (PUFs).
The proposed FE, named acceptance-or-rejection (AR)-based FE, utilizes a new
debiasing scheme to extract a uniform distribution from a biased PUF response. The
proposed debiasing scheme employs the principle of rejection sampling, and can extract
a longer debiased bit string compared to those of conventional debiasing schemes.
In addition, the proposed AR-based FE is extended to ternary PUF responses (i.e.,
ternary encoding of a PUF response). These responses can be derived according
to cell-wise reliability of the PUF and are promising for extraction of stable and
high-entropy responses from common PUFs. The performance of the AR-based FEs
is evaluated through an experimental simulation of PUF-based key generation and
compared with conventional FEs. We confirm that the proposed AR-based FE can
achieve the highest efficiency in terms of PUF and nonvolatile memory (NVM) sizes
for various PUF conditions among the conventional counterparts. More precisely,
the AR-based FE can realize a 128-bit key generation with up-to 55% smaller PUF
size or up-to 72% smaller NVM size than other conventional FEs. In addition, the
ternary AR-based FE is up to 55% more efficient than the binary version, and can
also achieve up-to 63% higher efficiency than conventional counterparts. Furthermore,
we show that the AR-based FE can be applied to PUFs with local biases (e.g., biases
depending on cell location in SRAM PUFs), unlike all the conventional schemes, for
which only global (or identical) biases are assumed.

Keywords: Physically unclonable function (PUF) · Secure key generation · Fuzzy
extractor · Debiasing

1 Introduction
Silicon physically unclonable functions (PUFs) are essential for construction of secure
and trustable information systems. PUFs exploit uncontrollable process variations (e.g.,
the electrical lengths of wires) to generate hardware-intrinsic random numbers. With
these physically unclonable and tamper-evident features, PUFs are expected to provide a
hardware root-of-trust for secure cryptographic key generation and entity authentication,
among other applications [Mae03]. PUFs are classified into two types according to their
input space size: weak and strong PUFs. A weak PUF typically accepts only one challenge
or the number of challenges linear to the number of PUF cells. A strong PUF has a larger
challenge space, the size of which increases exponentially with the number of cells. A typical
application of weak PUFs is cryptographic secret key generation [BGS+08,MTV09,MHV12],
whereas strong PUFs are primarily used for entity authentication involving a challenge-
and-response protocol [SD07].
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Table 1: PUF sizes required for reliable 128-bit key generation with buffering entropy
(Values are derived from [DGV+16])

Bias p1 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66
BER E[e] 0.100 0.100 0.100 0.099 0.098 0.097 0.096 0.094 0.092
PUF size 1,270 1,275 1,530 2,295 2,550 3,825 5,100 7,650 13,005

This paper focuses on cryptographic key generation from weak PUFs. Memory-based
PUFs such as SRAM PUF, latch PUF, and butterfly PUF [HBF08,GKST07,SHO07] are
typical examples of weak PUFs. Many weak PUFs exploit differences in drive capability of
NAND gates and/or the electrical lengths of two symmetric wires as process variations. For
example, the responses of SRAM PUF and latch PUF are determined by the initial state of
the powered-on SRAM and the metastability of latches, respectively, differences in which
are generated via the aforementioned process variations. The important requirements for
PUF-based key generation are that the PUF response should be reliable and unpredictable.
PUF responses are deemed reliable (or stable) if the repeatedly generated responses are
always or quite similar in value. An unstable PUF response degrades the reliability of
PUF-based authentication and may contaminate the security of the system relying on the
generated cryptographic key. Furthermore, the PUF response is deemed unpredictable if
the PUF response bits are randomly determined during instantiation. A major condition for
unpredictability is that each PUF response should be uniform, i.e., it should be unbiased.
If a PUF response has a nonnegligible bias, it should not be used directly for cryptographic
key generation because key generation based on such a PUF would be insecure owing to
the entropy loss of the PUF response [KLRW14,MLSW15].

In practice, many silicon PUFs frequently contain noise and biases that are nonnegligible
for cryptographic key generation [BGS+08,MLSW15]. These characteristics arise from the
difficulties associated with the manufacture of PUFs having completely reliable and uniform
responses. When unreliable PUFs are employed for cryptographic key generation, a fuzzy
extractor (FE) is commonly employed in order to remove the PUF noise and to reconstruct
the enrolled values from the noisy PUFs [Boy04]. An FE generates helper data from a
PUF response and a random seed encoded by error-correcting code(s) (ECC(s)) in the
enrollment phase. Then, the FE reproduces the random seed from the noisy PUF response
and helper data using the corresponding ECC decoding in the subsequent reconstruction
phase. Notably, the helper data are stored in a common nonvolatile memory (NVM)
that can be observed by attackers. Here, if the PUF response is biased, an entropy loss
(or entropy leakage) occurs from the helper data [KLRW14,MLSW15,DGV+16]. When
typical ECCs are used in the FEs, secure 128-bit key generation with a practical PUF size
would be difficult unless 0.42 < p1 < 0.58, where p1 is the occurrence probability of the
value “1” in the PUF response (i.e., the bias). Table 1 shows the required PUF size1 for a
reliable 128-bit key generation using a repetition-BCH concatenated code with buffering
entropy2 for various PUF biases, where E[e] denotes the averaged bit-error rate (BER)
of PUF. The values in Tab. 1 are derived from [DGV+16]. We confirm that the required
PUF size rapidly increases by the increase of the bias when p1 ≥ 0.58.

To address this entropy loss problem, debiasing schemes that realize secure cryptographic
key generation even from biased PUFs have been developed in previous works [YD10,
HMSS12,MLSW15,AWSO17,HO17,Š17,SUHA18,USH19]. The main motivation behind

1In this paper, “PUF size” indicates the bit length of the PUF response. The hardware cost for
implementing PUF is basically proportional to the PUF size, as one cell of (weak) PUF typically generates
one bit response.

2Buffering entropy indicates the usage of random seed longer than the original security parameter
(e.g., 128 bits) such that the residual entropy should be greater than the security parameter. Note
again that buffering entropy cannot realize a secure key generation with a practical size of PUF unless
0.42 < p1 < 0.58.
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the development of such debiasing schemes is to design more efficient and practical FEs
than those employing an entropy buffer (i.e., FEs without debiasing scheme). In the
previous studies, the performances of FEs with debiasing schemes have been evaluated
based on the PUF size (i.e., bit length of the response) required for a 128-bit key generation
with a reconstruction failure rates of less than 10−6 as in [BGS+08]. This is because the
debiased bit strings should be shorter than the original PUF responses, and the debiasing
schemes induce an overhead in terms of PUF size. For example, the pioneering debiasing
method developed by Meas et al. [MLSW15], which is based on von Neumann’s randomness
extractor [vN51] (VNC: von Neumann corrector), requires that some bits of the PUF
response are discarded to obtain a debiased bit string. This is despite the fact that the total
PUF size is smaller than that of the FE without any debiasing method when p1 < 0.42 or
0.58 < p1. As another example, Hiller and Önalan proposed a debiasing method based on
coset coding (CC) which performs an ECC encoding as a one-to-many mapping in order
to mitigate an entropy leakage from helper data [HO17]. In other words, the CC-based
debiasing requires that some bits of the decoded random seed are discarded; this also
yields increased PUF size. However, Hiller and Önalan demonstrated that the CC-based
debiasing could be effectively applied to a practical SRAM PUF with p1 = 0.54 [HO17].
Recently, Ueno et al. proposed a debiasing method named biased masking (BM), which
applied a biased mask (i.e., artificially generated noise) to the PUF response to render
it uniform [USH19]. The BM was efficiently applied to PUFs for which 0.36 ≤ p1 ≤ 0.64.
However, the PUF size required for BM rapidly increases when p1 ≥ 0.64 (or ≤ 0.36), and
the overheads can be critical if PUFs have larger biases. To enlarge the application range
of PUF-based key generation, a debiasing method that can be efficiently applied to various
biased PUFs is highly desirable.

This paper presents a new debiasing scheme and shows its application in the con-
struction of an efficient FE, named the acceptance-or-rejection (AR)-based FE, which
can accommodate a relatively wide range of PUF biases. The proposed debiasing scheme
employs the principle of rejection sampling to obtain a uniform distribution from biased
PUF responses. The basic concept of the proposed method is rejection (i.e., discard) of
some bits of the majority value (i.e., “0” or “1”) with an appropriate probability such that
the accepted bit string can be uniformly distributed. In the enrollment phase, the AR-based
FE determines the locations of accepted/rejected bits and generates an additional helper
data named accepted cell location (ACL) data. In the reconstruction phase, the ACL data
are used to reproduce PUF responses sampled during the enrollment. The ACL data and
helper data can be stored in a common NVM observable by attackers, because there is no
entropy leakage from these data under the assumed bias model as proven in this paper.

The major feature of the AR-based FE is that the rejection sampling scheme can
be easily and efficiently implemented in hardware/software. In addition, the AR-based
FE can extract a uniform distribution from PUFs with both local and cell-wise biases
(e.g., biases depending on cell locations in SRAM PUFs), whereas all the conventional
schemes assume only global (or identical) biases. Moreover, the AR-based FE can be
further improved by incorporating ternary encoding of PUF responses [YSI+11,YSI+13];
this improvement is confirmed on the basis of the empirical noise (or cell-wise reliability)
model of PUF [Mae13].

In this paper, the efficiency of the AR-based FE is comprehensively evaluated using
various ECC constructions. The proposed and conventional debiasing-based FEs are
evaluated in the same strategies as those of previous studies, where the efficiency of FEs is
evaluated based on the PUF and NVM sizes required for a 128-bit key generation with a
reconstruction failure probability of less than 10−6. The results show that the AR-based
FE can achieve the highest efficiency (i.e., the smallest PUF and/or NVM sizes) for a
wider range of PUF biases and averaged BERs than the conventional FEs considered
herein, with a comparable computational cost. For example, the AR-based FE can achieve
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at least 55% and 51% PUF size reduction and at least 79% and 46% NVM size reduction
than the conventional FEs when the biases are 0.66 and 0.90, respectively. In addition, the
ternary AR-based FE has up-to 55% higher efficiency than the corresponding binary FE,
and can also achieve 57–63% higher efficiency in various conditions than its conventional
counterparts.

The remainder of this paper is organized as follows. In Section 2, relevant preliminary
information is provided and related works are summarized. The proposed method is
presented and described in detail in Section 3. The performance evaluation is reported and
the considerations are discussed in Sections 4 and 5, respectively. The paper is concluded
in Section 6.

2 Preliminaries and Related Work
2.1 Basic notation
The following notation conventions are adopted in this paper. Bold lower-case characters
represent binary (or ternary) vectors such as x = (x1, x2, . . . , xi, . . . , xm), where m (= |x|)
denotes the length of x and xi is the i-th bit (or digit) of x. A random variable representing
x is denoted by an upper-case italic character, i.e., X, while E[X] denotes the expected
value of X. The probability of an event A is denoted by Pr(A), and the simultaneous
probability of events A and B is denoted by Pr(A, B). Shannon entropy of A is denoted
by H(A) and the conditional entropy of A given B is denoted by H(A|B).

2.2 Bias model
In this paper, we consider two bias models: global bias and local (or cell-wise) bias. Figure 1
illustrates both bias models. We assume that a key generation system consists of v PUFs
with m-bit response. In the example shown in Fig. 1, v = 5 and m = 10. In the global bias
model, every cell of any PUF has an identical bias of p1 (with a corresponding p0), where
p1 and p0 are the occurrence probabilities of being “1” and “0”, respectively. The PUF
response is assumed to be independent and identically distributed (i.i.d). In contrast, in the
cell-wise bias model, the i-th cell of every PUF has a unique bias p1,i (with a corresponding
p0,i) depending on its address, where p1,i and p0,i are the occurrence probabilities of being
“1” and “0” at the i-th cell, respectively. For example, in Fig. 1, the zeroth, first, and
second cells have biases of p1,0 = 0.30, p1,1 = 0.20, and p1,2 = 0.70, respectively. In the
cell-wise bias model, the PUF response bits are assumed to be independent of each other.
The expected value of local biases Ei[p1,i] is considered equal to the global bias p1.

Even if a PUF has no global bias (i.e., p1 = 0.5), the min-entropy of the PUF under
the cell-wise bias model can be significantly reduced if the PUF has nonnegligible local
biases. This is because, in the cell-wise bias model, the min-entropy of PUF is given by
− log2 Πi max(p0,i, p1,i), which should be equal to or less than that of the global bias model,
given by − log2 max(p0, p1)m. Global bias models have been widely used in the study of
PUF, FE, and debiasing to date; however, some PUFs have been shown to have cell-wise
biases [MLSW15]. Figure 2 shows a typical sample of PUF without global bias but having
cell-wise bias. The left and right half blocks of the PUF in Fig. 2 tend to output many 1s
and 0s, respectively. More precisely, p1,i = 0.80 for 0 ≤ i ≤ 4 and p1,i = 0.20 otherwise.
Several PUFs are known to have such area-wise biases [MLSW15]. In addition, cell-wise
biases which depend on word or byte patterns frequently appear in some SRAM PUFs
because of the layout of SRAM cells. Moreover, a correlation between PUF responses is
sometimes found in a set of PUFs with small inter-Hamming distance, and can also be
interpreted as one of such cell-wise biases. Thus, the cell-wise bias model can be considered
as a generalized bias model covering many known biases, such as those discussed above.
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Figure 1: Sample global and cell-wise bias models.
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Figure 2: Example of PUF response with typical cell-wise bias, where there are two areas
with different biases.

Note here that the cell-wise bias model clearly differs from a reliability model where
each cell has its own BER, which is called an empirical noise model or cell-wise reliability
model [Mae13,YSI+11,YSI+13]. In detail, for a cell-wise bias model, the i-th cell has a
bias depending on its address if we have many PUFs; for an empirical noise model, each
cell in a PUF has its own BER and each PUF may have its own distribution of BERs
independent of the cell-wise bias. It has been also shown that many PUFs follow the
empirical noise model.

2.3 Fuzzy extractor (FE)
An FE is used for reliable reconstruction of the enrolled value from a noisy PUF response. In
this paper, we focus on FEs with a code-offset that employ ECC for error correction. Such
FEs are widely deployed in many modern PUF-based key generation systems [BGS+08,
DGSV15,DGV+16].

Figure 3 shows the block diagrams of an FE with code-offset at (a) enrollment and
(b) reconstruction phases, where x denotes a PUF response; s denotes a random (secret)
seed; k denotes a cryptographic key; c denotes a codeword given by ECC-encoding s; w
denotes a helper data; and x′ and c′ is a PUF response and codeword affected by noise,
respectively. Here, ⊕ indicates the bit-parallel-XOR operation. In the enrollment phase,
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Figure 3: Block diagram of FE.

we first generate a random seed s using a random number generator (RNG) and then
enroll a secret key k using a key derivation function (KDF), which is usually realized
via a cryptographic hash function such as Keccak and spongent [MHV12] or a universal
hash such as a Toeplitz hash [BGS+08,MTV09]. In the enrollment phase, a helper data
w is also computed by the bit-parallel-XOR of the PUF response x and ECC codeword
c, which is the ECC-encoded result of s. Here, w should be stored in an NVM on the
client device with the PUF to enable appropriate reconstruction. In the reconstruction,
we first compute the received codeword c′ by the bit-parallel-XOR of the helper data w
and the noisy PUF response x′. As c′ is considered as the codeword affected by noise
included in the PUF response, we reproduce the random seed s (and k) through ECC
decoding. Whereas the enrollment is not usually performed through real-time processing,
the reconstruction should be performed on a client device with a PUF. The computational
resources for the reconstruction are frequently much severe, although the computation
costs at the enrollment including measurement of PUF response, random seed generation,
ECC encoding, and key derivation are also sometimes non-trivial.

The helper data are regarded as a public data available to the attacker because they
are stored in a common NVM space. Therefore, we should consider the conditional entropy
H(X|W ) (or H(S|W )) of X (or S) for a given W for a cryptographic key generation.3
For example, a 128-bit PUF-based key generation should satisfy H(X|W ) ≥ 128. It has
been proven that H(X|W ) = |s| if X is uniformly distributed [MLSW15]. In this case,
the 128-bit key generation can be easily realized using a 128-bit random seed. However,
H(X|W ) (H(S|W )) significantly decreases owing to the bias of PUF [KLRW14,MLSW15].
This is called the entropy loss (entropy leakage). Intuitively, as shown by Hiller and
Önalan, the channel from C to W can be considered as a binary symmetric channel with
an error probability of p1 [HO17], where X is regarded as an additive noise. The channel
model indicates that the attacker can estimate c (and s) by the ECC decoding of w if the
noise level is insufficiently high (i.e., the PUF response is highly biased). In [MLSW15],
Maes et al. showed that it is difficult to realize a 128-bit key generation with a practical
size of the PUF if p1 > 0.58 (or p1 < 0.42). For such biased PUFs, the usage of a debiasing
scheme is a promising solution to realize an efficient key generation. Interested readers are

3Maes et al. proved that H(X|W ) = H(S|W ); and therefore, they are essentially equivalent [MLSW15].
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Table 2: Debiased bit extraction by VNC-based debiasing

Enrollment Reconstruction
Input Output Input Output
x2ix2i+1 ui di x′2ix

′
2i+1 di u′i

00 Discarded 0 0- 1 0
01 0 1 1- 1 1
10 1 1 -- 0 Discarded
11 Discarded 0

referred to [KLRW14,MLSW15,DGV+16,HO17] for more further details on the entropy
loss/leakage.

2.4 Debiasing
A debiasing scheme is employed to derive a uniform distribution from a PUF-induced
biased distribution. Use of a debiasing scheme enables the design of secure key generation
systems with relatively small-sized PUFs even if PUFs have nonnegligible bias. Such
debiasing methods have various underlying concepts, e.g., use of a randomness extractor
and addition of entropy by inducing randomness at the enrollment. In the following,
we briefly describe previous works in which debiasing schemes for PUFs were proposed.
We here describe six FEs: VNC-, CC-, maskless debiasing (MD)-, BM-, and trivial
debiasing (TD)-based FEs, and FE with complementary index-based syndrome (C-IBS)
[YD10,HMSS12,MLSW15,AWSO17,HO17,Š17,SUHA17,SUHA18,USH19]. Note that the
global bias model is assumed in all the conventional schemes.

VNC-based FEs: Maes et al. [MLSW15] proposed debiasing methods based on the
VNC [vN51], which was used to extract a uniform bit string from an bit string with a bias
of p1. FEs with VNC-based debiasing are called VNC-based FEs in this paper. In the
VNC-based debiasing, the bit string is divided into pairs of two consecutive bits. If the bits
in a pair differ from each other (i.e., having values of “01” and “10”), the first bit is retained
as a response bit; otherwise (i.e., the values are “00” and “11”), the pair is discarded.
Table 2 summarizes the extraction of debiased bit string with VNC-based debiasing at (a)
enrollment and (b) reconstruction, and Fig. 4 shows an example of VNC-based debiasing.
The mapping shown in Tab. 2 is applied to a PUF response, and the resulting debiased
bit string is used for helper data generation and reconstruction instead of the original
PUF response. In the enrollment of VNC-based FE, the VNC is applied to the (biased)
PUF response to obtain a debiased bit string u. Furthermore, an additional helper data
named debiasing data d, which indicates the locations of the retained/discarded pairs, is
generated. In the reconstruction, u is reproduced from the noisy PUF response, helper
data, and debiasing data. In [MLSW15], Maes et al. proposed three FE constructions
based on VNC-based debiasing, which differed in terms of efficiency and reusability.4
Subsequently, Delvaux et al. showed that a nonnegligible cost in PUF size is required
to render a debiasing-based FE reusable [DGV+16]. Suzuki et al. [SUHA17, SUHA18]
later improved the efficiency of VNC-based FEs by means of ternary encoding of the PUF
response [YSI+11,YSI+13], exploiting the cell-wise reliability model [Mae13].

CC-based FE: Hiller and Önalan proposed a debiasing method that mitigated entropy
loss on the basis of coset coding [HO17]. In this paper, we refer to the FEs based on coset
coding as CC-based FEs. A CC-based FE primarily aims to induce entropy at the ECC

4An FE is said to be reusable if the FE can enroll an identical PUF using different seeds many times
with negligible secrecy leakage compared to that of a single enrollment [Boy04,MLSW15].
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Figure 4: Example of VNC-based debiasing.

encoding with one-to-many mapping in a random manner. Furthermore, a CC-based FE is
easily implemented as a coset coding, where some bits of a random seed are discarded after
ECC decoding during the reconstruction. No additional resource-consuming operation
is required for its enrollment. The CC-based FE mitigates the secrecy leakage from
helper data; however, it does not necessarily reduce this leakage sufficiently if the bias is
large [USH19]. Note that discarding some bits of a random seed also results in a larger
PUF size. In the previous work, the efficiency of another CC-based FE with differential
sequence coding (DSC) [HYS16] was demonstrated through its application to an SRAM
PUF with p1 = 0.54 and an averaged BER of 0.10. However, a method of efficiently
applying CC-based FEs to a wider variety of PUFs has not yet been clarified.

MD-based FE: An FE based on maskless debiasing (MD) was proposed by Aysu et
al. [AWSO17]. The MD-based FEs use many-to-one mapping to derive a debiased bit
string from a biased PUF response, where the many-to-one mapping is designed depending
on the PUF bias such that the output is unbiased. For example, if the PUF bias is given
by p1 = 0.70, a bit string with a bias of 0.49 can be obtained using a two-to-one mapping
where the values of “00,” “01,” and “10” are mapped to “0” and “11” is mapped to “1.”
However, it is difficult to design such mappings with a sufficiently small input bit length
except for specific biases. In addition, the averaged BER of the mapping output is greater
than that of the original PUF response; this is also considered as an overhead yielding
increased PUF size.

Trivial debiasing (TD): A trivial debiasing (TD) scheme was presented by Škorić [Š17],
which follows the condense-then-fuzzy-extract scheme with an FE (or secure sketch) based
on the syndrome construction. In condense-then-fuzzy-extract construction, a randomness
condenser is first applied to the source (i.e., the PUF response), which is followed by
application of a secure sketch [CFP+16]. Let m and l be the length of PUF response and
the actually required length for the FE, respectively. LetMm be a set of indices of PUF
response bit, that is,Mm = [0, 1, . . . , i, . . . ,m− 1]. Let Ω be a parametric integer. The
TD scheme adds an entropy of log2 Ω.

In the TD scheme, a subset ofMm with a size of l, denoted by Ul, is first randomly
drawn such that all indices of PUF response bit having the rarest-occurring value (“0” or
“1”) are included in Ul (e.g., Ul should contain all indices included in {i | xi = 0} if p1 ≥ 0.5).
One of helper data w is generated as the syndrome of the PUF response bits with indices
included in Ul. Then, DRSGl(θ, χ) is taken as a deterministic generator of a random subset
ofMm with a size of l from a random seed θ and counter χ (hereafter, deterministic random
subset generator is abbreviated as “DRSG”). A random permutation π :Mm →Mm is
determined using a random value ω ∈ [0,Ω− 1], such that DRSGl(θ, ω) = {π(i) | i ∈ Ul}.
Finally, Helper data is obtained as the triple of w, θ, and π, and DRSGl(θ, χ) is published.

In the reconstruction, set R consisting of all indices with the rarest-occurring value
included in noisy PUF response x′ (i.e., indices included in {i | xi = 0} if p1 ≥ 0.5) is first
extracted. Then, subset Lχ = DRSGl(θ, χ) is computed for all χ ∈ [0,Ω− 1]. Next, ω is
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Figure 5: Example of BM-based debiasing.

estimated as Lω is the closest to R, and Ul is reconstructed using Lω and π−1. Finally, x
is reconstructed using w, x′, and Ul, with the syndrome decoding.

Randomness condensers are known to be more efficient than randomness extractors
in terms of entropy loss. Škorić gave the retained entropy of the TD from the m-bit
p1-biased PUF response (p1 > 0.5) as 2m(1−p1)− 2, which is larger than that of the VNC
(mp1(1− p1)) [Š17]. Moreover, the TD scheme can induce an additional entropy of log2 Ω
using fake permutations (i.e., DRSGl(θ, χ)). However, there is no quantitative evaluation
on the resulting PUF size and BER of bit string extracted through TD. In addition, no
concrete construction for building blocks nor the process of determining parameters to
design and evaluate actual key generation systems have been shown. Note that, Škorić
applied TD to the secure sketch based on syndrome construction [Š17] (initially presented
as a quantum oblivious transfer protocol in [BBCS91]); however, its application to a secure
sketch/FE based on a code-offset was not shown.

BM-based FE: Ueno et al. [USH19] proposed an FE based on the debiasing method called
biased masking (BM). Figure 5 shows an example of BM-based debiasing with p1 ≥ 0.5.
The basic concept of BM is addition of an artificial noise to a biased PUF response such
that the resulting bit string is uniform. Here, the addition of artificial noise is realized as
bit-parallel-AND or -OR with a PUF response. The artificial noise (i.e., a mask value) is
randomly generated with a proper bias. The added noise makes it difficult for attackers
to obtain secret information, but a valid PUF user can remove the noise by performing
ECC decoding. The BM overhead is given as the increase in the averaged BER at the
ECC decoding during the reconstruction. Ueno et al. showed that the overhead could be
tolerated by simply increasing the length of repetition code [USH19]. Their evaluation
revealed that the BM-based FE can efficiently realize a 128-bit key generation from PUFs
with a bias of 0.36 ≤ p1 ≤ 0.64, whereas the overhead of BM increases significantly for
p1 < 0.36 and 0.64 < p1. Although enrollment of a BM-based FE requires an RNG and
a bit-parallel-AND or -OR operation, the corresponding reconstruction does not require
additional computation beyond ECC decoding.

FE with C-IBS: In [YD10], Yu and Devadas proposed an FE with index-based syndrome
(IBS), which differs from FEs with code-offsets in that the helper data is generated using
a unique encoding method and not a bit-parallel-XOR operation. Hiller et al. generalized
the IBS as a complementary IBS (C-IBS) for improved efficiency [HMSS12]. FEs with IBS
and C-IBS exploit the bit-wise reliability of the PUF response given from the empirical
noise model [Mae13] so that only several reliable cells are used. The basic concept of IBS
and C-IBS involves the generation of helper data as the location of reliable cells, rather
than use of a bit-parallel-XOR operation involving the codeword c and PUF response x.
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Figure 6: Example of enrollment with C-IBS.

Figure 6 is an overview of the enrollment with C-IBS. C-IBS utilizes an ECC consisting
of two codewords of “10101...1” and “01010...0,” which is called C-IBS code, instead of
repetition code. In Fig. 6, the length of C-IBS code (denoted by ν1) is 3. For the C-IBS,
the BERs of each cell are first derived. Then, x is first divided into blocks consisting of
λ cells named C-IBS (or index) block. Here, λ should be determined such that λ > ν1.
Figure 6 shows the case of λ = 5 and ν1 = 3. If the first bit of the z-th block of c is “1”
and “0,” the helper data corresponding to the bit are generated as the address of cells
most reliably outputting “1” and “0” in the z-th block, respectively. The subsequent bits
are enrolled in the same manner, although the cells that have been already assigned are
never used again. In the case of Fig. 6, the zeroth bit in the leftmost block of w is given
as 1 because the zeroth bit in the leftmost block of c is “1” and the first cell most reliably
outputs “1” in the first block of x. Then, the first bit of w is given as 2 because the
first bit of c is “0” and the second cell most reliably outputs “0.” Moreover, the second
bit of w is 0 because the second bit of c is “1” and the zeroth cell outputs “1” with the
second highest reliability after the first cell, which has already been assigned. At the
reconstruction, C-IBS reads the cells as indicated by helper data in order to obtain c′, and
then performs the ECC decode.

Although the IBS was not originally presented as a debiasing scheme, IBS and C-IBS
are now considered to be useful for key generation even from biased PUFs [DGV+16].
Although IBS and C-IBS were designed to utilize reliable cells, (C-)IBS requires index
blocks to contain both cells reliably outputting both “0” and “1” for a reconstruction.
Otherwise, even if a codeword contains “1” or 1s, there is a possibility that no or deficient
reliable cell(s) will output “1” in the corresponding index block, and vice versa. This
scenario causes inconsistencies between the enrollment and reconstruction and degrades
the reliability of reconstruction. For example, in Fig. 6, the third bit of the second-block c
is wrongly enrolled because there is no more cell with the value of “0.” Therefore, to avoid
such inconsistencies, if the PUF bias is large, the bit length of each index block should be
longer; this yields an increased PUF size.

3 Proposed Method

3.1 Basic concept
This section presents the proposed AR-based FE, which is based on a new debiasing
scheme that employs the principle of rejection sampling (i.e., the acceptance-or-rejection
method), named the AR-based FE. We first describe the AR-based FE with the global bias
model in Sections 3.1–3.4, and then extend it to the cell-wise bias model in Section 3.5.
Subsequently, in Section 3.6, we present another extension of the proposed FE on the basis
of the empirical noise model for enhanced efficiency.



96 Rejection Sampling Schemes for Extracting Uniform Distribution from Biased PUFs

Rejection sampling is a method of deriving an arbitrary distribution from another
easily available distribution. In the case of discrete distribution, we consider a probabilistic
distribution as a probability mass function (pmf). Let ptar(x) be the target distribution
expressed as a pmf, and pprop(x) be an attainable proposal distribution. In rejection
sampling, we first determine a constant h satisfying

ptar(x) ≤ hpprop(x), (1)

for all x. We then obtain the distribution represented by ptar(x) as follows: (i) sample a
is derived from pprop(x); (ii) a is accepted with a probability of ptar(a)/hpprop(a) or else
rejected. One of the simplest approaches to implement Step (ii) is using another sample b
from the uniform distribution of [0, hpprop(a)] and thresholding b with ptar(a).

The proposed AR-based FE performs rejection sampling to derive a uniform distribution
from the biased distribution given as the PUF response. However, the rejection sampling
scheme is not a reproducible operation because an acceptance/rejection of sample is
randomly determined and no information about acceptance/rejection is retained. To
reproduce the debiased bit string in the reconstruction phase, the proposed AR-based FE
utilizes additional helper data, named accepted cell location (ACL) data, which indicates
the locations of accepted/rejected cells; this is similar to VNC-based FEs. Usage of ACL
data enables the reproduction of a uniformly distributed bit string obtained through
rejection sampling in the enrollment phase. In comparison with straight-forward FEs, no
computational overhead is required during the reconstruction, whereas additional RNG
and bit-parallel logic operations (e.g., OR operations) are required in the enrollment
similarly to the process of BM. As the enrollment essentially does not require any real-time
processing and the client device with a PUF is sometimes constrained in terms of resources,
the proposed FE is applicable to many PUF-based key generation systems.

3.2 FE construction
Figure 7 shows block diagrams of the AR-based FE during (a) enrollment and (b) recon-
struction. The primary characteristics of the AR-based FE are that new operations named
reproducible rejection sampling (RRS) and accepted cell extraction (ACE) operations
are applied during the enrollment and reconstruction, respectively. The RRS operation
performs rejection sampling on a PUF response and generates ACL data. The ACL data
is stored into an NVM as well as helper data because there is no entropy leakage from the
pair of ACL and helper data as proven in Section 3.3. The ACE operation regenerates the
debiased PUF response according to ACL data. Usage of ACL data makes it possible to
reproduce the debiased bit string by the rejection sampling, whereas a straight-forward
rejection sampling is not reproducible.

We first show the process for extracting a uniform distribution from a biased PUF
response through the RRS and ACE operations via rejection sampling. As we should
derive a debiased bit string from a biased PUF response in the global bias model, the input
and output of the rejection sampling (i.e., the proposal and target distributions) are given
as a Bernoulli distribution with a bias of p1 and a uniform distribution, respectively. As
we assume that the PUF response is independently distributed, we perform the rejection
sampling in a bit-wise manner. Thus, Eq. (1) can be instantiated for the RRS operation
as the following set of inequalities: {

0.5 ≤ hp0,
0.5 ≤ hp1.

(2)

Here, if we minimize the parameter h as h = (2 min(p0, p1))−1, we can minimize the
probability of rejection at sampling. In this optimal case, when p1 ≥ p0, the rejection
probabilities of “0” and “1” are given by 1 − 0.5/hp0 = 0 and 1 − 0.5/hp1 = 1 − p0/p1,
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Figure 7: Block diagram of AR-based FE.

respectively. When p1 < p0, they are given by 1 − p1/p0 and 0, respectively. Thus, we
extract a debiased bit string with the minimized rejection probabilities.

We next describe the implementation of RRS and ACE operations, which requires no
real-time processing in the reconstruction phase and induces little computational overhead
compared to the conventional FEs. Figure 8 shows an example of RRS operation during
enrollment. The RRS operation performs the above bit-wise rejection sampling to obtain
a debiased bit string and generates the corresponding ACL data. Let m be the length
of PUF response. To realize the bit-wise rejection sampling with fewer computational
resources, the RRS operation consists of the following three steps: (a) generation of an
m-bit random number r with a bias of q1, which is given by

q1 = min(p0, p1)
max(p0, p1) ; (3)

(b) computation of ACL data d by the bit-parallel-OR of x̄ and r when p1 ≥ 0.5 or the
bit-parallel-OR of x and r when p0 > 0.5, where x̄ (= x⊕ 1m) denotes the bit string in
which each bit of x is inverted; and (c) derivation of a debiased bit string u according to d.
In Step (c), we assign (i.e., accept) xi to ui if di = 1, whereas we discard (i.e., reject) xi if
di = 0, where xi, ui, and di denote the i-th bit of x, u, and d, respectively.5 In contrast,
the ACE operation during reconstruction is a deterministic algorithm and can be realized
using Step (c) only, in accordance with the d from the RRS operation, which reproduces
the debiased bit string derived by that operation.

Algorithms 1 and 2 are the algorithmic descriptions of RRS and ACE operations,
respectively. Here, m and l denote the PUF size and the required length of debiased bit

5Here, when di = 0, ui is considered to have the value of “discarded” in order to simplify the notation.
However, the actual length of u is l, which is shorter than m.
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Figure 8: Example of RRS operation.

string, respectively. Note that the required length (i.e., l), which equals to the helper
data size, should be pre-determined in accordance with the coding rate of used ECC
and required key length (The ECC is designed according to the averaged BER of PUF).
In RRS operation, Lines 9–15 perform the bit-wise rejection sampling according to d,
which is generated from x̄ or x and r for the reproducibility. RRS operation returns ⊥ as
an enrollment failure at Line 20 if the RRS operation cannot extract sufficient debiased
bits, because such a PUF may lead to the secrecy leakage. To perform an enrollment
with a negligible failure probability, we should determine the PUF size m appropriately.
We describe how to determine m for given l and p1, p0 such that the enrollment failure
probability is smaller than a threshold in Section 3.4. On the other hand, ACE operation
corresponds to the Lines 9–16 of RRS operation, which reproduces the debiased bit string
u as u′ from x′ and d.

3.3 Security of AR-based FE
In this subsection, we analyze the security of the proposed AR-based FE. We assume that
an attacker can observe (but cannot modify) the helper data and ACL data stored in a
common NVM, and that she exactly knows the biases of PUF (i.e., p1 in the global bias
model and p1,i for all i in the cell-wise bias model). In other words, the attacker’s goal is
to estimate the PUF response and secret seed from the data stored in the NVM and the
information given by the biases. This assumption corresponds to the scenario where the
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Algorithm 1 RRS operation
Input: PUF response x
Output: Pair of debiased bit string and ACL data (u,d) or ⊥
1: parameter m, l, p0, p1;
2: function RRSoperation(x)
3: q1 ← min(p0, p1)/max(p0, p1);
4: r ← RNGm,q1 ; . Step(a): RNGm,q1 generates m-bit q1-biased random number
5: if p1 ≥ p0 then
6: x← x⊕ 1m; . Compute x̄
7: end if
8: d← x ∨ r; . Step (b): Generation of ACL date d from x̄ or x and r
9: for i from 0 to m− 1 do . Step (c): Generation of debiased bit string by rejection sampling
10: if di = 1 then
11: ui = xi;
12: else if di = 0 then
13: reject xi;
14: end if
15: end for
16: u← Align(u0, u1, . . . , um−1); . Derive u as a complete bit string without discarded positions
17: if |u| ≥ l then
18: return (u,d);
19: else if |u| < l then
20: return ⊥; . Return ⊥ if enrollment fails due to insufficient length of u
21: end if
22: end function

Algorithm 2 ACE operation
Input: Pair of noisy PUF response and ACL data (x′,d)
Output: Reproduced debiased bit string u′

1: parameter m;
2: function ACEoperation(x′,d)
3: for i from 0 to m− 1 do
4: if di = 1 then
5: u′i = x′i;
6: else if di = 0 then
7: reject x′i;
8: end if
9: end for
10: u′ ← Align(u′0, u′1, . . . , u′m−1); . Derive u′ as a complete bit string without discarded positions
11: return u′;
12: end function

attacker performs a reverse-engineering on the NVM and has knowledge of some properties
of the PUF. Under this assumption, the FEs are equivalent to a wiretap channel with the
attacker acting as an eavesdropper [Wyn75,HO17]; therefore, the security can be validated
and formally proven from the information-theoretic perspectives. The possibility of a data
manipulation attack is discussed in Section 5.3.

We first derive the biases of the RRS operation outputs (i.e., u and d), to demonstrate
that the RRS operation derives a bit string with no bias. When p1 ≥ p0 (corresponding to
Fig. 8(a)), the bias of r (i.e., q1) is equal to p0/p1. Let q′1 and q′0 be the biases of the ACL
data d (i.e., the probability of being “1” and “0” in d, respectively). As d is derived by
the bit-parallel-OR of x̄ and r, q′1 is given by

q′1 = p0 + q1 − p0q1

= p0 + p1q1

= 2p0. (4)

Then, let p′1 and p′0 be the biases of u. As we accept xi only if di = 1 only, p′1 and p′0
are given as the conditional probabilities of xi = 1 and xi = 0 under di = 1, respectively.
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Thus, p′1 and p′0 are given by

p′1 = Pr(xi = 1|di = 1)

= Pr(xi = 1, di = 1)
Pr(di = 1)

= p1q1

q′1
= 1

2 , (5)

p′0 = Pr(xi = 0|di = 1)

= Pr(xi = 0, di = 1)
Pr(di = 1)

= p0

q′1
= 1

2 , (6)

respectively. Here, Pr(xi = 1, di = 1) (i.e., the simultaneous probability of xi = 1 and
di = 1) equals to p1q1, because it should occur when xi = 1 and ri = 1, with xi and ri
being independent of each other. Note that it also follows the assumption that the PUF
response is independently distributed. In addition, Pr(xi = 0, di = 1) = Pr(xi = 0) = p1,
because di is given by the OR of x̄i = 1 and ri. For p1 < p0, we can obtain the biases of d
and u in the same manner as the above. As q1 equals to p0/p1 in this case, the bias of d
(i.e., q′1) is given as

q′1 = p1 + q1 − p1q1

= p1 + p0q1

= 2p1. (7)

The biases of u (i.e., p′1 and p′0) are given as

p′1 = p1q1

q′1
= 1

2 , (8)

p′0 = p0

q′1
= 1

2 . (9)

Equations (5), (6), (8), and (9) imply that we can obtain a uniformly distributed bit string
by RRS operation. Since ACE operation reproduces the debased bit string, the output of
ACE operation is also unbiased.

The outputs of RRS and ACE operations should be a uniformly distributed bit string.
The AR-based FE employs an ACL data that can be observed by the attacker, as is the
case for the helper data. However, the attacker cannot obtain any information other than
the locations of accepted PUF cells used in the key generation. Therefore, similarly to the
VNC-based FEs [MLSW15], the security of the AR-based FE can be proven as Theorem 1.

Theorem 1. Let I(S; (W,D)) be the mutual information between random seed S and the
pair of helper data W and ACL data D. The AR-based FE has no entropy leakage, that is,
I(S; (W,D)) = 0.

Proof. I(S; (W,D)) can be rewritten as

I(S; (W,D)) = I(S;D) + I(S;W |D)
= I(S;W |D)
= H(W |D)−H(W |D,S), (10)

because S and D are independent of each other (i.e., I(S;D) = 0). Let c and C be the
codeword and the corresponding random variable, respectively. Let l be the length of c.
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Here, l equals to the length of the helper data (i.e., l = |c| = |w|). Hence, H(W |D) should
be bounded as

H(W |D) ≤ l. (11)

Let u and U be the output of RRS operation and the corresponding random variable,
respectively. We should consider only the case that the ACE operation successfully extracts
a debiased bit sting of a certain length |u| which is equal to or longer than l (i.e., |u| ≥ l).
This is because the RRS operation returns ⊥ (i.e., enrollment failure) if l < |u| as described
in Alg. 1, and therefore such a PUF is never used for the enrollment. Accordingly, let
us consider helper data W as W = C ⊕ U0:l−1 = SG⊕ U0:l−1, where U0:l−1 represents a
partial bit string from the zeroth to (l − 1)-th bits of U and G is a generator matrix of
ECC. Then, H(W |D,S) is given by

H(W |D,S) = H(SG⊕ U0:l−1|D,S)
= H(U0:l−1|D)
= H(U0:l−1)
= l. (12)

This is because U0:l−1 should be a uniform distribution as shown in Eqs. (5), (6), (8),
and (9). In accordance with Eqs. (10)–(12), the entropy leakage is given by

I(S; (W,D)) = H(W |D)−H(W |D,S)
≤ l − l
= 0. (13)

Note that I(S; (W,D)) should be non-negative; therefore, I(S; (W,D)) = 0.

Theorem 1 also indicates thatH(S|W,D) = |s| becauseH(S|W,D) = H(S)−I(S; (W,D)).
This means that we can realize a σ-bit key generation (i.e., H(S|W,D) = σ) using a σ-bit
random seed.

3.4 How to determine PUF size for AR-based FE
This subsection describes how to determine PUF size m (= |x|) in the AR-based FE with
a given PUF bias, ECC, and actually required debiased bit length l (= |c|) such that the
enrollment failure probability is negligible. Note that l = |c| should be determined in
advance according to the length of random seed |s| (equal to the security parameter σ
here) and the coding rate of used ECC, which is designed according to the averaged BER
of PUF [DGSV15].

As described in Section 3.3, the AR-based FE can realize a σ-bit key generation if a
debiased bit string equal to or longer than l can be obtained by the RRS operation. As the
AR-based FE employs randomness to determine acceptance/rejection of PUF cells, the
resulting debiased bit string length (i.e., |u|) is given in a stochastic manner. Therefore, we
should determine the PUF size m such that the probability Pr(|u| < l) should be smaller
than a threshold because we cannot enroll a PUF in the proposed FE when |u| < l. Let
P

(en)
thre be the threshold probability of failure in the enrollment of the AR-based FE. We

should determine the PUF size (i.e., m) that satisfies P (en)
thre ≥ Pr(|u| < l), given a PUF

bias and a required debiased length.
As the rejection/acceptance of each cell should be determined independently according

to p1, the resulting distribution should be binomial. Therefore, the length of the accepted
bit string can be represented by the cumulative mass function (cmf) of the binomial
distribution with p1 similarly to [MLSW15]. Let cmfbino(l;m, p) be the cmf of a binomial
distribution having l-times successes with probability p from m-times challenges. If we
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need an l-bit debiased bit string for key generation, the expected probability of enrollment
failure E[P (en)

fail ] for the AR-based FE with an m-bit PUF having a bias of p1 can be
expressed as

E[P (en)
fail ] = cmfbino

(
l;m,E[paccept]

)
, (14)

where E[paccept] denotes the expected probability of acceptance. Thus, the PUF size should
satisfy

P
(en)
thre ≥ E[P (en)

fail ] = cmfbino
(
l;m,E[paccept]

)
, (15)

which is followed by
l ≤ cmf−1

bino
(
P

(en)
thre ;m,E[paccept]

)
, (16)

where cmf−1
bino denotes the inverse function of cmfbino in terms of l. In the case of the

AR-based FE with the global bias model, E[paccept] is given by E[paccept] = E[Pr(di =
1)] = min(2p0, 2p1) as it should be equal to the expected number of 1’s in d (i.e., q′1 in
Eq. (4) or (7)); and therefore, the PUF size m should be determined according to

l ≤ cmf−1
bino
(
P

(en)
thre ;m,min(2p0, 2p1)

)
. (17)

Thus, a σ-bit PUF-based key generation system with the AR-based FE can be designed
according to the following three steps: (a) identification of the averaged BER and the
distribution of PUF response X (i.e., PUF biases p1 and p0); (b) design of ECC(s) such
that the expected reconstruction failure probability is less than a threshold P (rec)

thre , which
determines the required length of debiased bit string (i.e., l = σ/ρ, where ρ denotes the
coding rate of the ECC); and (c) determination of the PUF size m according to Eq. (17).

3.5 Extension to cell-wise bias model
In addition to the global bias model discussed in Sections 3.1–3.4, we extend the AR-based
FE to the cell-wise bias model. As shown in Fig. 2, Section 2.2, even if the PUF has no
global bias, the min-entropy given from the cell-wise bias can be significantly worse. Some
conventional debiasing methods may tolerate certain specific cell-wise biases. For example,
VNC-based FEs may be applicable to the PUF with the area-wise bias shown in Fig. 2.
However, these methods cannot be applied to all types of cell-wise biases. In fact, we can
easily create examples for which the above debiasing scheme cannot extract a uniform
distribution from a cell-wise-biased PUF response: a PUF response with p1,i = 0.80 if i is
odd and p1,i = 0.20 otherwise is one of such examples. Thus, no debiasing method that is
generally applicable to any type of cell-wise biases has been developed to date.

The basic concept of the extension proposed herein is adaptive determination of the
rejection probability according to the bias of each cell (i.e., p1,i for the i-th cell), as the AR-
based FE employs bit-wise rejection sampling. For example, for the case shown in Fig. 1,
the bit-wise rejection sampling is applied to the zeroth bit with the proposed distribution
of p1,0 = 0.30, to the first bit with p1,1 = 0.20, to the second bit with p1,2 = 0.70, and so
on. More simply and intuitively, we apply the RRS operation with p1 = 0.80 and p1 = 0.20
to the left and right halves of the PUF response in Fig. 2, respectively.

Formally, RRS operation for the extended AR-based FE is implemented by modifying
the generation of r in Steps (a) and the computation of d in Step (b) (Section 3.2). In
Step (a), we generate an m-bit number r such that the i-th bit of r (i.e., ri) has a bias of
q1,i given by

q1,i = min(p0,i, p1,i)
max(p0,i, p1,i)

. (18)

In Step (b), we compute the ACL data d as follows: A bit string f is generated, the i-th
bit of which is “1” if p1,i ≥ 0.5; otherwise, it is 0. Then, the ACL data is computed using
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the relation di = (xi ⊕ fi) ∨ ri. This indicates that, for the i-th cell, the RRS operation
shown in Fig. 8(a) is applied by inverting xi if p1,i ≥ 0.5; otherwise, that of Fig. 8(b) is
applied. Step (c) of the RRS operation and ACE operation in the extended AR-based FE
is implemented in the same manner as for the original case.

The bias of ui (i.e., the i-th bit of the debiased bit string u) is derived similarly to
that of the global bias model. Let q′1,i (q′0,i) and p′1,i (p′0,i) be the probabilities of “1” (“0”
for di and ui (i.e., the i-th bits of d and u), respectively. When p1,i ≥ p0,i, the bias of di
(i.e., q′1,i) is given by

q′1,i = p0,i + q1,i − p0,iq1,i

= p0,i + p1,iq1,i

= 2p0,i. (19)

As we accept xi only if di = 1, p′1,i and p′0,i are given by the conditional probabilities of
xi = 1 and xi = 0 under di = 1 as follows:

p′1,i = Pr(xi = 1|di = 1)

= Pr(xi = 1, di = 1)
Pr(di = 1)

= p1,iq1,i

q′1,i
= 1

2 , (20)

p′0,i = Pr(xi = 0|di = 1)

= Pr(xi = 0, di = 1)
Pr(di = 1)

= p0,i

q′1,i
= 1

2 , (21)

respectively. These formulas indicate that, even if the PUF has a nonnegligible cell-wise
bias, the probabilities of “1” and “0” values for the accepted ui are given by 1/2 for all i;
therefore, u should have no bias and be uniformly distributed. Note that the biases are
again given by p′1,i = p′0,i = 1/2 as well in the case that p1,i ≤ p0,i.

Algorithm 3 is the algorithmic description of RRS operation extended to the cell-wise
bias model. Note that ACE operation is the same as the previous one in Alg. 2. In contrast
to the RRS operation based on global bias model, the extended RRS operation performs
the operations in a bit-wise manner in addition to rejection sampling. This indicates that
the extended RRS operation essentially has the computational cost same as the original
one, regardless of the fact that we require random numbers with various biases and a
vectorized operation is unavailable for the above bit-wise operations.

The security of the extended AR-based FE can be proven in the same manner as
Theorem 1 because we assume only that u is uniformly distributed in the proof. Accordingly,
the extended AR-based FE can realize the σ-bit key generation using a σ-bit random seed,
as in the original case.

The PUF size required for successful enrollment is determined based on the cmf of the
binomial (i.e., Eq. (16)), similarly to the above. As the acceptance probability of the i-th
bit is given by q′1,i = min(2p0,i, 2p1,i), the expected acceptance probability E[paccept] is
equal to Ei[q′1,i] = Ei[min(2p0,i, 2p1,i)]. Therefore, in order to guarantee that the expected
failure probability of an enrollment is smaller than P (en)

thre , we should determine the PUF
size m such that

l ≤ cmf−1
bino
(
P

(en)
thre ;m,Ei[min(2p0,i, 2p1,i)]

)
. (22)

To demonstrate the advantage of debiasing scheme based on the cell-bias model, let
us consider a simple example of PUFs in Fig. 2, where p1,i = 0.8 for 0 ≤ i ≤ n/2− 1 and
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Algorithm 3 RRS operation based on cell-wise bias model
Input: PUF response x
Output: Pair of debiased bit string and ACL data (u,d) or ⊥
1: parameter m, l, p0,i, p1,i;
2: function ExtendedRRSoperation(x)
3: for i from 0 to m− 1 do
4: q1,i ← min(p0,i, p1,i)/max(p0,i, p1,i);
5: ri ← RNG1,q1,i ; . Step(a): RNG1,q1,i generates one-bit q1,i-biased random number
6: if p1,i ≥ p0,i then
7: xi ← xi ⊕ 1; . Compute x̄i
8: end if
9: di ← xi ∨ ri; . Step (b): Generation of ACL date di from x̄i or xi and ri
10: if di = 1 then . Step (c): Generation of debiased bit string by rejection sampling
11: ui = xi;
12: else if di = 0 then
13: reject xi;
14: end if
15: end for
16: u← Align(u0, u1, . . . , um−1); . Derive u as a complete bit string without discarded positions
17: if |u| ≥ l then
18: return (u,d);
19: else if |u| < l then
20: return ⊥; . Return ⊥ if enrollment fails due to insufficient length of u
21: end if
22: end function

p1,i = 0.2 for n/2 ≤ i ≤ n − 1 with a global bias p1 = Ei[p1,i] = 0.5. In this case, the
conventional debiasing schemes like CC, MD, TD, and BM substantially use the response
for the enrollment as it is due to their algorithms, which causes the entropy leakage by
the cell-wise bias.6 In contrast, the proposed scheme soundly derives a debiased bit string
which realizes a secure key generation without any entropy leakage. On the other hand,
the proposed scheme based on cell-wise bias model discards some bits by bit-wise rejection
sampling. Also, more extremely, let us consider another example of PUFs where p1,i = 1
for 0 ≤ i ≤ m/2 − 1 and p1,i = 0 for m/2 ≤ i ≤ m − 1. In this example, all PUFs have
an identical response of 11 . . . 100 . . . 0, and therefore cannot be used for key generation.
Nevertheless, since the global bias is given by p1 = 0.5, the conventional schemes consider
them to be unbiased. On the other hand, the proposed scheme rejects all the cells in
such PUFs because the acceptance probability of each cell is given by min(2p0,i, 2p1,i) = 0,
and returns ⊥ (i.e., enrollment failure), which shows the soundness of proposed scheme.
Generally, if the PUF contains more cells with p1,i equal/close to 1 or 0, the expected
debiased bit length Ei[min(2mp0,i, 2mp1,i)] becomes shorter due to the increase of rejection.
However, the accepted cells have no bias independently of the distribution of cell-wise
biases.

3.6 Extension to ternary-encoded PUF response
This subsection presents an extension of the AR-based FE to a ternary-encoded PUF
response for higher efficiency. Ternary encoding of PUF response was first presented by
Yamamoto et al. to enhance the entropy and reliability of PUF response using the cell-wise
error rate [YSI+11,YSI+13]. In the following, we first briefly describe the ternary encoding
of the PUF response, and then describe the extension. We employ the cell-wise bias model,
as the global bias model is an instance of the cell-wise bias model.

For a PUF instance, the error rate of response is not the same for all the cells. In
other words, each cell has its own error rate,7 and its distribution is approximated by a

6BM may be extended to the cell-wise bias model based on the same strategy as the extension presented
in this subsection, as BM is implemented with a mask value generation and bit-parallel operations.

7Note that it is sufficient to evaluate the averaged BER for designing ECC to be used in a binary
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Gaussian distributions [Mae13]. Therefore, if we repeatedly observe the response of a PUF
many times, we can classify the PUF cells into three types: (a) constantly outputting “0,”
(b) constantly outputting “1,” and (c) randomly outputting “0” or “1.” Cells of types
(a) and (b) are called constant cells, whereas cells of type (c) are called unreliable (or
random) cells. It has been shown that most common PUFs contain around 10%–30%
random cells [YSI+11,YSI+13,YSI+15,SUHA18]. Unreliable cells are regarded as noise for
conventional binary encoding; however, for ternary encoding, unreliable cells are considered
to have a stable third value as “random.” Ternary encoding is useful for more reliable
extraction of PUF response with higher entropy than binary encoding for some types of
weak PUFs (e.g., for latch PUFs). As a ternary-encoded PUF response cannot be directly
combined with the conventional binary FEs, Kazumori et al. presented a ternary FE
construction applicable to ternary encoded PUFs, which employs a ternary random seed, a
ternary ECC, a ternary helper data, and GF (3) arithmetic for the code-offset [KUH19].
Whereas it sometimes takes nonnegligible cost to derive cell-wise reliability to utilize the
ternary PUF response (as well as IBS/C-IBS), usage of ternary response would improve
the efficiency of a key generation systems significantly in terms of hardware cost.

Figure 9 shows block diagrams of the ternary AR-based FE, where the new ternary RRS
and ACE operations are combined with the ternary FE reported in [KUH19]. The input
of ternary RRS operation is a ternary PUF response, and its outputs are a debiased trit
(ternary digit) string and a binary ACL data. In the ternary RRS operation, a debiased trit
string is derived from a biased 3-categorical distribution8 via rejection sampling. However,
we do not obtain a completely uniform 3-categorical distribution from the ternary PUF
response because many PUFs are likely to have far fewer random cells than constant cells.
This indicates that we should reject many constant cells to derive a uniform distribution.
Instead, in the ternary AR-based FE, we perform binary rejection sampling for constant
cells only and accept all random cells. The output trit string of the ternary RRS operation
should contain constant cells of “0” and “1” values with the same probability. Thus, we
mitigate the entropy loss from the ternary helper data more efficiently than rejection
sampling that derives completely uniform distribution. The ternary AR-based FE is
designed with an entropy buffer which renders the residual min-entropy greater than σ.
The residual min-entropy for ternary FEs is evaluated using the algorithm in [KUH19]
(extended algorithm of [DGV+16] to ternary FE).9

Let t0,i, t1,i, and tr,i denote the occurrence probabilities of “0,” “1,” and “random”
values for the i-th cell, respectively (t0,i + t1,i + tr,i = 1). Note that, in the global bias
model, all cells have an identical bias t1, which indicates that t1,i = t1 for any i (this is the
same for t0,i and tr,i). In the ternary RRS operation, along with the binary RRS operation,
we first generate an m-bit random number r, where the i-th bit ri has a bias given by

q1,i = min(t0,i, t1,i)
max(t0,i, t1,i)

. (23)

Then, when t1,i ≥ t0,i, we generate the i-th bit of ACL data d as follows:

di =
{

1 if xi = random,
x̄i ∨ ri otherwise. (24)

FE [DGSV15].
8A θ-categorical distribution is also called a generalized Bernoulli distribution, which is represented

by a random variable that can take one of the θ elements. A 2-categorical distribution is a Bernoulli
distribution.

9Note that the residual min-entropy can be used for the worst-case security evaluation in terms of
guess of random variables, although we use Shannon entropy (i.e., average-case security) to explain the
proposed method in this paper.
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Figure 9: Block diagram of ternary AR-based FE.

Here, the bias of di (denoted by q′1,i) is given by

q′1,i = Pr((x̄i ∨ ri) = 1|xi 6= random) + Pr(xi = random)
= t0,i + q1,i(1− tr,i)− t0,iq1,i + tr,i

= 2t0,i + tr,i. (25)

When t1,i < t0,i, di is given in the same manner except that xi is not inverted when
xi 6= random, and q′1,i is given by alternating t0,i and t1,i in Eq. (25) (i.e., q′1,i = 2t1,i + tr,i
for t1,i < t0,i). Note that the ACL data d of the ternary RRS operation is still binary
because the ACL data represents the acceptance/rejection of the corresponding cells.
Finally, we extract the debiased trit string from the cells with di = 1.

Algorithm 4 is the algorithmic description of ternary RRS operation based on the
cell-wise bias model. This algorithm is derived by replacing the generations of x̄i and d in
Alg. 3 with the corresponding ternary operation. The ternary ACE operation is performed
using Alg. 2, which extracts (i.e., accept) the cells with di = 1.

Let us consider the biases of the ternary RRS operation outputs. Let t′0,i, t′1,i, and
tr,i be the biases (i.e., the occurrence probabilities of “0,” “1,” and “random” values) for
the i-th trit in the debiased string u, respectively. Similar to the binary RRS operation,
the biases are represented as the conditional probabilities of xi given di. Hence, when
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Algorithm 4 Ternary RRS operation based on cell-wise bias model
Input: Ternary PUF response x
Output: Pair of debiased bit string and ACL data (u,d) or ⊥
1: parameter m, l, t0,i, t1,i, tr,i;
2: function ExtendedRRSoperation(x)
3: for i from 0 to m− 1 do
4: q1,i ← min(t0,i, t1,i)/max(t0,i, t1,i);
5: ri ← RNG1,q1,i ; . Step(a): RNG1,q1,i generates one-bit q1,i-biased random number
6: if t1,i ≥ t0,i then
7: if xi 6= random then
8: xi ← xi ⊕ 1; . Compute x̄i
9: end if
10: end if
11: if xi = random then . Step (b): Generation of ACL date di based on Eq. (24)
12: di = 1
13: else
14: di ← xi ∨ ri;
15: end if
16: if di = 1 then . Step (c): Generation of debiased trit string by rejection sampling
17: ui = xi;
18: else if di = 0 then
19: reject xi;
20: end if
21: end for
22: u← Align(u0, u1, . . . , um−1); . Derive u as a complete trit string without discarded positions
23: if |u| ≥ l then
24: return (u,d);
25: else if |u| < l then
26: return ⊥; . Return ⊥ if enrollment fails due to insufficient length of u
27: end if
28: end function

t1,i ≥ t0,i, the resulting biases t′0,i, t′1,i, and tr,i are given by

t′1,i = Pr(xi = 1|di = 1)

= Pr(xi = 1, di = 1)
Pr(di = 1)

= t1,iq1,i

q′1,i
= t0,i

2t0,i + tr,i
, (26)

t′0,i = Pr(xi = 0|di = 1)

= Pr(xi = 0, di = 1)
Pr(di = 1)

= t0,i
q′1,i

= t0,i
2t0,i + tr,i

, (27)

t′r = Pr(xi = random|di = 1)

= Pr(xi = random, di = 1)
Pr(di = 1)

= tr,i
q′1,i

= tr,i
2t0,i + tr,i

, (28)

respectively. The biases when t′1,i < t′0,i are similarly given as t1,i = t0,i = t1,i/(2t1,i + tr,i).
Equations (26)–(28) indicate that there is no bias between “0” and “1,” although the
occurrence probability of the “random” value is less than those of “0” and “1.”

The security of the ternary AR-based FE can be explained in the same manner as
for the binary cases, because the ACL data d also represents acceptance/rejection of the
corresponding cell as well. However, as the ternary string from the ternary RRS operation
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is not completely uniform, H(W |D,S) should not be equal to H(S) in contrast to the
binary case in Eq. (12).10 Thus, the residual entropy H(S|W,D) (and H(X|W,D)) should
be less than H(S), which yields an entropy leakage through helper data. In other words,
we cannot realize a ς-trit key generation (i.e, a σ-bit key generation where σ = ς log2 3)
using a ς-trit random seed. Therefore, to realize a σ-bit key generation using the ternary
AR-based FE, we should determine the PUF size using an entropy buffer (i.e., using a
random seed sufficiently longer than σ) such that H(S|W,D) ≥ σ (or H(X|W,D) ≥ σ).
More concretely, in the design of the ternary AR-based FE, we first derive the bias of
ternary string from the RRS operation (i.e., t′0,i, t′1,i, and t′r,i), and then evaluate the
residual entropy using the algorithm presented in [KUH19] in order to compute the required
seed length |s| and the corresponding |c| (= l) for σ-bit key generation. Note here that,
although the algorithm in [KUH19] cannot be directly used for evaluating H(X|W,D), it
is sufficient to evaluate H(U0:l−1|W ) because H(U0:l−1|W ) ≤ H(X|W,D).

After determining l required to satisfy H(U0:l−1|W ) ≥ σ, we determine the PUF size
using Eq. (16) such that the enrollment failure probability should be less than a threshold
P

(en)
thre . As E[paccept] is given by Ei[min(2t0,i, 2t1,i) + tr,i], we should determine the PUF

size m using the following bound:

l ≤ cmf−1
bino
(
P

(en)
thre ;m,Ei[min(2t0,i, 2t1,i) + tr,i]

)
. (29)

In the global bias model, E[paccept] should be substituted with min(2t0, 2t1) + tr. Thus,
if the PUF contains many random cells, the ternary AR-based FE can achieve higher
efficiency, and hence, the effectiveness of ternary encoding is exploited.

4 Performance Evaluation
4.1 Binary FEs
4.1.1 Implementation cost of FEs

This subsection reports an analytical comparison of the implementation costs of the
proposed AR-based FE with those of conventional binary FEs under global bias model, as
summarized in Tab. 3. In the table, “Retained entropy” denotes the expected debiased bit
length extracted from anm-bit p1-biased PUF response (for p1 ≥ 0.5 for TD and this work);
“NVM size” denotes the NVM size required for storing helper data and other additional
data for the debiasing scheme; “Reusability” indicates whether or not the FE can perform
enrollment with different seeds using an identical PUF without nonnegligible entropy
leakage; and “Candidates of computational bottleneck” denotes operations that can act
as bottlenecks. Note that all FEs have ECC encoding and decoding (denoted by ECC
enc. and ECC dec., respectively) as one of candidates at enrollment and reconstruction
phases, respectively. We assume that any previous helper data including additional data for
debiasing is not available for the reuse of a PUF. In Tab. 3, we consider three VNC-based
FEs: the classic von Neumann (CVN), the 2-pass tuple-output von Neumann (2P-TO-
VN), and the pair-output von Neumann with erasures (ε-2O-VN). CVN is the simplest
VNC-based FE. 2P-TO-VN is an efficient variant of VNC-based FE from the perspective
of PUF size, which handles the debiased bit as an ECC codeword comprising “01” and
“10” and applies the VNC repeatedly to bit pairs discarded in the previous pass (i.e., “00”
and “11”). In addition, ε-2O-VN is another variant that offers the reusability by replacing
the discarded cell with an erasure symbol (or a placeholder). For the NVM size of MD,
O(2µ) denotes the order of 2µ and Mapping eval. indicates the evaluation of many-to-one
mapping.

10In the ternary FE, H(S) = l log2 3 because s is a trit random vector.
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Table 3: Comparison of implementation costs for binary FEs

Retained NVM Reusa- Candidates of computational bottleneck
entropy size∗ bility Enrollment Reconstruction

No debias N/A l (= m) Yes ECC encode ECC decode
CVN mp0p1 l + dm/2e No ECC encode ECC decode
[MLSW15]
2P-TO-VN mp0p1 2m No ECC encode ECC decode
[MLSW15] +mEp0,p1

†

ε-2O-VN mp0p1 5m/2 Yes ECC encode ECC decode
[MLSW15]
MD m/µ l +O(2µ) Yes Mapping eval. Mapping eval.
[AWSO17] and ECC encode and ECC decode
BM N/A l (= m) No RNG and ECC decode
[USH19] ECC encode
CC N/A l (= m) Yes ECC encode ECC decode
[HO17]
TD 2mp0 − 2 ldlog2 me No DRSGl and List construction,
[Š17] +l ECC encode set manipulation,

DRSGl, and
ECC decode

This work 2mp0 l +m No RNG and ECC decode
ECC encode

∗ NVM size indicates the total memory size for storing helper data including addition data for debiasing
scheme (e.g., ACL data). Here, m and l differ depending on the efficiency of retained entropy and BER
during ECC decoding. The smaller retained entropy and higher BER yield the greater m and l.
† Ep0,p1 =

p2
0p

2
1

2(p2
0 + p2

1)
.

In Tab. 3, the retained entropy (i.e., the expected debiased bit length) roughly indicates
the efficiency as a debiasing scheme. The expected debiased bit length of the AR-based FE
is given by E[min(2mp0, 2mp1)] because it should be equal to the expected number of “1”
values in d (i.e., q′1). The VNC-based FEs extract the entropy of mp0p1 (+mEp0,p1) from
an m-bit PUF response, because the VNC extracts one bit (tuple) per two-bit response
with a probability of 2p0p1. Here, the retained entropy of ε-2O-VN would equal to CVN as
the number of cells in ε-2O-VN which contribute to entropy is the same as CVN [DGV+16].
The MD-based FE extracts one bit from a µ-bit block, where µ denotes the length of many-
to-one mapping and exceeds 3 in the most cases, according to [AWSO17]. The retained
entropy cannot be evaluated for BM and CC in the same manner because those FEs are
different in the approach. That is, BM adds entropy to PUF response using artificial
noise and CC reduces entropy loss by discarding some bits of decoded random seeds. The
advantages of the proposed AR-based FE over these schemes can be demonstrated using
experimental simulations of 128-bit key generation in Section 4.2. TD and the AR-based
FE in this work have greater retained entropy than the other conventional schemes. Note
that the expected retained entropy of TD and the proposed scheme is the same in the
order because all PUF cells outputting a minor value of “0” or “1” are used for helper
data generation in both approaches. In contrast, the actually required PUF size, NVM
size, computational cost, and applicable bias model are definitely different because of
the difference in the underlying principles (i.e., condense-then-fuzzy-extract and rejection
sampling), as demonstrated below. In addition, as the TD-based scheme was originally
proposed for the syndrome construction, there are some limitations to the adoptable ECC
and decoding method, which may yield less-than-optimal PUF and NVM sizes. Note again
that the conventional schemes including TD cannot be applied to the cell-wise bias model.

The NVM size, which indicates the total memory size for storing helper data including
additional data for the debiasing scheme (e.g., ACL data), is also important for implemen-
tation of PUF-based systems on resource-constrained devices. Note here that the values of
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the l and m terms in the NVM size values of Tab. 3 are heavily dependent on the efficiency
of the debiasing schemes themselves. All the schemes require at least an l-bit NVM for
storing a common helper data. It seems that BM and CC (and No debias) may be optimal
in terms of NVM size, because they do not generate any additional data to be stored in
NVM and require only an l-bit NVM for the helper data. However, the PUF sizes of these
FEs significantly increases with the PUF bias; therefore, the NVM sizes of these FEs are
not always small, as evaluated in Section 4.2. ε-2O-VN requires a larger NVM than other
VNC-based FE because the helper data of ε-2O-VN is given in ternary (i.e., 0, 1, and
erasure symbol). Hence, a 2m-bit memory is required for storing an m-trit helper data.
MD requires an additional memory of O(2µ) for computation of a 2µ-to-one mapping. For
TD, ldlog2 me corresponds to the memory size for π, which is a random permutation of
(ldlog2 me)-bit integers. Moreover, it may be necessary for TD to implement and perform
DRSGl, (i.e., deterministic generator of random subset with size of l) which would incur a
nonnegligible overhead on the memory size on client devises. Thus, the proposed scheme
has an advantage in terms of the NVM size, as the retained entropy is greater than those
of CVN and 2P-TO-VN.

A reusable FE can enroll a PUF many times with different seeds, with negligible secrecy
leakage compared to a single enrollment. Here, only ε-2O-VN is proven to be reusable
among these debiasing-based FEs. The MD- and CC-based FEs may also be reusable
because they always extract a fixed length of debiased bit string given m and p1 in a
deterministic manner, but there have been no proof on their reusability to the best of
authors’ knowledge. The reusability of FE is one of an important desirable properties
that broadens the applicability of the key generation system. However, as apparent from
in Tab. 3, the debiasing schemes extracting debiased bits in a stochastic manner cannot
offer the reusability; the proposed method is among those schemes. Thus, extension of the
proposed method for reusability remains a topic for future work.

Each debiasing scheme requires unique additional operations, some of which can
sometimes constitute a computational bottleneck. First, as the reconstruction is usually
performed on a (resource-constrained) client device with a PUF, it is desirable for the
reconstruction to have no additional operations. For MD- and TD-based FEs, non-trivial
operation(s) should be performed for the debiasing in addition to the ECC decoding.
The evaluation of 2µ-to-one mapping in MD can be implemented as a table integrated
in the NVM. For TD, DRSGl, list construction, and set manipulation should induce
a nonnegligible overhead in terms of both time and space complexity, as Škorić noted
in [Š17] that these operations can constitute a computational bottleneck separate from
that of the ECC decoding. In contrast, other methods, including the proposed AR-based
FE, can be implemented without any additional resource-consuming operations in their
reconstructions. Second, in the enrollment phase, the proposed method (and BM) requires
an RNG in order to perform rejection sampling (and to generate an artificial noise). TD
also employs a DRSGl in the enrollment phase to add entropy as a fake permutation.
However, the computational cost of these operations is not necessarily a critical issue,
because the enrollment does not involve real-time processing. The amount of (biased)
random numbers required to perform the RRS operation per PUF is equal to the PUF
size m, which would be sufficiently practical.

4.1.2 Simulation of 128-bit key generation

The performances of the proposed and conventional FEs are evaluated for 128-bit key
generation, where the averaged BER E[e] and bias p1 are virtually determined to simulate
a PUF response. In this simulation, we use and evaluate the residual min-entropy for a
stronger security notation, utilizing the algorithms in [DGV+16]. Whereas the PUF size
has been mainly focused in the performance evaluations as in the previous studies involving
debiasing schemes, the NVM sizes are also compared in the present evaluation because they
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would have an impact on the practicality. We employ the global bias model because none
of the conventional methods can work with the cell-wise bias model. In this subsection, we
focus on the evaluation of the AR-based FE and major counterparts which can be compared
in a unified manner (i.e., VNC-, MD-, and BM-based FEs [MLSW15,AWSO17,USH19]).
Note that we cannot evaluate ε-2O-VN here because of lack of description about how to
determine its PUF size. See the appendices for the evaluation and comparison for the rest
of conventional methods (i.e., CC- and TD-based FEs [HO17,Š17]).

Tables 4 and 5 report the performance evaluation results of the proposed AR-based FE
for E[e] = 0.025, 0.050 and E[e] = 0.075, 0.100, respectively, where “Rep. code” denotes the
length of inner repetition code; “# of blks” denotes the number of codeword blocks; “Res.
entr.” denotes the residual min-entropy; “NVM size” is the NVM size required for storing
helper data, including ACL data; and “Failure prob.” denotes the expected reconstruction
failure probability. The range of PUF bias is given by 0.58 ≤ p1 ≤ 0.90. In this evaluation,
according to the evaluation method in [BGS+08], we employ a concatenated code of inner
[ν1, κ1, δ1] repetition code and outer [ν2, κ2, δ2] BCH code, which is one of most widely
used ECC constructions for PUF-based key generation. BCH codes with a code length
ν2 ∈ {7, 15, 31, 63, 127, 255} are considered. The concatenated code is designed such that
the PUF size is minimized under the condition that the expected failure probabilities of
enrollment and reconstruction are smaller than a threshold of 10−6. Additionally, the
random seed size is determined such that the PUF size is minimized under the condition
that the residual min-entropy exceeds 128.

Tables 4 and 5 also report the simulation results for 128-bit key generation using the
conventional debiasing-based FEs with the same conditions. As for the proposed method,
the NVM size includes additional data for debiasing in addition to common helper data
(e.g., debiasing data in the case of the VNC-based FEs). The input bit length of the
mapping used for the MD case is determined such that the resulting PUF size should be
minimized.

Figure 10 illustrates the PUF sizes for the key generation using the proposed and
conventional FEs. The curves for CVN, 2P-TO-VN, and this work (AR-based FE) form a
similar shapes, because these approaches utilize acceptance/rejection to extract uniform
distributions. However, the proposed AR-based FE exhibits smaller PUF sizes for the
various biases and averaged BERs compared to those of the VNC-based FEs. This is
because the proposed FE extracts one debiased bit per bit whereas the VNC-based FEs
require two bits to obtain a debiased bit (or tuple). More quantitatively, the expected
debiased bit length for the proposed AR-based FE is given by E[mq′1] = E[2m(1 − p1)]
when p1 > p0, whereas those for the VNC-based FEs are E[mp1p0] or E[mp1p0 +mEp0,p1 ].
This indicates that the proposed AR-based FE can always obtain a longer debiased bit
string than those of the VNC-based FEs.

The PUF size of MD-based FE is not an increment function for p1. The expected
debiased bit length of the MD-based FE is given by E[m/µ], where µ (≥ 1) is the input bit
length of mapping. The value of µ is an integer greater than two in most cases. Though it
can be determined to be small for some specific biases for which a good mapping is found,
the proposed FE also achieves a smaller PUF size than that of the MD-based FE even in
such specific cases (i.e., p1 = 0.74).

Finally, the BM-based FE cannot be evaluated based on the expected debiased bit
length, because the overhead of BM includes an increase in the averaged BER for ECC
decoding. The AR-based FE has a smaller PUF size than the BM-based even for p1 < 0.64,
and the PUF size for BM significantly increases significantly with the increase in bias
owing to the added noise. Thus, we can confirm that the proposed AR-based method has
an advantage in terms of PUF size compared to the state-of-the-art FEs for PUFs. For
example, the AR-based FE can achieve 43%, 55%, 27%, 51%, and 51% smaller PUF sizes
than any other conventional debiasing-based FE for E[e] = 0.025 and p1 = 0.58, 0.66, 0.74,
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Table 4: Simulation results of 128-bit key generation using proposed and conventional
binary debiasing-based FEs for averaged BER E[e] = 0.025 and 0.050

BER PUF FE Rep. Outer # of Res. PUF NVM Failure
E[e] bias code code blks entr. size size prob.

0.025

0.58

CVN 1 [63, 16, 23] 8 128.0 2,406 1,707 3.89e-07
2P-TO-VN 4 [63, 36, 11] 4 144.0 1,622 3,244 5.18e-07

MD 3 [127, 92, 11] 3 150.3 1,143 1,143 5.03e-07
BM 5 [127, 64, 21] 2 128.0 1,270 1,270 4.30e-08

This work 1 [63, 16, 23] 8 128.0 656 1,160 3.89e-07

0.66

CVN 1 [63, 16, 23] 8 128.0 2,624 1,816 3.89e-07
2P-TO-VN 4 [63, 36, 11] 4 144.0 1,870 3,740 5.18e-07

MD 3 [127, 85, 13] 3 155.2 2,286 1,143 5.75e-07
BM 9 [127, 64, 21] 2 128.0 2,286 2,286 6.75e-07

This work 1 [63, 16, 23] 8 128.0 837 1,341 3.89e-07

0.74

CVN 1 [63, 16, 23] 8 128.0 3,086 2,047 3.89e-07
2P-TO-VN 4 [63, 36, 11] 4 144.0 2,372 4,744 5.18e-07

MD 3 [255, 187, 19] 1 133.0 1,530 765 1.00e-07
BM 15 [255, 131, 37] 1 131.0 3,825 3,825 4.40e-07

This work 1 [63, 16, 23] 8 128.0 1,122 1,626 3.89e-07

0.82

CVN 1 [63, 16, 23] 8 128.0 4,064 2,536 3.89e-07
2P-TO-VN 4 [63, 36, 11] 4 144.0 3,396 6,792 5.18e-07

MD 3 [127, 71, 19] 3 143.5 4,572 1,143 4.49e-07
BM 35 [255, 131, 37] 1 131.0 8,925 8,925 2.28e-07

This work 1 [63, 16, 23] 8 128.0 1,654 2,158 3.89e-07

0.90

CVN 1 [63, 16, 23] 8 128.0 6,748 3,878 3.89e-07
2P-TO-VN 4 [63, 36, 11] 4 144.0 6,128 12,256 5.18e-07

MD 5 [255, 163, 25] 1 132.0 8,925 1,275 1.10e-08
BM 115 [255, 131, 37] 1 131.0 29,325 29,325 9.99e-07

This work 1 [63, 16, 23] 8 128.0 3,030 3,534 3.89e-07

0.050

0.58

CVN 1 [127, 22, 47] 6 132.0 3,536 2,530 1.13e-07
2P-TO-VN 4 [255, 131, 37] 1 131.0 1,640 3,280 5.75e-09

MD 3 [127, 57, 23] 3 140.5 3,429 1,143 1.21e-07
BM 5 [255, 131, 37] 1 131.0 1,275 1,275 1.66e-08

This work 1 [127, 22, 47] 6 132.0 975 1,737 1.13e-07

0.66

CVN 1 [127, 22, 47] 6 132.0 3,854 2,689 1.13e-07
2P-TO-VN 4 [255, 131, 37] 1 131.0 1,892 3,784 5.75e-09

MD 3 [255, 139, 31] 2 157.8 3,060 1,530 2.44e-07
BM 9 [255, 131, 37] 1 131.0 2,295 2,295 1.39e-07

This work 1 [127, 22, 47] 6 132.0 1,237 1,999 1.13e-07

0.74

CVN 1 [127, 22, 47] 6 132.0 4,526 3,025 1.13e-07
2P-TO-VN 4 [255, 131, 37] 1 131.0 2,398 4,796 5.75e-09

MD 3 [255, 131, 37] 2 172.7 3,060 1,530 3.73e-08
BM 17 [255, 131, 37] 1 131.0 4,335 4,335 4.85e-07

This work 1 [127, 22, 47] 6 132.0 1,651 2,413 1.13e-07

0.82

CVN 1 [127, 22, 47] 6 132.0 5,950 3,737 1.13e-07
2P-TO-VN 4 [255, 131, 37] 1 131.0 3,434 6,868 5.75e-09

MD 3 [255, 91, 51] 3 163.1 9,180 2,295 4.30e-07
BM 39 [255, 131, 37] 1 131.0 9,945 9,945 3.11e-07

This work 1 [127, 22, 47] 6 132.0 2,425 3,187 1.13e-07

0.90

CVN 1 [127, 22, 47] 6 132.0 9,860 5,692 1.13e-07
2P-TO-VN 4 [255, 131, 37] 1 131.0 6,194 12,388 5.75e-09

MD 5 [255, 71, 59] 3 153.5 26,775 3,825 1.88e-07
BM 129 [255, 131, 37] 1 131.0 32,895 32,895 8.52e-07

This work 1 [127, 22, 47] 6 132.0 4,430 5,192 1.13e-07

0.82, and 0.90, respectively.
In addition, whereas BM and MD sometimes have smaller NVM sizes for some smaller

biases and averaged BERs, the AR-based FE has the smallest NVM size for a wider range
of biases and averaged BERs because of its efficiency. As a result, the AR-based FE can
achieve the smallest hardware/implementation cost in total.

4.2 FEs exploiting cell-wise reliability
4.2.1 Implementation cost of FEs

The following subsection reports a comparison of the ternary AR-based FE with its
counterparts, that is, the conventional FEs that exploit the cell-wise reliability. As
mentioned above, such FEs incur a cost in order to obtain the ternary response or cell-wise
reliability for PUF instances and they are not always available (depending on scenario and
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Table 5: Simulation results of 128-bit key generation using proposed and conventional
binary debiasing-based FEs for averaged BER E[e] = 0.075 and 0.100

BER PUF FE Rep. Outer # of Res. PUF NVM Failure
E[e] bias code code blks entr. size size prob.

0.075

0.58

CVN 1 [255, 45, 87] 3 135.0 3,551 2,540 6.18e-07
2P-TO-VN 6 [127, 64, 21] 2 128.0 2,386 4,772 4.81e-09

MD 3 [255, 131, 37] 3 184.0 2,295 2,295 1.40e-07
BM 7 [127, 64, 21] 2 128.0 1,778 1,778 1.84e-07

This work 1 [255, 45, 87] 3 135.0 978 1,743 6.18e-07

0.66

CVN 1 [255, 45, 87] 3 135.0 3,871 2,700 6.18e-07
2P-TO-VN 6 [127, 64, 21] 2 128.0 2,746 5,492 4.81e-09

MD 3 [255, 107, 45] 3 165.6 4,590 2,295 9.59e-07
BM 11 [255, 131, 37] 1 131.0 2,805 2,805 2.04e-08

This work 1 [255, 45, 87] 3 135.0 1,241 2,006 6.18e-07

0.74

CVN 1 [255, 45, 87] 3 135.0 4,543 3,036 6.18e-07
2P-TO-VN 6 [127, 64, 21] 2 128.0 3,474 6,948 4.81e-09

MD 3 [255, 87, 53] 3 154.4 4,590 2,295 3.19e-07
BM 21 [255, 131, 37] 1 131.0 5,355 5,355 2.24e-08

This work 1 [255, 45, 87] 3 135.0 1,657 2,422 6.18e-07

0.82

CVN 1 [255, 45, 87] 3 135.0 5,973 3,751 6.18e-07
2P-TO-VN 6 [127, 64, 21] 2 128.0 4,964 9,928 4.81e-09

MD 3 [255, 47, 85] 6 133.3 18,360 4,590 4.22e-08
BM 43 [255, 131, 37] 1 131.0 10,965 10,965 7.68e-07

This work 1 [255, 45, 87] 3 135.0 2,434 3,199 6.18e-07

0.90

CVN 1 [255, 45, 87] 3 135.0 9,897 5,713 6.18e-07
2P-TO-VN 6 [127, 64, 21] 2 128.0 8,944 17,888 4.81e-09

MD 9 [127, 29, 43] 8 141.7 64,008 9,144 7.45e-07
BM 145 [255, 131, 37] 1 131.0 36,975 36,975 8.40e-07

This work 1 [255, 45, 87] 3 135.0 4,446 5,211 6.18e-07

0.100

0.58

CVN 5 [127, 64, 21] 2 128.0 5,734 4,137 3.24e-08
2P-TO-VN 6 [255, 131, 37] 1 131.0 2,396 4,792 3.93e-08

MD 3 [127, 29, 43] 6 131.8 6,858 2,286 1.28e-07
BM 7 [255, 131, 37] 1 131.0 1,785 1,785 8.37e-08

This work 5 [127, 64, 21] 2 128.0 1,597 2,867 3.24e-08

0.66

CVN 5 [127, 64, 21] 2 128.0 6,246 4,393 3.24e-08
2P-TO-VN 6 [255, 131, 37] 1 131.0 2,756 5,512 3.93e-08

MD 3 [127, 29, 43] 12 138.3 9,144 4,572 5.35e-07
BM 13 [255, 131, 37] 1 131.0 3,315 3,315 1.20e-08

This work 5 [127, 64, 21] 2 128.0 2,016 3,286 3.24e-08

0.74

CVN 5 [127, 64, 21] 2 128.0 7,322 4,931 3.24e-08
2P-TO-VN 6 [255, 131, 37] 1 131.0 3,486 6,972 3.93e-08

MD 3 [255, 47, 85] 6 134.0 9,180 4,590 5.46e-10
BM 23 [255, 131, 37] 1 131.0 5,865 5,865 1.45e-07

This work 5 [127, 64, 21] 2 128.0 2,678 3,948 3.24e-08

0.82

CVN 5 [127, 64, 21] 2 128.0 9,610 6,075 3.24e-08
2P-TO-VN 6 [255, 131, 37] 1 131.0 4,982 9,964 3.93e-08

MD 7 [127, 29, 43] 14 136.7 49,784 12,446 5.46e-09
BM 49 [255, 131, 37] 1 131.0 12,495 12,495 7.09e-07

This work 5 [127, 64, 21] 2 128.0 3,921 5,191 3.24e-08

0.90

CVN 5 [127, 64, 21] 2 128.0 15,888 9,214 3.24e-08
2P-TO-VN 6 [255, 131, 37] 1 131.0 8,976 17,952 3.93e-08

MD 15 [255, 47, 85] 6 131.0 160,650 22,950 8.92e-08
BM 165 [255, 131, 37] 1 131.0 42,075 42,075 6.77e-07

This work 5 [127, 64, 21] 2 128.0 7,140 8,410 3.24e-08

the properties of used PUF). When available, these FEs can achieve higher efficiency than
the corresponding binary FEs.

Table 6 summarizes the implementation costs of the FEs in the global bias model in a
similar manner to Tab. 3. Here, we assume that t1 ≥ t0 for this work (i.e., the AR-based
FE). In Tab. 6, No debias denotes the ternary FE in [KUH19] without debiasing. The
ternary CVN (TCVN), the 2-passes tuple-output ternary von Neumann (2P-TO-TVN),
the pair-output ternary von Neumann with erasures (ε-2O-TVN) denote the VNC-based
FEs extended to the ternary PUF response in [SUHA17,SUHA18], namely the ternary
VNC (TVNC)-based FEs. Note that the NVM size in Tab. 6 is given in bits, whereas the
helper data of No debias and this work is given as a vector consisting of ternary values. In
addition, ε-2O-TVN also utilizes a ternary helper data consisting of “0,” “1,” and “erasure.”
Accordingly, No debias, ε-2O-TVN, and this work require a 2l-bit NVM for storing an l-trit
vector w. In contrast, the NVM sizes of TCVN and 2P-TO-TVN are given in a manner
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(d) E[e] = 0.100

Figure 10: Comparison of AR-based FE with conventional debiasing-based FEs for binary
PUF response.

similar to the binary version, because their helper data (and ECC) are given in binary.

The ternary FEs (i.e., No debias, TCVN, 2P-TO-TVN, ε-2O-VN, and this work (the
AR-based FE) in Tab. 6) should detect random cells in order to utilize the ternary PUF
response (denoted by “detecting rand. cells”) before performing the enrollment and
reconstruction. Whereas the detection can be implemented with only two delay flip flops
(D-FFs), a NAND gate, and an OR gate per PUF cell [YSI+11], a nonnegligible latency
is sometimes required for reliable detection of the random cells; that is, for extraction of
the ternary response with a lower trit-error rate (TER) in the ECC decoding [SUHA18].
C-IBS should derive the cell-wise reliability at the enrollment, and no additional procedure
is required for the reconstruction. Deriving the cell-wise reliability with a statistical
means would basically take a larger cost than random cell detection, which is sometimes
considered to be a nonnegligible overhead [LPS12]. In summary, the enrollment cost is
higher for the C-IBS, whereas the TVNC- and ternary AR-based FEs require a latency
overhead at reconstruction.
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Table 6: Comparison of implementation costs for FEs exploiting cell-wise reliability

Retained NVM Reusa- Candidates of computational bottleneck
entropy size∗ bility Enrollment Reconstruction

No debias N/A 2l Yes Detecting rand. cells Detecting rand. cells
[KUH19] and ECC enc. and ECC dec.
TCVN mTt0,t1,tr

† l + dm/2e No Detecting rand. cells Detecting rand. cells
[SUHA18] and ECC enc. and ECC dec.
2P-TO-TVN mTt0,t1,tr 2m No Detecting rand. cells Detecting rand. cells
[SUHA18] +mE′t0,t1,tr

†‡ and ECC enc. and ECC dec.
ε-2O-TVN mTt0,t1,tr

† 5m/2 Yes Detecting rand. cells Detecting rand. cells
[SUHA18] and ECC enc. and ECC dec.
C-IBS mν1/λ dlog2 λe/λ No Deriving cell-wise ECC dec.
[HMSS12] ×mν1 reliability and

ECC enc.
This work m(2t0 + tr) 2l +m No Detecting rand. cells Detecting rand. cells

RNG, and ECC enc. and ECC dec.

∗ NVM size indicates the total memory size for storing helper data including addition data for debiasing
scheme (e.g., ACL data). Here, m and l differ depending on the efficiency of retained entropy and
BER/TER during ECC decoding. The smaller retained entropy and higher BER/TER yield the greater
m and l.
† Tt0,t1,tr = t0t1 + t0tr + trt1.
‡ E′t0,t1,tr =

t20t
2
1 + t20t

2
r + t2r t

2
1

2(t20 + t21 + t2r )
.

4.2.2 Simulation of 128-bit key generation

Tables 7 and 8 report the performance evaluation results of the TVNC-based FEs, ternary
AR-based FE, and the FE with C-IBS in the same manner as Tabs. 4 and 5, respectively.11

We cannot evaluate ε-2O-TVN here as well as ε-2O-VN. Here, the ternary AR-based FE
employs the ternary Reed-Solomon (RS) code over GF (3), as in the ternary FE of [KUH19],
whereas the C-IBS and TVNC-based FEs employ a binary BCH code. Note that, for the
ternary AR-based FE, the random seed is given by a trit string with a sufficient length
so that the residual min-entropy is greater than 128. The “λ or tr” column in each table
denotes the index block size for C-IBS or the random cell ratio for ternary AR- and
TVNC-based FEs. The column of ν1 denotes the length of inner code, that is, the length
of C-IBS codeword for C-IBS and the repetition code length for TVNC-based FEs and
this work (AR-based FE). We evaluated the FEs when tr = 0.20 and 0.30 for the ternary
FEs. The row of PUF bias denotes the bias in binary response (i.e., p1). We assume
that p0 = t0 + p0tr and p1 = t1 + p1tr for conversion of (p0, p1) to (t0, t1, tr). Furthermore,
recall that E[e] also denotes the averaged BER for the binary PUF response; thus, we use
the empirical noise model presented by Maes [Mae13] and the formulas in [SUHA18] to
convert E[e] to averaged TER for evaluation of the ternary FEs. Figure 11 illustrates the
PUF sizes required for 128-bit key generation with the these FEs.

As detailed in Tabs. 7 and 8 and Fig. 11, the ternary AR-based FE can achieve the
smallest PUF size for cases in which the averaged digit-error rate (i.e., BER or TER) is

11In [SUHA18], there is no description about how to determine the required PUF size m
for TVNC-based FEs such that the enrollment failure probability is smaller than a thresh-
old. As the acceptance probability of a cell (i.e., E[paccept] in Eq. (16)) is given by 2(t0t1 +
t0tr + trt1), we calculate the PUF size m for the TCVN using the following bound: l ≤

cmf−1
bino

(
P

(en)
thre ;

⌊
m
2

⌋
, 2(t0t1 + t1tr + trt0)

)
with P (en)

thre = 10−6. Similarly to TCVN, the PUF size m for
the 2P-TO-TVN is also determined by replacing the acceptance probabilities of the bound for the binary
2P-TO-VN with the ternary ones as follows:

∑l−1
a=0

∑bm
4 c

b=0 pmfbino
(
a−4b

2 ;
⌊
m
2

⌋
, 2(t0t1 + t1tr + trt0)

)
·

pmfbino

(
b;
⌊
m−(a−4b)

4

⌋
,

2(t20t
2
1+t21t

2
r+t2rt

2
0)

(t20+t21+t2r)2

)
< P

(en)
thre , where pmfbino(l;m, p) denotes a pmf for binomial

distribution having l-times successes from m-times challenges with a probability p.
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Table 7: Simulation results of 128-bit key generation using C-IBS and ternary debiasing-
based FEs for averaged BER E[e] = 0.025 and 0.050

BER PUF FE λ
ν1

Outer # of Res. PUF NVM Failure
E[e] bias or tr code blks entr. size size prob.

0.025

0.58

C-IBS 6 3 [127, 64, 21] 2 128.0 1,524 3,810 8.63e-08
TCVN

0.20
1 [63, 36, 11] 4 144.0 958 731 7.17e-09

2P-TO-TVN 4 [31, 26, 3] 5 130.0 1,158 2,316 7.81e-07
This work 1 [26, 12, 15] 4 146.2 397 709 1.38e-07

TCVN
0.30

1 [63, 36, 11] 4 144.0 914 709 2.33e-09
2P-TO-TVN 4 [31, 26, 3] 5 130.0 1,104 2,208 3.66e-07
This work 1 [26, 14, 13] 3 183.2 295 529 1.31e-07

0.66

C-IBS 7 3 [127, 64, 21] 2 128.0 1,778 3,810 1.93e-07
TCVN

0.20
1 [63, 36, 11] 4 144.0 1,002 753 9.04e-09

2P-TO-TVN 4 [31, 26, 3] 5 130.0 1,210 2,420 9.14e-07
This work 1 [26, 12, 15] 4 146.2 482 794 1.38e-07

TCVN
0.30

1 [63, 36, 11] 4 144.0 944 724 2.77e-09
2P-TO-TVN 4 [31, 26, 3] 5 130.0 1,142 2,284 4.11e-07
This work 1 [26, 14, 13] 3 183.2 352 586 1.31e-07

0.74

C-IBS 8 3 [255, 131, 37] 1 131.0 2,040 3,825 3.36e-07
TCVN

0.20
1 [63, 36, 11] 4 144.0 1,084 794 1.36e-08

2P-TO-TVN 4 [15, 11, 3] 12 132.0 1,500 3,000 6.52e-07
This work 1 [26, 12, 15] 4 146.2 599 911 1.38e-07

TCVN
0.30

1 [63, 36, 11] 4 144.0 1,000 752 3.72e-09
2P-TO-TVN 4 [31, 26, 3] 5 130.0 1,208 2,416 5.02e-07
This work 1 [26, 14, 13] 3 183.2 423 657 1.31e-07

0.82

C-IBS 12 3 [255, 131, 37] 1 131.0 3,060 3,825 4.95e-08
TCVN

0.20
1 [63, 36, 11] 4 144.0 1,220 862 2.53e-08

2P-TO-TVN 4 [15, 11, 3] 12 132.0 1,684 3,368 9.94e-07
This work 1 [26, 12, 15] 4 146.2 774 1,086 1.38e-07

TCVN
0.30

1 [63, 36, 11] 4 144.0 1,088 796 5.78e-09
2P-TO-TVN 4 [31, 26, 3] 5 130.0 1,312 2,624 6.75e-07
This work 1 [26, 14, 13] 3 183.2 522 756 1.31e-07

0.9

C-IBS 20 3 [255, 131, 37] 1 131.0 5,100 3,825 6.02e-07
TCVN

0.20
1 [63, 36, 11] 4 144.0 1,444 974 6.30e-08

2P-TO-TVN 4 [63, 45, 7] 3 135.0 2,082 4,164 3.83e-12
This work 1 [26, 12, 15] 4 146.2 1,070 1,382 1.38e-07

TCVN
0.30

1 [63, 36, 11] 4 144.0 1,222 863 1.07e-08
2P-TO-TVN 4 [15, 11, 3] 12 132.0 1,686 3,372 5.56e-07
This work 1 [26, 14, 13] 3 183.2 668 902 1.31e-07

0.050

0.58

C-IBS 6 3 [127, 64, 21] 2 128.0 1,524 3,810 1.39e-07
TCVN

0.20
1 [127, 64, 21] 2 128.0 966 737 1.57e-08

2P-TO-TVN 4 [63, 45, 7] 3 135.0 1,390 2,780 3.54e-08
This work 1 [80, 28, 53] 2 190.2 788 1,428 3.69e-07

TCVN
0.30

1 [127, 64, 21] 2 128.0 920 714 3.80e-09
2P-TO-TVN 4 [63, 45, 7] 3 135.0 1,326 2,652 1.18e-08
This work 1 [80, 24, 57] 1 131.0 397 717 3.59e-12

0.66

C-IBS 7 3 [127, 64, 21] 2 128.0 1,778 3,810 1.56e-07
TCVN

0.20
1 [127, 64, 21] 2 128.0 1,010 759 2.29e-08

2P-TO-TVN 4 [63, 45, 7] 3 135.0 1,452 2,904 4.76e-08
This work 1 [80, 28, 53] 2 190.2 948 1,588 3.69e-07

TCVN
0.30

1 [127, 64, 21] 2 128.0 952 730 5.07e-09
2P-TO-TVN 4 [63, 45, 7] 3 135.0 1,370 2,740 1.47e-08
This work 1 [80, 24, 57] 1 131.0 470 790 3.59e-12

0.74

C-IBS 8 3 [255, 131, 37] 1 131.0 2,040 3,825 9.04e-08
TCVN

0.20
1 [127, 64, 21] 2 128.0 1,092 800 4.45e-08

2P-TO-TVN 4 [63, 45, 7] 3 135.0 1,568 3,136 8.03e-08
This work 1 [80, 28, 53] 2 190.2 1,168 1,808 3.69e-07

TCVN
0.30

1 [127, 64, 21] 2 128.0 1,008 758 8.34e-09
2P-TO-TVN 4 [63, 45, 7] 3 135.0 1,448 2,896 2.17e-08
This work 1 [80, 24, 57] 1 131.0 563 883 3.59e-12

0.82

C-IBS 11 3 [255, 131, 37] 1 131.0 2,805 3,825 3.36e-07
TCVN

0.20
1 [127, 64, 21] 2 128.0 1,228 868 1.23e-07

2P-TO-TVN 4 [63, 45, 7] 3 135.0 1,762 3,524 1.79e-07
This work 1 [80, 28, 53] 2 190.2 1,499 2,139 3.69e-07

TCVN
0.30

1 [127, 64, 21] 2 128.0 1,096 802 1.75e-08
2P-TO-TVN 4 [63, 45, 7] 3 135.0 1,574 3,148 3.86e-08
This work 1 [80, 24, 57] 1 131.0 692 1,012 3.59e-12

0.9

C-IBS 18 3 [255, 131, 37] 1 131.0 4,590 3,825 5.08e-07
TCVN

0.20
1 [127, 64, 21] 2 128.0 1,456 982 5.38e-07

2P-TO-TVN 4 [63, 45, 7] 3 135.0 2,082 4,164 5.82e-07
This work 1 [80, 28, 53] 2 190.2 2,062 2,702 3.69e-07

TCVN
0.30

1 [127, 64, 21] 2 128.0 1,230 869 4.91e-08
2P-TO-TVN 4 [63, 45, 7] 3 135.0 1,764 3,528 8.67e-08
This work 1 [80, 24, 57] 1 131.0 885 1,205 3.59e-12
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Table 8: Simulation results of 128-bit key generation using C-IBS and ternary debiasing-
based FEs for averaged BER E[e] = 0.075 and 0.100

BER PUF FE λ
ν1

Outer # of Res. PUF NVM Failure
E[e] bias or tr code blks entr. size size prob.

0.075

0.58

C-IBS 6 3 [127, 64, 21] 2 128.0 1,524 3,810 6.11e-07
TCVN

0.20
1 [255, 131, 37] 1 131.0 969 739 1.86e-08

2P-TO-TVN 4 [31, 16, 7] 8 128.0 1,790 3,580 7.91e-07
This work 3 [80, 52, 29] 2 255.7 2,292 4,212 3.65e-07

TCVN
0.30

1 [255, 131, 37] 1 131.0 925 717 7.68e-09
2P-TO-TVN 4 [31, 16, 7] 8 128.0 1,708 3,416 5.08e-07
This work 1 [80, 14, 67] 2 143.5 770 1,410 5.97e-08

0.66

C-IBS 7 3 [127, 64, 21] 2 128.0 1,778 3,810 2.76e-07
TCVN

0.20
1 [255, 131, 37] 1 131.0 1,015 762 3.23e-08

2P-TO-TVN 4 [63, 36, 11] 4 144.0 1,896 3,792 2.25e-09
This work 3 [80, 52, 29] 2 255.7 2,728 4,648 3.65e-07

TCVN
0.30

1 [255, 131, 37] 1 131.0 955 732 1.18e-08
2P-TO-TVN 4 [31, 16, 7] 8 128.0 1,764 3,528 6.29e-07
This work 1 [80, 14, 67] 2 143.5 904 1,544 5.97e-08

0.74

C-IBS 8 3 [255, 131, 37] 1 131.0 2,040 3,825 5.22e-08
TCVN

0.20
1 [255, 131, 37] 1 131.0 1,097 803 8.48e-08

2P-TO-TVN 4 [63, 36, 11] 4 144.0 2,046 4,092 4.70e-09
This work 3 [80, 52, 29] 2 255.7 3,335 5,255 3.65e-07

TCVN
0.30

1 [255, 131, 37] 1 131.0 1,011 760 2.45e-08
2P-TO-TVN 4 [31, 16, 7] 8 128.0 1,864 3,728 9.11e-07
This work 1 [80, 14, 67] 2 143.5 1,076 1,716 5.97e-08

0.82

C-IBS 11 3 [255, 131, 37] 1 131.0 2,805 3,825 1.52e-07
TCVN

0.20
1 [255, 131, 37] 1 131.0 1,233 871 3.65e-07

2P-TO-TVN 4 [63, 36, 11] 4 144.0 2,296 4,592 1.46e-08
This work 3 [80, 52, 29] 2 255.7 4,251 6,171 3.65e-07

TCVN
0.30

1 [255, 131, 37] 1 131.0 1,101 805 7.26e-08
2P-TO-TVN 4 [63, 36, 11] 4 144.0 2,052 4,104 4.17e-09
This work 1 [80, 14, 67] 2 143.5 1,315 1,955 5.97e-08

0.9

C-IBS 17 5 [255, 131, 37] 1 131.0 4,335 6,375 5.63e-07
TCVN

0.20
1 [127, 43, 29] 3 129.0 2,099 1,430 2.94e-07

2P-TO-TVN 4 [63, 36, 11] 4 144.0 2,710 5,420 7.77e-08
This work 3 [80, 52, 29] 2 255.7 5,813 7,733 3.65e-07

TCVN
0.30

1 [255, 131, 37] 1 131.0 1,235 872 3.26e-07
2P-TO-TVN 4 [63, 36, 11] 4 144.0 2,300 4,600 1.34e-08
This work 1 [80, 14, 67] 2 143.5 1,672 2,312 5.97e-08

0.100

0.58

C-IBS 6 3 [255, 131, 37] 1 131.0 1,530 3,825 3.54e-09
TCVN

0.20
1 [127, 43, 29] 3 129.0 1,401 1,081 7.47e-07

2P-TO-TVN 4 [63, 36, 11] 4 144.0 1,816 3,632 1.82e-07
This work 3 [80, 40, 41] 2 157.4 2,292 4,212 8.44e-07

TCVN
0.30

1 [127, 43, 29] 3 129.0 1,337 1,049 7.12e-07
2P-TO-TVN 4 [63, 36, 11] 4 144.0 1,734 3,468 1.74e-07
This work 3 [80, 28, 53] 1 134.9 1,141 2,101 3.22e-15

0.66

C-IBS 7 3 [127, 64, 21] 2 128.0 1,778 3,810 7.52e-07
TCVN

0.20
1 [63, 16, 23] 8 128.0 1,896 1,452 2.09e-07

2P-TO-TVN 4 [63, 36, 11] 4 144.0 1,896 3,792 2.68e-07
This work 3 [80, 40, 41] 2 157.4 2,728 4,648 8.44e-07

TCVN
0.30

1 [127, 43, 29] 3 129.0 1,381 1,071 9.87e-07
2P-TO-TVN 4 [63, 36, 11] 4 144.0 1,790 3,580 2.35e-07
This work 3 [80, 28, 53] 1 134.9 1,333 2,293 3.22e-15

0.74

C-IBS 8 3 [255, 131, 37] 1 131.0 2,040 3,825 4.54e-08
TCVN

0.20
1 [63, 16, 23] 8 128.0 2,046 1,527 3.99e-07

2P-TO-TVN 4 [63, 36, 11] 4 144.0 2,046 4,092 5.33e-07
This work 3 [80, 40, 41] 2 157.4 3,335 5,255 8.44e-07

TCVN
0.30

1 [63, 16, 23] 8 128.0 1,892 1,450 3.01e-07
2P-TO-TVN 4 [63, 36, 11] 4 144.0 1,892 3,784 3.95e-07
This work 3 [80, 28, 53] 1 134.9 1,582 2,542 3.22e-15

0.82

C-IBS 11 5 [255, 131, 37] 1 131.0 2,805 6,375 1.90e-08
TCVN

0.20
1 [255, 71, 59] 2 142.0 2,322 1,671 7.16e-11

2P-TO-TVN 4 [127, 64, 21] 2 128.0 2,312 4,624 3.12e-11
This work 3 [80, 40, 41] 2 157.4 4,251 6,171 8.44e-07

TCVN
0.30

1 [63, 16, 23] 8 128.0 2,052 1,530 6.26e-07
2P-TO-TVN 4 [63, 36, 11] 4 144.0 2,052 4,104 8.58e-07
This work 3 [80, 28, 53] 1 134.9 1,927 2,887 3.22e-15

0.9

C-IBS 16 5 [255, 131, 37] 1 131.0 4,080 6,375 4.75e-07
TCVN

0.20
1 [255, 71, 59] 2 142.0 2,740 1,880 1.82e-09

2P-TO-TVN 4 [127, 64, 21] 2 128.0 2,730 5,460 5.29e-10
This work 3 [80, 40, 41] 2 157.4 5,813 7,733 8.44e-07

TCVN
0.30

1 [255, 71, 59] 2 142.0 2,324 1,672 2.10e-10
2P-TO-TVN 4 [127, 64, 21] 2 128.0 2,316 4,632 7.94e-11
This work 3 [80, 28, 53] 1 134.9 2,445 3,405 3.22e-15
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relatively small. This is because the ternary AR-based FE has a larger expected length of
debiased trit string than those of the TVNC-based FEs. Notably, if the random cells ratio
(i.e., tr) is higher, both the ternary AR- and TVNC-based FEs are become more efficient.
This clearly shows the effectiveness of ternary encoding of the PUF response; that is, the
random cells can contribute to the entropy. In contrast, they are considered as a noise in
the binary encoding, including C-IBS.

The efficiency of the TVNC-based FE is comparable to or higher than that of the
AR-based FE when the averaged digit-error rate is relatively high and tr = 0.20. This is
because that the mapping used in the TVNC is equivalent to an ECC decoding with a
Hamming erasure distance. Hence, the TVNC-based FE is more robust to an increase in
noise, and can, therefore, provide efficient key generation even if the noise is increased.
Moreover, if the ratio of random cells is lower, the debiased trit string of ternary AR-based
debiasing is far from the uniform distribution, which leads to a nonnegligible min-entropy
loss and larger PUF size when the averaged TER is relatively higher. From the perspective
of NVM size, we can also confirm that the ternary AR-based FE has a size comparable to
conventional methods for PUFs to which the ternary AR-based FE is efficiently applied,
whereas the ternary AR-based FE requires a 2l-bit NVM for storing an l-trit vector. This
yields the smaller hardware/implementation cost of the ternary AR-based FE in total.
Thus, we can confirm the effectiveness of the ternary AR-based FE for PUFs with some
biases and digit-error rates, especially in the cases that the ratio of random cells is high.
For example, the ternary AR-based FE can achieve up-to 63% and 57% higher efficiency
than its conventional counterparts for E[e] = 0.025 and 0.050, respectively.

5 Discussion

5.1 Required preconditions and assumptions
In this study, we assume that the bias of PUF is known. However, it is sometimes
difficult to obtain the PUF biases in practice. To the best of authors’ knowledge, there
are two major methods for estimating the PUF biases: analog simulation and statistical
means. Analog simulation extracts the characteristics of PUF using circuit simulation
tools such as SPICE, Spectre, and Nanosim. We can extract an exact bias (and BER)
if we use a precise model. One major drawback of such simulation-based methods is
the computational cost. It is quite time-consuming to simulate circuits with a precise
model. Each PUF characteristics may differ depending on its location in a chip (that
is one of the motivations to introduce the cell-wise bias model). Therefore, it would be
desirable to simulate whole PUF circuits but not a PUF cell to obtain an exact (cell-
wise) bias, which would be infeasible in practice. On the other hand, an estimation
method based on a statistical means is to measure PUF responses from many PUF devices
and then analyze the obtained PUF response statistically from the viewpoints of, for
example, (cell-wise) bias and BER. However, the accuracy/resolution of the estimated
characteristics depends on the number of available PUF devices and measurements of PUF
responses. For achieving a high accuracy/resolution, we require more PUF devices and
measurements, which leads to a non-negligible cost. Note that statistical methods obtain
only an approximated bias and BER because they are given by the finite number of PUF
devices and measurements. Moreover, the characteristics of PUFs may change depending
on the measurement environment including supply voltage and temperature, which makes
it more difficult to identify the PUF bias without any ambiguity nor fluctuation.

Thus, it would be sometimes difficult to estimate the exact bias of PUF, which means
that the PUF bias is given with limited resolution in practice. If the estimated PUF bias is
different from the actual bias, the debiasing schemes cannot extract a uniform distribution,
which yields the entropy leakage from the helper data even in the presence of debiasing
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(a) E[e] = 0.025 (b) E[e] = 0.500

(c) E[e] = 0.075 (d) E[e] = 0.100

Figure 11: Comparison of FEs exploiting cell-wise reliability.

schemes. However, even in the presence of such a discrepancy, the debiasing schemes with
an entropy buffer can realize a secure key generation with sufficient residual (min-)entropy
via the worst-case evaluation.

Let ∆ be the difference between the estimated global bias and actual bias, which can
also be considered as the resolution of bias. We assume that the actual biases are given as
p1 + ∆ and p0 −∆ for the probabilities of values “1” and “0,” respectively. The remaining
biases of u (i.e., p′1 and p′0) in the binary AR-based FE can be derived by modifying
Eqs. (5) and (6) as follows:

p′1 = Pr(xi = 1|di = 1)

= (p1 + ∆)q1

q′1

= p0p1 + ∆p0

2p0p1 −∆(p1 − p0) , (30)

p′0 = Pr(xi = 0|di = 1)

= p0 −∆
q′1

= p0p1 −∆p1

2p0p1 −∆(p1 − p0) , (31)

when p1 ≥ p0. Note here that q′1 (i.e., the bias of d) in Eqs. (5) and (6) is given by
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Table 9: Resulting biases p′1 for different PUF biases p1 and resolutions ∆

p1
0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

∆

0.005 0.505 0.505 0.506 0.506 0.507 0.508 0.510 0.514
0.010 0.510 0.510 0.511 0.512 0.514 0.516 0.520 0.529
0.015 0.515 0.516 0.517 0.518 0.529 0.524 0.531 0.545
0.020 0.520 0.521 0.522 0.524 0.527 0.532 0.541 0.561
0.025 0.525 0.526 0.528 0.530 0.534 0.541 0.553 0.578
0.030 0.530 0.532 0.534 0.537 0.542 0.550 0.564 0.596

q′1 = (p0 −∆) + q1 + (p0 −∆)q1 = 2p0 −∆(1− p0/p1) in this case, because d is computed
from PUF response x having a bias of p1 + ∆. When p0 > p1, the resulting bias is
given in a symmetrical manner about p0 and p1. Here, Eqs. (30) and (31) represent the
worst-case biases of u owing to the difference between the estimated and actual biases of
PUF. Therefore, we can evaluate the bounds of the residual (min-)entropy leakage/loss of
the AR-based FE(s) according to the algorithms presented by Delvaux et al. [DGV+16],
assuming that u has the biases of p′0 and p′1.

Table 9 and Fig. 12 display the resulting bias p′1 for different PUF biases p1 and
resolutions ∆. Here, we show the case that p1 ≥ p0 as it should be symmetrical. In the
most cases, the resulting bias is less than 0.58. In particular, if the resolution is higher
than 0.02 (i.e., ∆ ≤ 0.02), we found that 0.42 ≤ p′1 ≤ 0.58 for 0.08 ≤ p1 ≤ 0.92. It is
known that a 128-bit key generation can be easily realized by buffering entropy when
0.42 ≤ p1 ≤ 0.58 as shown in Tab. 1 and Refs. [MLSW15,DGV+16]. As a resolution of
0.02 would be sufficiently practical for the design and evaluation of PUFs, the problem
regarding the resolution of bias is trivial for the AR-based FE in terms of entropy leakage.

In addition, the PUF size of AR-based FE should be determined regarding the actual
bias for a reliable enrollment, which means that we estimate the worst-case estimation
of the excepted acceptance probability E[paccept] in Eq. (16). In other words, a limited
resolution of bias would also contaminate the enrollment reliability. Note that the limited
resolution of bias does not contaminate the reconstruction reliability of AR-based FEs
because it has no influence on the averaged BER (or TER) at the ECC decode.

In this part of the study, we employed the global bias model. However, even if we
employ the cell-wise bias model, the expected remaining bias in u and the worst-case
residual (min-)entropy can be evaluated using the expected value of biases, i.e., the global
biases. Therefore, the global bias and Eqs. (30) and (31) are used for the worst-case
evaluation and for determination of PUF size with regard to the residual (min-)entropy,
even for assumption of a cell-wise bias model. Thus, the bias and BER of PUF, their
resolutions, and their distribution (i.e., cell-wise bias and reliability) are required as a
precondition for design of an FE and a key generation system based on the proposed
debiasing scheme (as well as the conventional schemes). These designs would be established
for given implementation resources such as PUF and NVM sizes.

Note that all the conventional debiasing schemes should also consider the problem
pertaining to the resolution of bias, and determine the PUF and NVM sizes according
to the lower bound estimated from the worst-case. Here, depending on the scheme, the
limited bias resolution contaminates both/either security and/or reliability. For example,
as the VNC-based FEs extract debiased bit strings without parameters depending on bias,
and therefore, only the enrollment reliability is contaminated by the resolution of bias
in the case of VNC-based FE. In contrast, in the case of any other schemes, the security
is compromised if the difference between actual and estimated biases is nonnegligible,
because these FEs utilize a PUF bias as a parameter or input of their debiasing algorithm.
This induces the entropy leakage due to the remaining bias after debiasing, and therefore
these FEs should have an entropy buffer. In addition, since BM and MD calculate the
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Figure 12: Graphical representation of resulting biases p′1 corresponding to Tab. 9.

averaged BER at the ECC decode in their reconstruction from the estimated bias, the
reconstruction reliability would also be affected for BM and MD.

Another discussion point is the validity/generality of the bias models. The disorder
between the model and actual bias induces the entropy leakage. Whereas the cell-wise
bias model can represent a wide range of PUF biases (e.g., the area-wise bias in Fig. 2
and the word-wise bias of SRAM PUF), some PUFs are known to have the spatial
correlation, spatial proximity, and/or bias in the higher-order statistical moment(s), which
are outside the cell-wise bias model [WGP18]. A spatial correlation or proximity indicates
an (auto)correlation between cells in a PUF response and PUF response is not i.i.d. Such
correlations decrease the (min-)entropy of the PUF response, and induce the (min-)entropy
loss. Although we assumed that the PUF response is i.i.d in this study, it may be possible
to extend the AR-based debiasing to mitigate such correlations. To achieve this, word-wise
rejection sampling depending on the shape of correlation is one of possible extensions of the
AR-based FE. As rejection sampling can be basically applied to any type of distribution,
rejection sampling with a sufficiently large word length is likely to be used for extraction
of the decorrelated response. Its implementation and evaluation would remain as future
work.

5.2 Reusability limitation
Reusability is one of the important properties for FEs because it makes the application
range of PUF-based systems larger. A reusable FE can enroll random seed many times
with a negligible leakage without using the previous helper data. It is clear that the
AR-based FEs are not reusable because an attacker knows that the rejected cell has a
value of one if p1 > p0 and vice versa, and it may be used in the next enrollment.

Among the debiasing-based FEs mentioned in this paper, ε-2O-VN is proven to be
reusable. The reusability of ε-2O-VN is achieved by replacing the discarded bit with an
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erasure symbol (or a placeholder). Although we mentioned some similarities between
the AR- and VNC-based FEs, such an extension to the reusability is not applicable to
the AR-based FE. Therefore, another extension approach would be required to make the
AR-based FE reusable. Since Delvaux et al. mentioned in [DGV+16] that the reusable
VNC-based FE has a considerably larger cost than nonreusable ones, the AR-based FE
would require a nonnegligible additional cost as well as VNC-based FE if it is extended to
be reusable.

5.3 Potential attacks and risks
Like conventional FEs, the AR-based FE would be potentially targeted by data manipu-
lation attacks [DGSV15,Del17]. In a data manipulation attack, the attacker repeatedly
injects an error into helper data and then checks whether key reconstruction fails. Using
the key reconstruction result as an oracle, the attacker can then estimate the decoded seed
and PUF response with far less complexity than a brute-force effort in some scenarios.
To protect the AR-based FE against such data manipulation attacks, a hash function or
signature is useful, as it can detect helper data manipulation. For the AR-based FE, the
hash or signature should be generated from the ACL data in addition to the helper data
and secret seed/key, because the attacker may obtain the information about the PUF
response bit with di = 1 by replacing it with di = 0 (and vice versa). See [DGSV15,Del17]
for a concrete construction of this countermeasure and its security.

The transistor-aging effect is also considered as a potential risk for PUF-based systems,
because it changes the bit- (or digit-)error rate. To address this issue, the ECC of AR-based
FE should be designed with considering the aging effect, as suggested in several previous
studies [Del17]. However, although the transistor-aging effect may change the distribution
of the PUF response, it will not have impact on the residual (min-)entropy of the AR-based
FE. As the helper data is generated at the enrollment before transistor-aging, the attacker
cannot exploit the transistor-aging effect through the observation of helper data, as long
as the key reconstruction does not fail.

6 Conclusion
This paper presented an efficient FE construction based on a new debiasing method named
AR-based FE, which employs the principle of rejection sampling. The proposed FE can
derive a debiased bit (or trit) string from biased PUFs more efficiently than conventional
schemes. Additionally, the AR-based FE can be simply implemented with an RNG and
bit-parallel logic operations in the enrollment server, and it does not require any additional
resource-consuming operation at the reconstruction in the client device with PUFs that
performs the reconstruction. The AR-based FE can be extended to a ternary-encoded
PUF response by combining the proposed scheme with a ternary FE, which can yield a
further improvement.

The performances of the proposed FEs were analyzed in comparison with the conven-
tional FEs through experimental 128-bit key generation from PUFs with various biases
and averaged digit-error rates. Consequently, we confirmed that the AR-based FE could
achieve the smallest PUF and NVM sizes for a wide range of biases and averaged digit-error
rates. For example, the AR-based FE requires at least 55% and 51% smaller PUF size
or at least 79% and 53% smaller NVM size than any other conventional counterparts for
biases of p1 = 0.66 and p1 = 0.90, respectively. In addition, the ternary AR-based FE has
up-to 55% higher efficiency than the binary version, and can achieve up-to 63% and 57%
higher efficiency than its conventional counterparts for E[e] = 0.025 and 0.050, respectively.
These results indicate that the AR-based FEs can achieve secure key generation with
minimal hardware cost. Moreover, we demonstrated an extension of the AR-based FE
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to the cell-wise bias model. Whereas conventional debiasing schemes cannot generally
be applied to the cell-wise biases, the extended AR-based FE can realize a secure key
generation from PUFs even for cell-wise biases.

Extension of the AR-based FE to mitigate spatial correlation or biases in high-order
moments remains as future work. Additionally, the design and implementation of an actual
key generation system featuring the proposed method should be conducted in the future.
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Appendix
A. Comparison with CC-based FE
The AR-based FE is compared with the CC-based FEs [HO17]. Note, however, that it is
difficult to derive the residual min-entropy of a CC-based FEs with a BCH code owing
to the lack of description and publicly available data. Therefore, we evaluate the AR-
and CC-based FEs with a Reed-Muller (RM) code used in the evaluation of [HO17] as
in [USH19]. Table 10 lists the required PUF size, NVM size, and reconstruction failure
rate required for key generation using a 128-bit random seed for both the AR- and CC-
based FEs with a concatenated code of outer [64, 22, 16] RM and inner repetition codes.
Here, “CC bits” indicates the number of bits discarded to mitigate the entropy loss of the
CC-based FE. Here, we retrieved the values of the CC-based FE from [USH19], whereas
those for the AR-based FE are calculated according to the formulas presented in Section 3.
From Tab. 10, we can confirm that the AR-based FE can achieve a smaller PUF size than
the CC-based FE under various conditions. If the PUF bias p1 is large, it is necessary
for the CC-based FEs to discard many bits of random seed to mitigate the entropy loss.
Moreover, the CC-based FEs cannot mitigate the entropy leak sufficiently for very large
biases, as apparent from the entropy leakage results in the table. Note that efficient
combination of CC-based debiasing with an FE with DSC [HYS16] was shown by Hiller
and Önalan [HO17]; the efficiency was demonstrated through application to an SRAM
PUF with p1 = 0.54 and E[e] = 0.10. However, the efficiency of this combination for
different biases and averaged BERs is unclear, and we cannot evaluate CC-based FEs with
DSC because there is insufficient information on their evaluation. Note that, in this work,
we focused on FEs with code-offsets as we aim to fairly compare the debiasing methods.
Note also that the AR-based FE would work with various FEs for PUFs, including those
featuring DSC.

B. Comparison with TD-based FE
Table 11 lists the evaluation results of the AR- and TD-based FEs [Š17] for 128-bit key
generation. To conduct a fair comparison and to clarify the advantages of proposed
debiasing scheme, we introduce some assumptions for the evaluation of TD-based FE.
That is, we hypothetically apply TD to an FE with code-offset construction, and design a
repetition-BCH concatenated code according to averaged BER such that the PUF size
is minimized under the condition that the expected reconstruction failure probability is
smaller than 10−6. Therefore, each of ECC, number of blocks, residual min-entropy, and
the expected reconstruction failure probability are identical for the AR- and TD-based
FEs. Subsequently, we determine the required PUF size according to Eq. (16) for the
AR-based FE such that the expected enrollment failure probability is smaller than 10−6,
and hypothetically determine the same PUF size for the TD-based FE as the AR-based
FE. We also consider the fact that the order of retained entropy of TD is the same as
the AR-based debiasing. These assumptions and approaches are adopted because we
cannot define the parameters and building blocks for the design of TD-based FE due to
the lack of description about how to define/determine them for given PUF bias, BER,
and implementation resources. Even under the above assumptions, we can confirm that
the AR-based FE has 42–79% smaller NVM size than the TD-based FE. Moreover, note
again that the AR-based FE can work with the cell-wise bias model and requires no
additional resource-consuming operations except for an RNG. In contrast, the TD-based
FE cannot mitigate the cell-wise bias and requires additional cost for implementing DRSGl,
constructing lists, and set manipulation. Thus, we can confirm the advantages of the
AR-based FE over the TD-based FE.
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Table 10: Simulation results of key generation using 128-bit random seed with AR- and
CC-based FEs (Values for CC-based FE are derived from [USH19])

BER PUF FE CC Rep. # of Entropy PUF NVM Failure
E[e] bias bits code blks leakage size size prob.

0.050

0.52 CC
4 3 8 ≤ 7.69 1,536 1,536 2.35e-08
5 3 8 ≤ 4.96 1,536 1,536 2.35e-08
6 3 8 ≤ 3.35 1,536 1,536 2.35e-08

This work - 3 6 0 1,237 2,389 1.41e-07

0.56 CC
18 3 32 ≤ 5.25 6,144 6,144 2.35e-08
19 3 43 ≤ 5.06 8,256 8,256 2.35e-08
20 3 64 ≤ 4.61 12,288 12,288 2.35e-08

This work - 3 6 0 1,377 2,529 1.41e-07

0.60 CC
19 3 43 ≤ 27.24 8,256 8,256 2.35e-08
20 3 64 ≤ 23.63 12,288 12,288 2.35e-08
21 3 128 ≤ 22.35 24,576 24,576 2.35e-08

This work - 3 6 0 1,536 2,688 1.41e-07

0.100

0.52 CC
4 5 8 ≤ 7.69 2,560 2,560 8.33e-08
5 5 8 ≤ 4.96 2,560 2,560 8.33e-08
6 5 8 ≤ 3.35 2,560 2,560 8.33e-08

This work - 5 6 0 2,047 3,967 5.00e-07

0.56 CC
18 5 32 ≤ 5.25 10,240 10,240 8.33e-08
19 5 43 ≤ 5.06 13,760 13,760 8.33e-08
20 5 64 ≤ 4.61 20,480 20,480 8.33e-08

This work - 5 6 0 2,268 4,188 5.00e-07

0.60 CC
19 5 43 ≤ 27.24 13,760 13,760 8.33e-08
20 5 64 ≤ 23.63 20,480 20,480 8.33e-08
21 5 128 ≤ 22.35 40,960 40,960 8.33e-08

This work - 5 6 0 2,522 4,442 5.00e-07

0.150

0.52 CC
4 9 8 ≤ 7.69 4,608 4,608 3.37e-09
5 9 8 ≤ 4.96 4,608 4,608 3.37e-09
6 9 8 ≤ 3.35 4,608 4,608 3.37e-09

This work - 9 6 0 3,662 7,118 2.02e-08

0.56 CC
18 9 32 ≤ 5.25 18,432 18,432 3.37e-09
19 9 43 ≤ 5.06 24,768 24,768 3.37e-09
20 9 64 ≤ 4.61 36,864 36,864 3.37e-09

This work - 9 6 0 4,042 7,498 2.02e-08

0.60 CC
19 9 43 ≤ 27.24 24,768 24,768 3.37e-09
20 9 64 ≤ 23.63 36,864 36,864 3.37e-09
21 9 128 ≤ 22.35 73,728 73,728 3.37e-09

This work - 9 6 0 4,482 7,938 2.02e-08

0.200

0.52 CC
4 11 8 ≤ 7.69 5,632 5,632 8.43e-07
5 11 8 ≤ 4.96 5,632 5,632 8.43e-07
6 11 8 ≤ 3.35 5,632 5,632 8.43e-07

This work - 13 6 0 5,274 10,266 1.08e-07

0.56 CC
18 11 32 ≤ 5.25 22,528 22,528 8.43e-07
19 11 43 ≤ 5.06 30,272 30,272 8.43e-07
20 11 64 ≤ 4.61 45,056 45,056 8.43e-07

This work - 13 6 0 5,809 10,801 1.08e-07

0.60 CC
19 11 43 ≤ 27.24 30,272 30,272 8.43e-07
20 11 64 ≤ 23.63 45,056 45,056 8.43e-07
21 11 128 ≤ 22.35 90,112 90,112 8.43e-07

This work - 13 6 0 6,433 11,425 1.08e-07



128 Rejection Sampling Schemes for Extracting Uniform Distribution from Biased PUFs

Table 11: Simulation results of 128-bit key generation using AR- and TD-based FEs

BER PUF FE Rep. Outer # of Res. PUF NVM Failure
E[e] bias code code blks entr. size size prob.

0.025

0.58 TD

1 [63, 16, 23] 8 128.0

656 5,544

3.89e-07

This work 1,160

0.66 TD 837 5,544
This work 1,341

0.74 TD 1,122 6,048
This work 1, 626

0.82 TD 1,654 6,048
This work 2,158

0.90 TD 3,030 6,552
This work 3,534

0.050

0.58 TD

1 [127, 22, 47] 6 132.0

975 8,382

1.13e-07

This work 1,737

0.66 TD 1,237 9,144
This work 1,999

0.74 TD 1,651 9,144
This work 2,413

0.82 TD 2,425 9,906
This work 3,187

0.90 TD 4,430 10,668
This work 5,192

0.075

0.58 TD

1 [255, 45, 87] 3 135.0

978 8,415

6.18e-07

This work 1,743

0.66 TD 1,241 9,180
This work 2,006

0.74 TD 1,657 9,180
This work 2,422

0.82 TD 2,434 9,945
This work 3,199

0.90 TD 4,446 10,710
This work 5,211

0.100

0.58 TD

5 [127, 64, 21] 2 128.0

1,597 15,240

3.24e-08

This work 2,867

0.66 TD 2,016 15,240
This work 3,286

0.74 TD 2,678 16,510
This work 3,948

0.82 TD 3,921 16,510
This work 5,191

0.90 TD 7,140 17,780
This work 8,410
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