
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 4, pp. 49–85. DOI:10.13154/tches.v2020.i4.49-85

Plaintext: A Missing Feature for Enhancing the
Power of Deep Learning in Side-Channel

Analysis?
Breaking multiple layers of side-channel countermeasures

Anh-Tuan Hoang1, Neil Hanley1, Maire O’Neill1

Centre for Secure Information Technologies (CSIT), ECIT, Queen’s University Belfast, United
Kingdom at.hoang@qub.ac.uk,n.hanley@qub.ac.uk,m.oneill@ecit.qub.ac.uk

Abstract. Deep learning (DL) has proven to be very effective for image recogni-
tion tasks, with a large body of research on various model architectures for object
classification. Straight-forward application of DL to side-channel analysis (SCA)
has already shown promising success, with experimentation on open-source variable
key datasets showing that secret keys can be revealed with 100s traces even in the
presence of countermeasures. This paper aims to further improve the application
of DL for SCA, by enhancing the power of DL when targeting the secret key of
cryptographic algorithms when protected with SCA countermeasures. We propose a
new model, CNN-based model with Plaintext feature extension (CNNP) together with
multiple convolutional filter kernel sizes and structures with deeper and narrower
neural networks, which has empirically proven its effectiveness by outperforming ref-
erence profiling attack methods such as template attacks (TAs), convolutional neural
networks (CNNs) and multilayer perceptron (MLP) models. Our model generates
state-of-the art results when attacking the ASCAD variable-key database, which has
a restricted number of training traces per key, recovering the key within 40 attack
traces in comparison with order of 100s traces required by straightforward machine
learning (ML) application. During the profiling stage an attacker needs no additional
knowledge on the implementation, such as the masking scheme or random mask
values, only the ability to record the power consumption or electromagnetic field
traces, plaintext/ciphertext and the key. Additionally, no heuristic pre-processing
is required in order to break the high-order masking countermeasures of the target
implementation.
Keywords: Deep learning · CNN · AES · Plaintext feature extension · integer
encoding · one-hot encoding · key reveal · higher-order masking

1 Introduction
Since side-channel analysis (SCA) was introduced in 1996 [Koc96] based on the difference
in power consumption of bit transitions, much research has been conducted on efficient
methods to both break and protect cryptographic implementations. Common attack
methods such as differential power analysis (DPA) [KJJ99], correlation power analysis
(CPA) [BCO04], or differential frequency-based analysis (DFA) [GHT05], allow divide and
conquer strategies to significantly reduce the computational complexity of key recovery when
additional power (or electromagnetic) information is available. For example, in the case of
the Advanced Encryption Standard (AES)-128, it is reduced from O

(
2128) to O (16× 28).

In order to protect against such attacks a number of countermeasures have been proposed,
many of which are now standard in commercial security products such as credit cards etc. At

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-04-15 Accepted: 2020-06-15 Published: 2020-08-26

https://doi.org/10.13154/tches.v2020.i4.49-85
mailto:at.hoang@qub.ac.uk, n.hanley@qub.ac.uk, m.oneill@ecit.qub.ac.uk
http://creativecommons.org/licenses/by/4.0/

50 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

the hardware layer techniques such as dual-rail logic [TAV02, TV04, PM05, CZ06, HF12]
attempt to equalise the power consumption of the underlying algorithm regardless of
the data being processed, while at the algorithmic layer techniques such as masking
[GT02, GM11, NSGD12, Cor14, RBN+15] introduce fresh randomness to reduce the useful
leakage available to an attacker. Both these techniques, as well as all other countermeasures,
come with various trade-offs for the level of protection provided in terms of execution time,
randomness required, silicon (or memory) size etc.

While statistical and machine learning (ML) have a long history, the recent progress
in deep learning (DL) in particular, has led to such techniques being applied in the SCA
context for key recovery in the presence of countermeasures. These attacks fall under
the profiling adversarial model, where it is assumed that the attacker has a similar (or
identical) training device(s) to measure a large quantity of traces in order to build an
accurate power model, which then allows key recovery from the target device in relatively
few traces. Among the DL approaches, convolutional neural network (CNN) based models
seem most promising [MPP16, PSK+18, Tim19, WPB19] due to their effectiveness when
training with raw data, with the convolutional layer acting as a filter to pick out the
relevant features for classification.

1.1 Related Work
There are a large number of available ML and DL algorithms and models, as well as
more general statistical learning techniques that can be applied to SCA. Some initial
DL based SCA attacks have been given by [LBM15, GHO15, MZVT16]. However, these
attacks are based on an assumption that the number of masks are either very limited,
or an adversary is able to fully access the internal values of the target devices when
profiling, including the values of the random masks, which is generally not feasible in
practice. Research into the performance of many algorithms in the context of SCA
has been conducted, including support vector machines (SVMs), random forests (RFs),
auto-encoders, DL, template attacks (TAs) (which are equivalent to linear discriminant
analysis (LDA) or quadratic discriminant analysis (QDA) depending on how the covariance
matrix is generated). In [LPB+15], TAs, SVMs, and RFs are applied to various leakage
datasets, concluding that TAs outperform ML-based attacks when the data dimension
is low while ML-based methods have an advantage when the noise level of the leakage
traces increases, or where only limited profiling of the device is possible. In [MPP16], the
potential of efficient DL based side channel key recovery attacks is highlighted, showing
how DL-based auto-encoder models outperform other ML and TA models when attacking
either unprotected or masked cryptographic implementations. However, not all research
points to DL superiority, with [PSK+18] claiming that simpler methods like RF outperform
CNN based DL models in some cases. The effectiveness of using CNN models is shown
in [WPB19], with no dimensionality reduction required when attacking implementations
of public-key cryptography when compared to other profiling attack algorithms such
as SVM, TA or RF, while [PEC19] highlights the importance of L2 normalization for
automated selection of points of interest (PoI). In efforts to increase the effectiveness of
DL performance in the context of SCA, an in-depth analysis in [PSB+18, Mag19] noted
that the size of filter in a CNN model is an important factor as its length should cover the
most interesting PoI to enable the combination of the corresponding leakage. However,
the required length can vary where a designer inserts fake computational operations into
the design. In [KPH+19], adding artificial noise to the source traces was found to greatly
reduce over-fitting the model the training set, improving classification accuracy.

In terms of design assessments and tools for analysis, the deep learning leakage
assessment (DL-LA) framework was proposed in [WMM19] to determine whether an
attacker is able to extract information from side channel measurements, while [vdVP19]
proposes a tool to enable users understand how a change in experimental inputs influences

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 51

the performance of ML. A gradient visualization tool is presented in [MDP19], showing
temporal moments where sensitive information leaks.

A non-profiled DL attack approach was proposed in [Tim19]. The secret key is revealed
by combining key guesses with an analysis of DL accuracy/loss metrics, with the intuition
that these will be highest/lowest, for the correct key. Although this method requires
training a DL model for each hypothesis key hence is computationally intense, it was
successful in attacking sensitive data protected by multiple masks.

A state of the art effort in including SCA domain knowledge into DL architectures was
given by [HGG18], in which the plaintext was given as an additional input to increase the
accuracy when directly training on the key value. While this paper shares a similar approach
to input domain knowledge, there is a significant difference with regards to architecture
aspects such as the length of PoI and network structure, affecting how the domain
knowledge and PoI leakage spread through the network layers, enabling our model to work
against cryptographic implementations with complex high-order countermeasures. Differing
from [HGG18], who developed a straightforward CNN model to deal with unprotected
AES implementations, and implementations using shift-based countermeasures, this work
develops a DL model to attack an AES implementation with high-order masking and other
SCA countermeasures. Beside the plaintext extension, which is similar with [HGG18], our
proposed CNNP models are developed with small convolutional filter kernel sizes (referred
as PoI size, which determines the number of features combined per CNN layer), multiple
PoI sizes and multiple convolutional structures in combination, before being fed into a
deep and narrow neural structure.

Three considerations are taken into our model design:

• Interesting PoI may be at differing distances in relation to each other, hence multiple
feature size extraction and combination lengths are used to better account for this
variability.

• Including specific features such as the plaintext or ciphertext will increase the
attacking accuracy. In addition, encoding methods for plaintext feature extension,
such as integer and one-hot, are investigated and evaluated.

• Network structure (deeper and wider network) affects the accuracy with the same
number of parameters [BC14, AJR+18], in which deeper networks (which incorporate
more layers for better feature embedding) provides better accuracy compared to
wider networks (increased number of neurons with larger number of feature maps
per layer).

Given these considerations, we built a complex model with multiple convolutional filter
kernel sizes working together such that the most interesting PoI are covered during the
combination of the side-channel leakage [PSB+18, Mag19], and additional features such
as the plaintext are provided as an extra input. Our network is also deeper but narrower
than that of VGG16 used in [PSB+18]. We label the traces using the output values of the
SBox in round 1 so that the model can be used even where only a limited number of key
values are available to be profiled.

1.2 Our Contributions
This paper shows the limitations of straight-forward application of available ML models for
SCA in using traces from a protected AES implementation as a case study. We propose a
number of CNN models that look to enhance DL from a side-channel aspect, taking domain
knowledge into consideration. Our proposed models allow key recovery when targeting
an AES implementation protected with higher-order masking, outperforming in terms of
required traces for key recovery (40 on the ASCAD variable key database) approaches

52 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

based on TAs, MLs or current CNN models applied to the same dataset. Additionally fewer
epochs are required during the training stage leading to lower computational requirements.
Our main contributions include:

1. Showing the advantage of using the plaintext as a feature in straight forward
application of available DL models for SCA. Omitting this feature significantly
reduces the effectiveness of ML models in attacking AES implementations with
countermeasure methods applied.

2. Comparison of two different methods, absolute value and one-hot encoding, for
including plaintext data to the model to enhance its accuracy.

3. Introduction of a new CNN model architecture for SCA, a CNN-based model
with Plaintext feature extension that we denote CNNP, as well as multiple parallel
feature extraction and combination convolutional layers, and a new deep and narrow
network structure. While CNNP is introduced in this paper targeting the AES
algorithm as an example, the approach is generic to other targets. Additionally this
model architecture is not tailored to any specific AES implementation, with the fact
that designers can always apply additional countermeasures such as random delays,
dth-order masking or secret sharing are also taken into consideration.

4. Reducing the requirements of applying DL on SCA, particularly when attacking
implementations with countermeasures applied, in which thousands of traces can be
required to break higher-order protected AES implementations using DL. This work
allows for key recovery with only 40 traces attack on the same database.

5. Discussion around hyper-parameter selection, such as convolutional layer size, multi-
ple filter kernel size, plaintext encoding mechanism, and their effect on the CNNP
model.

Evaluation and verification of the robustness of our proposed CNNP models are carried
out through experimental analysis on the open source ASCAD databases.

2 Background
2.1 SCA and Countermeasures
2.1.1 SCA Approaches

SCAs work on the principal that the power consumed by a device is dependent on the
operation being performed and the data being processed. This allows an adversary to
estimate what the power consumption should be for some intermediate value that is a
function of some known data (e.g. a plaintext or ciphertext byte), and some unknown data
(e.g. a secret key byte). In a non-profiled attack, a statistical distinguisher (e.g. students
t-test) can then be used between the actual power traces, and the estimated traces in order
to determine if the secret key hypotheses is correct. In order to improve the effectiveness of
the distinguisher, a leakage model is generally first applied to the intermediate value. For
a profiled attack, as in this paper, it is assumed that an attacker has a similar or identical
device that he can record a large number of acquisitions on, allowing an accurate profiling
of the actual power leakage of the device.

While for non-profiling attacks a leakage model such as based on the Hamming weight
of a value can often provide a sufficently accurate approximation for successful attacks,
the value leakage model is used in this paper. This simply considers that the value itself
leaks information to the side-channel such that different values consume different amounts
of power. This model is widely utilised for profiling attacks, as when labelling the traces

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 53

by some intermediate value for training, its allows the model to learn a broader range of
features at different points in time, while a power model such as based on the Hamming
weight will only allow the model to learn features at the point the value is processed. A
greater number of training traces are required however, as the number of unique labels is
2m as for an m-bit word. If the distribution of the target value is close to random however,
the classes will be balanced leading to more straightforward training methods.

2.1.2 SCA Countermeasures

While a number of SCA countermeasures in both hardware and software have been proposed
in the literature (such as dual-rail logic, dummy operations, threshold implementations
etc.), here we focus on masking as this is the countermeasure that is applied to the traces
under consideration. Masking (including higher-order variants) apply one or several random
masks to the sensitive data such as the input of the S-Box or the S-Box itself, respectively
forming 1st-order or higher-order masking schemes [RBN+15]. Masking methods can
be divided into two types: additive and multiplicative, and the sensitive data can be
protected with one or several independent random or fixed masks. There is a trade-off
to be determined in relation to the protection required against the additional processing
and randomness requirements of the masking scheme. It is relatively straightforward to
mask data for linear operations, however non-linear functions can be trickier to implement
securely.

A large number of masking techniques to protect AES have been proposed, such as a
rotating masking scheme introduced in [NSGD12] which frequently changes the masked
S-Box among 16 pre-computed ones, the algorithm introduced in [Cor14] for masking a
lookup table of block-cipher at any order, or the secret sharing scheme approach of [GM11]
to name but a few. In our experiment, the target implementation has a higher-order
masking scheme as described in [PSB+18], in which the plaintext and S-Box are masked
by two independent masks as shown in Equations 1 and 2.

Higher-order masking for AES implementations can be seen as masking of plaintext by:

pi = pi ⊕mi (1)

and masking the S-Box for value i ∈ [0 . . . 255], which can be prepared in advance:

S-Box (x) = S-Box (x⊕mi,in)⊕mi,out (2)

in which p and m are plaintext and mask respectively in Equation 1, and x is the masked
input for S-Box, mi,in and mi,out the input/output masks in Equation 2. Equation 1
ensures that the linear AddRoundKey operation which follows the S-Box works as expected
on the masked data, but no unmasked data is processed. Equation 2 ensures that the
non-linear S-Box operation will be masked by the unknown pair values mi,in and mi,out

so that on every execution different data will be processed regardless of the input value.

2.1.3 The Role of Plaintext

It is clear that the plaintext (or ciphertext) is an important factor in building the leakage
models as it is xored with the key prior to the S-Box in the first round. The output of
this operation can be used for labelling traces when training DL models.

y = S-Box (pi ⊕ ki) (3)

in which p and k are plaintext and key respectively.
Regardless of the countermeasure utilised, the designer needs to modify the plaintext

in some way in order to hide the sensitive value input to the S-Box.

54 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

The plaintext will be directly used with the key where no countermeasure is implemented,
or masked by one or several masks via xor to hide the sensitive data, breaking the
relationship between the sensitive data in the S-Box computation and the attackers ability
to hypothesis on power consumption. Whatever the designers do to protect the sensitive
data from side-channel leakage, they will need to modify some signal or variable related
to plaintext, and this processing will leave either first or higher-order leakage. There is
potential for this leakage to be automatically detected via DL methods in order to find
additional points of interest. Hence, the plaintext (or ciphertext) should be considered
as an important feature for training DL models. Surprisingly, to the authors knowledge,
there are only two reports on using plaintext or ciphertext as additional input feature to
increase the efficiency of profiling attacks in general, in which [HJZ12] used the ciphertext
bit values to modify amplitude of the traces when training a SVM, and [HGG18] used
plaintext as additional knowledge for training and attacking.

2.2 Convolutional Neural Networks
CNNs are a DL architecture that incorporates several different types of layers for detecting
features for classification. Our work relies on convolutional, MaxPooling, dropout, dense
(or fully-connected) and softmax layers, and the use of the non-linear activation functions
(ReLu and Softmax) [SLJ+14, Kar19, Sah18, Das17].

1. Convolutional layers are based on a convolution process, where we take a small
array of small size, e.g. 5, 7, 13, 19 etc., called the kernel or filter f , and pass it
over the input sequence signal (i.e. in our case the trace t). After placing the filter
over a selected area of sequence input signal, each value from the filter is point-wise
multiplied with the corresponding signal point, and summed up for the filtered result
of one feature map (FM i). In detail, each point m of the output feature map is
computed by the following transformation (or forward propagation) based on the
values from corresponding filter f i:

FM i[m] = (t ∗ f i)[m] =
∑

j

f i[j]× t[m− j] (4)

The filter runs or strides over the traces with a step so that if the same feature (i.e.
leakage) appears in a different position, it can still be detected. Convolutional layers
can be stacked for finding higher abstractions of feature maps. Additionally, many
different filters with the same or different sizes can be applied for corresponding
feature detection. The filter parameters are learned through the training process
with back-propagation hence are tailored to the specific training dataset.

2. A pooling layer is often used in conjunction with the convolutional layer to reduce the
size of the parameters to be learned and the subsequent computational requirements.
In our model, MaxPooling layers are added, where the input trace is divided into
different regions, and then the maximum filled value inside that region is considered
as the most important feature of that region. This resembles the trace reduction
methods in SCA where, for example, only the maximum point per clock cycle is
retained as representative of the power consumption of that cycle as a whole.

3. A fully-connected layer is flattens the output of the previous layer, combining all
previous nodes (or input features in[i]) together by summing the bias b[j] and
multiplying those input nodes in[i] with corresponding weights w[j][i] to calculate
each output node out[j]. Each fully-connected layer has a number M of output nodes
out[j]. Correspondingly, an equal number M of bias, b[j], and weight, w[j][i], values

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 55

are present. The fully-connected layer computes each output out[j] with:

out[j] =
∑

i

(b[j] + in[i]× w[j][i]); j ∈ [1..M] (5)

4. Dropout is known as a simple way to prevent neural networks from over-fitting
(predicting the secret key of the training data very accurately, but generalising to an
unseen set of traces poorly). Dropout is implemented by randomly disconnecting
a percentage of neurons in the network, preventing any particular feature having
an disproportionate effect on the model as a whole. A fixed number of nodes are
randomly selected and disconnected from the network at each epoch during the
learning phase. The number of nodes is selected as a hyper-parameter, and is 40%
in our experiment1.

5. Rectified Linear units (ReLu) is used in as the activation function in our intermediate
layers, i.e. the convolutional and fully-connected layers. This function simply replaces
a value by itself or else zero where the value is smaller than zero. This helps mitigate
the vanishing gradients problem which can happen in large networks.

ReLu(x) = max(0, x) (6)

6. Softmax is used for the activation function used in the last fully-connected layer.
This function is also known as a normalised exponential function, which converts the
raw logits scores output of the last fully-connected layer into probabilities, where
the probabilities of all classes sum to one. This allows key recovery by utilising the
probabilities acquired from multiple target traces.

S(yi) = eyi∑
j e

yj
(7)

3 ASCAD Database and Reference ML Models
An open-source database of side-channel traces, along with some profiling attack models
is available at [PSB+18]. The traces are acquired from an ATMega embedded device
running AES with higher order masking implemented, with details of the algorithm given
in [PSB+18]. The reference attack models provided include TA, multilayer perceptrons
(MLPs) and pre-trained CNN models.

3.1 ASCAD database
The ASCAD database targets a software protected AES implementation running on an
8-bit AVR ATMega8515. The software is implemented using assembly for maximum
control over register usage. The linear section of the AES algorithm is protected by 16
different random masks, while the non-linear S-Box is protected by a pair of input and
output masks. The side-channel information is recorded via the electromagnetic radiation
emitted by the device, and is sampled at 2GSs−1. The target S-Box is the third S-Box
operation in the first round as data for that S-Box is provided for both test and training
traces. Two datasets are provided, each split into a training and test sets. The test set
for both datasets contains a fixed key, while one training set has a fixed key for all traces,
while the other training set has a variable key which is randomly generated for each trace.
The measurement for the variable key dataset also differ in a viewpoint of signal quality
and the number of PoI provided [BCD+17].

1Some single PoI size models with 30% dropout without batch normalization layers are also tested and
achieved similar results.

56 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

ASCAD fixed-key dataset: This contains a training dataset group with 50,000 training
traces (samples) and test dataset group with 10, 000 attack traces ([PSB+18]), each
with a uniformly random plaintext for each trace, and constant key. Two random
masks per byte are used, one for masking the plaintext, and the other for masking
the S-Box with a different mask for every iteration. Each trace has a dimension of
700 (sample points), and is labeled by the expected value of the unmasked output
of the 3rd S-Box in the first round. The 3rd S-Box in the first round is used as the
ASCAD database with fixed key provides full data for this S-Box for both training
and testing data. Even though the masks for S-Box are provided, they are not used
in either our training or attacking steps.
This dataset has three variants, with two additional datasets generated from the
original by randomly shifting the data. These datasets are referred to as ASCADfixed

sync ,
ASCADfixed

desync50, and ASCADfixed
desync100. ASCADfixed

sync contains the original data with
synchronised traces, while for ASCADfixed

desync50 and ASCADfixed
desync100 each trace is

randomly shifted to the left an amount of δ ∈ [0..50] and δ ∈ [0..100] respectively. In
this paper, we will evaluate our CNNP models on ASCADfixed

sync and show why our
proposed CNNP model would achieve the same result on the other ASCADfixed

desync

datasets.

ASCAD variable-key dataset: This is a set of 200, 000 traces for training and 100, 000
traces for testing. The training traces have random variable keys, as well as random
plaintext and mask values. The 100, 000 testing traces have the same key with
random plaintext and mask values. Each trace has 1, 400 features and is again
labelled by the output of the 3rd S-Box in the first round, giving ≈ 781 traces
per label. Similarly with the fixed-key database, the variable-key database has 3
transforms of ASCADvariable

sync , ASCADvariable
desync50, and ASCADvariable

desync100, and we evaluate
our proposed CNNP models on ASCADvariable

sync and ASCADvariable
desync50 variants to allow

comparison with the provided reference. Even though no reference is provided for
ASCADvariable

desync100 database, additional experimentation is conducted on this also to
understand how well our CNNP works with a highly de-synchronized database.

3.2 Reference Comparison Models
In this paper, we compare our profiling results against four publicly available models
trained and tested against the same dataset. Those models are provided as part of the
ASCAD database [PSB+18].

TA (on first order leakage): The ASCAD provided simple_model contains a model for
running a template attack, which relies on computing a simple cross tabulation
(pd.crosstab) of the mask and the masked S-Box output factors, so that the effective-
ness of the mask is removed, making it equivalent to a template attack on first-order
masking. This model is referred as the simple_model in subsequent sections of our
paper as its original name in the ASCADfixed

sync database.

MLP: A MLP model which includes 5 hidden layers with 50 neurons each and one final
softmax layer with 256 units, one for each class is also provided. In addition, batch-
normalization is applied to the input traces before getting to the first hidden layer.
This model will be referred as other_mlp_model in subsequent sections.

MLP (on first order leakage): The provided reference model MLPbest model has 5 hidden
layers with 700 neurons in the first one, and 200 neurons in each of the remaining.
The final softmax layer has 256 units, one for each class [PSB+18]. In case of
first-order attack using MLPbest model, it is assumed that an adversary knows the

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 57

masked output of the AES S-Box, hence can compute the actual S-Box value that is
returned:

S-Box (x[3]) = S-Box(pi[3]⊕ ki[3])⊕mi,out[3] (8)

where pi[3], ki[3], and mi,out are the third plaintext, key, and mask bytes from trace
ti respectively. S-Box is the original substitution box in the AES algorithm and
S-Box is the actual masked value from precomputed memory. In this weak context,
this reference MLP model only requires 4 traces to recover secret key bytes as noted
in [PSB+18]. In our paper, this MLPbest model is verified with high-order attack
and denoted as Prouff MLP in comparison figure.

ASCAD CNN models: The ASCAD reference CNN model is based on the VGG-16 CNN
model proposed in [SZ15], with some additional modifications in the CNN configura-
tion to keep the global volume and amount of information treated by the different
layers as constant as possible [PSB+18]. This model has 5 convolutional layers with a
differing number of filters of the same kernel size of 11, two 4096 unit fully-connected
layers and a final softmax layer with 256 units. The reference model is effective at
key recovery in the presence of higher-order masking, and is referred to as Prouff
CNN in our paper.

4 Plaintext Features for DL Based SCA
While plaintexts (or ciphertexts) are assumed known values to an attacker in SCA, and
are generally the first data that are masked in a protected implementation, to the authors
knowledge there is minimal related work considering plaintexts or ciphertexts as an
additional feature for training models in profiling attacks [HGG18]. Effective proposals to
improve the performance of DL models include data augmentation (i.e. adding noise to the
traces [KPH+19]), or profiling data from multiple physical devices in order to generalise
the model.

While these methods should also improve the performance of our model architecture,
they are not considered in this work. We propose that the plaintext be incorporated as an
important feature for building more accurate DL models in order to better extract sensitive
data and features for revealing the secret key. From a data aspect, three inputs will effect a
power-trace: plaintext, mask(s), and key. Providing the plaintext (or ciphertext) helps the
DL model reduce the number of ambiguous factors and allows it to better learn features
related to the unknown mask(s) and key for classification.

4.1 Plaintext Feature Encoding
The plaintext values are incorporated to the model as additional features. While a number
of different encoding methods can be used, we focus on two. There are two encoding
methods for merging plaintext features, integer and one-hot encodings, as follows:

Integer encoding: In this encoding method, the plaintext feature is considered as a single
additional neuron in the model, in which the value of plaintext byte is inserted.
This node or plaintext feature is inserted at one of the convolutional or the fully-
connected layers. This addition has a minimal effect on the number of additional
parameters to be learned, however increases the sensitivity of the model to the points
where the plaintext is being processed. However, when using the integer encoding
method the CNN model may interpret the additional feature to have some kind
of order or hierarchy, and care must also be taken to ensure the feature does not
have a disproportionate effect on the learning process where the absolute values are
considerably larger than other feature values in that layer.

58 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

One-hot encoding: This method expands the plaintext byte into a 256 element sparse
feature vector, in which the element indexed by the plaintext value is set to one
and all other elements are set to zero. This feature vector is again added to one
of the convolutional or fully-connected layers as before. While one-hot encoding
increases the number of parameters that need to be learned in the training process,
it overcomes some of the potential issues with integer encoding.

In order to support for this plaintext feature extension, we introduce an additional
Plaintext extension function, that connects the additional plaintext feature vector
(either with a single or 256 elements) in our CNNP models.

4.2 CNNP model for SCA
4.2.1 Attacker Assumptions

When building a model of the power consumption for the target device, the following
assumptions hold:

• The attacker cannot access the design or values used for random number generation.

• The attacker has access to the plaintext and/or ciphertext values for both training
and attack stages.

• The attacker can profile keys on the device.

• The attacker does not know any implementation details except the algorithm being
targeted, but can understand that the designer may or may not have applied
countermeasures such as time shifting, 1st or higher-order masking, or secret sharing
schemes.

4.2.2 Attack Model

The CNNP model attacks AES implementations based on recovering the unmasked value of
S-Box output (even where that value is masked) which allows key recovery given knowledge
of the plaintext. In particular, we trained the proposed CNNP model by labelling the
traces by the 3rd S-Box byte, which is computed from values known to the attacker during
the profiling process as given in Equation 3. This labelling method follows that as used by
the reference models on ASCAD databases. In order to attack the remaining key bytes,
the traces would have to be relabelled for each S-Box output and the model re-trained.
However the same power traces can be used to atttack the other key bytes.

A separate set of traces, unused in the training process, is used for testing the model
verification in the attack stage, with an output probability returned for each possible S-Box
value. As the correct key and plaintext values are known, these can be used to rank the
S-Box predictions. Both individual trace probabilities and maximum likelihood scores can
be used for evaluation. For the experimental results in this paper, comparisons are based
on the maximum likelihood score as while CNNPs have the power to recover key values
within a single trace when attacking the ASCADfixed dataset, the maximum likelihood
scores are needed to combine multiple trace values when attacking the ASCADvariable

dataset.

4.2.3 Maximum Likelihood Score

This evaluation step utilises maximum likelihood scores for combining results of attacking
multiple different traces with the same key as outlined in [SMY09]. It estimates the
likelihood of each hypothesis key by multiplying the classification probability given by
independent traces to create a scores vector. Values in this scores vector are then sorted

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 59

according to probability for ranking. Accuracy is considered as the location of the correct
key in the ranked scores vector. The closer the rank of the correct key is to 1, the higher
the accuracy of the evaluated model.

4.2.4 CNNP Models with a Single Convolutional Filter Kernel Size

Taking into account the three considerations outlined in Subsection 1.1 for building the
model, a CNNP model with a single convolutional filter kernel size is given. In order to
benchmark the more complex model given later, an initial CNNP model with a single
convolutional filter size is first presented. It is divided into four main modules consisting of
feature convolution, plaintext extension, plaintext feature embedding via the fully-connected
layers before the final softmax layer for classification.

Figure 1 shows our proposed CNNP model implementation with single convolutional
filter kernel size (CNNPsingle). The plaintext feature extension can be implemented with ei-
ther integer or one-hot encoding method. Corresponding models are named as CNNPinteger

single

and CNNPone−hot
single respectively, in which single here means a single convolutional filter

kernel size, which can be replaced by the actual sizes used during experimentation, such
as [3, 5, 7, 13, 19]. Two convolutional architectures are given. In these, each convolutional
layer has the same filter kernel size but the number of convolution filters in each layer (the
dimensionality of the output space) are different. The first structure, the 3-layer CNN
version in Figure 1a has number of convolutional filters reduced from 512 to 256 and then
128 while the second one, the 4-layer CNN version in Figure 1b has those numbers increase
from 64 to 128, then 258 and finally 512. Those convolutional layers are connected through
MaxPooling layers with pool_size of 3 and a stride of 3. The resulting features after the last
MaxPooling layer are then extended by adding the plaintext feature vector before input
to the 1024 neuron fully-connected layer. Adding the plaintext feature here allows the
model to combine this feature with the filtered trace features. This fully-connected layer
combines all those features together with different weights on each node, which are learnt
by the training algorithm. Those features are then processed in another fully-connected
layer2 before applying a dropout rate of 40% in order to reduce overfitting of the model
on the training data. The model is completed with three more fully-connected layers with
the same number of nodes and a softmax layer for classification.

The model for CNNP with a single convolutional filter kernel size can be given by the
following formula:

s ◦ [λ3] ◦ β ◦ [λ2] ◦ [P ext ◦ [δ ◦ [α ◦ γx]]3] (9)

in which, s, λ, β, Pext, δ, α, and γ are the softmax, fully-connected, dropout, plaintext
feature extension, MaxPooling, activation, and convolutional layers respectively. γx is a
convolutional layer with filter kernel size x ∈ [3, 5, 7, 13, 19] so that the model accounts for
the most interesting PoI during the training phase. As image processing literature often
uses small kernel sizes, we chose a range of sizes up to and beyond that used in [PSB+18]
which uses a size of 11 when attacking the ASCAD database.

In order to support the Plaintext extension function, the computation of the Dense
1024 layer needs a slight modification in order to match the increase in the number of
inputs. Depending on the size of the input trace (700 points in the ASCADfixed and 1400
points in the ASCADvariable databases) the number of outputs of the MaxPooling layer
before plaintext extension layer is different, as shown in Figures 10, 11, 12, 13, 14, 15, and
16 in the Appendix.

Given N outputs from the last MaxPooling layer, in the integer encoding method
for Plaintext extension, only one neuron is added to the output of the MaxPooling layer,

2The number of nodes in these fully connected layers can vary but empirically 512 and 1024 nodes
have shown good performance.

60 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

(a) CNNPsingle
a model with single convolutional filter kernel size and 3-layer CNN version.

aPlaintext extension layer can be located before or after the first Dense(1024) layer and are denoted as
"Pext loc.1" and "Pext loc.2" in our experiments.

(b) CNNPsingle model with single convolutional filter kernel size and 4-layer CNN version.

Figure 1: CNNPsingle
b model with single convolutional filter kernel size c

bThe plaintext extension layer increases the number of neurons by 1 for integer encoding or 256 for
one-hot encoding

cbatch normalization layers are included after all other layers for models used with ASCADvariable

database but deducted in this figure for simplification.

increasing the input length to the following Dense1024 layer to (N + 1). The formula for
the fully-connected layer in Equation 5 with M nodes is now:

Dense1024[j] =
N∑

i=1
(b[j] + in[i]× w[j][i]) + b[j] + P × wP ; j ∈ [1..M] (10)

in which Dense1024[j] is the jth output of the fully-connected layer. P and wP are the
raw values of the plaintext and its corresponding weight.

In the one-hot encoding method for Plaintext extension, 256 neurons are appended
onto the output of MaxPooling, modifying the input to the following Dense1024 layer to

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 61

(N + 256). The formula for the fully-connected layer with M nodes is now:

Dense1024[j] =
N∑

i=1
(b[j]+in[i]×w[j][i])+

256∑
k=1

(b[j]+P [k]×wP [k]); j ∈ [1..M] (11)

in which Dense1024[j] is the jth output of the fully-connected layer. P [k] is the one-hot
encoding of the plaintext value, and is a 256 element all-zero vector except the element
indexed by the value of the plaintext, which is set to 1. wP [k] is a 256-element vector
containing the weight value for each individual P [k]. The additional part b[j] + P × wP

in integer encoding or
∑256

k=1(b[j] + P [k]× wP [k]) in one-hot encoding allows each output
node to adjust itself dependent on the input value of the plaintext.

4.2.5 CNNP Models with Multiple Convolutional Filter Kernel Sizes

CNNPmulti is an extension of the CNNPsingle model in Figure 1, in which a number
of different convolutional filter kernel sizes are used together in parallel to deal with
unknown factors in the implementation as used in GoogLeNet [SLJ+14]. Additional,
parallel, filter sizes are also expected to help the proposed CNNP models to work better
against the random delay countermeasure as the length of convolutional filter should cover
the most interesting PoI [PSB+18, Mag19]. Figure 2 shows the proposed CNNPmulti model
implementation, combining two different convolutional filter kernel sizes of 3 and 5 and the
two convolution structures shown in Figure 1 together. Other similar models can be built
or extended using different convolutional filter kernel sizes and numbers. In addition to the
Plaintext extension layer introduced previously, an additional feature combination function
is required in order to connect the filtered features from each convolutional layer branch.
An additional Dropout layer set to 40% is used after the feature combination layer, before
three fully-connected layers are used to learn any relationships between the features of the
different branches. As before, the final layer consists of a softmax layer to return the class
probabilities. Two CNNPmulti versions are given with plaintext extension using integer
and one-hot encoding methods, named as CNNPinteger

multi and CNNPone−hot
multi , respectively.

The CNNP architecture with multiple convolutional filter kernel sizes can be described by
the following formula:

s ◦ [λ3] ◦ β ◦ [[λ2] ◦ [P ext ◦ [δ ◦ [α ◦ γx]]3]]joint[[λ2] ◦ [P ext ◦ [δ ◦ . . .
[α ◦ γy]]3]]joint[[λ2] ◦ [P ext ◦ [δ ◦ [α ◦ γz]]3]]

(12)

in which, s, λ, β, Pext, δ, α, γ and joint are softmax, fully-connected, dropout, Plaintext
extension, MaxPooling, activation, convolutional, and joint layers respectively. Subscripts
x, y, z are different convolutional kernel sizes. In our experiments, sizes 5, 7, 13, and 19
are used for fixed key database and sizes 3, 5 are used for variable database.

4.2.6 CNNP Network Structure and Selection of Hyperparameters

The convolutional layer to detect PoI is designed taking into account that the larger number
of filters we have, the greater number of PoI patterns we can find, therefore our model can
detect more important combined leakage features in a trace. Hence, we select the initial
filter kernel size as 512, similar to the largest number of filters in [PSB+18] and gradually
reduce over each convolution time to size of 64. Different from [PSB+18], we would like to
select local PoI features instead of averaging them, hence, MaxPooling layers size 3 with
stride 2 are applied after each convolutional layer. Kernel filter sizes are selected as 3, 5, 7,
11, 13, 19. Kernel filter sizes up to 11 have empirically proven to be sufficient enough for
ASCAD database (fixed key) as outlined in [PSB+18], but are extended to 13 and 19 for

62 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

Figure 2: CNNPmulti model with multiple convolutional filter kernel sizes (3 and 5)a.
aBatch normalization layers are included before all convolutional and dense layers but deducted in this

figure for simplification.

the variable key database due to its higher sampling rate combined with the fact that the
number of sampling points is doubled.

ReLu is selected as the activation function, optimizer is RMSprop, and learning rate is
10−5 as a reference from [PSB+18].

While many hyperparameters from [PSB+18] are re-used in this work, the depth (the
number of fully connected (dense) layers) and width (the number of nodes in a fully
connected layer) of the model is still a relevant topic of research. DL research from
[AJR+18, BC14] imply that deeper networks (which incorporate more layers for better
feature embedding) provide better accuracy compared to wider networks with the same
number of parameters. We develop a deeper but narrower model with a total of five
fully-connected layers, two are placed prior to the feature combination, with the remaining
three placed afterwards, with a final softmax layer for classifying the SBox output, as
shown in Figure 1.

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 63

It is proposed to place the plaintext extension layer after the convolutional layer before
either of the first two fully-connected layers. In the experiments that follow, the plaintext
extension layer is placed before the first fully-connected layer to allow forward propagation
through all fully-connected layers while having a direct connection to all outputs of the
CNN layer. An additional experiment with the plaintext extension layer located at the
input of second fully-connected layer is also given for comparison.

5 Experimental Results
While a number of variants of the CNNP architecture with different hyperparameters
were tested, in the following we present results from five CNNPsingle instances with
different convolutional filter sizes of [3, 5, 7, 13, 19], and one CNNPmulti model with three
convolutional filter kernel sizes of [7, 13, 19]. Each model is tested with both the integer and
one-hot encoding for incorporating the plaintext feature extension. The models are trained
and evaluated using the ASCAD database traces, on both the fixed-key and variable-key
trace sets. For each trace set, the aligned traces and de-synchronised traces in range of
δ ∈ [0..50] points are used, giving four different databases tested. Based on experimental
results, not all models are evaluated on all trace sets.

For the fixed key trace dataset, our experiment shows that 64 training epochs3 is
sufficient for our CNNP models to recover the key from only one or two attack traces.
A greater number training epochs is required for training CNNP models on the variable
key ASCAD database. The number of training epochs can be selected by analysing the
loss and accuracy scores of the validation dataset. Our models were trained with 1024
epochs, with the state saved every 16 epochs. In the main, we randomly select 10,000
traces from the attack (or test) dataset as validation data for verification of the correct
key rank at each saved epoch state. Training is performed on a VMware virtual machine,
with access to virtual NVIDIA GRID M60-8Q and M40-4Q GPUs with 8GB and 4GB
memory respectively.

In experiments using the ASCAD database, the convolutional filter kernel sizes, the
number of training epochs and time for each model, together with the rank of the correct
key are reported. Our comparison method is straightforward, in that we train our CNNP
models with the training dataset group and evaluate the trained models on the separate test
dataset group provided by ASCAD. At each run, a number of traces are randomly selected
from the test dataset for the attack phase, with the maximum likelihood score of each
hypothesis key calculated as a function of the number of traces. These maximum likelihood
scores are then sorted after each run and the rank of the correct key is recorded. N runs
are evaluated and mean of the correct key rank is computed. We evaluate our models
using 10,000 traces from test dataset. Depending on how fast the key rank converges, the
number of traces for each run is different; it is set to 20 for the ASCADfixed and 100 for
the ASCADvariable datasets. Hence, N is set to 500 and 100 respectively. In the evaluation
with desynchronized data for variable key dataset, the number of traces for each run is
1,000, hence N = 10. The better performing models are the ones that have a lower key
rank with similar or less traces required.

5.1 Evaluation on ASCAD Fixed Key Datasets
We now present results for our CNNP models on the ASCADfixed

sync and ASCADfixed
desync50

databases. Each model is trained on the synchronised profiling data and tested on the
synchronised and desynchronised attack datasets. Each model is also trained on desynchro-
nised profiling data4 and tested on the synchronised and desynchronised attack datasets.

3One epoch is when the entire set of training samples have been used for training.
4This can be viewed as somewhat similar to the augmented data approach in [KPH+19]

64 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

Results are compared with that of the reference models as outlined in Subsection 3.2.
Table 1 shows the names and parameter settings for the different models and their running
time (on NVIDIA GRID M60-8Q) in minutes for reference. In addition to the CNNP
models, results for the model named CNN*(5) are provided, which is the modification of
CNNP model in Figure 1 with the plaintext extension layer removed, and a convolutional
filter size of 5. This model works as a reference to highlight the impact of the plaintext
extension layer. An additional experiment with the ASCAD fixed database for training
CNNP using random values for the traces is also given as "CNNP*one−hot

(5) " model. The
purpose of this model is to detail exactly why the model has the excellent performance as
shown.

Table 1: Evaluated models on the ASCADfixed databases.

Conv. Training Training
Model kernel on ASCADfixed

sync on ASCADfixed
desync50

names size No. of Time No. of Time
epochs (min) epochs (min)

O
ne

-h
ot

en
co
di
ng

CNNPone−hot
(7,13,19) 7, 13, 19 14 20.32 16 23.49

CNNPone−hot
(5) 5 22 8.87 20 8.07

CNNPone−hot
(7) 7 20 8.39 22 9.23

CNNPone−hot
(13) 13 18 8.71 20 10.00

CNNPone−hot
(19) 19 16 9.29 16 9.29

In
te
ge
r

en
co
di
ng

CNNPinteger
(7,13,19) 7, 13, 19 62 91.00 62 91.00

CNNPinteger
(5) 5 64 25.81 58 24.32

CNNPinteger
(7) 7 62 26.00 52 21.81

CNNPinteger
(13) 13 60 29.03 60 30.00

CNNPinteger
(19) 19 52 30.19 58 33.68

R
ef
er
en

ce
s simple model - - - - -

other mlp 01 - - - - -
Prouff MLP - - - - -
Prouff CNN 11 - - - -
CNN*(5)

5 5 64 25.81 - -
CNNP*one−hot

(5)
6 5 48 - - -

CNN*(5) model is the modification of CNNPone−hot
(5) model by removing plaintext feature extension

layer.
CNNP*one−hot

(5) is the CNNPone−hot
(5) model but random values are used as traces when training.

5.1.1 Evaluation on ASCAD Fixed Key Synchronised Dataset

Figure 3 shows the experimental results of our 10 proposed CNNPinteger and CNNPone-hot

models on the ASCADfixed database using the metric defined in Subsubsection 4.2.2.
Each of the CNNPinteger and CNNPone-hot variants include 5 sub-models with different
convolutional filter kernel sizes as outlined in Table 1.

The effectiveness of the plaintext extension layer against this dataset can be seen by
comparing the attack results of the CNNPone−hot

(5) and CNNPinteger
(5) models with that of

CNN*(5). They have the same network structure as described in Figure 1, except that

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 65

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
number of traces

0

20

40

60

80

100

120

Gu
es

sin
g

En
tro

py
Models comparison 500 runs WITH
 Maximum Likelihood Score (MLS)

CNNPone hot
(7, 13, 19)

CNNPone hot
(5)

CNNPone hot
(7)

CNNPone hot
(13)

CNNPone hot
(19)

CNNP integer
(7, 13, 19)

CNNP integer
(5)

CNNP integer
(7)

CNNP integer
(13)

CNNP integer
(19)

simple model
other mlp 01
Prouff MLP
Prouff CNN
CNN * (5)

CNNP * one hot
(5)

Figure 3: Comparison of CNNP models with convolutional filter kernel sizes of [5, 7, 13, 19].
Keys are ranked by maximum likelihood score as a function of the number of attack traces.
The blue and black lines are reference models from the ASCAD database as described in
Subsection 3.2.

plaintext extension layer is removed from the CNN*(5) model. Without this, the CNN*(5)
model essential achieves result no different to random guessing.

It can be seen that our CNNPinteger and CNNPone-hot models greatly outperform the
reference models available as part of the ASCAD database. Our CNNPinteger models
achieve an expected key rank of 3 after a single trace when using additional integer
encoded plaintext features. This leads to potential key recovery where only a single
encryption trace is available, e.g. some challenge-response protocols. If two traces are
available, then it is expected that successful key recovery will occur without any subsequent
key enumeration stage. Only minor differences are visible in the likelihood scores between
the different convolutional filter kernel sizes. Using the one-hot encoding method, only a
single trace is required for key recovery, and the training stage also requires considerably
less computation. These results were obtained after 62 epochs in CNNPinteger and 14
epochs in CNNPone-hot.

5.1.2 Explanation of Fixed Key Dataset Results

In order to understand why adding the plaintext increases the accuracy of the attack on
the ASCADfixed dataset, an additional experiment is executed by replacing all traces in
the training process by random values and is named CNNP*one−hot

(5) in Figure 3. Despite
using random traces, the model can still correctly predict the key value. This can be
explained as since the key K is fixed, and the trace labels are S[P ⊕K], giving the plaintext
P as a feature implies that the network only needs to learn the bijection S[(.)⊕K] and
considers the input traces as noise. Hence, no additional experiments are conducted with

66 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

the ASCADfixed dataset.

5.2 Evaluation on ASCAD Variable Key Datasets
In this section, we evaluate our CNNP models on the ASCADvariable

sync , ASCADvariable
desync50

and ASCADvariable
desync100 databases. Each model is trained on the synchronised training data

and tested on the synchronised and de-synchronised testing data, as well as trained on
the de-synchronised training data and tested on the synchronised and de-synchronised
testing data. Two sub-groups of 10,000 traces are randomly selected from testing dataset
for "epoch selection" and "model testing" purposes. The models are each trained with
1,024 epochs and stored every 16 epochs, giving 64 instances of each model. The model
instance used for evaluating the test set, is that with the lowest mean key rank after 50
traces when evaluated on the "epoch selection" set. As in an attack scenario the correct
key is not known a-priori, a separate data set (i.e. the validation data) is required to know
how long the model runs for. Table 2 shows the model names, their convolutional filter
kernel sizes and number of nodes per neural network layer, plaintext feature extension,
and the number of training epochs selected as described. The training time of each model
is not provided as the models are trained using different GPUs (M60-8Q and M40-4Q). As
different model hyperparameters, such as the number of nodes per fully connected (dense)
layer effects the model accuracy, we compare results among our best models with other
references in the following sections. Full comparisons among our proposed CNNP models
can be found in Figure 9 of the Appendix.

5.2.1 Evaluation on ASCAD Variable Key Synchronised Dataset

Figure 4 shows the key ranking comparison between our proposed CNNPone-hot model
and other similar works like the work of Hettwer [PSB+18] and Prouff CNN [HGG18].
Additional experiments like adding plaintext into the input and modifying the convolutional
filter kernel sizes of these references are also given. We do not give a full set of comparisons
as the ASCADfixed database results show that given sufficient training data, the larger
sizes of the filter kernels in the convolutional layer tend to perform worse than the smaller
ones, and that CNNPinteger models perform worse than CNNPone-hot models. We give
results for the 10 CNNP models together with references as outlined in Table 2.

As can be seen in Figure 4a, our proposed structure with convolutional filter size 3 (PoI
size 3) and without the plaintext extension outperforms all the references of Prouff CNN
and Hettwer 5-layer CNN. With 100 attack traces, our proposed CNN structure achieves
a key rank of 2 while Prouff CNN gets key rank 18 and Hettwer 5-layer CNN obtains
a result slighty better than a random guess. This shows that a generic neural network
structure applicable to many datasets is a non-trivial problem as the Hettwer 5-layer
CNN was not designed with a view to attacking the ASCADvariable dataset. Experiments
with the CNNP model, in which plaintexts and random traces are considered as training
inputs, also returns a key rank similar to a random guess unlike in Subsubsection 5.1.2
with the ASCADfixed dataset. This further re-enforces that the model was simply learning
a bijection due to the fixed key previously.

Figure 4b shows the comparison among different CNNP models and the best reference,
the Prouff CNN model7. It can be seen that all our proposed CNNP models with different
kernel sizes and neural architectures achieve better results than the reference. The models
obtain an estimated key rank of 3 after 60 traces, meaning that to recover the entire key
from a secure AES implementation with high-order masking, the brute force key search
should take at least 316 = 43, 046, 721. Among the provided CNNP models, the model
that combines two different convolutional filter sizes (3 and 5) and structures in Figure 2

7Figure 4b shows results from the best performing models. A full comparison is shown in the Appendix,
Figure 9.

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 67

0 20 40 60 80 100
number of traces

0

20

40

60

80

100

120

140

Gu
es

sin
g

En
tro

py
References comparison 100 runs WITH Maximum Likelihood Score (MLS).

 Number of training epochs is decided by validation accuracy
CNNP1hot self references
CNN(3) (3-layer CNN - no Plaintext extension)
CNNPone hot

(3)random traces
 (3-layer CNNP - random traces)

References
VGG16Prouff

(original 11) (Prouff_CNN)
VGG16Pone hot

(original 11) (Prouff_CNN with Plaintext extension)
VGG16(3) (Prouff_CNN with PoI size 3)
VGG16Pone hot

(3) (Prouff_CNN with PoI size 3 and Pext)
Hettwer5 layer CNN

(original 8) (Hettwer original)
Hettwer5 layer CNN

(3) (Hettwer with PoI size 3)

(a) Key ranking comparison between proposed CNN network structures (no plaintext extension)
and other references on ASCADvariable

sync databases.

0 20 40 60 80 100
number of traces

0

20

40

60

80

100

Gu
es

sin
g

En
tro

py

References comparison 100 runs WITH Maximum Likelihood Score (MLS).
 Number of training epochs is decided by validation accuracy

CNNP1hot self references
CNN(3) (3-layer CNN - no Plaintext extension)
CNNP1hot 1PoI size
CNNPone hot

(3)1 (3-layer CNN, Pext loc.1, 512 neural nodes/layer)
CNNPone hot

(3)2 (3-layer CNN, Pext loc.2, 512 neural nodes/layer)
CNNPone hot

(5)2 (4-layer CNN, Pext loc.2, 1024 neural nodes/layer)
CNNP1hot 2PoI sizes 3 and 5 in combination
CNNPone hot

(3, 5)1 (3&4-layer CNN, Pext loc.2, 1024 nodes, scratch learning)
CNNPone hot

(3, 5)transfer
 (3&4-layer CNN, Pext loc.2, 1024 nodes, transfer learning)

References
VGG16Prouff

(original 11) (Prouff_CNN)

(b) Key ranking comparison among proposed CNNP structures on ASCADvariable
sync databases.

Figure 4: Key ranking comparison on ASCADvariable
sync databases.

68 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

Table 2: Evaluated models on ASCADvariable databases.

Conv. Nodes Number of training epochs
Model kernel per Plaintext on ASCADvariable databases
names size Dense extension with with with

(node) sync desync50 desync100

Se
lf
re
f.

CNN (3) 3 512 No 416 - -
CNNPone−hot

(3)random traces

a 3 512 Yes 80 - -

Pr
op

os
ed

C
N
N
P CNNPone−hot

(3)1
3 512 Yes 544 - -

CNNPone−hot
(3)2

3 512 Yes 384 368 976
CNNPone−hot

(3)3
3 1024 Yes 240 - -

CNNPone−hot
(3)4

3 1024 Yes 368 - -
CNNPone−hot

(5)1
5 512 Yes 352 - -

CNNPone−hot
(5)2

5 1024 Yes 256 192 464
CNNPone−hot

(7) 7 1024 Yes - 384 336
CNNPone−hot

(3, 5)1
3, 5 1024 Yes 224 - -

CNNPone−hot
(3, 5)2

3, 5 1536 Yes 80 - -
CNNPone−hot

(3, 5)transfer

b 3, 5 1024 Yes 70 20 16

R
ef
er
en

ce
s

VGG16P rouff
(original−11) 11 4,096 No 64 - -

VGG16Pone−hot
(original−11) 11 4,096 Yes 128 - -

VGG16(3) 3 4,096 No 64 - -
VGG16Pone−hot

(3) 3 4,096 Yes 192 - -
Hettwer5−layer CNN

(original−8) 8 400 Yes 16 - -
Hettwer5−layer CNN

(3) 3 400 Yes 16 - -

aWe develop some model versions with the same convolutional filter kernel sizes (filter sizes) but different
location of plaintext extension module and number per dense layer. Hence, model version is included after
filter sizes in subsubscript format, making the model name to Model name(filter sizes)version

.
bconvolutional filters from models CNNPone−hot

(3)2
and CNNPone−hot

(5)2
are reused for transfer learning

model shown in Figure 2.

with transfer learning from CNNPone−hot
(3)2

and CNNPone−hot
(5)2

models achieves the best
attacking result. It achieves rank 2 of the correct key with only 40 traces. Promising
attack results are also received from the CNNP models with convolutional filter kernel size
3 with 3-layer CNN, which achieve a key rank of 3 after only with 40 traces. We can see
that there is nearly no difference in the attack result of those models, where the plaintext
extension layer located before or after the first fully-connected layer. The worst result
among proposed CNNP models occurs with a convolutional filter kernel size of 5, which
achieves key rank 5 and 3 with 40 and 60 traces, respectively. Empirically, it is found that
results get worse with an increase in kernel size, hence experiments with a kernel size of 7
on the ASCADvariable

sync database is given in Figure 9 in Section 7 only as reference.

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 69

0 200 400 600 800 1000
number of traces

0

20

40

60

80

100

120

Gu
es

sin
g

En
tro

py
References comparison 10 runs WITH Maximum Likelihood Score (MLS).

 Number of training epochs is decided by validation accuracy
CNNPone hot

(3)2 (3-layer CNN, Pext loc.2, 512 neural nodes/layer)
CNNPone hot

(5)2 (4-layer CNN, Pext loc.2, 1024 neural nodes/layer)
CNNPone hot

(7) (4-layer CNN, Pext loc.2, 1024 neural nodes/layer)
CNNPone hot

(3, 5)transfer
 (3&4-layer CNN, Pext loc.2, 1024 nodes, transfer learning)

References
VGG16Prouffdesync50

(original 11) (Prouff_CNN)

(a) Key ranking comparison between proposed CNNP models and reference from ASCADvariable
desync50

databases.

0 200 400 600 800 1000
number of traces

0

50

100

150

200

Gu
es

sin
g

En
tro

py

References comparison 10 runs WITH Maximum Likelihood Score (MLS).
 Number of training epochs is decided by validation accuracy

CNNPone hot
(3)2 (3-layer CNN, Pext loc.2, 512 neural nodes/layer)

CNNPone hot
(5)2 (4-layer CNN, Pext loc.2, 1024 neural nodes/layer)

CNNPone hot
(7) (4-layer CNN, Pext loc.2, 1024 neural nodes/layer)

CNNPone hot
(3, 5)transfer

 (3&4-layer CNN, Pext loc.2, 1024 nodes, transfer learning)
References
VGG16Prouffdesync50

(original 11) (Prouff_CNN)

(b) Key ranking comparison among proposed CNNP models on attacking ASCADvariable
desync100

databases.

Figure 5: Key ranking comparison for CNNP models trained on the ASCADvariable
desync

database with three convolutional filter kernel sizes 3, 5 and 7 a. Keys are ranked by
maximum likelihood score. The green line are reference models from the ASCAD database
as described in Subsection 3.2.

aAs the model with convolutional filter kernel size 5 shows better result than that with convolutional
filter kernel size 3 on attacking ASCADvariable

desync , CNNP model with convolutional filter kernel size 7 is
added to this experiment.

70 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

5.2.2 Evaluation on ASCAD Variable Key De-Synchronised Dataset

Figure 5 shows the results of our proposed CNNP models with kernel sizes of 3, 5 and
7 when attacking ASCADvariable

desync data. Experiments were extended to CNNP models
with kernel size 7 as experiments showed an advantage of size 5 over size 3, due the the
desynchronisation of the traces. Figure 5a shows key ranking of our models in comparison
with that given in [PSB+18] in attacking ASCADvariable

desync50 data. It can be seen that our
proposed CNNP models significantly outperform the reference one. The best result is
achieved by the CNNP model with kernel sizes 3 and 5 in parallel, in which rank 4 of
the correct key can be achieved with 500 traces, reducing to 2 after 1,000 traces. CNNP
models with kernel sizes 5 and 7 are similar in terms of key rank in general, achieving key
ranks 4 and 5 with 1,000 traces, respectively. The model with a kernel of sizes 3 does not
work as well as previously with the synchronized data, only achieving a key rank of 20
after 1,000 traces.

As an additional benchmark for future works, we evaluate the models CNNPone−hot
(3) ,

CNNPone−hot
(5) , CNNPone−hot

(7) and CNNPone−hot
(3, 5) on the ASCADvariable

desync100 database. The
results shown in Figure 5b show that our proposed models can work on data with greater
desynchronisation also. Outperform of CNNP model with convolutional filter kernel
size 7 over other CNNP models in attacking ASCADvariable

desync100 data suggests that bigger
convolutional filter kernel size should be used to over come the deduction in key ranking
caused by high de-synchronization.

5.2.3 Cross Evaluation on ASCAD Variable Key Datasets

Figure 6 shows the key ranking comparison between our proposed CNNP modes and
reference of [PSB+18] in training on synchronized traces and attacking on desynchronized
traces. Here the reference model works better than ours as it can obtain a key rank of 10
while the best result for our models in the same situation is key rank 50. This is likely due
to the larger kernel size of 11 that is used.

As shown in Figure 7, the situation has changed when all models are trained on
ASCADvariable

desync50 and attack on the synchronized traces. Our combined CNNP model is
compatible with the reference. It is able to reveal the key with around 300 traces. In
addition, all our CNNP models outperform the reference in attacking desync100 traces, in
which the CNNP model with two parellel convolutional stages achieves a key rank of 4
with 800 desync100 attack traces. The figure also shows that in this case, our proposed
CNNP models with kernel sizes of 5 and 7 work better than that of size 3.

Figure 8 shows the cross evaluation for our models trained on ASCADvariable
desync100 traces.

It again confirms that the models with larger kernel sizes such as 5 or 7 work better than
that with size 3 with desync data. The combined model performs best in cross evaluation,
giving better results when attacking both sync and desync50 traces.

6 Discussion

6.1 Effect of Convolutional Layers
As shown in this work and the previous literature, in general convolutional layers act as
filters for SCA and allow generic detection of features that leak secret information. As
they combine a greater number of time series samples as the number of layers increase,
they are relatively robust to trace misalignment, similar to the way they allow translation
invariance in image recognition problems. Hence, relevant features can be found even
when located across the trace, and can subsequently be combined by the fully-connected
layers. Therefore convolutional layers help DL models deal with trace misalignment based

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 71

0 200 400 600 800 1000
number of traces

0

25

50

75

100

125

150

175

Gu
es

sin
g

En
tro

py
Cross evaluation (models are trained on ASCADvariable

sync database) 10 runs with MLS.
 Number of training epochs is decided by validation accuracy

CNNPone hot
(3)2 model attacks ASCADvariable

desync50 data
CNNPone hot

(3)2 model attacks ASCADvariable
desync100 data

CNNPone hot
(5)2 model attacks ASCADvariable

desync50 data
CNNPone hot

(5)2 model attacks ASCADvariable
desync100 data

CNNPone hot
(3, 5)transfer

 model attacks ASCADvariable
desync50 data

CNNPone hot
(3, 5)transfer

 model attacks ASCADvariable
desync100 data

VGG16Prouffdesync0
(original 11) model attacks ASCADvariable

desync50 data
VGG16Prouffdesync0

(original 11) model attacks ASCADvariable
desync100 data

Figure 6: Attacking ASCADvariable
desync50 and ASCADvariable

desync100 traces using CNNP models
trained on ASCADvariable

sync traces.

countermeasures such as unstable clocks, random hardware interrupts, clock stealing (in
hardware), random delays insertion, shuffling etc.

6.2 Effect of Plaintext Feature Extension and Encoding Methods
Encoding plaintext message data and passing it as an input significantly improves the
accuracy of the model. Two different encoding methods were used, with secret key recovery
from the ASCADfixed dataset in 2 or fewer traces when using the synchronised traces with
both methods, while on the ASCADvariable dataset using the one-hot plaintext encoding
had a significant advantage. Overall, using the one-hot encoding method for plaintext
feature extension obtains better results with fewer attack traces. This is as there isn’t
necessarily a categorical increase in power consumption relative to the input plaintext
value. Note this is in line with deep learning works around natural language processing
[YHPC18] and word embedding where one-hot encoding has been proven to be an effective
encoding method.

The effectiveness of using the plaintext as an input is dependent on the CNN architecture.
In general, in an effective network structure like the proposed CNNP, adding plaintext
knowledge into the model can improve the rank and convergence speed of the correct key,
particularly for models with small kernel sizes. This can be seen in the improvement in
the results from model VGG16Pone−hot

(3) in comparison with the other VGG16 models in
Figure 4a, and in the CNNPone−hot models in comparison with CNN(3) model in Figure 4b,
where 40 traces are enough for CNNPone−hot model to reveal the correct key compared
to 70 traces required for CNN(3) model. Where a sufficient number of attack traces are
available (more than 100), there is little difference in the key rank with and without
plaintext knowledge. However, in a narrow but wide CNN model with a large kernel

72 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

0 200 400 600 800 1000
number of traces

0

50

100

150

200

250

Gu
es

sin
g

En
tro

py
Cross evaluation (models are trained on ASCADvariable

desync50 database) 10 runs with MLS.
 Number of training epochs is decided by validation accuracy

CNNPone hot
(3)2 model attacks ASCADvariable

sync data
CNNPone hot

(3)2 model attacks ASCADvariable
desync100 data

CNNPone hot
(5)2 model attacks ASCADvariable

sync data
CNNPone hot

(5)2 model attacks ASCADvariable
desync100 data

CNNPone hot
(7) model attacks ASCADvariable

sync data
CNNPone hot

(7) model attacks ASCADvariable
desync100 data

CNNPone hot
(3, 5)transfer

 model attacks ASCADvariable
sync data

CNNPone hot
(3, 5)transfer

 model attacks ASCADvariable
desync100 data

VGG16Prouffdesync50
(original 11) model attacks ASCADvariable

sync data
VGG16Prouffdesync50

(original 11) model attacks ASCADvariable
desync100 data

Figure 7: Attacking ASCADvariable
sync and ASCADvariable

desync100 traces using CNNP models
trained on ASCADvariable

desync50 traces.

size like the original VGG16 model, incorporating the plaintext feature with the model
reduces attacking accuracy. The key rank comparison between VGG16P rouff

(original−11) and
VGG16Pone−hot

(original−11), which is from the original work [PSB+18] without/with the plaintext
extension layer included in Figure 4a, shows that it is not always advantageous to add the
plaintext as an additional feature.

6.3 Effect of Convolutional Filter Kernel Sizes
When attacking the traces in the ASCADfixed database, the convolutional filter size, or
combining multiple filters in CNNPmulti, unsurprisingly has little effect on the results
as the model is simply learning the bijection between the plaintext and SBox output
given the key is fixed. When targeting the ASCADvariable

sync database, the smaller filter
size of 3 has an advantage over the longer ones (5 and 7). However, experiments on the
artifically desynchronized data shows that the longer the kernel size is, the better the
performance. Intuitively this is to be expected, as the relavent features are no longer
aligned in time across traces. Both the sampling rate and clock frequency will also have an
impact on the optimal kernel size for a given dataset, hence it is advantageous to combine
multiple parallel convolutional stages to improve the performance as can be seen in the
CNNPone−hot

(3, 5)2
model.

6.4 Effects of Plaintext Extension Locations and DL Network Struc-
tures

In order to further understand about how the depth of network structure, the location of the
plaintext extension layer, and the combination of various kenel lengths effect the output, we

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 73

0 200 400 600 800 1000
number of traces

0

20

40

60

80

100

120

140

160

Gu
es

sin
g

En
tro

py
Cross evaluation (models are trained on ASCADvariable

desync100 database) 10 runs with MLS.
 Number of training epochs is decided by validation accuracy

CNNPone hot
(3)2 model attacks ASCADvariable

sync data
CNNPone hot

(3)2 model attacks ASCADvariable
desync50 data

CNNPone hot
(5)2 model attacks ASCADvariable

sync data
CNNPone hot

(5)2 model attacks ASCADvariable
desync50 data

CNNPone hot
(7) model attacks ASCADvariable

sync data
CNNPone hot

(7) model attacks ASCADvariable
desync50 data

CNNPone hot
(3, 5)transfer

 model attacks ASCADvariable
sync data

CNNPone hot
(3, 5)transfer

 model attacks ASCADvariable
desync50 data

Figure 8: Attacking ASCADvariable
sync and ASCADvariable

desync50 traces using CNNP models
trained on ASCADvariable

desync100 traces.

need a combined analysis of the results given in Figure 4 and Figure 9. The results obtained
by the CNN(3) and VGG16P rouff

(original−11) models are considered the baselines for comparing
between our CNN network structures and CNNP, models with other approacheds developed
using a similar domain knowledge approach. The network structures can be categorized
into three groups: CNNP related (this work), VGG16 related ([PSB+18]), and Hettwer
([HGG18]) models.

Precise location of the plaintext extension layer does not appear to be of paramount
importance in our network structure, as there is minimal difference in the key rank
between the two CNNPone−hot

(3) versions; in which "Pext loc.1" means before the first fully-
connected layer and "Pext loc.2" means before the second fully-connected layer. In addition,
increasing the number of nodes per fully-connected layer also little effect as no significant
improvement can be seen between the results using the CNNPone−hot

(3)3
in comparison with

that of CNNPone−hot
(3)2

. However, changing the structure of convolutional layers does effect
the result, seen as a slight decreases in attacking accuracy of CNNPone−hot

(3)4
model.

In term of network structure, when compared with "VGG16" [PSB+18] our proposed
CNNP with a deeper but narrower network structure results in a significantly improved
mean rank of the correct key as can be seen in CNN(3) (3-layer CNN - no Plaintext
extension). The straightfoward Hettwer5−layerCNN

(original−8) (Hettwer original) model in [HGG18],
in which plaintext knowledge is taken into account, and Hettwer5−layerCNN

(3) (with a kernel
size of 3) have little success in attacking the higher-order protected AES implementation
given by [PSB+18], as can be seen in Figure 4a.

The effectiveness of different network widths when combined with different kernel
lengths can be seen by the results of the CNNPone−hot

(3, 5) models in Figure 9, which use

74 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

the same structure in Figure 2 with convolutional filter sizes of 3 and 5 but are different
in width of 512, 1024, and 1536. Applying neural layers that are too wide (1536 nodes
per fully connected layer) in the CNNPone−hot

(3, 5)2
model reduces the accuracy of the model

relative to the narrower (1024) one. The best result is achieved using transfer learning to
train the model CNNPone−hot

(3, 5)transfer
in Figure 2, in which convolutional filters are taken from

CNNPone−hot
(3)2

and CNNPone−hot
(5)2

models. This result can be interpreted as follows; each
dependent convolutional branch in the combination model converges with different number
of epochs, hence training them together means that the learned weight parameters are sub
optimal. Transfer learning allows the models to learn the best weights, while separately
training the neural network to combine both convolutional branches and classification.

7 Conclusion and Future Work
This paper has proposed a modified approach for building CNN models for profiling SCAs.
A layer called plaintext feature extension is presented, with two different implementation
methods of one-hot and integer encoding to incorporate plaintext information when training
the model. A new network structure, which is deeper but narrower than previous proposals
is introduced for improved results over the state of the art. Finally, a modified parallel
architecture is proposed to incorporate multiple convolutional kernel filter lengths and
layer structures. The proposed CNNP models show significant improvement in training
and attacking the open-source ASCAD database, in which key recovery from 40 traces is
possible when targeting the variable key database.

While considerable work has been done in the area of ML for SCA, there is still
significant scope for improvement in current approaches. The experimentation in this
work is conducted on traces acquired from an embedded device with software based
countermeasures. Future scope of this work would be an analysis of how the plaintext
embedding approach transfers to hardware based countermeasures such as threshold or
dual-rail logic approaches.

Acknowledgements
This work has been supported by EPSRC via grant EP/R012288/1, under the RISE
(http://www.ukrise.org) programme. The authors would like to thank the anonymous
reviewers, as well as Dr Sarah McCarthy, for their valuable comments which helped to
improve this work.

References
[AJR+18] Md. Zahangir Alom, Theodore Josue, Md Nayim Rahman, Will Mitchell, Chris

Yakopcic, and Tarek M. Taha. Deep versus wide convolutional neural networks
for object recognition on neuromorphic system. CoRR, abs/1802.02608, 2018.

[BC14] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27, pages 2654–
2662. Curran Associates, Inc., 2014.

[BCD+17] Ryad Benadjila, Eleonora Cagli, Cécile Dumas, Emmanuel Prouff, Rémi Strullu,
and Adrian Thillard. The ATMega8515 SCA traces databases. https://
github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1, 2017. [Online;
accessed 15-Oct-2019].

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 75

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,
Cryptographic Hardware and Embedded Systems - CHES 2004, volume 3156 of
Lecture Notes in Computer Science, pages 16–29. Springer, 2004.

[Cor14] Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT
2014, volume 8441 of Lecture Notes in Computer Science, pages 441–458.
Springer, 2014.

[CZ06] Zhimin Chen and Yujie Zhou. Dual-rail random switching logic: A counter-
measure to reduce side channel leakage. In Louis Goubin and Mitsuru Matsui,
editors, Cryptographic Hardware and Embedded Systems - CHES 2006, volume
4249 of Lecture Notes in Computer Science, pages 242–254. Springer, 2006.

[Das17] Siddharth Das. CNN Architectures: LeNet, AlexNet, VGG, GoogLeNet,
ResNet and more. . . . https://medium.com/analytics-vidhya/cnns-
architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-
666091488df5, 2017. [Online; accessed 15-Oct-2019].

[GHO15] Richard Gilmore, Neil Hanley, and Máire O’Neill. Neural network based attack
on a masked implementation of AES. In IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2015, Washington, DC, USA,
5-7 May, 2015, pages 106–111. IEEE Computer Society, 2015.

[GHT05] Catherine H. Gebotys, Simon Ho, and C. C. Tiu. EM analysis of rijndael and
ECC on a wireless java-based PDA. In Josyula R. Rao and Berk Sunar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2005, volume 3659 of
Lecture Notes in Computer Science, pages 250–264. Springer, 2005.

[GM11] Louis Goubin and Ange Martinelli. Protecting AES with shamir’s secret
sharing scheme. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic
Hardware and Embedded Systems - CHES 2011, volume 6917 of Lecture Notes
in Computer Science, pages 79–94. Springer, 2011.

[GT02] Jovan Dj. Golic and Christophe Tymen. Multiplicative masking and power
analysis of AES. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar,
editors, Cryptographic Hardware and Embedded Systems - CHES 2002, volume
2523 of Lecture Notes in Computer Science, pages 198–212. Springer, 2002.

[HF12] Anh-Tuan Hoang and Takeshi Fujino. Intra-masking dual-rail memory on
lut implementation for tamper-resistant aes on fpga. ACM Transactions on
Reconfigurable Technology and Systems, 7:1–10, 02 2012.

[HGG18] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Profiled power analysis
attacks using convolutional neural networks with domain knowledge. In Carlos
Cid and Michael J. Jacobson Jr., editors, Selected Areas in Cryptography -
SAC 2018, volume 11349 of Lecture Notes in Computer Science, pages 479–498.
Springer, 2018.

[HJZ12] Hera He, Josh Jaffe, and Long Zou. Side Channel Cryptanaly-
sis Using Machine Learning : Using an SVM to recover DES keys
from a smart card. http://cs229.stanford.edu/proj2012/HeJaffeZou-
SideChannelCryptanalysisUsingMachineLearning.pdf, 2012. [Online; ac-
cessed 28-Nov-2013].

https://medium.com/analytics-vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
https://medium.com/analytics-vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
https://medium.com/analytics-vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
http://cs229.stanford.edu/proj2012/HeJaffeZou-SideChannelCryptanalysisUsingMachineLearning.pdf
http://cs229.stanford.edu/proj2012/HeJaffeZou-SideChannelCryptanalysisUsingMachineLearning.pdf

76 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

[Kar19] Andrej Karpathy. Stanford cs231n - convolutional neural networks for visual
recognition. http://cs231n.github.io/convolutional-networks/, 2019.
[Online; accessed 14-Oct-2019].

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Proceedings of the 19th Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO ’99, pages 388–397, Berlin, Heidelberg, 1999.
Springer-Verlag.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’96, pages 104–113, London,
UK, UK, 1996. Springer-Verlag.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic.
Make some noise. unleashing the power of convolutional neural networks for
profiled side-channel analysis. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2019(3):148–179, May 2019.

[LBM15] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. A machine learning
approach against a masked AES - reaching the limit of side-channel attacks
with a learning model. J. Cryptogr. Eng., 5(2):123–139, 2015.

[LPB+15] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markowitch, and
François-Xavier Standaert. Template attacks vs. machine learning revisited and
the curse of dimensionality in side-channel analysis. In Revised Selected Papers
of the 6th International Workshop on Constructive Side-Channel Analysis and
Secure Design - Volume 9064, COSADE 2015, pages 20–33, New York, NY,
USA, 2015. Springer-Verlag New York, Inc.

[Mag19] Houssem Maghrebi. Deep learning based side channel attacks in practice.
Cryptology ePrint Archive, Report 2019/578, 2019. https://eprint.iacr.
org/2019/578.

[MDP19] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. Gradient visualization
for general characterization in profiling attacks. In Ilia Polian and Marc
Stöttinger, editors, Constructive Side-Channel Analysis and Secure Design -
10th International Workshop, COSADE 2019, Darmstadt, Germany, April 3-5,
2019, Proceedings, volume 11421 of Lecture Notes in Computer Science, pages
145–167. Springer, 2019.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. Cryptology
ePrint Archive, Report 2016/921, 2016. https://eprint.iacr.org/2016/
921.

[MZVT16] Zdenek Martinasek, Ondrej Zapletal, Kamil Vrba, and Krisztina Trasy. Pro-
filing power analysis attack based on mlp in dpa contest v4.2. In 2016 39th
International Conference on Telecommunications and Signal Processing (TSP),
pages 223–226, June 2016.

[NSGD12] Maxime Nassar, Youssef Souissi, Sylvain Guilley, and Jean-Luc Danger. Rsm:
A small and fast countermeasure for aes, secure against 1st and 2nd-order
zero-offset scas. In Proceedings of the Conference on Design, Automation and
Test in Europe, DATE ’12, pages 1173–1178, San Jose, CA, USA, 2012. EDA
Consortium.

http://cs231n.github.io/convolutional-networks/
https://eprint.iacr.org/2019/578
https://eprint.iacr.org/2019/578
https://eprint.iacr.org/2016/921
https://eprint.iacr.org/2016/921

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 77

[PEC19] Guilherme Perin, Baris Ege, and Lukasz Chmielewski. Neural network model as-
sessment for side-channel analysis. Cryptology ePrint Archive, Report 2019/722,
2019. https://eprint.iacr.org/2019/722.

[PM05] Thomas Popp and Stefan Mangard. Masked dual-rail pre-charge logic: Dpa-
resistance without routing constraints. In Josyula R. Rao and Berk Sunar,
editors, Cryptographic Hardware and Embedded Systems – CHES 2005, pages
172–186, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[PSB+18] Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, and Cecile
Dumas. Study of deep learning techniques for side-channel analysis and
introduction to ascad database. Cryptology ePrint Archive, Report 2018/053,
2018. https://eprint.iacr.org/2018/053.

[PSK+18] Stjepan Picek, Ioannis Petros Samiotis, Jaehun Kim, Annelie Heuser, Shivam
Bhasin, and Axel Legay. On the performance of convolutional neural networks
for side-channel analysis. In Anupam Chattopadhyay, Chester Rebeiro, and
Yuval Yarom, editors, Security, Privacy, and Applied Cryptography Engineering
- 8th International Conference, SPACE 2018, volume 11348 of Lecture Notes
in Computer Science, pages 157–176. Springer, 2018.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015, volume
9215 of Lecture Notes in Computer Science, pages 764–783. Springer, 2015.

[Sah18] Sumit Saha. A comprehensive guide to convolutional neural networks —
the eli5 way. https://towardsdatascience.com/a-comprehensive-guide-
to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53, 2018.
[Online; accessed 14-Oct-2019].

[SLJ+14] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. CoRR, abs/1409.4842, 2014.

[SMY09] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A unified frame-
work for the analysis of side-channel key recovery attacks. In Antoine Joux,
editor, Advances in Cryptology - EUROCRYPT 2009, pages 443–461, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[SZ15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In International Conference on Learning
Representations, 2015.

[TAV02] Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede. A dynamic and
differential cmos logic with signal independent power consumption to withstand
differential power analysis on smart cards. In Proceedings of the 28th European
Solid-State Circuits Conference, pages 403–406, 2002.

[Tim19] Benjamin Timon. Non-profiled deep learning-based side-channel attacks with
sensitivity analysis. IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, 2019(2):107–131, Feb. 2019.

[TV04] Kris Tiri and Ingrid Verbauwhede. A logic level design methodology for a secure
dpa resistant asic or fpga implementation. In Proceedings of the Conference on
Design, Automation and Test in Europe - Volume 1, DATE ’04, pages 10246–,
Washington, DC, USA, 2004. IEEE Computer Society.

https://eprint.iacr.org/2019/722
https://eprint.iacr.org/2018/053
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

78 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

[vdVP19] Daan van der Valk and Stjepan Picek. Bias-variance decomposition in ma-
chine learning-based side-channel analysis. Cryptology ePrint Archive, Report
2019/570, 2019. https://eprint.iacr.org/2019/570.

[WMM19] Felix Wegener, Thorben Moos, and Amir Moradi. Dl-la: Deep learning leakage
assessment: A modern roadmap for sca evaluations. Cryptology ePrint Archive,
Report 2019/505, 2019. https://eprint.iacr.org/2019/505.

[WPB19] Leo Weissbart, Stjepan Picek, and Lejla Batina. One trace is all it takes:
Machine learning-based side-channel attack on eddsa. Cryptology ePrint
Archive, Report 2019/358, 2019. https://eprint.iacr.org/2019/358.

[YHPC18] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent
trends in deep learning based natural language processing [review article].
IEEE Computational Intelligence Magazine, 13:55–75, 08 2018.

Appendix

0 20 40 60 80 100
number of traces

0

20

40

60

80

100

Gu
es

sin
g

En
tro

py

CNNP self comparison 100 runs WITH Maximum Likelihood Score (MLS).
 Number of training epochs is decided by validation accuracy

CNNP1hot self references
CNN(3) (3-layer CNN - no Plaintext extension)
CNNP1hot 1PoI size
CNNPone hot

(3)1 (3-layer CNN, Pext loc.1, 512 neural nodes/layer)
CNNPone hot

(3)2 (3-layer CNN, Pext loc.2, 512 neural nodes/layer)
CNNPone hot

(3)3 (3-layer CNN, Pext loc.2, 1024 neural nodes/layer)
CNNPone hot

(3)4 (4-layer CNN, Pext loc.2, 1024 neural nodes/layer)
CNNPone hot

(5)1 (3-layer CNN, Pext loc.1, 512 neural nodes/layer)
CNNPone hot

(5)2 (4-layer CNN, Pext loc.2, 1024 neural nodes/layer)
CNNP1hot 2PoI sizes 3 and 5 in combination
CNNPone hot

(3, 5)1 (3&4-layer CNN, Pext loc.2, 1024 nodes, scratch learning)
CNNPone hot

(3, 5)2 (3&4-layer CNN, Pext loc.2, 1536 nodes, scratch learning)
CNNPone hot

(3, 5)transfer
 (3&4-layer CNN, Pext loc.2, 1024 nodes, transfer learning)

References
VGG16Prouff

(original 11) (Prouff_CNN)

Figure 9: Key ranking comparison among proposed CNNP models on ASCADvariable
sync

databases.

https://eprint.iacr.org/2019/570
https://eprint.iacr.org/2019/505
https://eprint.iacr.org/2019/358

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 79

input_1: InputLayer
input:

output:

(None, 700, 1)

(None, 700, 1)

block1_1_conv1: Conv1D
input:

output:

(None, 700, 1)

(None, 700, 512)

block1_1_pool: MaxPooling1D
input:

output:

(None, 700, 512)

(None, 233, 512)

block1_2_conv1: Conv1D
input:

output:

(None, 233, 512)

(None, 233, 128)

block1_2_pool: MaxPooling1D
input:

output:

(None, 233, 128)

(None, 78, 128)

block1_3_conv1: Conv1D
input:

output:

(None, 78, 128)

(None, 78, 64)

block1_3_pool: MaxPooling1D
input:

output:

(None, 78, 64)

(None, 26, 64)

flatten1: Flatten
input:

output:

(None, 26, 64)

(None, 1664)

input_2: InputLayer
input:

output:

(None, 256, 1)

(None, 256, 1)

flatten_Ptext1hot: Flatten
input:

output:

(None, 256, 1)

(None, 256)

concatenate: Concatenate
input:

output:

[(None, 1664), (None, 256)]

(None, 1920)

fc_x1_1: Dense
input:

output:

(None, 1920)

(None, 1024)

fc_x1_2: Dense
input:

output:

(None, 1024)

(None, 512)

flatten_all: Flatten
input:

output:

(None, 512)

(None, 512)

dropout_fc1: Dropout
input:

output:

(None, 512)

(None, 512)

fc1: Dense
input:

output:

(None, 512)

(None, 512)

fc2: Dense
input:

output:

(None, 512)

(None, 512)

fc3: Dense
input:

output:

(None, 512)

(None, 512)

predictions: Dense
input:

output:

(None, 512)

(None, 256)

Figure 10: Detail of CNNPone−hot
(single) models for ASCADfixed database.

80 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

input_1: InputLayer
input:

output:

(None, 1400, 1)

(None, 1400, 1)

batch_normalization_1: BatchNormalization
input:

output:

(None, 1400, 1)

(None, 1400, 1)

ConvBlock_PoISize0_conv0: Conv1D
input:

output:

(None, 1400, 1)

(None, 1400, 512)

ConvBlock_PoISize0_pool0: MaxPooling1D
input:

output:

(None, 1400, 512)

(None, 466, 512)

batch_normalization_2: BatchNormalization
input:

output:

(None, 466, 512)

(None, 466, 512)

ConvBlock_PoISize0_conv1: Conv1D
input:

output:

(None, 466, 512)

(None, 466, 256)

ConvBlock_PoISize0_pool1: MaxPooling1D
input:

output:

(None, 466, 256)

(None, 155, 256)

batch_normalization_3: BatchNormalization
input:

output:

(None, 155, 256)

(None, 155, 256)

ConvBlock_PoISize0_conv2: Conv1D
input:

output:

(None, 155, 256)

(None, 155, 128)

ConvBlock_PoISize0_pool2: MaxPooling1D
input:

output:

(None, 155, 128)

(None, 51, 128)

batch_normalization_4: BatchNormalization
input:

output:

(None, 51, 128)

(None, 51, 128)

FC_PoISize0_FC0: Dense
input:

output:

(None, 51, 128)

(None, 51, 1024)

batch_normalization_5: BatchNormalization
input:

output:

(None, 51, 1024)

(None, 51, 1024)

Pext_size0_flatten: Flatten
input:

output:

(None, 51, 1024)

(None, 52224)

input_2: InputLayer
input:

output:

(None, 256, 1)

(None, 256, 1)

flatten_Ptext1hot: Flatten
input:

output:

(None, 256, 1)

(None, 256)

Pext_size0: Concatenate
input:

output:

[(None, 52224), (None, 256)]

(None, 52480)

FC_PoIextSize0_FC0: Dense
input:

output:

(None, 52480)

(None, 512)

batch_normalization_6: BatchNormalization
input:

output:

(None, 512)

(None, 512)

FC_PoIextSize0_drop0: Dropout
input:

output:

(None, 512)

(None, 512)

FC_PoIJoined_FC0: Dense
input:

output:

(None, 512)

(None, 512)

batch_normalization_7: BatchNormalization
input:

output:

(None, 512)

(None, 512)

FC_PoIJoined_FC1: Dense
input:

output:

(None, 512)

(None, 512)

batch_normalization_8: BatchNormalization
input:

output:

(None, 512)

(None, 512)

FC_PoIJoined_FC2: Dense
input:

output:

(None, 512)

(None, 512)

batch_normalization_9: BatchNormalization
input:

output:

(None, 512)

(None, 512)

batch_normalization_10: BatchNormalization
input:

output:

(None, 512)

(None, 512)

Predictions: Dense
input:

output:

(None, 512)

(None, 256)

Figure 11: Detail of CNNPone−hot
(single) models with 3 convolutional layers for ASCADvariable

database.

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 81

input_1: InputLayer
input:

output:

(None, 1400, 1)

(None, 1400, 1)

batch_normalization_1: BatchNormalization
input:

output:

(None, 1400, 1)

(None, 1400, 1)

ConvBlock_PoISize0_conv0: Conv1D
input:

output:

(None, 1400, 1)

(None, 1400, 64)

ConvBlock_PoISize0_pool0: MaxPooling1D
input:

output:

(None, 1400, 64)

(None, 466, 64)

batch_normalization_2: BatchNormalization
input:

output:

(None, 466, 64)

(None, 466, 64)

ConvBlock_PoISize0_conv1: Conv1D
input:

output:

(None, 466, 64)

(None, 466, 128)

ConvBlock_PoISize0_pool1: MaxPooling1D
input:

output:

(None, 466, 128)

(None, 155, 128)

batch_normalization_3: BatchNormalization
input:

output:

(None, 155, 128)

(None, 155, 128)

ConvBlock_PoISize0_conv2: Conv1D
input:

output:

(None, 155, 128)

(None, 155, 256)

ConvBlock_PoISize0_pool2: MaxPooling1D
input:

output:

(None, 155, 256)

(None, 51, 256)

batch_normalization_4: BatchNormalization
input:

output:

(None, 51, 256)

(None, 51, 256)

ConvBlock_PoISize0_conv3: Conv1D
input:

output:

(None, 51, 256)

(None, 51, 512)

ConvBlock_PoISize0_pool3: MaxPooling1D
input:

output:

(None, 51, 512)

(None, 17, 512)

batch_normalization_5: BatchNormalization
input:

output:

(None, 17, 512)

(None, 17, 512)

FC_PoISize0_FC0: Dense
input:

output:

(None, 17, 512)

(None, 17, 1024)

batch_normalization_6: BatchNormalization
input:

output:

(None, 17, 1024)

(None, 17, 1024)

Pext_size0_flatten: Flatten
input:

output:

(None, 17, 1024)

(None, 17408)

input_2: InputLayer
input:

output:

(None, 256, 1)

(None, 256, 1)

flatten_Ptext1hot: Flatten
input:

output:

(None, 256, 1)

(None, 256)

Pext_size0: Concatenate
input:

output:

[(None, 17408), (None, 256)]

(None, 17664)

FC_PoIextSize0_FC0: Dense
input:

output:

(None, 17664)

(None, 1024)

batch_normalization_7: BatchNormalization
input:

output:

(None, 1024)

(None, 1024)

FC_PoIextSize0_drop0: Dropout
input:

output:

(None, 1024)

(None, 1024)

FC_PoIJoined_FC0: Dense
input:

output:

(None, 1024)

(None, 1024)

batch_normalization_8: BatchNormalization
input:

output:

(None, 1024)

(None, 1024)

FC_PoIJoined_FC1: Dense
input:

output:

(None, 1024)

(None, 1024)

batch_normalization_9: BatchNormalization
input:

output:

(None, 1024)

(None, 1024)

FC_PoIJoined_FC2: Dense
input:

output:

(None, 1024)

(None, 1024)

batch_normalization_10: BatchNormalization
input:

output:

(None, 1024)

(None, 1024)

Predictions: Dense
input:

output:

(None, 1024)

(None, 256)

Figure 12: Detail of CNNPone−hot
(single) model with 4 convolutional layers for ASCADvariable

database.

82 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

input_1: InputLayer
input:

output:

(None, 700, 1)

(None, 700, 1)

block1_1_conv1: Conv1D
input:

output:

(None, 700, 1)

(None, 700, 512)
block2_1_conv1: Conv1D

input:

output:

(None, 700, 1)

(None, 700, 512)
block3_1_conv1: Conv1D

input:

output:

(None, 700, 1)

(None, 700, 512)

block1_1_pool: MaxPooling1D
input:

output:

(None, 700, 512)

(None, 233, 512)
block2_1_pool: MaxPooling1D

input:

output:

(None, 700, 512)

(None, 233, 512)
block3_1_pool: MaxPooling1D

input:

output:

(None, 700, 512)

(None, 233, 512)

block1_2_conv1: Conv1D
input:

output:

(None, 233, 512)

(None, 233, 128)
block2_2_conv1: Conv1D

input:

output:

(None, 233, 512)

(None, 233, 128)
block3_2_conv1: Conv1D

input:

output:

(None, 233, 512)

(None, 233, 128)

block1_2_pool: MaxPooling1D
input:

output:

(None, 233, 128)

(None, 78, 128)
block2_2_pool: MaxPooling1D

input:

output:

(None, 233, 128)

(None, 78, 128)
block3_2_pool: MaxPooling1D

input:

output:

(None, 233, 128)

(None, 78, 128)

block1_3_conv1: Conv1D
input:

output:

(None, 78, 128)

(None, 78, 64)
block2_3_conv1: Conv1D

input:

output:

(None, 78, 128)

(None, 78, 64)
block3_3_conv1: Conv1D

input:

output:

(None, 78, 128)

(None, 78, 64)

block1_3_pool: MaxPooling1D
input:

output:

(None, 78, 64)

(None, 26, 64)
block2_3_pool: MaxPooling1D

input:

output:

(None, 78, 64)

(None, 26, 64)
block3_3_pool: MaxPooling1D

input:

output:

(None, 78, 64)

(None, 26, 64)

flatten1: Flatten
input:

output:

(None, 26, 64)

(None, 1664)

input_2: InputLayer
input:

output:

(None, 256, 1)

(None, 256, 1)

flatten_Ptext1hot: Flatten
input:

output:

(None, 256, 1)

(None, 256)
flatten2: Flatten

input:

output:

(None, 26, 64)

(None, 1664)
flatten3: Flatten

input:

output:

(None, 26, 64)

(None, 1664)

concatenate: Concatenate
input:

output:

[(None, 1664), (None, 256)]

(None, 1920)
concatenate_1: Concatenate

input:

output:

[(None, 1664), (None, 256)]

(None, 1920)
concatenate_2: Concatenate

input:

output:

[(None, 1664), (None, 256)]

(None, 1920)

fc_x1_1: Dense
input:

output:

(None, 1920)

(None, 1024)
fc_x2_1: Dense

input:

output:

(None, 1920)

(None, 1024)
fc_x3_1: Dense

input:

output:

(None, 1920)

(None, 1024)

fc_x1_2: Dense
input:

output:

(None, 1024)

(None, 512)
fc_x2_2: Dense

input:

output:

(None, 1024)

(None, 512)
fc_x3_2: Dense

input:

output:

(None, 1024)

(None, 512)

concatenate_3: Concatenate
input:

output:

[(None, 512), (None, 512), (None, 512)]

(None, 1536)

flatten_all: Flatten
input:

output:

(None, 1536)

(None, 1536)

dropout_fc1: Dropout
input:

output:

(None, 1536)

(None, 1536)

fc1: Dense
input:

output:

(None, 1536)

(None, 512)

fc2: Dense
input:

output:

(None, 512)

(None, 512)

fc3: Dense
input:

output:

(None, 512)

(None, 512)

predictions: Dense
input:

output:

(None, 512)

(None, 256)

Figure 13: Detail of CNNPone−hot
multi models for ASCADfixed database.

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 83

input_1: InputLayer
input:

output:

(None, 1400, 1)

(None, 1400, 1)

batch_normalization_7: BatchNormalization
input:

output:

(None, 1400, 1)

(None, 1400, 1)
batch_normalization_1: BatchNormalization

input:

output:

(None, 1400, 1)

(None, 1400, 1)

ConvBlock_PoISize1_conv0: Conv1D
input:

output:

(None, 1400, 1)

(None, 1400, 64)

ConvBlock_PoISize1_pool0: MaxPooling1D
input:

output:

(None, 1400, 64)

(None, 466, 64)

batch_normalization_8: BatchNormalization
input:

output:

(None, 466, 64)

(None, 466, 64)

ConvBlock_PoISize0_conv0: Conv1D
input:

output:

(None, 1400, 1)

(None, 1400, 512)
ConvBlock_PoISize1_conv1: Conv1D

input:

output:

(None, 466, 64)

(None, 466, 128)

ConvBlock_PoISize0_pool0: MaxPooling1D
input:

output:

(None, 1400, 512)

(None, 466, 512)
ConvBlock_PoISize1_pool1: MaxPooling1D

input:

output:

(None, 466, 128)

(None, 155, 128)

batch_normalization_2: BatchNormalization
input:

output:

(None, 466, 512)

(None, 466, 512)
batch_normalization_9: BatchNormalization

input:

output:

(None, 155, 128)

(None, 155, 128)

ConvBlock_PoISize0_conv1: Conv1D
input:

output:

(None, 466, 512)

(None, 466, 256)
ConvBlock_PoISize1_conv2: Conv1D

input:

output:

(None, 155, 128)

(None, 155, 256)

ConvBlock_PoISize0_pool1: MaxPooling1D
input:

output:

(None, 466, 256)

(None, 155, 256)
ConvBlock_PoISize1_pool2: MaxPooling1D

input:

output:

(None, 155, 256)

(None, 51, 256)

batch_normalization_3: BatchNormalization
input:

output:

(None, 155, 256)

(None, 155, 256)
batch_normalization_10: BatchNormalization

input:

output:

(None, 51, 256)

(None, 51, 256)

ConvBlock_PoISize0_conv2: Conv1D
input:

output:

(None, 155, 256)

(None, 155, 128)
ConvBlock_PoISize1_conv3: Conv1D

input:

output:

(None, 51, 256)

(None, 51, 512)

ConvBlock_PoISize0_pool2: MaxPooling1D
input:

output:

(None, 155, 128)

(None, 51, 128)
ConvBlock_PoISize1_pool3: MaxPooling1D

input:

output:

(None, 51, 512)

(None, 17, 512)

batch_normalization_4: BatchNormalization
input:

output:

(None, 51, 128)

(None, 51, 128)
batch_normalization_11: BatchNormalization

input:

output:

(None, 17, 512)

(None, 17, 512)

FC_PoISize0_FC0: Dense
input:

output:

(None, 51, 128)

(None, 51, 1024)
FC_PoISize1_FC0: Dense

input:

output:

(None, 17, 512)

(None, 17, 1024)

batch_normalization_5: BatchNormalization
input:

output:

(None, 51, 1024)

(None, 51, 1024)
batch_normalization_12: BatchNormalization

input:

output:

(None, 17, 1024)

(None, 17, 1024)

Pext_size0_flatten: Flatten
input:

output:

(None, 51, 1024)

(None, 52224)

input_2: InputLayer
input:

output:

(None, 256, 1)

(None, 256, 1)

flatten_Ptext1hot: Flatten
input:

output:

(None, 256, 1)

(None, 256)
Pext_size1_flatten: Flatten

input:

output:

(None, 17, 1024)

(None, 17408)

Pext_size0: Concatenate
input:

output:

[(None, 52224), (None, 256)]

(None, 52480)
Pext_size1: Concatenate

input:

output:

[(None, 17408), (None, 256)]

(None, 17664)

FC_PoIextSize0_FC0: Dense
input:

output:

(None, 52480)

(None, 512)
FC_PoIextSize1_FC0: Dense

input:

output:

(None, 17664)

(None, 1024)

batch_normalization_6: BatchNormalization
input:

output:

(None, 512)

(None, 512)
batch_normalization_13: BatchNormalization

input:

output:

(None, 1024)

(None, 1024)

FC_PoIextSize0_drop0: Dropout
input:

output:

(None, 512)

(None, 512)
FC_PoIextSize1_drop0: Dropout

input:

output:

(None, 1024)

(None, 1024)

concatenate: Concatenate
input:

output:

[(None, 512), (None, 1024)]

(None, 1536)

FC_PoIJoined_FC0: Dense
input:

output:

(None, 1536)

(None, 1024)

batch_normalization_14: BatchNormalization
input:

output:

(None, 1024)

(None, 1024)

FC_PoIJoined_FC1: Dense
input:

output:

(None, 1024)

(None, 1024)

batch_normalization_15: BatchNormalization
input:

output:

(None, 1024)

(None, 1024)

FC_PoIJoined_FC2: Dense
input:

output:

(None, 1024)

(None, 1024)

batch_normalization_16: BatchNormalization
input:

output:

(None, 1024)

(None, 1024)

Predictions: Dense
input:

output:

(None, 1024)

(None, 256)

Figure 14: Detail of CNNPone−hot
(3, 5) model for ASCADvariable database.

84 Plaintext: A Missing Feature for Enhancing the Power of DL in SCA?

input_1: InputLayer
input:

output:

(None, 700, 1)

(None, 700, 1)

block1_1_conv1: Conv1D
input:

output:

(None, 700, 1)

(None, 700, 512)

block1_1_pool: MaxPooling1D
input:

output:

(None, 700, 512)

(None, 233, 512)

block1_2_conv1: Conv1D
input:

output:

(None, 233, 512)

(None, 233, 128)

block1_2_pool: MaxPooling1D
input:

output:

(None, 233, 128)

(None, 78, 128)

block1_3_conv1: Conv1D
input:

output:

(None, 78, 128)

(None, 78, 64)

block1_3_pool: MaxPooling1D
input:

output:

(None, 78, 64)

(None, 26, 64)

flatten1: Flatten
input:

output:

(None, 26, 64)

(None, 1664)

input_2: InputLayer
input:

output:

(None, 1, 1)

(None, 1, 1)

flatten_Ptext: Flatten
input:

output:

(None, 1, 1)

(None, 1)

concatenate: Concatenate
input:

output:

[(None, 1664), (None, 1)]

(None, 1665)

fc_x1_1: Dense
input:

output:

(None, 1665)

(None, 1024)

fc_x1_2: Dense
input:

output:

(None, 1024)

(None, 512)

flatten_all: Flatten
input:

output:

(None, 512)

(None, 512)

dropout_fc1: Dropout
input:

output:

(None, 512)

(None, 512)

fc1: Dense
input:

output:

(None, 512)

(None, 512)

fc2: Dense
input:

output:

(None, 512)

(None, 512)

fc3: Dense
input:

output:

(None, 512)

(None, 512)

predictions: Dense
input:

output:

(None, 512)

(None, 256)

Figure 15: Detail of CNNPinteger
single models for ASCADfixed database.

Anh-Tuan Hoang, Neil Hanley, Maire O’Neill 85

input_1: InputLayer
input:

output:

(None, 700, 1)

(None, 700, 1)

block1_1_conv1: Conv1D
input:

output:

(None, 700, 1)

(None, 700, 512)
block2_1_conv1: Conv1D

input:

output:

(None, 700, 1)

(None, 700, 512)
block3_1_conv1: Conv1D

input:

output:

(None, 700, 1)

(None, 700, 512)

block1_1_pool: MaxPooling1D
input:

output:

(None, 700, 512)

(None, 233, 512)
block2_1_pool: MaxPooling1D

input:

output:

(None, 700, 512)

(None, 233, 512)
block3_1_pool: MaxPooling1D

input:

output:

(None, 700, 512)

(None, 233, 512)

block1_2_conv1: Conv1D
input:

output:

(None, 233, 512)

(None, 233, 128)
block2_2_conv1: Conv1D

input:

output:

(None, 233, 512)

(None, 233, 128)
block3_2_conv1: Conv1D

input:

output:

(None, 233, 512)

(None, 233, 128)

block1_2_pool: MaxPooling1D
input:

output:

(None, 233, 128)

(None, 78, 128)
block2_2_pool: MaxPooling1D

input:

output:

(None, 233, 128)

(None, 78, 128)
block3_2_pool: MaxPooling1D

input:

output:

(None, 233, 128)

(None, 78, 128)

block1_3_conv1: Conv1D
input:

output:

(None, 78, 128)

(None, 78, 64)
block2_3_conv1: Conv1D

input:

output:

(None, 78, 128)

(None, 78, 64)
block3_3_conv1: Conv1D

input:

output:

(None, 78, 128)

(None, 78, 64)

block1_3_pool: MaxPooling1D
input:

output:

(None, 78, 64)

(None, 26, 64)
block2_3_pool: MaxPooling1D

input:

output:

(None, 78, 64)

(None, 26, 64)
block3_3_pool: MaxPooling1D

input:

output:

(None, 78, 64)

(None, 26, 64)

flatten1: Flatten
input:

output:

(None, 26, 64)

(None, 1664)

input_2: InputLayer
input:

output:

(None, 1, 1)

(None, 1, 1)

flatten_Ptext: Flatten
input:

output:

(None, 1, 1)

(None, 1)
flatten2: Flatten

input:

output:

(None, 26, 64)

(None, 1664)
flatten3: Flatten

input:

output:

(None, 26, 64)

(None, 1664)

concatenate: Concatenate
input:

output:

[(None, 1664), (None, 1)]

(None, 1665)
concatenate_1: Concatenate

input:

output:

[(None, 1664), (None, 1)]

(None, 1665)
concatenate_2: Concatenate

input:

output:

[(None, 1664), (None, 1)]

(None, 1665)

fc_x1_1: Dense
input:

output:

(None, 1665)

(None, 1024)
fc_x2_1: Dense

input:

output:

(None, 1665)

(None, 1024)
fc_x3_1: Dense

input:

output:

(None, 1665)

(None, 1024)

fc_x1_2: Dense
input:

output:

(None, 1024)

(None, 512)
fc_x2_2: Dense

input:

output:

(None, 1024)

(None, 512)
fc_x3_2: Dense

input:

output:

(None, 1024)

(None, 512)

concatenate_3: Concatenate
input:

output:

[(None, 512), (None, 512), (None, 512)]

(None, 1536)

flatten_all: Flatten
input:

output:

(None, 1536)

(None, 1536)

dropout_fc1: Dropout
input:

output:

(None, 1536)

(None, 1536)

fc1: Dense
input:

output:

(None, 1536)

(None, 512)

fc2: Dense
input:

output:

(None, 512)

(None, 512)

fc3: Dense
input:

output:

(None, 512)

(None, 512)

predictions: Dense
input:

output:

(None, 512)

(None, 256)

Figure 16: Detail of CNNPinteger
multi models for ASCADfixed database.

	Introduction
	Related Work
	Our Contributions

	Background
	SCA and Countermeasures
	Convolutional Neural Networks

	ASCAD Database and Reference ML Models
	ASCAD database
	Reference Comparison Models

	Plaintext Features for DL Based SCA
	Plaintext Feature Encoding
	CNNP model for SCA

	Experimental Results
	Evaluation on ASCAD Fixed Key Datasets
	Evaluation on ASCAD Variable Key Datasets

	Discussion
	Effect of Convolutional Layers
	Effect of Plaintext Feature Extension and Encoding Methods
	Effect of Convolutional Filter Kernel Sizes
	Effects of Plaintext Extension Locations and dl Network Structures

	Conclusion and Future Work

