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Abstract. This paper presents an accelerator design for the password recovery of
sha256crypt based on hybrid CPU-FPGA devices. By applying the brute-force
attack computation model proposed in this paper, we decompose the sha256crypt
function into two types of operations, namely the data dispatching and the block
transforming. The data dispatching operation generates message blocks and the block
transforming operation transforms message blocks into digests. These two operations
are efficiently accelerated by the customized data dispatch unit and the pipelined
block transform unit, respectively. Difficulties of adopting the pipeline technique are
addressed also with the following techniques. The group scheduling is used to solve
the data dependency that stalls the pipeline. The look-ahead execution eliminates
the uncertainty of the execution path. The data path pruning and spatial-temporal
multiplexing reduce the resource overhead of non-computing units.
The proposed accelerator design is implemented and evaluated on the Xilinx Zynq-
7000 XC7Z030-3 SoC. Our experimental results show that the proposed accelerator
can improve energy efficiency by 2.54× over the state-of-the-art password recovery
tool Hashcat running on an NVIDIA GTX1080Ti GPU. Compared with the pure
FPGA-based implementation in John-the-Ripper, the proposed accelerator improves
energy efficiency by 1.64× and improves resource efficiency by 1.69×.
Keywords: Password recovery · Linux security · FPGA · sha256crypt · key derivation
function

1 Introduction
Password-based user authentication [Lam81] is the most commonly used method to protect
user’s important information, since passwords are highly portable and easy to understand
by users. To prevent the clear text password from being easily obtained by malicious
attackers, most operating systems and applications apply key derivation functions (KDFs)
to convert clear text passwords to password hashes. Since KDFs are one-way functions,
the only way to recover the clear text password from the password hash is the brute-force
attack, which searches the correct password by performing KDF on all possible passwords
until the output of KDF matches the password hash [Mar08]. A typical diagram of the
brute-force attack is shown in Figure 1. The time consumption of brute-force attack
depends on the searching speed and the size of the searching space. As the searching space
is huge in most scenarios, malicious attackers have to pay enormous time and energy cost,
and it is the same for the users who want to retrieve forgotten passwords. To expedite
password recovery with a reasonable amount of time and energy consumption, a fast and
energy-efficient accelerator becomes necessary.
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Figure 1: A typical diagram of the brute-force attack. The original password P is encrypted
by the KDF to generate a password hash H. The attacker applies KDF to all passwords in
the searching space and matches every generated hash with the password hash H. If HX
matches the password hash H, the original password PX is retrieved.

As the details of different KDFs diverse from each other, for the sake of illustration,
common features of the brute-force attack on KDFs are abstracted and summarized in
Figure 2. A KDF thread repeatedly generates a message block from the password or the
previous digests, then transforms it to a new digest. Due to the data dependency between
two adjacent message blocks, blocks in a single KDF thread must be processed sequentially.
As a result, many researchers aim at increasing the parallelism of hardware accelerators,
so that more passwords could be processed concurrently.
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Figure 2: Computation model of the brute-force attack on KDFs. N passwords are
processed concurrently with N KDF threads. Each block depends on its previous block.
All block transform operations cost the same time. The number of blocks may vary for
different passwords.

There are two types of parallelism in the brute-force attack of KDFs, the inter-block
parallelism and the intra-block parallelism. Both of them are important to the design of
accelerators. The inter-block parallelism refers to the number of blocks that the accelerator
can process at the same time. The intra-block parallelism refers to the number of operations
that the accelerator can perform at the same time during the processing of one block,
which is the reciprocal of the number of cycles to process one block.

Among many of the password recovery platforms, graphic process units (GPUs) and
field programmable gate arrays (FPGAs) are most widely used. GPU-based accelerators
[QGG+16,HK17,AKSE18] utilize thousands of processing cores to achieve a high inter-
block parallelism. However, suffering from its general-purpose architecture, GPU costs
thousands of cycles to process one block with high clock frequency, which makes it inferior
to FPGA-based accelerators in terms of energy efficiency.

FPGA-based accelerators [KMB+16,LCL+16,AVWS14,DGK+12], on the other hand,
can provide significant savings in terms of energy consumption [DK14]. They can process
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one block in dozens of cycles with customized high intra-block parallelism hash units. The
customized hash units can also explore the inter-block parallelism by implementing a deep
pipeline. The problem is that most FPGA-based accelerators only focus on password-based
key derivation functions (PBKDF, PBKDF2), which have unified execution paths and
regular block generation patterns. For other KDFs such as sha256crypt, sha512crypt, and
md5crypt, the nonunified execution paths and complex block generation patterns make the
implementation of pipelined hash units very difficult. Although the accelerator in [Mag18]
implements sha256crypt with non-pipelined multi-cycle hash units, it allocates too many
hardware resources for the complex control logic, which restricts its inter-block parallelism
due to the limited hardware resources available on an FPGA.

There are three major difficulties when applying the pipelined hash units on KDFs like
sha256crypt.

1. Dependency between adjacent blocks may stall the pipeline.

2. The unpredictable number of blocks for different passwords leads to nonunified
execution paths and adds difficulties to the scheduling of pipeline.

3. The block generation patterns are related to the lengths of passwords, which compli-
cate the memory access patterns and the design of the data path.

The emergence of hybrid CPU-FPGA devices [Xil16, Int20] provides a balance solution
to address above difficulties in terms of flexibility and energy efficiency. It shows great
performance on energy efficiency when employed to the password recovery of bcrypt [MK14]
and PBKDF2 [LLD19]. Specifically, for the password recovery of sha256crypt, the CPU
could handle the tasks with complex logic such as password generation and calculations
that have nonunified execution paths. Then the FPGA is dedicated to the computationally
intensive tasks which have unified execution paths and can be accelerated by the pipelined
hash units.

To apply the pipeline technique on KDFs like sha256crypt, we propose an accelerator
design based on hybrid CPU-FPGA devices. We analyze the sha256crypt function with
our brute-force attack computation model and identify two basic operations. One is the
data dispatching and another is the block transforming. The data dispatching operation
generates blocks and the block transforming operation transforms blocks into digests, which
are used to generate the subsequent blocks. With the definition of these two operations,
it’s obvious that an accelerator design should make customized hardware to expedite them
efficiently. Following this guideline, several accelerating cores are implemented on the
FPGA and work together with the CPU. Each accelerating core has three key components:
the data buffers, the data dispatch unit, and the SHA256 block transform unit with a
deep pipeline. Exploiting the co-processing of CPU and the reconfigurability of FPGA,
several techniques, such as group scheduling, look-ahead execution, data path pruning,
and spatial-temporal multiplexing, are applied to improve the performance and reduce the
hardware resource overhead.

1. Group scheduling is used to remove the data dependency between adjacent blocks in
sha256crypt so that the pipelined block transform unit is free from stalling.

2. Look-ahead execution eliminates the uncertainty of execution paths in sha256crypt
by mapping the nonunified calculations to the CPU and reusing its results.

3. Data path pruning and spatial-temporal multiplexing are used to simplify the design
of the data dispatch unit and reduce the hardware resource overhead.

To the best of our knowledge, this is the first open work about the pipelined password
recovery accelerator dedicated for the sha256crypt algorithm. The proposed accelerator is
evaluated on a tailor-made development board with a Xilinx Zynq-7000 XC7Z030-3 SoC.
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Two accelerating cores are implemented based on the hardware resource available on the
FPGA. The proposed accelerator achieves 2.54× improvement in terms of energy efficiency
over the state-of-the-art implementation [has20] running on an NVIDIA GTX 1080Ti
GPU. Compared with the pure FPGA-based accelerator reported in [Mag18], the proposed
accelerator achieves 1.64× energy efficiency and 1.69× resource efficiency, respectively.
The techniques proposed in this paper are also validated with sha512crypt. It achieves
2.39× energy efficiency over Hashcat running on GTX1080Ti.

The rest of this paper is structured as follows. Section 2 analyzes the details of
sha256crypt and points out the difficulties in hardware implementation. Section 3 illustrates
the overall architecture of the password recovery on a hybrid CPU-FPGA device. The
details of the techniques employed are provided in Section 4. Section 5 gives the evaluation
results of our design and Section 6 concludes the paper.

2 Algorithm Details and Hardware Platforms
2.1 SHA256
SHA256 function takes a message of 1-bit to (264-1) bits as its input and outputs a digest
of 256 bits. Inside the function, the input message is divided into several 512-bit blocks
and processed block by block. Figure 3 illustrates the process of SHA256 function. The
input message is first padded with a ‘1’ followed by a stream of ‘0’s and a 64-bit message
length L so that the total length is a multiple of 512 bits. Then starting from the first
block, each block is processed together with a 256-bit state by the block transform function
(BTF). Each block transform function outputs a 256-bit temporary digest, which is used as
the state of the next block. The initialization vector (IV) is defined by the SHA-2 standard
in [Dan15]. The final output of SHA256 is the digest of the last block (DN).

Message 100...000 #L

Block1

BTF BTF

D1 D2 DNIV

Block2

BTF

BlockN

L bits
512×N bits

512 bits 512 bits 512 bits

64 bits

256 bits256 bits
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Figure 3: Details of the SHA256 function. BTF stands for the block transform function.

2.2 Sha256crypt
Sha256crypt is used in most Linux distributions to encrypt users’ passwords. It is specified
as follows:

H = sha256crypt(pwd, salt,N) (1)

where pwd is the password to be encrypted, salt is a random string of length 8 to 16 bytes,
and N is the number of SHA256 iterations in the function to adjust the execution time.
The password hash H contains four parts that are separated by the ‘$’ sign. An example
of H is shown below:
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$5$rounds=5000$ssaalltt$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8
The ID ‘5’ is reserved for sha256crypt. The number of iterations is specified in the

second part with a default value of 5000. The third part is the salt string and the last
part is the base64 [Jos06] encoded check value.

The process of sha256crypt can be divided into the following five phases, where the LP
and LS denote the length of pwd and salt, respectively.
Phase I:

1. Generate the message A by consequently appending pwd, salt, and pwd. 2. Calculate
the SHA256 digest of A (DA).
Phase II:

1. Generate the message B by consequently appending pwd, salt, and the first #LP
bytes of a sequence of DAs. 2. For each digit x of the binary representation of #LP,
starting from the lowest digit to the highest 1-digit:

(i) If x is ‘1’, append DA to the message B.

(ii) If x is ‘0’, append pwd to the message B.

3. Calculate the SHA256 digest of B (DB).
Phase III:

1. Generate the message P by consequently appending pwd #LP times. 2. Calculate
the SHA256 digest of P (DP). 3. Generate the message S by consequently appending salt
16+DB[0] times, where the DB[0] represents the first byte in DB interpreted as an 8-bit
unsigned value. 4. Calculate the SHA256 digest of S (DS).
Phase IV:

1. Generate temporary variables TP and TS by intercepting the first #LP bytes of a
sequence of DPs and the first #LS bytes of a sequence of DSs, respectively. 2. Initialize
the digest of C (DC ) with DB. 3. For i ranging from 0 to N -1, repeat:

(1) Generate the message C with the CryptPad function, which is detailed in Algorithm 1.

(2) Calculate the SHA256 digest of C (DC ).

Phase V:
1. Encode DC with the base64 algorithm. 2. Generate the final output H.

As Phase V can be easily reversed, for the sake of representation, it will be omitted in
this paper.

The security of sha256crypt mainly comes from three aspects. First, using random salt
makes it impossible to apply rainbow table based attacks [Oec03]. Second, every SHA256
calculation in Phase IV-3 depends on the output of the previous SHA256 calculation. As
a result, these calculations must be executed sequentially, which limits the processor’s
parallelism in a single thread of sha256crypt. Third, the iteration in Phase IV-3 with 1,000
to 999,999,999 rounds increases computing power to defend against brute-force attacks.

2.3 Sha256crypt in Brute-force Attack Computation Model
As the number of blocks in SHA256 function is related to the length of the input message,
different SHA256 calculations in sha256crypt may need different number of clock cycles to
complete, which leads to the difficulties in the design of hardware architecture. To further
explore the features of sha256crypt and make an efficient hardware implementation, the
procedure of sha256crypt is decomposed to the block level by combining those described
in Section 2.1 and Section 2.2.

As shown in Algorithm 1, every SHA256 calculation in sha256crypt is expressed as a
loop of generating and transforming blocks. The generation and padding of the message



6 A Solution to the Recovery of Sha256crypt-hashed Passwords

Algorithm 1 Sha256crypt in the brute-force attack model
Input: pwd, salt,N
Output: DC

1: function sha256crypt(pwd, salt,N)
2: Apad ← Pad(GenerateA(pwd, salt)), state← IV
3: for each block in Apad do . loop1
4: BLK ← GetBlock(Apad)
5: state← SHA256BTF(BLK, state)
6: DA← state
7: Bpad ← Pad(GenerateB(pwd,DA)), state← IV
8: for each block in Bpad do . loop2
9: BLK ← GetBlock(Bpad)

10: state← SHA256BTF(BLK, state)
11: DB ← state
12: Ppad ← Pad(GenerateP(pwd)), state← IV
13: for each block in Ppad do . loop3
14: BLK ← GetBlock(Ppad)
15: state← SHA256BTF(BLK, state)
16: DP ← state
17: Spad ← Pad(GenerateS(salt,DB[0])), state← IV
18: for each block in Spad do . loop4
19: BLK ← GetBlock(Spad)
20: state← SHA256BTF(BLK, state)
21: DS ← state
22: TP ← GetTP(DP ), TS ← GetTS(DS)
23: DC ← DB
24: for i = 0→ N − 1 do
25: Cpad ← Pad(CryptPad(TP , TS, DC, i))
26: state← IV
27: for each block in Cpad do . loop5
28: BLK ← GetBlock(Cpad)
29: state← SHA256BTF(BLK, state)
30: DC ← state
31: return DC
32: function CryptPad(TP, TS,DC, i)
33: if i mod 2 6= 0 then
34: message← TP
35: else
36: message← DC

37: if i mod 3 6= 0 then
38: message← message||TS
39: if i mod 7 6= 0 then
40: message← message||TP
41: if i mod 2 6= 0 then
42: message← message||DC
43: else
44: message← message||TP
45: return message
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A, B, P, and S exactly follow the steps detailed in Section 2.2. Then the state variable is
initialized with the IV, which is defined in [Dan15]. Inside each round of a loop, GetBlock
function is first called to fetch a 64-byte block (BLK) from the input message and then
SHA256BTF is called with the BLK and state as its input. The output of SHA256BTF is
used to update the state. After the last round of a loop completes, the value of the state
is outputted as the digest of the input message. It should be noticed that the message
generation and padding operations could be merged into the GetBlock function during the
loop, which means there are mainly two types of operations in sha256crypt.

1. Generate a 64-byte block from input sources, which include the bytes in pwd, salt,
32-byte digests (DA, DB, DC, DP, DS), temporary variables (TP, TS), 8-byte
message length variable (L), constants (‘0x80’, ‘0x00’).

2. Perform SHA256 block transform function (SHA256BTF) and update the input
sources.

We refer the operation 1 as data dispatching and the operation 2 as block transform-
ing. To make an efficient hardware implementation, the cycles needed to compute both
operations have to be minimized.

2.4 Difficulties in Non-blocking Pipelined Accelerator Designs
A fully-pipelined hash unit outputs one digest per cycle, which means one 64-byte block
should also be generated per cycle. However, some features of sha256crypt cause difficulties
in the pipelined hash hardware implementation.

The first feature lying in sha256crypt is the data dependency between adjacent
SHA256BTFs. An operation can’t be executed until the previous operation completes,
which stalls the pipeline and increases the average operation cycles.

The second feature is the nonunified execution path. In sha256crypt, the number of
rounds in each loop is decided by the number of blocks in each input message (A, B,
C, P, and S). The variety of the LP and the LS makes the lengths of input message
vary, which adversely impacts the schedule of the pipeline. Table 1 gives some examples.
There is almost twice the difference between the number of rounds for different passwords,
which reduces the efficiency since the fast thread has to wait for the slow thread. As the
generation pattern of message S depends on DB[0], which could be considered as a random
integer within the interval [0, 255], the number of rounds in loop4 might be different even
for passwords with the same length. There are 8 cases for the number of rounds in loop5,
because the patterns that the CryptPad function uses to generate the message C is decided
by whether the iteration counter i is divisible by 2, 3 or 7, respectively.

Table 1: Number of rounds in each loop for different LP and LS with 5000 iterations.

LP LS loop1 loop2 loop3 loop4 loop5
(each iteration)

loop5
(5000 iterations)

6 8 1 2 1 3∼35 1,1,1,1,1,1,1,1 5,000
16 8 1 3 5 3∼35 1,1,2,2,2,2,2,2 9,761
6 16 1 2 1 5∼68 1,1,1,1,1,1,2,2 7,857
16 16 1 3 5 5∼68 1,1,2,2,2,2,2,2 9,761
32 16 2 5 17 5∼68 2,2,2,2,2,2,2,2 10,000

The last feature is the complex block generation pattern. The generation of a block
is equivalent to selecting 64 bytes from the source buffers (pwd, salt, DA, DB, etc.)
and transmitting them to the destination buffer (BLK). Taking loop5 as an example,
Figure 4 shows all of the 8 block generation patterns during the N iterations when LP
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= 6 bytes and LS = 8 bytes. Considering the most common case where LP 6 16 bytes
and LS = 8 bytes, the total number of bytes in source buffers is 218 (pwd(16-byte),
salt(8-byte), DX(32-byte×5), TP(16-byte), TS(8-byte), L(8-byte), constants(2-byte)). To
complete the generation in one cycle, all of the 64 bytes should be fetched simultaneously.
If no optimization is applied, sixty-four 218-to-1 multiplexors are needed in hardware
implementation, which introduces great overhead to hardware resources and critical path
latency.

Case 0

Case 1

DCTP 0x80 padding 0 #46
148 46 56 63477 13 55

TS
0 45

DC TP 0x80 padding 0 #46
0 40 46 56 634739 45 55

TS
3231

DC TP 0x80 padding 0 #44
0 38 44 56 634537 43 55

TP
3231

DC 0x80 padding 0 #44
12 44 56 6345 5543

TP
65 11

TP
0

DC 0x80 padding 0 #52
0 52 56 635331 55

TP
32 37

TS TP
38 45 46 51

DC 0x80 padding 0 #52
20 52 56 635351 55

TP
0 5

TS TP
6 13 14 19

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

DC TP 0x80 padding 0 #38
0 32 38 56 633931 37 55

DCTP 0x80 padding 0 #38
60 38 56 6339375 55

Figure 4: The 8 block generation patterns of loop5 when LP = 6 bytes and LS = 8 bytes.
The numbers marked on each segment represent its position in the block.

2.5 Hybrid CPU-FPGA Platforms for Password Recovery
In the field of password recovery, there’s always a trade-off between efficiency and flexibility.
Processors with general-purpose architecture, such as CPU and GPU, could easily support
all KDFs and provide a flexible user interface. However, they tend to have higher energy
consumption than FPGA when performing brute-force attacks. On the other hand,
although FPGA achieves better energy efficiency, its poor flexibility limits its application
scenarios. Most pure FPGA-based accelerators target the PBKDF2 algorithm, which has
a regular and simple structure.

To combine the flexibility and efficiency, hybrid CPU-FPGA platforms, such as the
Zynq-7000 SoC series from Xilinx [Xil16] and Stratix 10 SoC series from Intel [Int20], where
full-fledged processors are integrated together with configurable logic, can be used to build
up hardware password recovery accelerators with both high throughput and low energy
consumption [LLD19]. The CPU runs flexible software to make efficient scheduling while
the FPGA implements customized hardware logic to provide high performance. Through
software and hardware co-design, the designs on FPGA are simplified, thus achieve better
efficiency while still maintaining flexibility and low power consumption.

Compared with the discrete CPU-FPGA platforms, the hybrid CPU-FPGA systems like
Zynq have additional advantages. First, the smaller chip count simplifies the board-level
hardware architecture, cuts down the form factor, and improves the system reliability.
Second, the shorter distance between the CPU and the FPGA will cut down the communi-
cation delays and of course require less power for the two devices to interact with each
other. Last but not least, the hybrid CPU-FPGA device is physically closer to and tightly
integrated with its memory, which adds additional overall power saving [CEES14].
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3 Overview of System Architecture
The overall architecture of the proposed accelerator is shown in Figure 5. The system
consists of a CPU, a secure digital memory card (SD card), and an FPGA with several
sha256crypt accelerating cores. The CPU and the FPGA are integrated on the same
system on chip (SoC) and linked with AXI bus. The SD card’s functionality is to store
the bitstream files used to configure the FPGA.

SD card
(Bitstream library)CPU

FPGA
Accelerating 

core
Accelerating

core

AXI bus

Figure 5: Overall architecture of the proposed password recovery accelerator.

To provide a user-friendly interface and an efficient task management, a password
recovery framework is deployed on the CPU. The framework has the same front end with
the famous password recovery tool Hashcat [has20], which supports flexible attack modes
(dictionary, mask and rule, etc.) that allow users to accurately specify the password
searching space. The back end of the framework handles the task arrangement between
the CPU and the FPGA.

Figure 6 shows the flow chart of the sha256crypt password recovery. First, the password
hash is parsed to get the salt, the iteration number (N ), and the decoded check value.
Then, for each possible value of DB[0] in Phase III-3, the CPU generates a message S
and calculates its digest DS. This procedure is named as look-ahead execution. Next, a
group of passwords with the same length is generated from dictionaries or masks specified
by the user. The FPGA will be reconfigured according to the length of the password if
necessary. After that, the salt, N, pre-calculated DSs, and the passwords are transmitted
to the accelerating cores on the FPGA through the AXI bus. When the accelerating cores
complete the sha256crypt computation, the results are sent back to the CPU. Finally,
the CPU compares these results with the check value. If a match is found, the correct
password will be outputted. Otherwise, the process above will be repeated until the correct
password is found or the searching space is exhausted.

CPU

Parse hash

Look-ahead 
execution (loop4)

Flash 
bitstream

Generate
passwords

Check results

FPGA

Transmit data

Loop1 Loop2

Loop3Loop5

Figure 6: Flow chart of sha256crypt password recovery on the proposed accelerator.

The architecture of the accelerating cores is shown in Figure 7. There are three
components namely the data buffers, the data dispatch unit, and the block transform
unit. The data buffers store the input sources, which include pwd, salt, DA, DB, etc. The
data dispatch unit selects 64 bytes from the input sources to generate blocks under the
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control of the finite state machine (FSM). Then the block transform unit takes the blocks
generated by the data dispatch unit and performs SHA256BTF to generate digests. For
the advantage of high throughput, the pipeline technique is applied to the block transform
unit. As the technique for efficient SHA256 implementations [MCMM06,CKSV08,RVS15]
has been well studied, it is not the focus of our paper. Finally, these digests are sent to
the state buffer or data buffers to update the states or input sources. Operations above
finish one round of a loop. When the last round of all the loops completes, the results are
transmitted back to the CPU for validating.

Accelerating core

Block transform unit
Data dispatch unit

Data buffers
64-byte
block

FSM

CPU

Pipeline

Input 
sources

States

32-byte 
state

State buffer

Figure 7: Architecture of the proposed accelerating core.

Figure 8 shows the task arrangement between the CPU and the FPGA. The task
of checking results on the CPU and the acceleration on the FPGA are parallelized to
improve the efficiency. As it requires a substantial modification to Hashcat’s source code
but gains little improvement, the task of generating passwords is not parallelized. The
communication overhead comes from the transmission of the passwords and results.

G0

G0 G1

Accelerate
on the FPGA

Check 
results

G0

Generate
passwords

Transfer 
passwords

Transfer 
check values

G1G1 G2G2

Figure 8: Task arrangement between the CPU and the FPGA. The task of checking
results in the group 0 (G0) and the FPGA acceleration in the group 1 (G1) are processed
concurrently, which is the same for subsequent groups like the group 1 and group 2 (G2).

4 Hardware Implementation
Hardware implementation details of our accelerator are provided in this section. Section
4.1 discusses the group scheduling technique to eliminate data hazard of the pipelined
block transform unit. Section 4.2 introduces the look-ahead execution technique to unify
the execution paths. Section 4.3 introduces the efficient design of the data dispatch unit
using the data path pruning and the spatial-temporal multiplexing techniques. Section
4.4 shows the detailed architecture of the accelerating core with all these techniques put
together.

4.1 Group Scheduling
As mentioned in Section 2.4, during the loop process, data dependency exists between
two adjacent block transform operations. As a result, each block has to wait M cycles
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until the processing of its previous block is finished, where M is the stage of the pipeline.
For the convenience of hardware design, M is set to 64 in our implementation. We use
the utilization rate of the block transform unit to quantify the efficiency of the scheduling
scheme, which is defined as follows:

Utilization rate = actual block throughput
designed block throughput (2)

Since the designed block throughput is one block per cycle, the utilization rate also
equals to the average number of blocks processed per cycle. If the data dependency is not
solved, the utilization rate of the block transform unit could only reach 1/64.

To eliminate the data dependency and improve the utilization rate of the pipelined
block transform unit, the group scheduling technique proposed in [LLD19] is applied. As
there is no data dependency between the processing of different passwords, a group of
G passwords can and shall be stored and processed together. We assume that all the
passwords in a group have the same number of blocks to process, which can be guaranteed
by applying the look-ahead execution technique.

Figure 9 gives the comparison between pipelines with and without the group scheduling.
By applying the group scheduling, the full-filled pipeline completes one block transform
operation per cycle. Taking the overhead of the pipeline full-filling into consideration,
the utilization rate of the block transform unit will be G/(G+64). To maximize the
utilization rate of the block transform unit, the group size G should be maximized under
the limitation of available BRAM resources.

State × G

Block × G

Digest × G
Block transform unit

State

Block

Digest
Block transform unit

1 block in 64 cycles

G blocks in G + 64 cycles

(a)

(b)

64 
Stages

64 
Stages

Figure 9: (a) Pipeline without group scheduling. (b) Pipeline with group scheduling.

4.2 Look-ahead Execution
Section 2.4 has shown that different passwords and salts lead to different execution paths
of sha256crypt. This feature brings difficulties in group scheduling, since the threads in
the same group may have different numbers of blocks to process. As the salt remains
unchanged during the password recovery, the uncertainty of execution paths comes from
two aspects: the variation of password length and the unpredictable value of DB[0] in
Phase III-3.

Variation of password length can be eliminated by sorting passwords by length when
generating passwords on the CPU. Then passwords with the same length are grouped and
transferred to the accelerating core.

To remove the uncertainty caused by the unpredictable value of DB[0], we propose the
look-ahead execution technique based on the following observations. First, there is only
one salt during the cracking of one password hash. Second, DB[0] has a range of 0 to 255.
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As a result, there are only 256 possible values of DS in total and we can reuse them for all
passwords.

To this end, the calculation of DS (loop4) is mapped to the CPU. As shown in Figure 10,
for each possible value of DB[0], a DS is calculated and stored in the LAE (Look-Ahead
Execution) buffer of the accelerating core. During the processing of the accelerating core,
once the calculation of each DB completes, DB[0] is used to select corresponding DS from
256 DSs in the LAE buffer. The results are stored in the DS buffer. With the look-ahead
execution technique, the value of DS is decided once the value of DB is calculated. Thus,
all the passwords in the same group will follow the same execution path.

32-byte × 256
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A0
A1

A7

…

32-byte × G

DB buffer

DS buffer

DB[0]

LAE buffer

Pre-calculated DS 
values from CPU

DB from block 
transform unit

Figure 10: Schematic of the look-ahead execution technique.

4.3 Efficient Data Dispatch Unit Design
An efficient design of the data dispatch unit with low overhead is necessary on a resource-
strapped FPGA. Figure 11 illustrates the data path between the input sources and the
output block, where 64 multiplexors are used to select 64 bytes from the input sources.
Each multiplexor is controlled by a control signal generated by the FSM.

Block[0]

Block[1]

Block[63]

Pwd[0]

Salt[0]

DA[0]

0x00

M
ux 0

M
ux 1

M
ux 63

CS00

CS01

CS63

Input sources

Figure 11: Data path between the input sources and the output block.

To describe the behavior of the FSM, we first define a state group for each loop in
sha256crypt. As shown in Figure 12, a state group consists of several states. Each state
corresponds to a round of the loop. For example, when LP = 6 bytes and LS = 8 bytes,
state groups for loop1 and loop3 (SG1, SG3) both have one state, while the state group
for loop2 (SG2) has two states. As loop4 is mapped to the CPU by look-ahead execution,
there is no state group assigned to it. For loop5, we define 42 state groups, since its
message generation pattern changes with a period of 42 during the iterations, which is
the least common multiple of 2, 3, and 7. According to Table 1, all state groups for loop5
have one state. In this case, a total of 46 states are needed. The state SE is added as the
end state.

The numbers of states needed for each password length are listed in Table 2. A total
of 815 states are needed to support LP going from 6 to 16 bytes when LS = 8 bytes.
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IC++

IC++
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IC++

Figure 12: State diagram of the finite state machine for LP = 6 bytes and LS = 8 bytes.
The IC (iteration counter) is set to 0 at S0. Each time when the FSM leaves SG5, the IC
is increased by one. Once the IC equals the iteration number N, the FSM transits to the
end state SE.

Table 2: Number of states needed in FSM for LP from 6 to 16 bytes when LS = 8 bytes.

LP 6 7 8 9 10 11 12 13 14 15 16
# of states 46 46 71 71 71 73 85 85 88 88 90

Design of the FSM is shown in Figure 13. Benefiting from the unified execution path,
the FSM can be simply implemented with a BRAM-based look-up-table. The content in
the look-up-table has 3 segments, which are the next state, the control signals, and the end
of loop5 flag (EOL). At each state, the value in the state counter is used as the address to
access the content in the look-up-table. Then the state counter is updated with the next
state. The control signals from CS00 to CS63 are used to control the multiplexors of the
data path. The EOL flag is used to indicate whether a state group for loop5 is finished. If
the EOL is 1, the iteration counter should increase by one.
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Figure 13: Design of the finite state machine.

We adopt two factors to quantify the overhead of the data dispatch unit. The first is
the number of connections between the input sources and the output block. The number
of connections will influence the LUT resources that are used to implement multiplexors.
Another factor is the size of the look-up-table, which affects the usage of BRAM resources
on FPGA.

Considering a simple and intuitive design where each multiplexor is connected directly
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with all input sources, as mentioned in Section 2.4, the number of connections for each
multiplexor is 218. The total number of connections would be 218×64 = 13,952, which costs
39,901 LUTs (about 50% of the total LUTs on our experimental platform). Meanwhile, for
a 218-to-1 multiplexor, at least 8 bits of control signals are needed. Including 10 bits for
the next state segment and 1 bit for the EOL segment, the size of storage needed for each
state is 8×64+10+1 = 523 bits. The total size of the look-up-table will be 523×815 =
426,245 bits (about 52 KiB). To reduce the overhead of the data dispatch unit, we propose
data path pruning and spatial-temporal multiplexing techniques.
A. Data path pruning

The data path pruning technique is based on the following observations. First, different
input sources could share the same storage resources. For example, DB and DC could
share the same buffer since they will not be used at the same time. Second, for a specific
byte in the block, its candidates only account for a part of all input sources, which means
a multiplexor doesn’t have to connect with all input sources.

Exploiting these observations, we reuse the buffers for multiple variables, which is listed
in Table 3. Then, we customize the size of each multiplexor, so that only the possible
candidates are connected to the inputs of a multiplexor. Figure 14(a) and Figure 14(b)
show the number of connections before and after applying data path pruning. After
pruning, the total number of bytes in input sources is decreased and each multiplexor has
fewer connections. Therefore, the total number of connections is reduced from 13,952 to
3,086.

Table 3: Relationship between the variables and the buffers they use.

Buffer name pwd salt DA DB DS
Variable name pwd, TP salt DA, DP, DC DB, DC DS, TS

(a) Unoptimized (b) After pruning (c) After pruning and
spatial-temporal mul-
tiplexing

Figure 14: Data path hotmap. Each grid represents a byte in the block. The number
marked on the grid represents the number of connections for the corresponding multiplexor.

B. Spatial-temporal multiplexing
It should be noticed that the variation of password lengths also makes a great contri-

bution to the complexity of the data path. Figure 14(c) shows the number of connections
actually used when the length of the password is fixed to 6 bytes. In this case, the number
of active connections is reduced to 394. This fact drives us to explore the temporal locality
of the data path and propose the spatial-temporal multiplexing technique, which leverages
the reconfigurability of the FPGA.

For password length from 6 bytes to 16 bytes, we prune the data path and generate
a bitstream file for each length. Passwords with the same length are grouped and sent
to the FPGA for processing. Every time the length of passwords changes, the FPGA is
reconfigured with corresponding bitstream file. The software running on the CPU will sort
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the passwords by length to avoid frequent reconfiguration. With this technique, the whole
data path is separated and distributed into different bitstream files.

As the number of connections is reduced, each multiplexor needs fewer bits of control
signals. What’s more, since each design only needs to store the states of a specific password
length, the total storage overhead can be further reduced. In the case where LP = 6 bytes
and LS = 8 bytes, each control signal costs 4 bits and there are 47 states need to be stored.
As a result, the storage overhead of the look-up-table is 47×(4×64+6+1)=12,361 bits,
which is about 3% of the unoptimized design.

4.4 Putting It All Together
Figure 15 shows the hardware implementation details of the accelerating core. The
implementation provided in Figure 15 is specialized for passwords of 6 bytes and salts of
8 bytes due to the spatial-temporal multiplexing technique. For other combinations of
passwords and salts, the proposed architecture is also adaptable by adjusting the connection
of the data path and the size of the pwd and salt buffer.
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Figure 15: The detailed architecture of the accelerating core.

The data buffers include the pwd, salt, DA, DB, and DS buffers, which are used as the
input sources. The LAE buffer receives the pre-calculated DSs generated by the look-ahead
execution on the CPU. The state buffer stores the intermediate digests that are used as the
states in SHA256 calculations, such as the D1, D2, ..., and DN−1 in Figure 3. In order to
apply the group scheduling technique, all buffers are organized in a 2-dimensional manner.
The first dimension is the size of the variable and the second dimension is the size of the
group, which is denoted with G. The salt buffer has a group size of one, since all passwords
share the same salt. As the 64-byte block and the 32-byte state needed by SHA256BTF
have to be fetched simultaneously, these buffers are completely partitioned at the first
dimension.

Once the configuration of the FPGA is complete, all the accelerating cores are ready
to work. Each core processes a group of passwords with the following steps:

Loop1: The pwd and salt buffer receive the passwords and salt from the CPU. Then
they are used as the input sources to calculate DA, which is then stored in the DA buffer.

Loop2 and loop4: The pwd buffer and DA buffer are used as the input sources to
calculate DB, which is then stored in the DB buffer. Meanwhile, DS is selected from the
LAE buffer and stored in the DS(TS) buffer.
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Loop3: The pwd buffer is used as the input sources to calculate DP, which is then
stored in the DP buffer. Then the first #LP byte of DP is copied into the TP buffer.

Loop5: The TP, TS, and DB buffers are used as the input sources to calculate DC,
which is then stored in the DA buffer. In the following iterations, the DA and DB buffers
are alternatively used as the input sources and output buffer for DC.

At each round of a loop, the data dispatch unit switches to the corresponding block
generation pattern. One block is generated and sent to the block transform unit every
cycle. The block transform unit performs SHA256BTF on these blocks and outputs the
digests. If the current round is not the last round of a loop, the digests will be stored
in the state buffer as the intermediate states. Otherwise, they will be stored in the data
buffers. After the processing of all G blocks in a group is finished, the data dispatch unit
switches to the next block generation pattern to start a new round. When all the rounds
of all the loops are finished, the final digests of DC are sent back to the CPU to compare
with the password check value.

5 Evaluation
The performance and energy efficiency of our accelerator are evaluated on a Xilinx Zynq-
7000 XC7Z030-3 SoC, which contains two ARM Cortex-A9 processors working at 666
MHz and a 7 series programmable logic. Two sha256crypt accelerating cores working at
a maximum frequency of 220 MHz are placed on the FPGA. The accelerating cores are
synthesized and implemented with the Xilinx Vivado 2016.3 toolset. To justify the proposed
designs, the implementations are compared with the state-of-the-art password recovery
tools Hashcat [has20] and John-the-Ripper (JtR) [Mag18]. The proposed accelerator is
also evaluated on a 16-node cluster which consists of the same Zynq devices, as is shown
in Appendix A.

5.1 System Performance
The system performance of the proposed accelerator is shown in Table 4. As the number of
blocks in sha256crypt increases with the length of the password, the performance statistics
for length from 6 bytes to 16 bytes are all reported. We use the number of passwords that
the system can check per second as the indicator of speed. The power consumption is
measured at the DC power supply of 5V. The energy efficiency indicates the energy cost
for each password, which is calculated by speed/power. The proposed accelerator achieves
a speed of 82,023 pwd/s when LP = 6 bytes. As the LP increases to 16 bytes, the speed
drops to 42,658 pwd/s since the number of blocks for each password increases. The power
consumption of the proposed accelerator is about 15 Watts.

Table 4: System performance of the proposed accelerator

LP 6 7 8 9 10 11 12 13 14 15 16
# of blocks 5,023 5,023 7,881 7,881 7,881 7,883 9,311 9,311 9,312 9,312 9,789

Speed (pwd/s) 82,023 82,016 52,992 52,844 52,834 52,881 44,882 44,686 44,799 44,797 42,658
Power (Watt) 14.78 15.13 13.53 13.68 13.88 13.78 13.28 14.98 15.03 14.93 15.03

Energy efficiency
(pwd/J) 5,550 5,421 3,918 3,867 3,807 3,838 3,381 2,983 2,981 3,001 2,838

5.2 Analysis of the Performance Overhead
We use the utilization rate of the block transform unit as the figure of merit to evaluate
the performance overhead, which mainly comes from the pipeline full-filling, the password
generation, and the communication delay between the CPU and FPGA.
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The detailed time cost for each task when LP = 6 bytes is listed in Table 5. In our
implementation, the group size G is set to 2048 to maximize the utilization rate under the
limitation of available BRAM resources. According to Table 1, each password has 5,004
blocks to be processed on the FPGA. As the time of checking results on the CPU is hidden
behind the time of acceleration on the FPGA, the processing of a password group costs
about 49,444 µs. The measured block throughput is about 4.15×108 block/s. Table 6
compares the theoretical utilization rate and the measured utilization rate. The proposed
accelerator reaches an average utilization rate of 94.3%. If we only consider the time for
the acceleration on the FPGA, the equivalent block throughput will be 4.25×108 block/s,
which is close to the theoretical value.

Table 5: Time cost for a group of 2048 passwords when LP = 6 bytes.

Task Blocks Time cost (µs) Throughput
(block/s)

Generate passwords

2048×5004×2

572 -
Transfer passwords 310 -

Accelerate on the FPGA
(Check results)

48,230
(18,339) 4.25×108

Transfer check values 331 -
Total 49,444 4.15×108

Table 6: Utilization rate of the block transform unit (two cores).

# of Blocks Time (s) Throughput
(block/s) Utilization rate

Theoretical 2048×2 (2048+64) ÷ (2.20×108) 4.27×108 97.0%
Measured 2048×5004×2 49444×10−6 4.15×108 94.3%

The time for the look-ahead execution on the CPU is negligible since it only executes
once. The time of each reconfiguration is 243 ms. The overhead introduced by reconfigura-
tion is determined by the frequency of reconfiguration. For some small dictionaries where
the FPGA needs to be reconfigured every 10 groups, the average time overhead for each
group is 24.3 ms, which will reduce the performance for about 33.5%. In some other cases
where the mask mode is applied, the FPGA is reconfigured every 10,000 groups or more,
which will bring down the time overhead to 24 µs or less, barely noticeable.

5.3 Analysis of the Data Path Overhead

As mentioned in Section 4.3, the number of connections in the data path affects the
hardware resource overhead of the data dispatch unit. Figure 16 shows the number of
connections and corresponding LUT usage of the data dispatch unit for different passwords.
Compared with the unoptimized design, which uses 39,901 LUTs, the designs with the
data path pruning and spatial-temporal multiplexing techniques occupy about 6,000 to
10,000 LUTs. The result also implies that as the number of connections changes with the
password length, the LUT usage of the data dispatch unit changes with the same trend.
In other words, the number of connections is a good indicator of the LUT usage of the
data dispatch unit.
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Figure 16: Number of connections in the data path and LUT usage for the data dispatch
unit.

5.4 Comparison with Other Schemes
5.4.1 Comparison with FPGA-based non-pipelined implementation

The sha256crypt implementation of John-the-Ripper (JtR) [Mag18] places 23 computing
units per FPGA for acceleration, which is detailed in Appendix B. Each computing unit
contains a bespoke CPU to generate and dispatch message blocks and 3 non-pipelined
SHA256 cores to finish the SHA256 block transforming. Each SHA256 core costs 72 cycles
on average to process one block.

To make a fair comparison, we reproduce the sha256crypt implementation of JtR on the
Zynq-7000 XC7Z030-3 platform. The system speed, energy efficiency, and resource efficiency
are used as the figures of merit, which are shown in Table 7. Both the implementation
of JtR and our accelerator are tested under the wordlist mode. As the number of blocks
for different passwords and salts varies, the energy efficiency and resource efficiency are
evaluated by block/J and block/s/LUT.

Comparing both designs at their respective maximum frequencies, our accelerator
achieves 1.74× block throughput and 1.64× energy efficiency over JtR. The LUTs used
as computing logic in JtR account for about 66.1%, while the proposed accelerator has
a proportion of 88.5%, which means more hardware resources in our design are used to
computing other than block generation and controlling. The resource efficiency of our
accelerator is 1.69× better than JtR.

Table 7: Comparison with JtR

JtR (300 MHz) This work (220 MHz)
Speed and power (pwd/s // Watt)

LP=8, LS=8, 7,881 blocks 29,810 // 12.75 52,992 // 13.53
LP=16, LS=8, 9,789 blocks 25,174 // 13.55 42,658 // 15.03
LP=8, LS=16, 8,375 blocks 28,088 // 13.15 50,046 // 12.52
LP=16, LS=16, 9,807 blocks 25,165 // 13.65 42,638 // 15.69

Energy efficiency
Block throughput(block/s) 2.41×108 (1×) 4.18×108 (1.74×)
Energy efficiency (block/J) 1.81×107 (1×) 2.97×107 (1.64×)

Resource efficiency
Average LUT usage 54,917 56,431
LUTs as computing logic 36,294 (66.1%) 49,927 (88.5%)
Resource efficiency (block/s/LUT) 4,386 (1×) 7,409 (1.69×)
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5.4.2 Comparison with GPU

Table 8 shows the comparison of the performance and energy efficiency between our
accelerator and Hashcat(v5.1.0) [has20] running on an NVIDIA GTX1080Ti GPU. Beside
the normal mode, Hashcat provides an optimized mode which has better performance for
passwords shorter than 16 bytes. We choose the optimized mode as the baseline. The
result has shown that the proposed accelerator achieves 2.54× improvement in energy
efficiency than Hashcat running on GTX1080Ti. Although the block throughput of a single
node is only 0.15× of Hashcat, when we test our design on the 16-node cluster, the block
throughput is 2.41× better than Hashcat. The total power of the cluster is estimated to
be 16 times of the power consumed by a single node.

Table 8: Comparison with Hashcat running on a GTX1080Ti for sha256crypt.

Hashcat
normal

Hashcat
optimized

This work
single node

This work
cluster

Speed and power (pwd/s // Watt)
LP=8, LS=8, 7,881 blocks 93,264 // 215 355,300 // 236 52,992 // 13.53 847,347 // 216.43
LP=16, LS=8, 9,789 blocks 74,266 // 199 Unsupported 42,658 // 15.03 682,498 // 240.48
LP=8, LS=16, 8,375 blocks 80,485 // 197 327,500 // 239 50,046 // 12.52 798,590 // 200.40
LP=16, LS=16, 9,807 blocks 75,380 // 204 Unsupported 42,638 // 15.69 681,004 // 251.10

Energy efficiency
Block throughput (block/s) 7.19×108 (0.26×) 2.77×109 (1×) 4.18×108 (0.15×) 6.68×109 (2.41×)
Energy efficiency (block/J) 3.53×106 (0.30×) 1.17×107 (1×) 2.97×107 (2.54×) 2.97×107 (2.54×)

To evaluate the efficiency of the architectures between GPU and our accelerator, we
use the utilization rate of the computing unit as the figure of merit, which is calculated
by the measured block throughput divided by the maximum block throughput. The
maximum block throughput of our accelerator is 4.40×108 block/s. The maximum block
throughput of GTX1080Ti is reported by Hashcat’s SHA256 benchmark, which is 4.42×109

block/s. The result shows that GTX1080Ti only utilizes 62.7% of its maximum ability,
while our accelerator utilizes 94.5% of its maximum ability. The proposed architecture of
our accelerator makes better use of computing units than the general-purpose architecture
of GPU.

5.5 Adapting to sha512crypt
To validate the adaptability of the techniques proposed in this paper, we also implement
sha512crypt on the same platform. Since SHA512 costs more hardware resource than
SHA256, only one sha512crypt accelerating core is placed, which also works at 220 MHz.
The performance comparison with Hashcat is shown in Table 9. The proposed accelerator
achieves 2.39× energy efficiency over Hashcat running on an NVIDIA GTX1080Ti GPU.

5.6 Disussion about Cost
Cost of the password recovery mainly comes from two areas, the BOM (bill of materials)
and the energy. The BOM cost is the one-time cost to build the hardware while the energy
cost is the recurring cost to run the hardware. Assuming that two password recovery
solutions have the same speed, the total cost increases linearly with time. Taking the
data from Table 8, a GTX1080Ti has the same speed with about 7 nodes of the proposed
accelerator while it needs 2.54× more electricity. The BOM costs of a GTX1080Ti and
each node of our accelerator are about 1,000 USD and 450 USD, respectively. Assuming
that the electricity price is 0.15 USD/kWh, we can find the dollar figure for the energy
consumption is 0.036 USD/h for a GTX1080Ti (240 W) and it would be 0.014 USD/h for
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Table 9: Comparison with Hashcat running on a GTX1080Ti for sha512crypt.

Hashcat
normal

Hashcat
optimized

This work
single node

This work
cluster

Speed and power (pwd/s // Watt)
LP=8, LS=8, 5,014 blocks 26,384 // 175 192,900 // 245 41,086 // 18.91 667,774 // 302.60
LP=16, LS=8, 5,016 blocks 26,407 // 184 192,100 // 241 40,855 // 21.23 652,368 // 339.63
LP=8, LS=16, 5,023 blocks 26,304 // 182 190,300 // 242 41,083 // 18.91 656,388 // 302.60
LP=16, LS=16, 7,882 blocks 24,642 // 193 188,900 // 243 26,317 // 17.66 419,909 // 282.48

Energy efficiency
Block throughput (block/s) 1.48×108 (0.14×) 1.09×109 (1×) 2.06×108 (0.19×) 3.29×109 (3.02×)
Energy efficiency (block/J) 8.02×105 (0.18×) 4.51×106 (1×) 1.08×107 (2.39×) 1.08×107 (2.39×)

our accelerator (7 nodes, 94 W). It will take 11 years of operation time until our accelerator
beats the other party in total cost, which seems unacceptable at first sight.

However, as there are a lot of factors that affect the BOM cost and energy cost, this
conclusion may change for different cases. For example, if a company in Germany purchases
Zynq devices in a large quantity to receive a deeply discount price of 200 USD and the
electricity price is 0.35 USD/kWh, it will only take 327 days, less than one year, to win
over the GTX1080Ti-based solutions in a dollar sense.

6 Conclusion and Future Work
This paper has proposed an efficient sha256crypt password recovery accelerator based
on the pipelined SHA256 unit. By analyzing the sha256crypt algorithm, we find that
pipelining is particularly suitable for accelerating the computation of KDFs which have a
structure consisting of cascaded message blocks. Based on this important observation, we
propose a pipeline-based architecture. To overcome the difficulties in pipelined hardware
implementation and reduce the hardware resource overhead, several techniques are proposed,
such as group scheduling, look-ahead execution, data path pruning, and spatial-temporal
multiplexing. With these techniques, our accelerator achieves 2.54× improvement on energy
efficiency compared with the state-of-the-art password recovery tool Hashcat running on
an NVIDIA GTX1080Ti GPU. Compared with the pure FPGA-based accelerator in JtR,
our accelerator achieves 1.64× energy efficiency and 1.69× resource efficiency. Our study
shows that the unified execution path and simple data flow are the keys to high efficiency,
and high efficiency implies both high performance and low overhead for the password
recovery accelerators.

Without loss of generality, the techniques proposed in this paper can also be applied to
the KDFs that have similar features, such as sha512crypt and md5crypt. We appreciate
the design of such algorithms, as they help defend against the conventional pipelined
hardware attack by adding uncertainty to the memory access pattern and execution path.
However, there are still structural weaknesses remaining. The calculation of DS in Phase
III only depends on the salt string and the DB[0]. In the proposed accelerator, all of the
256 possible values of DS are pre-computed and reused by all passwords to remove the
uncertainty in the calculation of DS. This kind of structural weakness can be avoided if
dependency on the password string is involved. For example, future algorithm designers
can first add the password string to the message S before repeatedly adding the salt string.

Noticing that much of configuration remains the same for different bitstreams, it is
possible to optimize the system by utilizing the partial reconfiguration technology. With
partial reconfiguration, the overhead of reconfiguration could be reduced to less than 50
ms. However, it requires a great deal of work or even a new method to make our design
compatible with partial reconfiguration, which is hoped to be completed in the future.
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Appendix A The scalable Zynq-based cluster

Figure A1: Accelerating cluster with 16 Zynq XC7Z030-3 SoCs.

Appendix B The architecture of the sha256crypt acceler-
ator in JtR
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Figure B1: The detailed architecture of the sha256crypt accelerator in JtR.
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