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Abstract. Statistical Ineffective Fault Attacks (SIFA) pose a threat for many practical
implementations of symmetric primitives. Countermeasures against both power
analysis and fault attacks typically do not prevent straightforward SIFA attacks, which
require only very limited knowledge about the concrete implementation. Therefore,
the exploration of countermeasures against SIFA that do not rely on protocols or
physical protection mechanisms is of great interest. In this paper, we describe
different countermeasure strategies against SIFA. First, we introduce an abstraction
layer between the algorithmic specification of a cipher and its implementation in
hardware or software to study and describe resistance against SIFA. We then show
that by basing the masked implementation on permutations as building blocks, we
can build circuits that withstand single-fault SIFA and DPA attacks. We show how
this approach can be applied to 3-bit, 4-bit, and 5-bit S-boxes and the AES S-box.
Additionally, we present a strategy based on fine-grained fault detection suitable for
protecting any circuit against SIFA attacks. Although this approach may lead to a
higher implementation cost due to the fine-grained detection needed, it can be used
to protect arbitrary circuits and can be generalized to cover multi-fault SIFA. For
single-fault SIFA protection, our countermeasures only have a small computational
overhead compared to a simple combination of masking and duplication.

Keywords: Fault countermeasures - Implementation security - Fault attack - Masking
- SFA - SIFA

1 Introduction

Motivation. Fault attacks [BDL97,BS97] and passive side-channel attacks, like power or
electromagnetic (EM) analysis [KJJ99,QS01], are real-world threats for implementations
of cryptographic primitives. Therefore, devices like smart cards that may be physically
accessible by an attacker typically implement countermeasures against these attacks.

A common countermeasure at algorithmic level is the combination of masking against
side-channel attacks and some kind of redundancy against fault attacks. In masking
one splits input and intermediate variables of cryptographic computations into d + 1
random shares such that the observation of up to d shares does not reveal any information
about their corresponding native value [ISW03,BBP*17, RBN*15, DRB*16, GIB18, GM17,
GMK16,BDF*17]. Redundant computation, on the other hand, is used to detect malicious
or environmental influences that could lead to faulty cipher outputs. If a fault is detected,
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the cipher output is either not released (“detection”) or released in a form that should
prevent its exploitation (“infection”) [BECNT06, TBM14]. Examples of recent works
that propose combinations of such countermeasure techniques include, among others,
ParTI [SMG16], Private Circuits II [IPSW06, DN16], and M&M [DANT19]. A quite
different approach was chosen with CAPA [RDBT18], where an actively secure MPC
protocol was adapted for cryptographic computations to provide strong protection against
implementation attacks. Due to its high cost, this approach is however of limited interest
for practical applications.

Up until recently, implementations combining masking with fault countermeasures
like redundancy were typically assumed to offer protection against both power analysis
and fault attacks. However, recently a new type of attack was introduced that combines
the principles of Ineffective Fault Attacks (IFA) [Cla07] and Statistical Fault Analysis
(SFA) [FJLT13]. This attack is called Statistical Ineffective Fault Attack (SIFA) [DEK™ 18]
and was shown to be applicable to ciphers protected with masking as well as fault detection
or infection [DEGT18]. SIFA succeeds in doing this by exploiting the dependence of
faults propagating to the cipher output on the value of intermediate variables. The mere
presence of a fault and the non-faulty outputs of the cipher computations provide sufficient
information to retrieve the value of these intermediate variables.

Our contribution. The contribution of this paper is two-fold. First, we analyze the general
root causes that lead to successful SIFA attacks in more detail. To study these causes and
also describe resistance against SIFA and Differential Power Analysis (DPA) [KJJ99], we
introduce an abstraction layer between the algorithmic specification of a cipher and its
implementation in hardware or software. In this layer, we express the cipher as a circuit,
taking as input an array of variables and returning as output an array of variables. We
split this circuit into sub-circuits where each sub-circuit takes as input variables that are
either the cipher’s input or the other sub-circuit’s outputs. This is done recursively until
we get to the level of circuits that we no longer split into sub-circuits and that we call
basic circuits. In the implementation of these basic circuits it is then essential to keep
the computations and internal variables of the different basic circuits separated. Thus,
basic circuits are the natural place to define the concept of faults and their effectiveness in
an unambiguous way, and it is also insightful to describe DPA resistance similar to the
probing model [ISWO03].

Second, we present two different approaches that, starting from the algorithmic de-
scription, allow to specify circuits that mitigate SIFA and DPA. The first approach relies
on finding descriptions of ciphers that restrict basic circuits to permutations which only
operate on an incomplete set of shares. In particular, those permutations are either linear
or variants of the Toffoli gate [Tof80], the simplest invertible non-linear function. This
strategy allows for fault detection at the end of a cipher, e.g., by means of redundant
computation and comparison of the outputs. We then show that masked 3-bit, 4-bit, and
5-bit S-boxes can be built using Toffoli gates as their only non-linear component, thus
offering protection against SIFA. A similar strategy can be applied to the AES S-box;
however, for AES, we require fault detection at the output of the AES S-box. We verified
the correctness of the masking of our Toffoli-based circuits for S-boxes of KECCAK and
AES using maskVerif, a tool for formal verification of masking schemes [BBD'15]. The
second approach does not restrict basic circuits to be permutations and can thus be applied
more broadly to add SIFA-protection to arbitrary existing circuits. It works by adapting
the error-detection circuit for more fine-grained detection and can be generalized to cover
multi-fault SIFA, albeit at a higher implementation cost.

Related Work. Potential mitigations against SIFA are already discussed in the paper
introducing SIFA for masked ciphers with fault countermeasures [DEK"18]. One strategy
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considered there is to move from error detection to error correction, such as a majority
voting. This has the effect that more than one fault is needed, since a single fault can
always be corrected. This rough concept is developed further and brought into practice by
several papers [BKHL19,SJR™19,SRM19], which have been published around the same
time or slightly after the preprint of the present paper.

The paper of Breier et al. [BKHL19] proposes a countermeasure based on error-
correcting codes that can be implemented with error-correcting hardware gates. Shah-
mirzadi et al. [SRM19] investigate how error-correcting codes can be correctly embedded
in a cryptographic implementation and show that their construction provides practical
advantages over simple majority voting. Contrary to the two papers mentioned before, the
Transform-and-Encode framework by Saha et al. [SJTR™19] proposes an instantiation that
combines masking with majority voting as an error-correcting code. Their strategy has
the benefit that the error correction is only applied at the output of the S-boxes.

In contrast to the above-mentioned countermeasures using error correction, our strategy
only requires error detection. We propose to either use masking schemes based on the
Toffoli gate or transform implementations of arbitrary masking schemes. By doing this
in combination with suitable error detection, we ensure that the effect of a fault never
depends on a native (unmasked) value. In most cases, the detection of the error can be
done once on the primitive level (e.g., after one block cipher execution, or execution of
a cryptographic permutation). Hence, it even can be implemented in a time-redundant
manner, or as an encrypt-decrypt strategy. Therefore, we get an overhead of roughly
two, either in space or time, compared to just a masked implementation that is usually
needed for protection against side-channel attacks anyway. In contrast, the computational
overhead of majority voting is at least three, with more overhead for more sophisticated
error correction strategies, as shown by Shahmirzadi et al. [SRM19].

Following the preprint of this paper, Ramezanpour et al. [RAD19] proposed a different
way of achieving independence of a fault effect from the native value. As an example,
they give an implementation based on a threshold implementation [NRR06, NRS11] of
Canright’s AES S-box [Can05], where they introduce additional shares and additional
computations. This results in an overhead of a factor of 2 compared to a standard threshold
implementation in their FPGA implementation [RAD19]. Moreover, if protection against
differential fault attacks is also needed, then this cost will increase further. In contrast to
this, our scheme also works with masking based on two shares and has a low overhead,
allowing much more efficient implementations in practice.

Another strategy that may protect against fault attacks, including SIFA, are approaches
based on actively secure multi-party computation protocols like CAPA [RDBT18], as long
as a fault does not affect all parties. However, such methods are quite expensive. As pointed
out by the authors of CAPA [RDB™ 18], their implementations are to be considered as a
proof-of-concept and are too costly to be used in practice. For example, an implementation
of the AES S-box using three shares and one MAC key requires 156 bytes of randomness
per S-box evaluation.

Outline. We start with a description of our abstraction layer and discuss how we model
fault and side-channel attacks on it in Section 2. Then, we show how to describe some
ciphers only relying on incomplete permutations as basic circuits in Section 3. Afterwards,
we describe a circuit for the AES that can withstand single-fault SIFA and first-order DPA
in Section 4. Section 5 deals with the protection of arbitrary circuits. In Section 6, we
verify the correctness of the circuits for the S-boxes of AES and KECCAK using maskVerif
and discuss considerations when implementing the circuits in software or hardware.
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2 The Circuit Abstraction Layer and Fault Model

In this section, we first briefly recall the basics of masking and Statistical Ineffective Fault
Attacks (SIFA). Then, we define an abstract circuit model and the corresponding fault
model that we use as a tool for building hardware or software cipher implementations that
offer resistance against SIFA and side-channel attacks. One major purpose of the circuit
abstraction layer is that it allows us to define our fault model in a clean and tidy way. In
the following sections, we will make use of the term cipher. By the term cipher, we mean
block ciphers, tweakable block ciphers, or cryptographic permutations.

2.1 On Masking

Masking is an algorithmic-level countermeasure against power analysis attacks but can
also be relevant in preventing SIFA. A cipher takes as input an array of variables (often
binary) and returns a similar array as output. An algorithm describes how to compute the
latter from the former.

In a masked version of a cipher, each variable at the input is expanded to d + 1 shares
such that the sum of the shares (assuming the variables are elements of an additive group)
equals the variable, which we call native. The output has the same expansion and the
algorithm specifies how to compute the expanded output from the expanded input, in a
deterministic way. In implementations, this allows computing the cipher on a state by
encoding each of its variables in d + 1 shares where the sum equals the native variable and
summing the output shares to obtain the native output. This allows choosing d shares
for each variable for each computation randomly, providing protection against differential
power analysis. Namely, individual share variables are independent of native variables and
if the masking is well designed, this is even the case for up to d share variables.

2.2 SIFA on Ciphers

Consider a block cipher implementation that counteracts differential fault attacks by
performing each encryption n times and only releases a final ciphertext if the results of
all redundant computations match up. Further, assume an attacker who targets one out
of the n redundant encryptions, is capable of repeatedly injecting one fault in one of its
intermediate operations and observes the final ciphertext unless it is suppressed by the
countermeasure. The timing or location of the fault injection should be chosen such that
the affected state bits have a non-linear dependency on a small number of round key bits;
this is typically the case in the penultimate round of a block cipher.

If the attacker performs multiple such faulted encryptions for different (possibly un-
known) block cipher inputs, the attacker will eventually observe correct ciphertexts where
the injected fault was ineffective. In the most simple case, consider a fault injection that
sets certain state bits to zero that were already zero before the fault injection. In these
cases, the specific values of certain state bits rendered the injected fault ineffective, which
leads to an overall correctly computed ciphertext that is observed by the attacker.

This filtered set of correct ciphertexts will, when partially decrypted using the correct
partial key guess, typically show this non-uniform (biased) distribution of the affected
state bits. When sticking to the simple example from before, certain state bits should
show a strong bias towards zero.

We can use this property for key recovery as follows: For each possible key guess,
we measure the distance of the distribution of the affected state bits to the uniform
distribution, e.g., by using the y2-statistic (CHI) or the closely related Squared Euclidean
Imbalance (SEI). For a sufficient number of evaluated correct ciphertexts, the key guess
corresponding to the highest CHI or SEI statistic is most likely correct. For more concrete
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examples, we refer to previous literature that, e.g., explains SIFA against the AES block
cipher [DEK*18].

In a similar spirit, SIFA can also be mounted on the input of block ciphers or the
initialization phase of many AEAD schemes by instead collecting the cipher inputs that
lead to an ineffective fault injection in the second round. For more concrete examples, we
refer to [DMMP18] who show how SIFA can be mounted on the AEAD schemes Keyak
and Ketje.

In case of additionally masked implementations, the attack procedure is almost the
same except the fault should now target an intermediate value, e.g., a single share, within
a non-linear operation (S-box) in the targeted round. For a more detailed explanation, we
refer to Section 2.6 or [DEGT18].

2.3 Definition of The Circuit Abstraction Layer

We propose an abstraction layer between the algorithmic description of a (masked) cipher
or permutation and the hardware or software implementation and present our formalism
here. At the circuit abstraction level, we break up the deterministic algorithmic description
into a number of interconnected circuits.

By a circuit, we mean a fully specified deterministic function taking as input an array
of input variables and returning as output an array of output variables. Trivially, the
algorithm of a (masked) cipher itself defines a circuit. More interestingly, we can break up
that circuit into a number of interconnected sub-circuits that take care of all the processing.
The composite circuit that a sub-circuit is part of is called its super-circuit. The variables
of the super-circuit and its sub-circuits are related in the following ways:

e Each input variable of a sub-circuit is either an input variable of its super-circuit or
the output variable of another sub-circuit.

e Variables in a super-circuit that are neither super-circuit input nor output variables
are called intermediate variables.

e We consider duplication a form of processing and hence, any super-circuit input
or intermediate variable propagates to at most one sub-circuit input or to the
super-circuit output.

This can be applied recursively, where every sub-circuit can at the same time be a
super-circuit with its own sub-circuits.

Let us illustrate this with an example: non-masked AES-128. Its circuit takes as input
a 128-bit key and a 128-bit plaintext and returns as output a 128-bit ciphertext. Two
obvious sub-circuits are the key schedule and the datapath. The former has the 128-bit
key as input and a 1408-bit expanded key as output. The latter has the 128-bit plaintext
and the expanded key as input and the 128-bit ciphertext as output. The datapath circuit
can be split in 11 sub-circuits: one for each round and an initial round key addition circuit.
The input of each round sub-circuit is the output of another circuit and a round key
taken from the expanded key. The circuits for the first 9 rounds are identical, we say
they are 9 instances of the same circuit class. The round circuit class can be split into
4 sub-circuits: SubBytes, ShiftRows, MixColumns and AddRoundKey. One may merge
ShiftRows with SubBytes or MixColumns when targeting implementations where this step
does not represent processing. A SubBytes circuit splits naturally into 16 sub-circuits of
the same class, representing the S-box.

In this paper, we will use the following formalism to specify circuits. We specify the
input variables and their type, the output variables and their type and how to compute
the output variables from the input variables. Unless stated otherwise, variables are
binary. Circuits can be defined from scratch with simple operations such as addition and
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multiplication of variables, or in terms of sub-circuits. We call the former a basic circuit
and the latter a composite circuit. Circuit 1.a provides an example of a basic circuit with
three binary input variables and two binary output variables. A circuit can be used as a
sub-circuit in the specification of a composite circuit. An example of a composite circuit
with four binary input variables and two binary output variables is given in Circuit 1.b.

(1.a) Basic circuit (1.b) Composite circuit
Name: ExampleCircuitl Name: ExampleCircuit2
Input: (a,b,c) Input: (a,b,c,d)
a+bOc (a,b) + ExampleCircuitl(a, b, c)
b—c®a (a,b) < ExampleCircuitl(d, a, b)
Output: (a,b) Output: (a,b)

The composite circuit is specified by two sub-circuits where the processing on the input
variables is based on their location in the input array. When naming intermediate variables,
one can make use of the fact that any variable shall be used exactly once. This implies
that once a variable has occurred as the input of a sub-circuit, its name becomes available
for another intermediate variable. In case we want to use a variable twice or more, we
can put a cloning circuit. This is a circuit cloning variable a to b: (a,b) < Clone(a), or
to a,b and ¢: (a,b,c) + Clone(a). In our convention, a composite circuit must use all
output variables of its sub-circuits as outputs. If one wishes to omit a variable, this can
be specified explicitly with a sinkhole circuit: Sinkhole(a) is a simple circuit taking one
variable and returning no variables.

We refer to circuits that have as many input variables as output variables (and of the
same type) as transformative circuits. For these circuits we have a simplified convention.
We specify them operating on a state which is used for both input and output. When they
are used in the specification of a composite circuit, we omit the arrow and output variable.

At the circuit abstraction level, we see computation as the application of a particular
input at the circuit’s input and the observation of the result at its output. Furthermore,
such circuits can be injective, surjective, both or neither.

Definition 1. A circuit (class) is injective if for every input it returns a different output.
It is surjective if for all outputs there is at least one input. We call a circuit (class) that is
both injective and surjective a permutation circuit (class).

Clearly, a permutation circuit can be modeled as a transformative circuit.

2.4 Fault Model

We model faults at the level of a circuit during computation. In the absence of faults, the
output of a circuit of a given class is fully determined by its input. A circuit fault is simply
any deviation from this.

Definition 2. A circuit fault during a computation is a deviation of the circuit instance
from its circuit class. Namely, the fault modifies the circuit in such a way that it could
return for at least one input an output that does not correspond with the one prescribed
by the circuit class.

This definition covers a wide range of faults, including bit flips, or set-to-0 or set-to-1
faults of input, output, or intermediate variables, but also modifications of entries in lookup
tables. Circuit faults are abstract and the mapping to physical faults that occur in actual
implementations is often non-trivial. The hardware implementation of a cipher circuit
that has many sub-circuit instances of the same class may re-use the same combinatorial
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hardware for all those instances. A permanent fault in such a hardware would correspond
to a circuit fault in all circuit instances that it is used to implement. Similarly, a faulted
entry in the AES S-box lookup table implies circuit faults in all S-box circuits of the
AES circuit. Although faults often occur in implementations of circuit classes, at circuit
abstraction level we see circuit faults in circuit instances. This is more general as faults
may be induced for single executions of a program sequence or combinatorial circuit, or
different faults may be induced for different instances.

A circuit fault does not necessarily imply a faulty circuit output. For example, a
single faulted entry in an AES lookup table only leads to a faulty circuit output if the
circuit input hits that entry. A stuck-at-0 fault affecting an input variable is not visible
at the output if the variable is 0 anyway. For this reason, we define the concept of fault
effectiveness.

Definition 3. A circuit fault is effective during a computation if it leads to a faulty circuit
output.

When protection against faults is a concern, one typically performs redundant compu-
tations. At circuit level, this can be done by feeding it with variables that satisfy some
conditions. In duplication, this can be done by two circuits of the same class that operate
on input variable arrays set to the same value. In the absence of faults, this will also be
the case for the outputs. Another possibility is a single circuit where the input variables
satisfy some linear relation and in the absence of a fault, the output variables will satisfy
the same. These circuits propagate a kind of redundancy condition that, if not satisfied,
implies a fault must have occurred. Detection of faults can be done with a circuit as
well. We call this a fault detection circuit. It (typically) simply propagates the input
variables unchanged to the output but has an additional binary output, called fault alert,
which is false when the redundancy condition is satisfied and true otherwise. This fault
detection circuit may opt to use only the output variables of the cipher circuit, or it may
use duplicates of intermediate variables as well.

2.5 Masking in Circuits

We speak of a masked circuit when it corresponds to a masked cipher. It operates on
share variables and preserves the property that learning d shares does not give information
on native variables. In a similar way as the probing model [ISW03], we model side-
channel attacks by allowing an attacker to probe all associated variables and to observe all
computations of certain sub-circuits. The observation of a single sub-circuit does not give
information about native variables only if the sub-circuit is incomplete.

Definition 4. A sub-circuit in a masked circuit is incomplete if the input variables do
not include all shares of a single native variable.

For linear functions, such a partition into incomplete sub-circuits can be done quite
easily as shown in Circuit 2.a.

(2.a) (2.b)
Name: SharedXOR Name: XORFirst
State: (ao,a1,bo, b1) State: (a,b)
XorFirst(ao, bo) a+adbd

XoRFirst(a1, b1)

However, if we just consider one Boolean AND, such a partition into incomplete sub-

circuits is more complex. Hence, many papers dealing with masking aim to find efficient
masked implementations for the Boolean AND [ISW03,BBP 17, RBN'15,DRB"16,GIB18S,
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GM17,GMK16,BDFT17]. If we just focus on the sharing of an AND, ¢ = a ® b, using
2 shares, such a sharing requires the addition of a resharing variable R. This is needed
to ensure that the shares ¢y and c¢; are each independent of the native value of ¢. The
resharing variable R is a circuit input. It may be derived from a dedicated random
number generator or from another unrelated calculation, e.g., as shown in Changing of the
Guards [Dael7]. A possible partition of masked AND into incomplete sub-circuits is then
given in Circuit 3.a. This definition requires a lot of cloning. We can alternatively use
sinkholes as in Circuit 3.b.

(3.a) With cloning (3.b) With sinkholes
Name: SharedAND Name: ANDXOR  Name: Shared AND Name: ANDXOR1
Input: (ao,a1,bo,b1,R) Input: (a,b,c) Input: (ao, a1, bo,b1,R) State: (a,b,c)
(r,R") < Clone(Rr) d<a®b (co,R) < Clone(R) d+a®b
(ao, ag) + Clone(ao) c+—d®c ANDXORI1(ao, b1, co) c+—ddc
(a1, ah) + Clone(a,) Output: (c) ANDXORI(ao, bo, co)
(bo, by) + Clone(bo) (c1,R)  Clone(r)
(b1, b}) + Clone(b:) ANDXORI1(aq, bo, c1)
(co) < ANDXOR(ag, b1, R) ANDXOR1 (a1, b1,c1)
(co) < ANDXOR(ag, bo, co) Sinkhole(R, ag, a1, bo, b1)
(c1) < ANDXOR(a1, by, R') Output: (co,c1)
(c1) < ANDXOR(a}, b, c1)

Output: (co,c1)

2.6 SIFA on Masked Circuits

Implementing a masked cipher based on a circuit with incomplete sub-circuits and with
fault countermeasures such as duplication at cipher level with a fault detection circuit at
the end of the cipher circuit is not sufficient to prevent SIFA. In this section we explain why.
We assume a SIFA attacker that can make many computations but is limited to a circuit
fault in a single sub-circuit (including fault detection circuits) during each computation.
The success of this attack relies on whether the behavior of the fault alert of a detection
circuit depends on native variables.

To see that this is still possible in the presence of only incomplete sub-circuits, we give
an example. Consider the single masked AND-gate with 2 shares (cf. Circuit 3.b). We see
that every input share is an input to two ANDXOR circuits and is combined with share
0 of a native variable in one of them and share 1 in the other. For instance, faulting ag
to ag ® 1 at the input of ANDXOR1(ap, b1, o) propagates to ap in ANDXORI1(ag, by, ¢o).
It will flip ¢y in ANDXORI1(ag, b1, co) iff b1 = 1 and ¢y in ANDXORI1(ag, b, ¢p) iff by = 1.
The result is that it will flip ¢y an odd number of times iff by & by = b = 1. Hence it will
propagate to ¢y and hence also the native variable ¢ if b = 1 and not if b = 0. Resistance
against SIFA requires us to construct circuits that ensure that the propagation of circuit
faults in sub-circuits to the cipher circuit output is independent of native variables.

One condition that we use to achieve this is that each sub-circuit is incomplete. If a
circuit is not incomplete, faulting such a sub-circuit might have fault effects that depend
on native values. Second, we have to ensure that the circuit is built in such a way that
the propagation of the fault effect does not lead to ineffective faults depending on native
values. We have essentially two options to achieve this:

1. Build circuits of incomplete sub-circuits where an effective fault at the output of a
single sub-circuit can never become ineffective at the output of the cipher circuit
(Section 3).
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2. Build a fault detection circuit that catches effective faults at the output of sub-circuits
before they can become ineffective (Section 5).

Although a cipher circuit can be built from sub-circuits in a recursive way with multiple
layers, in the remainder we will consider only a single level of sub-circuits. We will call
these sub-circuits basic circuits. We then consider a single fault per execution of a cipher as
a circuit fault in a single basic circuit instance. Furthermore, in a first-order side-channel
attack (e.g., first-order DPA), we allow an attacker to observe a single basic circuit instance.
This means that an attacker has knowledge about all variables associated to this basic
circuit and the computation done within it.

2.7 On Detection Circuits

We consider detection circuits to be part of our circuit and hence, they can also be a target
in fault attacks. Thus, in general, detection circuits are also incomplete, meaning that
they have to operate on an incomplete set of shares. A simple solution to ensure this is to
duplicate shares at the input of the cipher and to do the redundant computations on each
set of shares. Then, detection circuits can check the consistency directly on duplicated
shares.

In the next sections, we also present strategies protecting against single fault SIFA that
only require fault detection on native values. This means that redundant computations
do not have to be performed on duplicated sets of shares. Instead, only the native input
values to a cipher can be duplicated and different randomness can be used to share the
duplicated native values. However, when checking native values for faults, care has to be
taken. If detection circuits operate on native values, faults on these circuits may leak parts
of the native values. This is not a problem if these native values are not secret, e.g., when
detection circuits operate on the ciphertext output of a cipher. However, if the compared
native values have to be kept secret, care has to be taken that the shares representing the
native value are never combined within this circuit. In addition, the detection circuits
have to be placed in a manner so that faults on them do not reveal the native values.

3 Ciphers from Incomplete Permutation Circuits

In this section, we investigate how we can implement ciphers so that they are protected
against single-fault SIFA. The heart of our strategy is to split a cipher into basic circuits
that are permutations and that are incomplete. To do this, we use constructions common
in the field of reversible computing [Lan61, Ben73, Tof80]. In particular, we use the Toffoli
gate [Tof80] and related constructions as essential basic circuits.

3.1 The High-level Strategy

In this section, we aim to implement strategy 1 of Section 2.6. We do this by building a
cipher circuit out of incomplete permutation basic circuits.

In this way, any single circuit fault in a basic circuit that is effective for that basic
circuit is also effective for the cipher circuit. This follows from the following lemma and
corollary.

Lemma 1. Any composite circuit built from permutation sub-circuits is itself a permutation
circutt.

Proof. The circuit has at least one sub-circuit A with all its input variables also input
variables of its super-circuit. Now write the super-circuit as the serial composition of two
circuits:
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e The first circuit applies A to the input variables and returns the corresponding
output variables. The remaining variables are just copied from input to output.

e The second circuit is the super-circuit with the circuit A replaced by the identity.

The first circuit is a permutation as A is a permutation. We can iteratively apply this
trick to the second circuit until it only contains a single sub-circuit. In this way we write
the super-circuit as a series of invertible circuits. O

Corollary 1. In a composite circuit built from permutation sub-circuits, any fault at the
output of a sub-circuit will propagate to the output of the super-circuit.

Proof. We can use the decomposition in circuits in the proof of Lemma 1 to split the
super-circuit in two permutation circuits where the faulty output variables of a sub-circuit
are input variables to one of the two permutation circuits. Therefore, the fault will
propagate to the output. [

Thanks to Corollary 1, we can limit fault detection to the cipher’s output.

Corollary 2. Assume we have a composite circuit built from redundant incomplete per-
mutation basic circuits. Further, assume that redundant circuits are implemented so that
they do not influence each other. In addition, the redundant output shares are checked with
the help of incomplete detection circuits. Then, the resulting composite circuit withstands

single fault SIFA.

A single fault can always only target a single incomplete basic circuit. This fault can
be effective at the output of the targeted incomplete basic circuit or not. However, since
the basic circuit is incomplete, the effectiveness of a fault never depends on a native value.
In the case that the fault shows an effect, Corollary 1 ensures that the fault propagates
through the circuit and is detected at the output by incomplete detection circuits. Also
from this event, an attacker cannot infer any information, since it is also independent of
native values. Thus, the effectiveness of a fault is independent of native values and hence,
cannot be exploited by SIFA.

If we want to protect (tweakable) block ciphers, also the (tweak) key-schedule has to be
a permutation (which it typically is), that is split in incomplete permutation basic circuits.
In this case, we consider the last round-key and last tweak together with the ciphertext as
output of the cipher that has to be checked for faults.

Typically, a cipher consists of a sequence of rounds and the round function has a linear
and a non-linear layer. We consider only ciphers where both layers are permutations.

For the linear layer, a split in incomplete permutation basic circuits is straightforward.
In particular, a linear function y = f(x) can be split in d 4+ 1 incomplete basic circuits that
each operate on a single share of the native state variables. If f is a permutation, then so
are the basic circuits computing y; = f(x;). Furthermore, a single fault always causes a
change in the native value of y.

For the non-linear layer sub-circuit, a split in incomplete permutation sub-circuits is
less trivial. Typically, the non-linear layer consists of the parallel application of a non-linear
S-box to subsets of the state variables. Hence the challenge is to build a circuit for the
masked S-box in terms of incomplete permutation basic circuits.

We do this by constructing masked S-box circuits that are permutations using basic
circuits of the inherently bijective Toffoli gate (Section 3.2) and variants. We follow a
two-stage approach: first express the (unmasked) S-box in terms of Toffoli gates and then
build a circuit of the masked Toffoli gate using incomplete Toffoli-gate basic circuits.

As a consequence of our design strategy, we end up with a round function circuit where
each basic circuit is incomplete and a permutation on the shared state. This implies that
it preserves uniformity of the sharing and hence, no fresh randomness is required during
the rounds for realizing first-order DPA secure circuits.
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3.2 Incomplete Permutation Basic Circuits

In the following, we present our permutation basic circuits that we will use to realize
circuits for S-boxes. In essence, we need three different basic circuits. The first one is the
Toffoli gate [Tof80], a non-linear 3-bit permutation. We denote it by pr(a,b,c) and define
it in Circuit 4.a. For brevity in our S-box constructions, we also define a permutation
Py (a,b,c) in Circuit 4.b that is a close variant of it. In addition, we need the basic circuit
XorFirst(a, b) from Circuit 2.b to realize some S-boxes.

(4.a) Toffoli gate (4.b)
Name: pr Name: p,
State: {a,b,c} State: {a,b,c}
T+ bOc T+ bOc
a<—a®dT a<—a®dT

In the first step, we build circuits out of these basic circuits. Those circuits are masked
versions of the basic circuits and will be used as building blocks for the S-boxes. First, let
us have a look at a circuit for the 2-share masked Toffoli gate shown in Circuit 5.a, that
we will refer to as prs(ag, a1, bo, b1, co,c1). As can be seen in Circuit 5.a, all pp sub-circuit
instances are incomplete.

(5.a) Masked Toffoli gate (5.b)

Name: prs Name: pys

State: {ao,a1,bo,b1,co,c1} State: {ao,a1,bo, b1, co,c1}
pr(ao,bo, c1) P (a0, bo, c1)

pr(ao, bo, co) Px(ao, bo, co)

pT(al,thl) PT(al,b1,C1)

pr(ai,bi,co) pr(ai,bi,co)

Thanks to the fact that the basic circuits are permutations on the state, any circuit
fault in a single py sub-circuit instance that is effective at its output will also be effective
at the output of the super-circuit. Moreover, any effective fault due to a single sub-circuit
fault can at most affect a single share per variable, and will hence result in a faulty native
variable at that point. Thanks to the correctness of sharing, this fault will propagate to
the super-circuit output.

These observations are also true for the masked version p, g of p, (Circuit 5.b).

Next, we will show how to build circuits of two-share masked S-boxes using the basic
circuits introduced here. For the sake of completeness, we note that the same properties
can be achieved in a similar form for three-share threshold implementation as shown in
Appendix A.

3.3 3-bit S-boxes

Recently, 3-bit S-boxes have become more prominent with their usage in PRINTci-
pher [KLPR10], LowMC [ARS™15], or Xoopoo [DHVV18]. As a representative of
these S-boxes, we focus on the protection of the 3-bit x-layer [Dae95, DHVV1S]. The
mapping x operates on circular arrays of bits and it complements all bits that have the
pattern 01 in the bits at their right. x is bijective if and only if the length of the circular
array is odd. The y mapping in the round function of ciphers typically operates on a large
set of short odd-length sub-arrays of the state in parallel. We will refer to n-bit x as xy.
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Table 1: The 6 classes of quadratic 4-bit S-boxes [BNNT15] expressed in terms of pr and

Py
0123456789ABDCFE 0123456789CDEFAB 0123457689CDEFBA
Name: Q3
4 Name: Q7, @203
Name: Qy State: {a,b,c,d}
State: {a,b,c,d}
State: {a,b,c,d} pr(d,b,c)
pT(b7 a, C)
pT(da a, b) pT(b7 a, C)
pT(C7 a, b)
Y% (Ca a, b)
0123456789BAEFDC 012345678ACEB9FD 0123458967CDEFAB
Name: Q3gq Name: Q30
Name: Q304 State: {a,b,c,d} State: {a,b,c,d}
State: {a,b,c,d} pr(b,a,c) XoRrFirst(b, a)
pr(c,a,b) pr(c,a,b) XorFirst(c, a)
pT(da a, b) pT(b7 a, C) pr (a7 ba C)
pT(d7 a, C) pT(C7 a, d) pT(b7 a, C)
pT(dv a, C) Dx (C, b7 a’)

Daemen et al. [DHVV18] pointed out that it is possible to compute x3 in-place in
its registers as a sequence of three Toffoli gates. This immediately yields a circuit for
two-share masked 3 in terms of permutation sub-circuits:

Name: Masked_ chi3
State: {ag,a1,bo,b1,co,c1}
Dys(ao, a1, bo, b1, co,c1)
Pxs(bo, b1, co, c1, a0, a1)

pXS(COa C1, 00,01, bOa bl)

Recall from Section 3.2 that p,g is just a composite circuit and that its basic circuits
are pr or py. Still, a fault effect stemming from a single basic circuit shows an effect in
the native values at the S-box output.

3.4 4-bit S-boxes

The construction and design of 4-bit S-boxes has been intensively studied in literature.

Using affine equivalence, De Canniére [De 07] partitions all 4-bit bijective S-boxes
in 302 equivalence classes, where 1 class contains all affine functions, 6 classes contain
quadratic functions, and 295 classes represent the cubic functions [BNN*15].

As shown by Bilgin et al. [BNNT15], 144 cubic classes can be constructed by iterating the
S-boxes of the quadratic classes separated by affine layers up to 3 times. This covers many
prominent S-boxes, e.g., the S-boxes used in Noekeon [DPVR00] and Present [BKLT07], but
also several of the 16 S-boxes observed to be “optimal” by Leander and Poschmann [LP07].
We focus on the 6 classes of quadratic functions. The variables a, b, ¢, and d indicate the
input and output bits of the S-box, where a is the most significant bit. The operations
needed to compute the 6 quadratic classes are summarized in Table 1.

Using Table 1, Circuit 5.a, and Circuit 5.b, it is straightforward to build circuits for
two-share masked versions for 144 out of the 295 cubic classes of S-boxes [BNNT15] from
incomplete permutation basic circuits. For S-boxes which are not in these classes, we refer
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to results regarding the implementation of 4-bit permutations using reversible components.
For instance, Golubitsky and Maslov [GM12] give optimal implementations (with respect
to a certain set of reversible gates) for all 4-bit permutations using at most 15 reversible
gates. However, note that the set of reversible gates used may differ from the basic circuits
pr and p, used in this section and hence, we consider the exploration of this as future
work.

3.5 5-bit S-boxes

Shende et. al [SPMHO03] show that every permutation (S-box) with an odd number of
inputs can be implemented using reversible gates by using at most one additional variable.
However, as we will see next, the need for this additional variable forces us to deviate from
the strategy that each basic circuit is a permutation. In particular, we will make use of
Sinkhole(r) and (r1,70) + Clone(rg) introduced in Section 2.3.

In this work, we only focus on the 5-bit S-box x5, which has several prominent
uses. For instance, it is used in the KECCAK-p permutations inside KETJE [BDPT16a],
KEYAK [BDP'16b], KRAVATTE [BDH"17], and KEccak [BDPV11] (SHA-3). Moreover,
X5 is also the core of AscoN’s S-box [DEMS16]. We base our circuit for two-share
masked x5 on an implementation of x5 [DEMS16] with input bits a, b, ¢, d, and e and an
intermediate variable r, as shown in Circuit 6.a.

(6.a) xs
Name: x5 Name: ANDNOT
State: {a,b,c,d, e} Input: (b,c¢)
(r) < ANDNOT(a,€) a<boe
px(a, b, c) Output: (a)
px(c,d;e€)
px(e,a,b)
px(b, ¢, d)
XorFirst(d, r)
Sinkhole(r)

To provide an implementation of x5 that withstands single-fault SIFA, we again rely
on pxs(ao, ay,bg, b1, co,c1) as a building block. We introduce additional input variables 7
and rq, which have to be initialized with random values such that rq @ 1 = 0. This allows
us to argue the security of the following scheme in Circuit 7.a.

(7.a) Masked x5 with constraints (7.b) Masked x5 with cloning

Name: Masked chi5 vl

Input: {ao,a1,bo, b1, co,c1,do,d1,e0,€1,70,71}

Pxs(ro,71, €0, €1, a0, 1)
pxs(ao, a1, bo, b1, co,c1)
pxs(co, c1,do, d1, €0, e1)
Pxs(eo, e1,a0,a1,bo, b1)
pys (bo, b1, co,c1,do,d1)
XoRFirst(do, o)
XOoRrFirst(di,r1)
Sinkhole(ro, r1)

Output: {ao,al,bo,tho,C1,d0,d1,60,61}

Name: Masked chi5 v2

State: {ao, a1, bo, b1, co,c1,do,dr,eo,e1, 7‘0}

(r1,70) < Clone(ro)
pxs(ro, 71, €0, €1, a0,01)
Pxs(ao,a1,bo,b1,co,c1)
Pxs(co,c1,do, d1,eo,€1)
pxs(eos €1, ao,a1,bo,br)
Pxs (bo, b1, co, c1,do, dr)
XoRrFirst(do, ro)
XoRFirst(dy,r1)
Sinkhole(r1)
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We end up with a construction (Circuit 7.a) which is the repeated application of
permutation py, s on 12 bits of the state ag to r;. Due to this iterative construction, a
fault that has an effect on any native output variable of one p,s would have an effect on
the native output variables of the whole circuit if ry and r; would be part of the output.
However, rg and 71 end in Sinkhole(rg, r1). Hence, we have to show that this never leads
to an effect of a fault disappearing.

As can be seen in Circuit 7.a, dy and d; are only written in the basic circuits
XorFirst(dg,r9) and XORrFirst(dy,r1). Furthermore, the calculation of ro and 7y is
independent of dy or dy. As a consequence, a fault in a single basic circuit that happens
before the execution of XORFirst(dy, r9) and XORFirst(d;,r1) can never have an effect on
the shares of d and r at the same time. Hence, the basic circuits XORFirst(dg, rg) and
XoRFirst(dy, r1) never cancel the effect of a fault on a single basic circuit, and effects of
faults on the native value of r carry over to d.

In a similar spirit as Sugawara for AES [Sugl9], it is possible to use one share rq of
the output of one S-box layer as input to the next layer of S-boxes. Hence, it is possible
to implement ciphers which use the sharing shown in Circuit 7.b without the need for
additional randomness, except the one needed for the initial sharing and for the first
S-box layer. We have verified exhaustively that Circuit 7.b is a permutation on the
bits ag, a1, bg, b1, co, c1,do, d1, €9, €1, and 1y and that the masking is indeed correct using
maskVerif (cf. Section 6.1).

4 AES S-box from Incomplete Permutation Basic Circuits

So far, the main focus has been on S-boxes that have a rather simple and compact
description over Fo. However, there exist S-boxes with complex descriptions over Fs, but
more concise descriptions over larger binary fields, i.e., Fon. Hence, we will apply our
method to the representation of the S-box over Fon. The most prominent example that falls
into this category is the S-box of AES [DR02]. Building on Canright’s description [Can05],
we can derive a description that is better suited for our proposed countermeasure.

Figure 1 shows Canright’s description of the AES S-box just using reversible compu-
tations, basically transforming the idea of Sugawara [Sugl9, Figure 8] from 3-shared to
2-shared masking. This can be done by replacing all Fo» multiplications in Canright’s
description by Toffoli gates operating in Fon using an additional input that is set to 0. To
distinguish it from the binary Toffoli gate defined in Section 3.2, we denote a Toffoli gate
over Fon by pl(a,b,c) with a,b, ¢ € Fan. In the following, we denote multiplication and
addition over Fan by - and +, respectively:

Name: p
State: {a,b,c}
a<+a+b-c

We can also define a masked version of the Toffoli gate over Fan in a similar way as
in Circuit 5.a. Here, ag, bo, co, a1, b1,c1 € Fan denote the shares of a, b, ¢ and the shared
version of p}. is denoted by p%.¢(ag, a1, bo, b1, co, c1):

Name: pig

State: {ag,a1,bo,b1,co,c1}

pr(ao, bo,c1)

pr(ao; bo, co)

T (al, by, C1)
( )

T
T
pr(ag, b1, co
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Figure 1: Description of AES S-box (y = S(z)) relying on invertible computations.

The arguments for the security and fault propagation of prg are analogous to Section 3.2.
Again, each p7}. is incomplete and hence, the effect stemming from faulting a single instance
can never depend on a native value. Furthermore, each fault effect caused by a fault on
a single instance of p7}. is then visible in the native value. Since only the shares of a are
updated dependent on the shares of b and the shares of ¢, a change in a native value at
any point caused by a fault on a single instance of p7. can never become ineffective and
hence, is visible at the output of p}g.

We will now use p7g to build a circuit for the 2-share masked AES S-box. If we take a
look at the building block given in Figure 1, the multiplications in Fa» (later encapsulated
in p7.) are the only non-linear components of the S-box. The square scaling over Fon
(s™ (a,b,c)) is a linear reversible operation, the linear maps (I'(a) and Z(a)) are linear
permutations, the addition of the constant (AddConstant(a)) is an affine operation, and the
inversion (Inv(a)) over Fao2 corresponds to a simple bit-swap. We will construct the S-box
with the help of these basic circuits: I', AddConstant, Inv, p7., s?, and Z. A description

scy
of the basic circuits I', AddConstant(a), Inv(a), s7., and = is given in Appendix B.
Having discussed all necessary building blocks, we are ready to give our shared implemen-
tation of the AES S-box. In the description (Circuit 8.a) of the AES S-box, we use variables
in different fields: xzq,z1,do,d1, €0, €1,%0,y1 € Fas, ag,a1,co,c1, fo, f1,ho, h1 € Fos, and
bo, b1, 90,91 € Fa2. Furthermore, we require that ag + a3 =0, bg + b1 =0, ¢ +¢1 = 0,

do + d1 = 0 to correctly compute the AES S-box yo + y1 = S(x¢ + x1). With superscripts
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923

H and L, we denote the higher half of coefficients and the lower half of the coefficients,
respectively. For example, 2o € Fos and thus z{!, 2§ € Fys.

(8.a) Masked AES S-box with constraints

ao+ar =bo+bi=co+ci=do+di =0
Name: Masked AES vl

Input: {1’0,1’1,a0,a1,b0,b1,Co,C1,d0,d1}

(8.b) Masked AES S-box with cloning

Name: Masked AES v2
Input: {mo, x1, a0, bo, Co, do}

(a1,a0) < Clone(ao)

[(zo) (b1, bo) < Clone(bo)
[(z1) (c1,c¢0) + Clone(co)
prs(ao, ar,zg , z', 2§, 27) (d1,do) + Clone(do)
sse(ao, g, 7¢) I'(zo)

sec(ar, 21, 27) I(21)

Phs(bo, by afl afl af o) prs(ao,av, a2, 2, 21)
s2.(bo, a, ad) sse(a0, 70, 25
s2.(b1,af’,al) sse(ar, 21, 27)

Inv(bo) prs(bo,bi,ay i, ay,ar)
Inv(b1) sgc(bm ag, a(])L)

prs(eq et ag, ar’,bo, br) s3c(br,at’,ar)

prs(cs, et a afl  bo,by) Inv(bo)

prs(dy dif zf, 2t co,c1) fnv(b,)

phs(dl, db o 27 co,er) prs(cd’ et ag,ar, bo, br)
E(zo) prs(cs,ct,ab,ai  bo,b)
E(21) prs(dy’,di’, x5, 27, co, c1)
AddConstant(zo) prs(ds,di, ai',z1', co, 1)
€ < Xo, €1 < x1, fo < ao, f1 <+ a1 Z(z0)

go < bo, g1 < b1, ho ¢ co,h1 1 2(z1)

Yo < do,y1 < du AddConstant(zo)

Output: {607617f0»f1»90791ah07hlayO:yl} eo < To,e1 < x1, fo + ao, f1 + a1

go < bo,g1 < b1, ho < co,h1 + 1
Yo < do,y1 < d1
Sinkhole(e1, f1, 91, h1)

Output: {yo,y1, fo, go, ho, €0}

As can be seen in Circuit 8.a, each of the basic circuits is incomplete and hence, the
effect stemming from faulting a single instance is independent of native values. Next, we
have to show that the effect of a fault on a single instance is always present in the native
values of our circuit. If a single fault targets I', an effect will be visible in the native value
of e. An effect caused by a fault on a pf. or s7, processing shares of z and a will show
an effect on the native values of z (e) and a (f), since the value of the shares of a only
depend on the shares of x and p/. and s7, are a permutation on the shares. The same
argument is valid for p%. or s”,, processing shares of @ and b, since Inv(b) is just a bit-swap.
Next, we have a series of p/. processing shares of a, b, and c. Since the shares of ¢ only
depend on the shares of a and b, again a change in a native value is always visible in the
output. The same is true for the last set of p7. processing shares of z, ¢, and d, followed
by a share-wise permutation =.

However, in the context of using this S-box within the AES, we cannot further use,
e.g., eg, e1 as input for dy, d; for another S-box, since ey + e; is not 0 in general. For this
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reason, we remove shares from the input and the output of our S-box in a similar spirit to
Sugawara [Sugl9] in Circuit 8.b, which we have also formally verified using maskVerif (cf.
Section 6.1).

The S-box in Circuit 8.b is still a permutation on its inputs as we show in Appendix C.
Since we do not have any restrictions on the inputs of the S-box, we are free to reuse
€0, fo, 90, ho as inputs for another S-box calculation, and hence, do not have to always
generate fresh sharings of 0. In particular, this allows for first-order side-channel secured
implementations of AES without the need for additional randomness in the masked S-boxes.

However, since we discard ey, f1, 91, h1 at the output of the S-box, we hinder faults
from propagating and thus, have to employ fault countermeasures on S-box level for these
values (respectively for their native values e, f, g, and h). While this results only in a
rather small overhead for implementations that use duplication to protect against fault
attacks, this might become quite expensive for implementations that use time redundancy
since one might have to store all the values that need to be checked in the time redundant
computation. However, this cost can be significantly reduced by computing and storing a
checksum or fingerprint of these values instead. For instance, one might only store one
set of eq,e1, fo, f1, 90,91, ho, h1 all initialized to 0 and always update those shares by a
linear checksum with the output eg, e1, fo, f1, 90, 91, ho, h1 of the S-box before truncation.
Note that by using a linear checksum this can be done for eg, fo, go, ho and ey, f1, g1, b1
independently and thus secured against first-order side-channel attacks. By computing
this checksum for the original and redundant computations, a fault will be detected by
checking the output of the redundant AES computations and the checksum value.

5 Protecting Arbitrary Circuits

Our approach from Section 3 works by constructing the masked circuit for a cipher in a
particular way with particular basic circuits. The cost of building masked circuits this way
varies depending on the specific S-box. When optimizing with respect to other metrics, such
as latency, other approaches may be more suitable than the one introduced in Section 3,
which is essentially serial. The AES example in Section 4 also showed that additional error
checks of intermediate values are helpful in cases when rewriting the entire cipher is hard.
In this section, we generalize this approach and explore how a general masked circuit can
be protected against SIFA by defining a suitable error detection circuit. The goal is to
take an existing masked circuit, whose basic circuits are for example individual Boolean
gates, and identify the relevant intermediate values to check for errors in addition to the
cipher output.

We first recall the computation and fault model in order to introduce the general
criterion for single-fault SIFA-resistance in Section 5.1. In Section 5.2, we show how
to satisfy this criterion by extending a general masked implementation with local error
detection checks. Then, in Section 5.3, we identify necessary steps and conditions such that
global checks are sufficient. Finally, we discuss how to extend this approach to higher-order
attacks, where the adversary applies multiple faults in each execution, in Section 5.4.

5.1 A General Criterion for Resistance against Single-Fault SIFA

We consider the directed acyclic graph (DAG) induced by a masked cipher circuit composed
of basic circuits (in the sense of Section 2.5 that basic circuits are incomplete). This
computation graph consists of nodes that represent the basic circuits f € F and that are
connected by edges that represent the intermediate variables v € V. We identify a node f
with n input edges IN(f) = (z1,...,2,) and m output edges oUT(f) = (y1,...,Ym) With

the corresponding vectorial Boolean function f : Fy — F5, (z1,...,25) = (Y1,...,Ym) Of
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the basic circuit. We distinguish linear nodes, whose function is affine linear over Fy, and
nonlinear nodes.

As defined in Section 2, we consider a powerful single-fault attacker who may re-
place any node (y1,...,ym) = f(21,...,z,) by an arbitrary faulted node (y3,...,y%,) =
f*(x1,...,z,). We denote the difference between the values of an edge v in the correct
execution and v* in the faulted execution by dv = v & v*, similar to differential cryptanal-
ysis, and write the resulting deviation in the output variables of a node as a function § f of
the input value:

Wiy ) =f (@1, . yzn) = f(z1, ..o xn) @Of (21, ..., 20) .

The fault v may propagate to other nodes, and we call a node f € F active in a faulted
execution if either v = 1 for any input edge v € IN(f) or f is the faulted gate modified by
the attacker.

We denote the fault alert by A and the set of variables it checks by Va, i.e., A =
Voev, 00 =V,ep, (v @ v*). The SIFA attacker collects plaintext-ciphertext samples with
A = 0, as they receive no output if A =1, and uses this condition to derive information
about the value of edges near the faulted node f*.

Example. As an example throughout this section, Figure 3 lists the operations of a
masked implementation of the 3-bit S-box 3 together with its computation graph similar
to [GSM17]. In the graph, Clone(-) nodes are represented by small bullets. In the circuit
on the left-hand side, for compactness, we omit calls (v,v’) = Clone(v) (i.e., variables
named v’ are always clones) and list up to two nodes per line. When combined with
the error detector A that checks the output variables of the circuit, this implementation
is susceptible to single-fault STFA with several possible fault locations. One of these is
illustrated in Figure 3: If a bitflip is induced as indicated (¥) in the input ag of the
Clone(ap) node, then the condition A = 0 implies by @ by = b = 0. We want to protect
this implementation against single-fault SIFA by modifying the detector (or the structure
of the DAG).

T L z 1\ T2 z x
; Y o A ¢
Y Y x

y < Nor(z) y <« XOR(x1,x2) y < AND(z1,22)  (x,2") < Clone(z) A+ AV (z®z¥)

Figure 2: Nodes for basic circuits in the computation graph examples.

Criterion for Resistance against Single-Fault SIFA. Consider a masked implementation
with a detection-based countermeasure defined by an error detector A that only returns the
result of the computation if A = 0. We call the implementation single-fault SIFA-resistant
if each possible single fault is either detected by A or activates at most one nonlinear node.

To see why this criterion is sufficient, consider a fault f*. The attacker collects plaintext-
ciphertext samples with A = 0, as they receive no output if A = 1. The samples satisfy
one of the following two conditions:

e 0y =0, i.e., no bitflip happened because d f(z1,...,z,) = 0. The attacker learns at
most these values z1,...,x,. Since the implementation is masked, this information
is independent of the native input and output values and thus does not allow the
attacker to derive any information on the processed data or keys.
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(a) Circuit, (v,v") = Clone(v) omitted (b) Computation graph

Figure 3: Bitflip in masked x3 using 2 shares (resharing at the output omitted).

e Jy # 0, but the resulting bitflip(s) did not propagate to A. The criterion implies that
there is at most one active nonlinear node, i.e., either f or another nonlinear node
f" with some changed input v* = v @ dv. The attacker may exploit this differential
information to learn the inputs of this active nonlinear node, which are however
independent of the native inputs, and will not learn anything from the other, trivial
differentials (of nonlinear nodes with zero input difference or of linear nodes).

5.2 Protection against SIFA using Fine-Grained Detection

We now explore how a masked implementation can be extended with a suitable detector A
in order to achieve a single-fault SIFA-resistant implementation.

Basic Idea. A straightforward, albeit not very efficient approach to satisfy the single-fault
SIFA-resistance criterion follows directly from its definition: We can add local checks for
inputs of nonlinear nodes. Assume for instance that we duplicate the implementation
and feed the same inputs to both instances. For each nonlinear node f and each of its
input edges v € IN(f), we add a check to update the detector A < AV (v @ v*). We
alternatively represent this as a single checking node @ in the DAG of a single instance
of the implementation. Then, a fault may activate a single nonlinear node f without
detection by A (if the attacker faults either the nonlinear node itself or the preceding
check), but it cannot activate two nodes, since there are no paths without a check either
from any node to two nonlinear nodes or from one nonlinear node to another. Thus, any
single-bit fault in one of the two redundant computations or in the additional circuitry for
the detector A are either detected or do not leak information to the attacker.

Reducing Checks. It is, however, not necessary to check the inputs to all nonlinear nodes
separately. For example, in many circuits, most inputs to nonlinear nodes in the DAG
are directly cloned from the shares of the inputs, i.e., the node input checks would check
the same variable many times. Instead, we want to check only once. In the DAG, this
corresponds to a binary subtree rooted in an input variable whose inner nodes are Clone(-)
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nodes and whose leaves are other nodes. We refer to edges ending in leaves as twigs and to
the other, inner edges as stems. The basic approach checks each twig ending in a nonlinear
node and thus precludes a fault that activates this twig in addition to another parent or
sibling edge in the DAG. Instead, it is sufficient to check only those twigs whose sibling
edge is also a twig (rather than a stem), and to check only one of the two twigs. In other
words, we check a variable that serves as input to multiple nodes only once, right before its
last use. We call this last check the sink of (this part of) the tree, and it will be activated
if more than one twig in (this part of) the tree is active. Additionally, we also consider the
circuit output variables as sinks, since they will either be checked in the next nonlinear
layer, or propagate faults deterministically to the cipher output. As a result, every edge
v in the DAG is a safe edge that has a sink s such that there is exactly one directed
path v — s and it contains at most one nonlinear node. This implies the single-fault
SIFA-resistance criterion of Section 5.1.

In the x3 example, by checking only such variables and only after they are used for the
last time, we can reduce the number of checks to 6 (instead of 24 in the naive approach),
i.e., once for each input variable. The result is illustrated in Figure 4.

5.3 Ensuring Fault Propagation

In this section, we discuss under which conditions the fine-grained, local detection of
Section 5.2 can be replaced by global checks, similar to Section 3. We will again use the
concept of sink nodes as in Section 5.2, in the sense of nodes whose activation will be
detected by A. However, instead of implementing actual local checks in the sink nodes,
these sinks are virtual nodes whose effect on A follows from properties of the cipher or
masking approach.

First consider a uniform direct sharing of an invertible S-box. Since the sharing is
uniform, the masked circuit is also invertible. As a consequence, for fixed resharing inputs,
if any of the intermediate masked S-box output bits are activated by a fault, this will
activate at least one bit in the masked cipher output. Thus, if the detection variables Va
include all masked cipher output variables, then the S-box output variables can serve as
sinks — what remains to be done is to ensure that each edge is a safe edge with respect to
these sinks, and ideally, to get rid of the requirement to perform redundant computations
for the same values of the shares. We first address the latter question. For simplicity, we
assume that all nodes except cloning nodes have a single output bit.

Instead of the individual shares of the S-box output bits, we can use the native S-box
output as sinks and add corresponding virtual nodes that compute these as sums of the
masked S-box outputs to the circuit. Any fault in this native S-box output would activate
at least one bit in the native cipher output, so the detection variables VA can be reduced
to the unmasked values and evaluated for arbitrary resharing inputs.

Now, we still need to ensure that any edge v in the S-box circuit is a safe edge with
respect to one of these sinks s, i.e., that there is exactly one directed path v — s and
it contains at most one nonlinear node. This may be violated due to cloning nodes (or,
generally, nodes with multiple outputs) and due to composition of nonlinear nodes within
an S-box. If the circuit contains such a composition of nonlinear nodes, it needs to be
decomposed into smaller, bijective circuits with nonlinear depth 1 first, similar to Section 3.
For cloning, we consider the cloning subtree as in Section 5.2. We need to ensure that
whenever two twigs in this tree activate, a sink s activates. In particular, this implies that
for every cloning node b, there must be a sink s such that there is a unique path b — s,
and this path contains only linear nodes. This may require restructuring the tree such
that at least one of the last two uses of a variable (the tree root) is in a linear node, taking
care that the modifications do not invalidate the security of the masked implementation.

The approach is easy to apply to the x5 example. We perform the following modifications
to the circuit from Figure 3 so that each edge is now a safe edge:
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Figure 5: Single-fault SIFA-resistant 3 using 2 shares, with global checks.
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1. Delay rg < 1o @ ag and t; < t1 @ ¢ until the very end,

2. Delay r1 < r1 @ a1, so < so D bg, so < s1 D b1, and ty < to D ¢ (optional),

3. Move the resharing to preserve security of the masking.
The resulting circuit in Figure 5 shows similarities with the Toffoli-based implementation
of x3 in Section 3, but there are still significant differences; most notably, the necessity for
resharing variables R, Ry and the lower depth of the circuit in Figure 5.

5.4 Towards Protection against Multiple Faults

So far, we focused only on single-fault SIFA attackers and corresponding countermeasures.
Both the attack approach and the countermeasure with local checks can be generalized to
a multi-fault attacker who faults up to d basic circuits (nodes).

Consider a circuit protected by dth-order masking with d + 1 or more shares, i.e.,
an attacker who learns up to d shares of any variable or observes up to d basic circuits
still does not gain any information on any native value. Let the circuit be implemented
with at least d + 1 redundant computations and an error detector A of at least d bits.
For simplicity, assume that each of the attacker’s d faults is a bitflip fault on one of the
intermediate variables. We call the implementation d-fault SIFA-resistant if each possible
d-bit fault is either detected by A or activates at most d nonlinear nodes in total.

This criterion can, for instance, be satisfied by checking all inputs to nonlinear nodes
with the following construction. We use d + 1 redundant computations and an na-bit
error detector A = (Aq,..., Ay, ), where na = d for odd d and na = d + 1 for even d.
For each relevant input edge, we clone d times to update d different error detector bits A;
with the differences to all d other computations. In other words, we compute all (d;rl)
differences in this bit between any two redundant computations and ensure that for each
computation, each of the d comparisons activates a different detector A;. Distributing the
(‘“2'1) differences to the various A; corresponds to an edge coloring problem with na colors
in the complete graph with d + 1 vertices, which is easy to solve. Then, activating k£ nodes
in one computation without detection by A requires at least min(k,d + 1) faults: each
node can either be activated without triggering A by placing a fault between the check
(with its cloning) and the nonlinear node; or it can be activated while triggering d error
detector bits A;, each of which requires either a fault in the corresponding computation
or faulting A; directly to eliminate. Thus, in summary, at least d + 1 faults would be
required in order to activate d + 1 or more nonlinear nodes and thus learn d + 1 shares of
any variable to deduce information on its native value.

Clearly, without further optimizations, this approach can only be practical for very small
protection order d. Since the size of each masked implementation grows quadratically in d,
and the checking cost per nonlinear node in this implementation also grows quadratically
in d, the construction is only of theoretic interest for larger d.

6 Implementation

In this section, we describe our experimental results on correctness and performance
and discuss how well our circuit model matches the reality of hardware and software
implementations.

6.1 Formally Verifying the Masking of Toffoli-based Circuits

To gain additional trust in the soundness of our masking, we verified the circuits us-
ing a tool-assisted approach. More specifically, we make use of maskVerif, a tool by
Barthe et al. [BBDT15] for formally verifying masking schemes. maskVerif takes as
input a (masked) circuit description that mainly consists of simple logical operations such
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as AND, XOR, or NOT. The interface of the circuit can consist of (shared) variables,
as well as additional randomness. Given such a masked circuit, maskVerif can verify
if the implemented masking is indeed correct in a specified leakage model and with a
specified protection order. For more details about maskVerif we refer to the original
publication [BBD"15] and the tool’s website [GBB].

We verified the correctness of the masking of our Toffoli-based circuits for S-boxes from
AES and KECCAK using maskVerif. Therefore, we converted the circuits from Circuit 7.b
(5-bit x) and Circuit 8.b (AES S-box) into a maskVerif-compatible format and successfully
verified their first-order security in the probing model and in the presence of (propagation
delay) glitches!. Note that, for implementations in hardware and software, additional
design considerations are necessary in practice, which we discuss in part in Section 6.3
and Section 6.4.

6.2 Benchmarks and Practical Evaluation

In this section, we give a preliminary evaluation of the costs of our proposed countermeasure.
We start with a theoretical estimation of the costs and then we demonstrate the effectiveness
and low overhead of our countermeasure by implementing KECCAK-f[200] on a low-end
8-bit AVR XMEGA128D4 microprocessor as an example. We consider both our Toffoli-
based masked S-box (Circuit 7.b) and a traditionally masked S-box using Domain-Oriented
Masking (DOM) [GSM17]. We then use these implementations for comparing their runtime
and code size and for verifying the SIFA-protection of Circuit 7.b in a practical evaluation.

6.2.1 Cost Estimation

First, let us discuss protection against single-fault SIFA. The costs of our countermeasures
can be roughly split into two parts: the cost of masking and the cost of redundancy. Let
us first start with the cost of redundacy. Since we perform plain double execution, we
get roughly a factor two of overhead. This overhead is in terms of space due to roughly
the doubled number of registers needed to store the state and might be in time, e.g., in
software implementations where everything has to be executed twice, or in hardware if
designers decide to not duplicate the whole circuit, but perform time redundancy instead.
So, if we consider that masking is needed anyway and our masking strategies are not
worse than common strategies, we get the same overhead that would be needed for fault
protection by duplication.

Now, let us take a look at the efficiency of our masking proposal. Let us start with the
way of masking that we introduce in Section 3 and Section 4. This way of masking relies
on describing a cipher in terms of incomplete permutation circuits, and hence, mainly
relies on masked versions of the Toffoli gate and related constructions. As it can be
seen in Figure 1, such a description comes even quite natural in the case of AES and
does not incur a prohibitive increase in the number of operations needed to compute an
S-box. In addition, those masked implementations are secure without the need of online
randomness. As an example, let us have a look at KECCAK’s S-box and compare a DOM
implementation [GSM17] with masking the Toffoli-based description given in Circuit 7.b.

Let us start with the DOM implementation of KECCAK’s S-box. To mask this with
two shares, we need 5 DOM ANDNOTs plus 10 XORs. Hence, in total, we roughly need 20
2-bit ANDs/ANDNOTs, 30 2-bit XORs, and 5 random bits for calculating KECCAK’s S-box.
In contrast, in Circuit 7.b, we need 5 calls to p, g plus two XORs. Thus, we have a total of
20 2-bit ANDs/ANDNOTS, 22 2-bit X0ORs, and 0 random bits for calculating KECCAK’s
S-box. Hence, in terms of operations, the Toffoli-based version has a slight advantage.
However, we need storage for one more share at the input. We will see how this compares
in a practical implementation in Section 6.2.2.

IThe used code is available at https://github.com/sifa-aux/countermeasures
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The overhead incurred by following the strategy of Section 5 depends on a number
of factors. We focus again on the DOM implementation of KECCAK’s S-box (with 20
ANDs/ANDNOTS, 30 XORs, and 5 resharing bits), both as a point of comparison and as the
target circuit for the countermeasure. First consider the approach with local checks from
Section 5.2, Figure 4. On top of the 2 x 20 4+ 2 x 30 = 100 gates for duplicate execution
of this S-box, our countermeasure adds 10 XORs and 10 Ors for the checking circuit,
plus an additional state of 1 bit globally. It is necessary to either execute both duplicate
instances in parallel or invest additional space to keep track of the checked intermediate
values. Other metrics, such as the circuit depth, remain essentially unchanged. With the
improvements for global checks from Section 5.3, Figure 5, the countermeasure comes with
zero overhead compared to the basic DOM implementation with simple redundancy.

When considering the ideas from Section 5.4 for higher-order protection, the overheads
are more substantial. When considering a straightforward application without any opti-
mizations, this can be estimated as follows when focusing only on nonlinear gates (which
are responsible for the overhead). For protection against d-fault SIFA, we need a masked
implementation of dth order with (at least) d + 1 shares, as well as d + 1-fold redundant
execution with an error detector of na € {d,d + 1} bits. With the higher-order DOM
approach [GSM17], each AND-gate of an unprotected S-box circuit corresponds to (d + 1)2
ANDs plus (d+ 1)? XORs in a masked circuit and requires up to d - (d + 1)/2 resharing bits.
These gates are duplicated d + 1 times for redundancy, resulting in a total of 2 x (d + 1)3
gates (ANDs and XORs). Our countermeasure adds a check (1 XoR plus 1 OR) for each of
the inputs of these ANDs, for a total of (d + 1)? x 2 x W x 2 =2d x (d+1)3 gates.
This corresponds to an overhead of a factor of d in the number of gates compared to DOM
masking with redundancy (only for the nonlinear gates, the linear gates add no overhead).
We expect that for concrete circuits, significant optimizations similar to Section 5 are
possible. Still, we consider this approach to be primarily of theoretical interest.

6.2.2 Practical Benchmarks

To keep the comparison as fair as possible, we opted to take the compact C implementation
of KECCAK-f[200] from the eXtended Keccak Code Package [BDH™] as the basis for our
implementations. We then simply duplicated all linear operations and replaced the S-box
by Toffoli/DOM masked assembly versions?. The resulting performance numbers are hence
not necessarily representative for the maximum performance on 8-bit platforms but very
representative for a direct comparison of the two S-box implementations. The resulting
numbers for our comparison are shown in Table 2. We measured the runtime without the
runtime cost of a PRNG and discuss the needed amount of random bits as a separate
metric. From the presented numbers, it is easy to see that our Toffoli-based S-box is on
par with the DOM variant in terms of runtime, and binary size. Please note that the AVR
XMEGA128D4 has not been designed for cryptographic purposes, and hence, might allow
for side-channel attacks due to violations of the seperation of the shares. However, what
we show in the next section is that our proof-of-concept implementation still provides
protection against single fault SIFA.

6.2.3 Evaluation of SIFA resistance

We also evaluated the SIFA resistance of our designs by means of simulated fault injections
and a practical evaluation on an AVR XMEGA128D4 microprocessor using clock glitches.
The evaluation methodology is the same as the one that is used by the authors of [DEGT 18]
(Section 4.2): We take our Toffoli masked assembly S-box implementation (the same that
is used in the benchmarks), target one instruction with a fault injection, call the S-box
with every possible input, and check whether the correct unmasked S-box outputs follow a

2The used code is available at https://github.com/sifa-aux/countermeasures
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Table 2: Comparison of computing 18 rounds of KECCAK-f[200] using different implemen-
tations. Numbers do not include generation of randomness: The DOM approach requires
5 random bits per S-box (200 4+ 200 x 18 = 3800 bits in total), which can be reduced with
techniques such as Changing of the Guards. The Toffoli approach requires just 200 4 40 in
total when implemented as proposed for Circuit 7.b.

Runtime w/o PRNG  Binary Size

Implementations (Clock Cyles) (Bytes)
Empty main.c -0s 0 5385
Compact C with ASM S-box -0s 49371 6939
Masked with ASM DOM S-box -0s 107617 9648
Masked with ASM Toffoli S-box -0s 109 753 9632
Compact C with ASM S-box -03 38455 9811
Masked with ASM DOM S-box -03 88 332 12434
Masked with ASM Toffoli S-box -03 87 426 12385

uniform distribution or not. This procedure is then repeated for every instruction within
the S-box.

According to our practical evaluation, where clock glitches cause effects like memory
corruption or instruction skips, no instruction within our S-box implementation is suscep-
tible to SIFA. This result is backed up by our simulated fault injection experiments where
we simulate the effect of stuck-at faults and bitflips for which we do not own a set-up to
reproduce them in practice.

6.3 From an Abstract Model to Software Implementations

In Section 2, we have introduced an abstraction model and explicitly defined what faults
are in this model. When considering the implementation of our circuits in software, it
would seem that even in the most trivial implementations, it is ensured that basic circuits
are nicely separated and hence, fault attacks and also side-channel attacks cannot be a
threat. However, the reality is more subtly nuanced. Hence, we want to discuss what
has to be considered when implementing our circuits in real software implementations
and which faults on software implementations are covered by considering faults on basic
circuits.

As mentioned in Section 2, we consider circuit faults in a single basic circuit instance.
This directly corresponds to faults in software that directly manipulate values of variables
stored in registers of a CPU [SZK T 18], change a variable in memory before it is loaded, or
even target the load of a variable from memory [CMD™18]. Furthermore, it also covers
cases where a fault, like a clock glitch, changes the outcome of a computation. However,
what is notably only partially covered is the case of an instruction skip, meaning that an
operation is not performed and the register values are kept untouched. This can lead to
cases where the boundaries between basic circuits are violated. This is especially a threat
if an implementation of a basic circuit uses registers in addition to the registers storing the
shares in order to store results of intermediate computations. However, potential negative
effects of a clock glitch can be mitigated by always initializing an additional register to
0 before use, or by performing instructions on the shares in place (e.g., ag = ag @ bo)
whenever possible.

What is not covered by our considerations are faults that change the execution flow
of a program to a greater extent than skipping the single instructions, like manipulating
the program counter. Furthermore, we do not consider the use of loops and conditional
statements apart from their usage in detecting faults. What is also not considered are
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faults that change the operands used in operations. All these faults have in common that
they may totally change the program that is executed to a point where the key is just put
out in plain. Such faults have to be prevented by other means.

Furthermore, our model considers a single permanent fault, e.g, permanently faulting
a lookup table, as multiple faults. However, we advise not to use implementations with
lookup tables.

A notable case that is not considered in our abstraction are LOAD and STORE instruc-
tions from memory to registers. In the simplest case, there are enough registers to store all
necessary variables so that during a cryptographic computation, no LOADs and STORES
are needed. However, if this is not the case and a variable has to be reloaded, this might
cause problems. For instance, let us consider the circuit shown in Circuit 5.b. Here, by is
just read and never written. So if we do not consider fault protection, it can be assumed
that the register by can just be overwritten, since the value can be reloaded from memory
anyway. If we consider our fault protection mechanisms, this means that a faulted value in
register by might vanish, which in turn would allow STFA again. To prevent this in general,
we have to assume that values are changed and write them back to memory if their use is
later required.

Furthermore, registers have to be properly initialized before usage. The problem with
uninitialized registers is that shares can be combined, which leads to exploitable leakage,
or, in the case of a clock glitch, to an unmasked use of a variable. Typically, the problem
with uninitialized registers can be easily solved by always writing 0 to them before the
result of a computation is stored.

Finally, we want to note that modern ciphers can usually be implemented in a bit-sliced
manner, meaning that for a system using z-bit registers, a single computation, and thus,
a single fault like a clock glitch leads to a single fault in up to x S-boxes. For ciphers
that consist of layers applying many small bijective S-boxes in parallel to the state, we
can define basic circuits to work on bit-vectors instead of single bits. This implies that
injecting a single fault in several of these parallel S-boxes in a single layer causes no issues
with respect to our strategy of Section 3, since these faults will correspond to a single
circuit fault of an incomplete circuit.

6.4 From an Abstract Model to Hardware Implementations

In general, our abstraction as circuit lends itself quite naturally to dedicated hardware
implementations, but requires additional considerations. In particular, one needs to take
into account the effects of glitches. Glitches are the result of the behavior of the physical
layout and are thus unavoidable. Since signals do not propagate evenly through a hardware-
circuit (due to differences in the capacitance of wires, different wire lengths, manufacturing
imperfections, et cetera.) the output of gates could change (glitch) several times before
reaching a stable logic state. In the context of a fault injection, also faults can “glitch”. As
a result, in each clock cycle there is sequence of transitional states in the physical circuit
that depend on combinations of variables that differ from the ones that the circuit should
finally compute.

These effects imply that the behavior of a hardware-circuit cannot be controlled by
just using combinatorial logic gates. Using registers limits these transitional effects in the
sense that it puts barriers between combinatorial blocks. Registers stabilize a signal before
entering the next logic gates through a separation in different clock cycles. The cost for the
gained control over the signals is not only the increased gate count, but also the evaluation
of the hardware-circuit requires more clock cycles and thus, the latency increases.

Hence, when instantiating our abstract circuits in hardware, registers are required at
several places to separate the basic circuits and ensure resistance to glitching effects. This is
no different for other masking methods. For instance, TI implementations [NRR06,NRS11]
use registers after each uniformly shared function and the DOM scheme [GMK16] uses
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Figure 6: Masked and single-fault SIFA-protected Toffoli gate in hardware.

a register stage in each shared nonlinear gate to hinder security-critical glitches from
propagating into the next shared function which could violate the security requirements.

Figure 6 shows a masked Toffoli gate in hardware which already includes the required
registers (FF) for a glitch resistant first-order side-channel protection. Furthermore, this
variant also resists single-fault SIFA attacks. The upper two registers are required to
hinder the propagation of glitches that could violate the side-channel resistance of the
implementation. The lower four registers are the relevant ones for protection against SIFA.
Again, no share can be used twice in two different basic circuits within the same clock
cycle. This would be the case when switching the order of the multiplication of b; and
c1 with b; and ¢, for instance, because a single fault of the input ¢y would affect both
multiplications with the two shares of b.

7 Conclusion

In this paper, we proposed two different approaches to counteract SIFA on an algorithmic
level. First, we showed that by relying on the Toffoli gate for the non-linear operations
in the implementation of masked ciphers, we can construct circuits where a single fault
in the computation of the cipher will always propagate to its output. It can then be
detected via redundant computations that are typically implemented to cope with other
fault attacks like DFA. This approach can be implemented efficiently, and its applicability
was shown for 3-bit, 4-bit, and 5-bit S-boxes. Additionally, we show how this approach
could be extended to the AES S-box using the Toffoli gate for bigger fields and fine-grained
detection on S-box level that can be implemented efficiently for implementations using
duplication and is also quite efficient for implementations using time-redundancy when
using a linear checksum. We verified the correctness of the masking of our Toffoli-based
circuits for S-boxes from AES and KECCAK using maskVerif. Finally, we show how this
approach based on fine-grained detection can be generalized to protect arbitrary masked
circuits, and how it can be extended to cope with multi-fault SIFA, albeit at a higher
implementation cost.
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A  Threshold Implementations of pr and p,

Figure 7 shows the algorithmic representation of a securely masked (using three shares) and
single-fault SIFA-protected Toffoli gate pp fulfilling the three requirements for threshold
implementations (TI). Namely the gate fulfills: 1) correctness, since the gate correctly
implements the equations a = a®b® ¢ which can be checked be adding all output shares of
a (the equations b = b and ¢ = ¢ are trivial), 2) uniformity, which follows from the fact that
for each output share a single share of a appears in additive form, and 3) non-completeness,
because for each calculation of one output share, one share index never appears (e.g., the
calculation of the output share ay does not use any shares with the index 1 like b; or
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¢1). The threshold implementation of p,r follows analogously. A secure hardware variant
of the Toffoli gate is shown in Figure 8. The registers ensure that a single fault cannot
influence all shares of variables that are fed into nonlinear AND gates without detecting it
at the output.

Name: pprr

State: {a03 ay, a2, bOa b17 b27 €o, C1, 02}

pT(a/Oa bOa CO)

] D ]

(;) (;) @ N

VR Y A VA N A

ai I Nl N LAd I N a

[«] S N N = - [=]
| U1 U Lal | U 2

Figure 8: 3-share TI and single-fault SIFA-protected Toffoli gate in hardware.
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B Subcircuits for AES S-box

In this section, we give a description of the required basic circuits that we use in the AES
S-box. This description is fully based on the work of Canright [Can05]. Again, we denote
the higher half of a variable with the superscript H and the lower half with L, e.g, for a
four bit field element 2 € Fys, the higher two bits (coefficients) are denoted with 2 and
the lower with z”. Alternatively, we denote each single bit with z3, 22, 2!, and 2°. Note
that we just give the algorithmic description of the building blocks and do not consider
their implementation.

We start with the description of the linear permutations I'(z) and Z(x). Both are
binary matrix multiplications. For I'(z), we have according to Canright [Can05]:

Name: T

State: {z}

(27 ] [1 1 1.0 0 1 1 1] [arf]
Te 01 1.1 0 0 01 Te
s 01 1 0 0 011 T5
Ta| 1 110 0 0 0 1 Ty
T3 1 00 1 1 0 11 T3
To 00 0 0 0 0 01 To
1 01 1 0 0 0 01 T
| 7o | 010 0 1 1 1 1] |xo]

and for E(z):

Name: =

State: {z}

(27 ] [0 01 01 0 0 0] [arf]
Te 1 0001 O0O0O0 Te
s 01 0 0 0 0 01 Ts
Ta| 1 01 01 00O Ty
T3 1 11 1 100 0 T3
To 01 1 01101 To
T1 0 01 1 0 010 1
EN 0 1.0 1 0 0 1 0] [

For the square scaling s?,(a, b, c), we denote with || a concatenation and get:

Name: s?,
State: {a,b,c}
To < b Dc

a  a® (5 & T5)[|(15 @ 10) (15 & T0)||T5)

For the square scaling s2_(a, b, ¢), we get:

2

Name: s3,
State: {a,b,c}
To < b Dc

a < a® (Tg]/(Tg & 1))

The inversion a~! and squaring a? in GF(2%) can be done as bit-swap, where | denotes
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concatenation:

Name: Inv
State: {a}

a + a’l|la*
The constant addition with the hexadecimal value 0x63 can be done as:

Name: AddConstant
State: {a}
a<$— a® 0x63

The multiplication ¢ < a - b in GF(2%) can be done as:

e ((dead)o o) ® (' ob)
e ((a'@a’)o (b @) ® (a” 01"
The multiplication ¢ < a - b in GF(2%) is a bit more complex. In the following algorithm, -
denotes above multiplication in GF(2%) and || a concatenation:
Tg « (a” ® o) - (b @ b")
T1 ¢ Tol|(T5 © Tp)
1@ (o -bH)

k1@ (a® - bh)

C Inverse of Masked AES S-box

The S-box in Circuit 8.b is still a permutation on its inputs. This can be seen by showing
that the implementation is invertible. Given a choice for eq, fy, 90, ho, Y0, y1, we can do
the computation of Figure 9.
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zo =T (ep)

z1 =20+ 5 (yo + 1)
e1 =I(xq)

Tg =10

Sse(Tos €5 s €5)

= fo+To+ef - (eg +ep)
a; = ag
T =0
sec(Tr et ser)
fi=ar+Ti+efl - (eg +ef)
Tg =0
s3e(To, fols f3')
bo=go' +To+ fo' - (fo + fT)
b1 = by
T =0
s3e(T1, f1 1)
g1 = (b1 + T Jrffl : (foLJrflL))il
co' = hi' + fg - (90 + 91)
el =clf
Ml 7o+ 0
e = hy + f3" - (90 + 91)
of =cy
h1 =t + 1 (90+ )

=E(yy' +0x6) +¢ff - (co + 1)

dHZE Yy 4 el (co+¢1)
dy == (yb 4+ 0x3) + el - (co + 1)
df Yyl +el’ - (co+ 1)

—_——
—
i

Figure 9: Inverse computation to show that Circuit 8.b is a permutation.
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