
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 3, pp. 454–482. DOI:10.13154/tches.v2020.i3.454-482

Defeating State-of-the-Art White-Box
Countermeasures with Advanced Gray-Box

Attacks
Louis Goubin4, Matthieu Rivain1 and Junwei Wang1,2,3

1 CryptoExperts, Paris, France {firstname.lastname}@cryptoexperts.com
2 University of Luxembourg, Esch-sur-Alzette, Luxembourg

3 University Paris 8, Saint-Denis, France
4 Université Paris-Saclay, UVSQ, CNRS, Laboratoire de Mathématiques de Versailles, Versailles,

France louis.goubin@uvsq.fr

Abstract. The goal of white-box cryptography is to protect secret keys embedded in
a cryptographic software deployed in an untrusted environment. In this article, we
revisit state-of-the-art countermeasures employed in white-box cryptography, and we
discuss possible ways to combine them. Then we analyze the different gray-box attack
paths and study their performances in terms of required traces and computation time.
Afterward, we propose a new paradigm for the gray-box attack against white-box
cryptography, which exploits the data-dependency of the target implementation.
We demonstrate that our approach provides substantial complexity improvements
over the existing attacks. Finally, we showcase this new technique by breaking the
three winning AES-128 white-box implementations from WhibOx 2019 white-box
cryptography competition.
Keywords: white-box cryptography · linear masking · non-linear masking · shuffling ·
data-dependency

1 Introduction
A cryptographic software deployed in an untrusted execution environment faces risks of
secret key extraction by malicious parties that might grant (full) access to the software.
These security threats are captured by the white-box model. Apart from physical side-
channel leakages [Koc96], a white-box adversary in this setting is capable of observing every
execution detail of the cryptographic implementation, e.g., accessed memory and registers,
and she also has the power of interfering the execution by, for example, injecting faults.
Recently, more and more cryptographic software is deployed in execution environments
that cannot be fully trusted, such as smartphones, IoT devices, smart wearables, and
smart home systems, resulting in particular interest for white-box cryptography.

White-box cryptography was initially proposed by Chow et al. to counter this kind of
threat in the context of DRM [CEJv03]. Since then, the competition between white-box
designers and attackers has become once again a cat-and-mouse race, and white-box
cryptography has been a long-standing open problem for nearly 20 years. The research
community has observed many candidate constructions of white-box implementations
for block ciphers [CEJv03, CEJvO02, BCD06, XL09, Kar11], as well as their subsequent
destruction by structural analysis shortly after or even years later [BGEC04, GMQ07,
MGH09, DRP13, LRD+14].

In the situation where no provably secure white-box implementation has been discovered,
the industry is constrained to deploy home-made white-box implementations, the designs

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-01-15 Accepted: 2019-03-15 Published: 2020-06-19

https://doi.org/10.13154/tches.v2020.i3.454-482
mailto:matthieu.rivain@cryptoexperts.com,junwei.wang@cryptoexperts.com
mailto:louis.goubin@uvsq.fr
http://creativecommons.org/licenses/by/4.0/

Louis Goubin, Matthieu Rivain and Junwei Wang 455

of which are kept secret. Although these implementations might not be secure against a
well-informed adversary, the security of their designs can make them practically hard to
break since known structural attacks do not apply as is.

At CHES 2016, Bos et al. proposed to use differential computation analysis (DCA) to
attack white-box implementations in a gray-box fashion [BHMT16]. DCA is mainly an
adaptation of the differential power analysis (DPA) techniques [KJJ99] to the white-box
context. It exploits the fact that the variables appearing in the computation in some
unknown encoded form might have a strong linear correlation with the original plain values.
It works by first collecting some computation traces, which are composed of the runtime
computed values over several executions through a dynamic instrumentation tool, such as
Intel PIN. One then makes a key guess and predicts the value of a (supposedly) computed
intermediate variable, then computes the correlation between this prediction and each
sample of the computation trace. The key guess with the highest peak in the obtained
correlation trace is selected as the key candidate. The power of DCA comes from the
fact that the attacker does not need to know the underlying implementation details. This
approach has been shown especially effective to break many publicly available (obscure)
white-box implementations [BHMT16]. Rivain and Wang extensively analyzed when and
why the widely-used internal encoding countermeasure is vulnerable to DCA, and they
further proposed improvements of gray-box attacks against this kind of countermeasures
[RW19].

To prevent DCA-like passive gray-box attacks, it is natural to consider classic side-
channel countermeasures, i.e., linear masking and shuffling [BRVW19]. Roughly speaking,
linear masking (a.k.a. Boolean masking) splits any sensitive intermediate variable into
multiple linear shares and processes them in a way that ensures the correctness of the
computation while preventing sensitive information leakage to some extent. The principle
of shuffling is to randomly permute the order of several independent operations (possibly
including dummy operations) in order to increase the noise in the instantaneous leakage
on a sensitive variable. It was shown that an implementation solely protected with linear
masking is vulnerable to a linear decoding analysis (LDA), which is able to recover the
locations of shares by solving a linear system [GPRW18, GPRW20, BU18]. The authors
of [BRVW19] analyze the combination of linear masking and shuffling and show that it
can achieve some level of resistance against advanced gray-box attacks.

At Asiacrypt 2018, Biryukov and Udovenko [BU18] introduced the notion of algebraically-
secure non-linear masking to protect white-box implementations against LDA (formalized
as algebraic attacks in [BU18]). Non-linear masking ensures that applying any linear
function to the intermediate variables of the protected implementation should not compute
a predictable variable with probability (close to) 1. However, the non-linear encoding
is vulnerable to the DCA attack because the encoded sensitive variable is still linearly
correlated of some shares in the non-linear encodings. It was then suggested by the authors
to combine linear and non-linear masking, which was conjectured to be able to counter
DCA-like and LDA-like attacks at the same time since the adversary is neither able to
build predictable variable by a low-degree function over the computation traces nor able
to locate a low number of shares (i.e., lower than the linear masking order) from which
she can extract sensitive information.

We remark that randomness plays an important role in implementing all mentioned
countermeasures. It is well-known that a white-box adversary could tamper with the
commutation channel between a white-box implementation and its external world, including
the external random source. Hence, the effective randomness in a white-box implementation
is pseudorandomness derived from the input. In this work, each time we refer to randomness
in the described countermeasures, we mean pseudorandomness derived from the input.

The state-of-the-art of white-box implementation puts to use all countermeasures
mentioned above, as well as mixed with a layer of obfuscation. The security of the

456 Defeating State-of-the-Art White-Box Countermeasures

implementations relies on the (weak) security properties achieved by the employed coun-
termeasures as well as on the obscurity of the overall design (including obfuscation). The
main purpose of these implementations is to thwart automatic gray-box attacks, hence
constraining the potential adversaries to invest costly and uncertain reverse engineering
efforts.

WhibOx Competitions. In this context, the WhibOx 2017 competition was organized to give
a playground for “researchers and practitioners to confront their (secretly designed) white-
box implementations to state-of-the-art attackers” [whia]. In a nutshell, the participants of
this contest were divided into two categories: the designers who submit the source codes
of AES-128 [DR13] with freely chosen key, and the breakers who try to reveal the hidden
keys in the submitted implementations. The anonymous participants were not expected
to reveal their underlying designing or attacking techniques. A valid implementation
must fulfill several performance requirements, such as source/binary code size, memory
consumption, and execution time. A score system was designed to reward long-surviving
submission designers and breakers.

In the end, 194 players participated the contest and submitted 94, only 13 of which
survived for more than 24 hours, and DCA was able to break most of them. These results
once again demonstrate that the attackers prevail in the current cat-and-mouse game. The
strongest implementation in terms of survival time, named Adoring Poitras, was due to
Biryukov and Udovenko.1 The only attack (to our knowledge) against this implementation
was performed by Goubin, Paillier, Rivain and, Wang with a heavy reverse engineering
effort and the so-called linear decoding analysis (LDA) attack [GPRW18, GPRW20].

Owing to the success of the first edition, WhibOx 2019 was organized to further pro-
mote the public knowledge in this paradigm of white-box cryptography. The new rules
encourage designers to submit “smaller” and “faster” implementation due to a factor of
performance, as recalled in Appendix A. The contest had attracted 63 players and received
27 implementations in the end. The resistance of several submissions in terms of living
time was significantly improved over the first edition of the competition, which shows
evidence of refinement of the underlying white-box techniques. Three implementations
(all due to Biryukov and Udovenko) were still alive at the deadline of the contest but
were broken a few days or weeks afterward.2 As explained in this paper, all three winning
implementations were based on state-of-the-art white-box countermeasures, including a mix
of linear and non-linear masking [BU18] together with shuffling and additional obfuscation.
In this article, we give a thorough explanation of how we managed to break all three
implementations with advanced gray-box attacks and our novel data-dependency analytic
techniques (as well as a “lightweight” de-obfuscation). To the best of our knowledge, this
is the only technical report that breaks all the three implementations.

Our Contribution. In this article, our contribution is fourfold:

1. Review of state-of-the-art white-box countermeasures. We revisit the state-
of-the-art countermeasures, namely linear and non-linear masking and shuffling, used
in bitsliced-type white-box implementations (such as the winning implementations
of WhibOx 2019).

2. Comprehensive study of advanced gray-box attacks. We recall the advanced
gray-box attacks which can be used to break white-box implementations in this
context, including higher-degree decoding analysis, (integrated) higher-order DCA.
We analyze their (in)effectiveness against state-of-the-art countermeasures and exhibit
their trace and time complexities.

1Source code available at https://whibox-contest.github.io/2017/candidate/777.
2See https://www.cryptolux.org/index.php/Whitebox_cryptography#WhibOx_2019_Competition.

https://whibox-contest.github.io/2017/candidate/777
https://www.cryptolux.org/index.php/Whitebox_cryptography#WhibOx_2019_Competition

Louis Goubin, Matthieu Rivain and Junwei Wang 457

3. New data-dependency attack. We propose a new data-dependency gray-box at-
tack which achieves significant complexity improvements in different attack scenarios
by precisely locating the target shares within a computation trace and avoiding the
standard combinatorial explosion. We show that our approach can efficiently break
several combinations of linear and non-linear masking in the presence of shuffling
and obfuscation.

4. Application to break real implementations. We apply our new data-dependency
DCA, together with advanced gray-box attacks, to break the three winning imple-
mentations from WhibOx 2019.

Organization. The rest of the paper is organized as follows. In Section 2, we describe the
state-of-the-art white-box countermeasures in a bitsliced implementation setting, namely,
linear masking, non-linear masking and shuffling, and we discuss different ways to combine
them. Then we revisit advanced gray-box attack techniques and comprehensively analyze
their (in)effectiveness and complexities against the considered countermeasures in Section 3.
After that, we introduce our data-dependency attack in Section 4 and demonstrate how
it can efficiently break these countermeasures. Finally, we present our practical attacks
against three winning implementations of WhibOx 2019 in Section 5.

2 Combination of Countermeasures
In this work, we consider a white-box implementation in the paradigm of a randomized
Boolean circuit with a hard-coded key represented in software as a bitsliced program.
Bitslicing is a common technique to derive efficient software implementation of a cipher
from its Boolean circuit representation [Bih97, RSD06]. The main idea is to manipulate
several data slots in parallel by making the most of bitwise and/or SIMD instructions on
modern CPU. Bitslicing has been in particular applied as a strategy to design efficient
implementations in the presence of higher-order masking [GR17, JS17, GJS+19, BBB+19].
In the context of white-box cryptography, this approach has also been empowered (with
additional layers of obfuscation and virtualization) to design implementations with a good
level of resistance in practice. In particular, the winning implementations of the two
editions of the WhibOx competition, due to Biryukov and Udovenko, were based on this
principle [whia, whib].

2.1 Linear Masking
Linear masking, a.k.a. Boolean masking, is a widely-deployed countermeasure against
side-channel attacks [GP99, RP10]. A linear masking scheme of order n − 1 splits each
sensitive variable x in a cryptographic computation into n shares satisfying

x = x1 ⊕ x2 ⊕ · · · ⊕ xn (1)

(where ⊕ denote the bitwise addition). Then, the computation must be handled on those
n shares in a way that ensures the correctness of the computation while achieving some
security property. Roughly speaking, one must ensure that any combination of less than n
intermediate variables does not reveal any information about the original sensitive variable.
The notion is formalized in a circuit computation model as the probing security: an n-th
order probing secure circuit ensures that any observation of n wires (so-called probes) can
be perfectly simulated without knowledge of the sensitive variables [ISW03]. A modular
approach in probing security is first to design n-th order probing secure gadgets which
compute elementary operations, then to compose these gadgets in a way that preserves
the n-th order security of the full circuit [BBD+16, BGR18].

458 Defeating State-of-the-Art White-Box Countermeasures

ISW Gadgets. Without loss of generality, [ISW03] only describes n-th order masking
gadgets for Boolean NOT and AND gates, which can be composed to defeat bn2 c-th order
probing attacks. However, they can be composed to achieve n-th order probing secure
circuit by carefully placing some refresh gadgets, as shown in the application on AES
[RP10, CPRR14]. In this work, we recall the secure AND gadget for linear masking in
Algorithm 1. A secure NOT gadget merely puts a NOT gate on the output wire of one
share, and a secure XOR gate simply applies an XOR gate sharewisely. Refresh gadget
can be achieved by applying a secure AND gadget between the shares to be refreshed and
(1, 0, · · · , 0).

Algorithm 1 AND gadget for linear masking [ISW03]
Input: linear sharing (xi)1≤i≤n s.t.

⊕
1≤i≤n xi = x, linear sharing (yi)1≤i≤n s.t.⊕

1≤i≤n yi = y, randomness (ri,j)1≤i<j≤n
Output: (zi)1≤i≤n satisfying

⊕
1≤i≤n zi = xy

1: for i← 1, · · · , n do
2: for j ← i+ 1, · · · , n do
3: rj,i ← ri,j ⊕ xiyj ⊕ xjyi
4: end for
5: end for
6: for i← 1, · · · , n do
7: zi ← xiyi
8: for j ← 1, · · · , n do
9: if j 6= i then

10: zi ← zi ⊕ ri,j
11: end if
12: end for
13: end for

Vulnerability of Linear Masking in The White-Box Context. The soundness of linear
masking countermeasure in noisy-leakage model comes from the fact that the computation
complexity exponentially grows with the order of masking countermeasure [PR13]. However,
in the white-box context, the adversary is able to record the values of arbitrary intermediate
variables without any noise. Although the exact location of the shares might not be obvious
for the adversary because of some obfuscation or obscurity in the implementation structure,
linear masking can be completely smashed using a simple gray-box attack. The so-called
linear decoding analysis (LDA) was formally introduced in [GPRW18, GPRW20] –and also
independently discussed in [BU18]– as an effective way to break linear masking (or any
other linear encoding scheme) in white-box model.

Let (v1, v2 · · · , vw) denote a computation trace, among which there are n linear shares
(at unknown positions) of some sensitive variable x. There exists a constant vector
(a1, a2, · · · , aw) ∈ {0, 1}w such that

w⊕
i=1

ai · vi = x .

As explained in [GPRW18, GPRW20], the adversary is able to recover (a1, a2, · · · , aw)
by recording the values of (v1, v2 · · · , vw) for w + O (1) random inputs, guessing the
corresponding values of x w.r.t. some key guess and then trying to solve the underlying
linear system. If the system is solvable, then the key guess is (most likely) correct. The
complexity of LDA is O

(
|K| · w2.8) for K being the key space. Notably, it is independent

of the masking order n, as long as all the shares of the target variable appear in the

Louis Goubin, Matthieu Rivain and Junwei Wang 459

computation trace. This attack was applied to break Adoring Poitras, the winning
implementation of the WhibOx 2017 competition [GPRW20].

2.2 Non-linear masking
At Asiacrypt 2018, Biryukov and Udovenko [BU18] introduced the notion of algebraically-
secure non-linear masking to protect white-box implementations against LDA (formalized
as algebraic attacks in [BU18]). A d-th degree algebraically-secure non-linear masking
ensures that applying any function of up to d degree to the intermediate variables of the
protected implementation should not compute a “predictable” variable with probability
(close to) 1. By ensuring such a property, one guarantees that LDA cannot be applied to a
first-degree secure implementation since any linear function of the intermediate variables
is not “predictable”.

Simple non-linear masking being vulnerable to higher-order DCA per se, Biryukov and
Udovenko also suggested using a combination of non-linear masking together with classic
(higher-order) linear masking in order to resist both categories of attacks.

First-Degree Secure Non-Linear Masking. The authors of [BU18] introduce a non-linear
masking satisfying first-degree algebraic security. Their scheme is based on the minimalist
3-share encoding (a, b, c) for a sensitive variable x such that

x = ab⊕ c , (2)

where a and b are uniform random bits and c is computed as c = x⊕ ab. This encoding
ensures immunity against LDA by its non-linearity. In order to perform computation on
encoded variables, the authors further define an XOR gadget and an AND gadget. Those
gadgets are depicted in Algorithm 2 and Algorithm 3 respectively. For both of them,
the input encodings must be refreshed which is performed by applying a Refresh gadget
described in Algorithm 4.

Algorithm 2 XOR gadget for minimalist quadratic masking [BU18]
Input: a, b, c, d, e, f satisfying ab⊕c = x and de⊕f = y, and randomness ra, rb, rc, rd, re, rf
Output: h, i, j satisfying hi⊕ j = x⊕ y

1: a, b, c← Refresh(a, b, c, ra, rb, rc)
2: d, e, f ← Refresh(d, e, f, rd, re, rf)
3: h← a⊕ d
4: i← b⊕ e
5: j ← c⊕ f ⊕ ae⊕ bd

Algorithm 3 AND gadget for minimalist quadratic masking [BU18]
Input: a, b, c, d, e, f satisfying ab⊕c = x and de⊕f = y, and randomness ra, rb, rc, rd, re, rf
Output: h, i, j satisfying hi⊕ j = xy

1: a, b, c← Refresh(a, b, c, ra, rb, rc)
2: d, e, f ← Refresh(d, e, f, rd, re, rf)
3: ma ← bf ⊕ rce
4: md ← ce⊕ rfb
5: h← ae⊕ rf
6: i← bd⊕ rc
7: j ← ama ⊕ dmd ⊕ rcrf ⊕ cf

460 Defeating State-of-the-Art White-Box Countermeasures

Algorithm 4 Refresh gadget for minimalist quadratic masking [BU18]
Input: a, b, c satisfying ab⊕ c = x and randomness ra, rb, rc
Output: a′, b′, c′ satisfying a′b′ ⊕ c′ = x

1: ma = ra(b⊕ rc)
2: mb = rb(a⊕ rc)
3: r′c = ma ⊕mb ⊕ (ra ⊕ rc)(rb ⊕ rc)⊕ rc
4: a′ = a⊕ ra
5: b′ = b⊕ rb
6: c′ = c⊕ r′c

Vulnerability of Non-Linear Masking Alone. A DCA adversary can easily break an
implementation protected by non-linear masking only. For instance, if the minimalist
quadratic masking scheme from [BU18] is applied without additional linear masking, a
simple first-order DCA is sufficient to break the scheme. Indeed, by definition, the shares a
and b are uniformly picked at random which implies that the share c = x⊕ ab is correlated
to x. Precisely, we have Cor(ab⊕c, c) = 1

2 . A more detailed analysis of (higher-order) DCA
against non-linear masking (possibly combined with linear masking) is given in Section 3.2.

2.3 Combination of Linear and Non-Linear Masking
As suggested in [BU18], a combination of linear masking and non-linear masking is
empirically secure against both DCA and LDA attacks of order/degree lower than the
respective linear masking order and non-linear masking degree. The intuition behind is
two-fold: on one hand, an algebraically-secure countermeasure mixed with linear masking
should not decrease the algebraic degree to construct a predictable value; on the other
hand, the biased non-linear shares are further linearly masked and only DCA of order n
can be used to break a linear masking of order n.

From [BU18] it is not clear how to combine linear and non-linear masking. In order to
discuss the possible attack path, we suggest hereafter three natural ways to combine them.
Analyzing the security properties of the resulting combined masking is beyond the scope
of this article.

In the first two ways, we simply apply one masking scheme on top of the other. Taking
the quadratic encoding example in Equation 2, the first way is to apply a linear masking
on top of a non-linear masking

x =
(
a1 ⊕ a2 ⊕ · · · ⊕ an

)(
b1 ⊕ b2 ⊕ · · · ⊕ bn

)
⊕
(
c1 ⊕ c2 ⊕ · · · ⊕ cn

)
, (3)

and the second way is to apply a non-linear masking on top of a linear masking

x =
(
a1b1 ⊕ c1

)
⊕
(
a2b2 ⊕ c2

)
⊕ · · · ⊕

(
anbn ⊕ cn

)
. (4)

The combined masking gadget can be simply derived from the original gadgets of both
schemes. For the 1st combination, one starts from the linear masking gadgets then non-
linearly shares each variable and replaces each gate by the corresponding non-linear masking
gadget. For the 2nd combination, one starts from the non-linear masking gadgets then
linearly shares each variable and replaces each gate by the corresponding linear masking
gadget.

The third way is to merge the two maskings into a new encoding achieving the two
features (high order security and prediction security). Also taking as an example the
quadratic encoding from [BU18], the new encoding would be

x = ab⊕ c1 ⊕ c2 ⊕ · · · ⊕ cn . (5)

Louis Goubin, Matthieu Rivain and Junwei Wang 461

There are two interpretations of this new encoding. On one hand, the linear part of the
non-linear masking in Equation 2 is linearly encoded by Equation 1

x = ab⊕
(
c1 ⊕ c2 ⊕ · · · ⊕ cn

)
,

on the other hand, the first share x1 from linear encoding in Equation 1 is non-linearly
masked by Equation 2

x =
(
ab⊕ c1

)
⊕ c2 ⊕ · · · ⊕ cn .

It is not clear how to derive secure gadgets for such encoding. One could probably mix
linear masking and non-linear masking gadgets. For instance, one could use the non-linear
masking gadgets and replace the appearance of c in by n linear shares for which one would
involve the corresponding linear masking gadgets. The exact description and security
analysis of these mixed gadgets are beyond the scope of the present paper.

2.4 Shuffling, Parallelization and Dummy Operations
Operation shuffling is another widely applied countermeasure to protect cryptographic
implementations against side-channel attacks [VMKS12]. The principle is to randomly
shuffle the order of several independent operations (possibly with dummy operations) in
order to increase the noise in the instantaneous leakage on a sensitive variable.

Shuffling can be combined together with higher-order masking as studied in [RPD09]
in the context of side-channel attacks. The authors of [BRVW19] further insight that a
white-box adversary could reorder a computation trace w.r.t. two dimensions, namely time
and memory, implying that in the white-box context one should shuffle both the order of
operations and the memory locations of the variables. In the bitsliced paradigm, shuffling
can be implemented in two possible ways, namely horizontally and vertically shuffling.

Horizontal vs. Vertical Shuffling. In horizontal shuffling, the data slots in a bitslice
computation are shuffled. By default, horizontal shuffling only randomizes the computation
in the dimension of memory (since all the slots are processed at the same time).

In vertical shuffling, several computation instances are done sequentially, the good one is
randomly shuffled among the instances and retrieved afterward through a selection process.
Vertical shuffling implements both the time and memory shuffling. As an illustration in
Figure 1, a sequential circuit is compromised by t sub-circuits (Ci)1≤i≤t that share the
same inputs from a preparation stage, and from which one output will be selected as
the good one after a merge process. Note that these t sub-circuits (Ci)1≤i≤t might be

preparation

C1

C2

· · ·

Ct

merge

Figure 1: Illustration for vertical shuffling.

462 Defeating State-of-the-Art White-Box Countermeasures

interleaved and share some computation to increase the difficulty in analyzing the overall
structure.

Horizontal and vertical shuffling can be combined in a lot of ways. As a natural
example, whenever the number of bitslice slots is larger than the word-length of the target
architecture, a full bitslicing consists of several copies of the word-length bitslicing. In this
case, the desired computations manipulated in different copies are vertically shuffled both
in time and memory dimensions.

Nature of the Dummy Computation. For both kinds of shuffling, the values computed
in a dummy slot/instance can be of different nature:

• they are pseudo-randomness derived from the plaintext and acting like noise,

• they are genuine intermediate values corresponding to the input plaintext but for
some dummy key,

• they are genuine intermediate values corresponding to right input round state but
for some dummy key,

• they are redundant intermediate values of another slot (either dummy slot or right
slot).

For the first three cases, the effect is to add noise in the computation trace. The second
and third cases provide additional protection against DCA-type attacks by introducing
dummy key candidates in the attack results. The last case might be used to defeat fault
attacks but it also reduces the noise if some redundancy is used for the right slot.

3 Advanced Gray-Box Attacks
In this section, we analyze different advanced gray-box attacks against the combinations
of countermeasures described in the previous section.

Target Implementation. We assume that the target implementation is protected by an
n-th order linear masking and a d-th degree non-linear masking in one of the three possible
composition ways discussed in Section 2.3. We will optionally consider the application of
shuffling on top of this combination of masking and denote t the shuffling degree (meaning
that the target shares are each shuffled among t possible locations). Finally, we shall
assume that the attacker is able to locate a w-large window in the computation trace for
which she knows that it contains the shares of the target encoding. The complexity of the
attack discussed in this section shall hence be expressed with respect to the parameters n,
d, t, w, as well as the size of the key space |K| of the target variable.

3.1 Higher-Degree Decoding Analysis
In this section, we first consider a target implementation with combined masking only and
then extend HDDA to deal with shuffling.

Let (v1, v2, · · · , vw) denote the computation trace corresponding to the w-large target
window. By definition of the linear and non-linear masking, we know that there exists d-th
degree decoding function f such that x = f(v1, v2, · · · , vw), where x denotes the target
sensitive variable. This function f can be recovered by an HDDA as follows. The principle
is first to extend probed traces into higher-degree traces up to degree d by multiplying all
the d-tuples, then apply the LDA decoding analysis on the higher-degree traces. Precisely,
for each computation trace (v1, v2, · · · , vw), the adversary computes a higher-degrees trace

Louis Goubin, Matthieu Rivain and Junwei Wang 463

compromised by all at most d-degree multiplicative combinations vi1 · vi2 · . . . · vij where
1 ≤ i1 ≤ i2 ≤ · · · ≤ ij ≤ w and 1 ≤ j ≤ d. Since a d-th degree decoding function f
can be decomposed to a linear combination of several (at most d-degree) monomials, an
LDA attack on the higher-order traces should recover all monomials of f . The higher-
degree traces contain O

(
wd
)
samples, then the computation complexity of HDDA is

O
(
|K| · w2.8 d) and it requires O

(
wd
)
computation traces [GPRW18, GPRW20].

HDDA in the Presence of Shuffling. If the shuffling countermeasure is applied together
with the combination of two masking countermeasures, HDDA would not work in general
because there would not exist a decoding function that could recover the predictable values
for all different inputs. However, we remark that the HDDA is able to bypass certain
shuffling methods. For instance, if there exist t different sensitive variables

s1 = g(v(i1)
1 , · · · , v(i1)

w)

s2 = g(v(i2)
1 , · · · , v(i2)

w)
...

st = g(v(it)
1 , · · · , v(it)

w)

for some decoding function g, and (i1, i2, · · · , it) is a permutation of (1, 2, · · · , t) depending
on the randomness (i.e., the computation order of s1, s2, · · · , st is shuffled correspondingly),
there exists a decoding function

f(v(1)
1 , · · · , v(1)

w , v
(2)
1 , · · · , v(2)

w , · · · , v
(t)
1 , · · · , v(t)

w)

= g(v(i1)
1 , · · · , v(i1)

w)⊕ g(v(i2)
1 , · · · , v(i2)

w)⊕ · · · ⊕ g(v(it)
1 , · · · , v(it)

w)
= s1 ⊕ · · · ⊕ st

over an enlarged attacking trace window (v(1)
1 , · · · , v(1)

w , v
(2)
1 , · · · , v(2)

w , · · · , v(t)
1 , · · · , v(t)

w).
Assuming one sj , 1 ≤ j ≤ t contains the real execution and the others are simply identical
computation except with shuffled constant plaintext, we have s1 ⊕ · · · ⊕ st = sj + cst
where cst denotes some unknown constants depending upon the constant plaintext used
to compute (sj′)j′ 6=j . In this case, we can still recover function f and the sub-function
g. Additionally, shuffling can also be defeated if we are able to enforce some sj to be
constants. For instance, if the targeted (sj)j are the first round s-box output, we can make
them constant by fixing some plaintext bytes.

3.2 Higher-Order DCA
The principle of a higher-order DCA (HO-DCA) is to exploit joint leakage of several
independent variables. It consists of a pre-processing step similar to HDDA followed by
a standard DCA. Given a computation trace (v1, v2, · · · , vw), the pre-processing step in
an n-th order DCA outputs an n-th order computation trace consisting in q =

(
w
n

)
items

formed in vi1⊕vi2 · . . .⊕vin where 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ w. Then the adversary predicts
some sensitive variables based on some key guess and computes the correlations between
the predicted values and higher-order trace samples. If there exists a distinguishable
significant peak for a key guess from the other key guesses in the correlation traces, it is
very likely that this key guess is the good key candidate.

Correlation Scores. We analyze hereafter the expected correlation scores for an HO-DCA
against the considered combination of linear and non-linear masking. Our analysis is based
on the following simple lemma (see the proof in Appendix B).

464 Defeating State-of-the-Art White-Box Countermeasures

Lemma 1. Let X, A1, B1, . . . , An, Bn be mutually independent uniform random variables
over {0, 1}. We have

Cor
(
X,X ⊕

⊕n

i=1
Ai ·Bi

)
= 1

2n . (6)

Based on this lemma, we can derive the correlation scores for the different types of
combinations. In each case, an HO-DCA targeting the n shares c1, . . . , cn is possible.

• For Combination 1 (linear masking on top of non-linear masking), we have c1⊕ · · · ⊕
cn = x ⊕ a · b with a = a1 ⊕ · · · ⊕ an and b = b1 ⊕ · · · ⊕ bn which from Lemma 1
implies

Cor(x, c1 ⊕ · · · ⊕ cn) = 1
2 .

• For Combination 2 (non-linear masking on top of linear masking), we have c1⊕ · · · ⊕
cn = x⊕ a1 · b1 ⊕ · · · ⊕ an · bn which from Lemma 1 implies

Cor(x, c1 ⊕ · · · ⊕ cn) = 1
2n .

• For Combination 3 (merged linear and non-linear masking), we have c1 ⊕ · · · ⊕ cn =
x⊕ a · b which from Lemma 1 implies

Cor(x, c1 ⊕ · · · ⊕ cn) = 1
2 .

We observe that the second combination (non-linear on top of linear) provides stronger
resistance against HO-DCA since the correlation score is exponentially low with respect to
the linear masking order. For the two other options, we always obtain a 1

2 correlation.

Now suppose shuffling is applied on top of the combination of masking. The impact on
the correlation score can be simply analyzed thanks to the following lemma (see the proof
in Appendix B).

Lemma 2. Let (Xi)i∈[t] be t mutually independent and identically distributed random
variables. Let j ∈ {1, . . . , t}. Let Y be a random variable such that Cor(Y,Xj) = ρ and Y
is mutually independent of (Xi)i∈[t]\{j}. Let X∗ be the random variable defined by picking
i∗ uniformly at random over [t] and setting X∗ = Xi∗ . We have

Cor(Y,X∗) = 1
t
· Cor(Y,Xj) = ρ

t
. (7)

According to Lemma 2, a shuffling of degree t implies a reduction of the correlation
score by a factor t. In case of a combination of horizontal shuffling (of degree th) and
vertical shuffling (of degree tv), the overall shuffling degree is the product of the degrees
i.e., t = th · tv.

Number of Traces. The sampling distribution of a Pearson correlation ρ can be measured
by its Fisher transformation z = 1

2 log 1+ρ
1−ρ , which is approximately a normal distribution

with µz = ρ and δz = 1√
N−3 , where N denotes the number of measurements (which might

be small). As argued in several previous works on DPA/DCA [Man04, SPRQ06, RW19],
the number of traces necessary to achieve some (high) success rate, is then given by
N = c · 1

ρ2 where c is a constant factor (which depends on the success rate and the key
space size |K|). Empirically, c is around 10 if the success rate is 0.9 and |K| = 256.

In summary, the number of traces necessary for a successful HO-DCA in presence of
combined masking and shuffling is

N1 = N3 = 4 c t2

Louis Goubin, Matthieu Rivain and Junwei Wang 465

for Combinations 1 and 3, and
N2 = c 4n t2

for Combination 2.

Complexity. The time complexity of the HO-DCA attack is

O(N wn |K|) =
{
O
(
wn t2 |K|

)
for Combinations 1 and 3,

O
(
(4w)n t2 |K|

)
for Combinations 2.

3.3 Integrated Higher-Order DCA
Suppose the attacker is able to locate the shuffling and in consequence splits the computation
trace into t subtraces (each of size w) such that the target encoding appears in one
of these subtraces (of some random index). She can then apply a so-called integrated
attack [CCD00, RPD09]. The principle is to compute the correlation between the prediction
and the sum (over the integers) of the combined samples for the t subtraces.

The penalty implied by the shuffling after integration is reduced to the square root of
its degree t as formally stated in the following lemma (see proof in Appendix B).

Lemma 3. Let (Xi)i∈[t] be t mutually independent and identically distributed random
variables. Let Y be a random variable such that Cor(Y,Xj) = ρ for some j ∈ {1, . . . , t}
and Y is mutually independent of (Xi)i∈[t]\{j}. We have

Cor
(
Y ,

∑
i
Xi

)
= 1√

t
Cor(Y,Xj) = ρ√

t
.

If such an integration HO-DCA can be applied, then the number of traces scales down
to N1 = N2 = 4 c t and N2 = c 4n t and the complexities to O(wn t |K|) for Combinations
1 and 3, and O((4w)n t |K|) for Combinations 2.

Partial Integration Attack. In the bitslicing circuit-based model considered here, the
horizontal shuffling can be easily defeated by applying an integration attack over the
different bitslice slots while the vertical shuffling might be harder to remove. In such a case,
the shuffling factor in the number of traces becomes th · t2v. And the attack complexity is
finally given by

O(N wn |K|) =
{
O
(
wn th t

2
v |K|

)
for Combinations 1 and 3,

O
(
(4w)n th t2v |K|

)
for Combinations 2.

4 Data-Dependency HO-DCA
In the previous sections, we have analyzed state-of-the-art gray-box attacks against a
combination of linear and non-linear masking, possibly strengthened with some shuffling.
We have seen that HDDA has complexity at leastO

(
|K| w2.8 d), that is at leastO(|K| w5.6)

with a simple quadratic masking and assuming that shuffling can be defeated (which might
not be trivial). On the other hand, HO-DCA has complexity at least O

(
|K| wn t2

)
,

which can be improved to O
(
|K| wn tht2v

)
by a partial integration attack in the bitslicing

paradigm, where t = th · tv (horizontal shuffling and vertical shuffling). For a typical
white-box implementation including some level of obfuscation, the window size w that
needs to be considered in practice might range from 104 to 106, which makes the above
attacks very heavy in computation. This motivated us to investigate new attack techniques
to overcome this barrier.

466 Defeating State-of-the-Art White-Box Countermeasures

In this section, we develop what we shall call data-dependency HO-DCA. By exploiting
the data dependency graph of the computation, this attack can bypass the exponential
factor O(wn) brought by the linear masking. The basic principle of our technique relies
on the fact that for the considered combination of masking, all the linear shares c1, . . . , cn
of some sensitive variable can be recovered by looking at all the multipliers of a particular
intermediate variable, i.e., all the co-operands to this variable through an AND instruction.

4.1 Data-Dependency Traces
In our exposition, we consider the target implementation as a (possibly bitsliced) Boolean
circuit C. A circuit is a directed acyclic graph (DAG) in which the vertices are gates and
the edges between two nodes are wires. A gate might either be an operation gate (fan-in
2) which outputs the XOR or AND of the input wires, or a constant gate (fan-in 0) which
outputs a constant value (0 or 1). The output of a gate might be the input to several
gates which means that each gate has arbitrary fan-out. The output of each gate g can
be associated with a variable vg which is a deterministic (Boolean) function of the input
plaintext.

We denote the co-operands of a gate g for operation ◦ by Θ◦(g), which is composed of
the set of gates g′ for which (vg, vg′) enters a subsequent ◦ gate, where ◦ ∈ {⊕,⊗}. For
instance, the set of co-operands for a gate g for an AND operation is denoted by Θ⊗(g).
Deriving the set of co-operands for all the gates in a circuit C can be done in a single pass
on the circuit as described in Algorithm 5. In this algorithm, we first declare an empty
associative array M , which maps a gate in the input circuit C to a set of gates in C. M [g]
hence denotes a lookup operation in M , resulting in the set of gates associated to g. To
construct M , we visit all the gates of the circuit, and for each gate with incoming gates g1
and g2, we add g1 to M [g2] (the set of co-operands of g2) and we add g2 to M [g1] (the set
of co-operands of g1). At the end of the algorithm, for every gate g, M [g] contains the
co-operands of g, i.e., Θ◦(g).

Algorithm 5 DetectCoOperands(C, ◦)
Input: A Boolean circuit C and an operator ◦ ∈ {⊕,⊗}
Output: An associative array M mapping a gate in C to a set of gates in C

1: M ← empty associative array
2: for g ∈ Gates(C) do
3: if g is an ◦ gate then
4: g1, g2 ← the two incoming gates of g
5: if M does not have key g1 then
6: M [g1]← ∅
7: end if
8: if M does not have key g2 then
9: M [g2]← ∅

10: end if
11: M [g1]←M [g1] ∪ {g2}
12: M [g2]←M [g2] ∪ {g1}
13: end if
14: end for

As mentioned above, we intuit that the combination of masking can be defeated by
targeting the shares contained in a set of multipliers of some intermediate variables. We,
therefore, produce a new computation trace composed of the bitwise sum of each set, as

Louis Goubin, Matthieu Rivain and Junwei Wang 467

depicted in Algorithm 6. For clarity, we abuse the notation by denoting |M | the number of
mappings in an associative array M and by denoting vg the sample output by gate g in a
computational trace T . If the intuition is correct, the linear masking should be removed in
the new computation trace, leaving non-linear masking and shuffling as the only remaining
protections.

Algorithm 6 TraceProcessing(T, C)
Input: A Boolean circuit C and a computational trace T = (v1, . . . , vt)
Output: A new computational trace T ′ = (v′1, . . . , v′|M |)

1: M ← DetectCoOperand(C,⊗)
2: for each g exists in M do
3: G ←M [g]
4: v′g ←

⊕
g′∈G vg′

5: end for

“Polluted” multipliers. A trivial method to counter the previous attack is to pollute
the set of multipliers M [g] for the sensitive gates g by adding “random” AND gates on
the premise that the functionality and underlying security assumptions are not affected.
In this case, if the sum of random wires is biased, we can still exploit the vulnerability
as analyzed in the coming discussion. Alternatively, we could consider summing up all
the subsets of cardinality n since there always exists a subset of M [g] with n elements,
where n is the linear masking order and the subset contains all the linear shares of a
sensitive variable. This variant computing the sum of a subset of multipliers is presented
in Algorithm 7, where the linear masking order is expected to be at most n.

Algorithm 7 TraceProcessingSubset(T, C, n)
Input: A Boolean circuit C, a computational trace T = (v1, . . . , vt), and

an integer n
Output: A new computational trace T ′

1: T ′ ← ∅
2: M ← DetectCoOperand(C,⊗)
3: for each g exists in M do
4: G ←M [g]
5: T ′ ← T ′ ∪

{⊕
g∈G′ vg : G′ ⊂ G, |G′| ≤ n

}
6: end for

4.2 Application to Combined Masking
Effectiveness against Combinations 1 & 3. We demonstrate hereafter that our attack
can break two out of three combinations of linear masking and non-linear (quadratic)
masking. In a linear masking scheme, AND gates only appear in secure AND gadgets, and
the set of multipliers of each linear share is the set of all the shares of the co-operand.
In quadratic minimalist masking [BU18], AND gates appear in all gadgets. We enumerate
in Table 1 the set of multipliers of each variable appearing in the AND gadget. For each
set of operands, we further give the non-zero correlation between the sum over the set of
multipliers or any subset and one of the sensitive operand (either x = ab⊕ c or y = de⊕ f).

468 Defeating State-of-the-Art White-Box Countermeasures

Table 1: Multipliers for each variable in AND gadget of [BU18].

variable multipliers correlation (full set) correlation (subset)

a {e,ma} Cor(y, e⊕ma) = 1
4 Cor(y,ma) = 1

4

b {d, f, rf} – Cor(y, f) = Cor(y, d⊕ f) = 1
2

c {e, f} Cor(y, e⊕ f) = 1
2 Cor(y, f) = 1

2

d {b,md} Cor(x, b⊕md) = 1
4 Cor(x,md) = 1

4

e {a, c, rc} – Cor(x, c) = Cor(x, a⊕ c) = 1
2

f {b, c} Cor(x, b⊕ c) = 1
2 Cor(x, c) = 1

2

ma {a} – –
rc {e, rf} – –
md {d} – –
rf {b, rc} – –

For Combination 1 (linear masking on top of non-linear masking), the correlations
exhibited Table 1 hold for any arbitrarily high linear-masking order n. Let us, for instance,
consider the case of the variable c which is multiplied with both e and f . In the presence
of linear masking, we get a sharing (c1, . . . , cn) of c which is multiplied by with a sharing
(e1, . . . , en) of e and a sharing (f1, . . . , fn) of f . By definition of the linear-masking AND
gadget, this means that each share cj shall be multiplied with all the shares (ei)i and
all the shares (fi)i. For every j ∈ [n], the sum of the multipliers of cj hence equals⊕

iei ⊕
⊕

ifi = e ⊕ f which is correlated to y. In the same way, all the correlations
reported in Table 1 are persistent to the application of linear masking.

Note that applying refresh gadgets at the linear masking level would not fix this kind
of flaw. Indeed assume that the sharing (c1, . . . , cn) would be refreshed between the
multiplication with (e1, . . . , en) and that with (f1, . . . , fn). Then every share of the refresh
sharing would be multiplied with all the shares of (f1, . . . , fn) giving rise to f as a sum of
multipliers (which is correlated to y).

For Combination 3 (merged linear and non-linear masking), the analysis above for
Combination 1 applies similarly. Let us once again consider that the variable c is linearly
shared. Then a sharing (c1, . . . , cn) of c is multiplied by the variable e and a sharing
(f1, . . . , fn) of f . By definition of the linear-masking AND gadget, this means that each
share cj shall be multiplied with e and all the shares (fi)i. For every j ∈ [n], the sum
of the multipliers of cj hence equals e ⊕

⊕
ifi = e ⊕ f which is correlated to y. In the

same way, all the correlations reported in Table 1 are persistent to the application of linear
masking. Here as well, the application of refresh gadgets at the linear masking level would
not fix this kind of flaw.

Ineffectiveness against Combination 2. We demonstrate that the previous attack is
ineffective if a non-linear masking is applied on top of a linear masking. Two sensitive
intermediate variables x and y are encoded as

x =
(
a1b1 ⊕ c1

)
⊕
(
a2b2 ⊕ c2

)
⊕ · · · ⊕

(
anbn ⊕ cn

)
and

y =
(
d1e1 ⊕ f1

)
⊕
(
d2e2 ⊕ f2

)
⊕ · · · ⊕

(
dnen ⊕ fn

)
respectively in Combination 2. Since in an AND gadget for linear masking, each linear share
of one variable is required to multiply with all linear shares of another variable, the secure

Louis Goubin, Matthieu Rivain and Junwei Wang 469

multiplication gadget for xy must consist of applying AND gadget for non-linear masking
between non-linear encodings (ai, bi, ci) and (dj , ej , fj) for all 1 ≤ i, j ≤ n. However, as
shown in Algorithm 3, the first step in an AND gadget for non-linear masking is to refresh
the input non-linear encodings. As a consequence, there exist n different refreshed ci
and fi, denoted by

(
c

(j)
i

)
1≤j≤n and

(
f

(j)
i

)
1≤j≤n for all 1 ≤ i ≤ n. Obviously, c(j)

i · f
(i)
j is

calculated for all 1 ≤ i, j ≤ n in the overall secure gadget. Without loss of generality, c(j)
i ’s

multipliers are e(i)
j and f (i)

j , and Cor
(
y, e

(i)
j ⊕ f

(i)
j

)
= 0.

In Section 4.3, we generalize the attack to an advanced one and exhibit its ability to
defeat Combination 2.

4.3 Generalized Data-Dependency HO-DCA
The outcomes of a gate g for an operation ◦ is denoted by Ψ◦(g), which is the set of gates
computing vg ◦ vg′ for another gate g′. Deriving the set of co-operands and the set of
outcomes for all the gates in a circuit can both be done in a single pass on the circuit as
described in Algorithm 5 and Algorithm 8 respectively.

We generalize the trace pre-processing step in Algorithm 9, in which we first derive
the outcomes Ψ◦(g) of each gate g for operation ◦ and the “secondary” co-operands for
operands ? (which is the union of the Θ?(g′) for all g′ ∈ Θ◦(g)). The adversary has the
flexibility to choose ◦, ?, and the expected linear masking order n. Finally, she applies the
HO-DCA on the pre-processed traces according to data-dependency.

Effectiveness against Combination 2. We show that if choosing (◦, ?) = (⊕,⊗) in the
attack described above, the Combination 2 is vulnerable. Here, we consider again a share
ci in Equation 4, then ci have n refreshed version (cji)1≤j≤n and {cji : 1 ≤ j ≤ n} ⊂ Ψ⊕(ci)
for 1 ≤ i ≤ n. As already addressed in last section Θ⊗(cji) = {e(i)

j , f
(i)
j }, the union⋃n

i=1 Θ⊗(cji) contains all {e(i)
1 , f

(i)
1 , e

(i)
2 , f

(i)
2 , · · · , e(i)

n , f
(i)
n } and

Cor
(
y, e

(i)
1 ⊕ f

(i)
1 ⊕ e

(i)
2 ⊕ f

(i)
2 ⊕ · · · ⊕ e(i)

n ⊕ f (i)
n

)
= 1

2n

by Lemma 3, implying that the HO-DCA bias is still exploitable.

Algorithm 8 DetectOutcome(C, ◦)
Input: A Boolean circuit C and an operator ◦ ∈ {⊕,⊗}
Output: An associative array N mapping a gate in C to a set of gates in C

1: N ← empty associative array
2: for g ∈ Gates(C) do
3: if g is an ◦ gate then
4: g1, g2 ← the two incoming gates of g
5: if N does not have key g1 then
6: N [g1]← ∅
7: end if
8: if N does not have key g2 then
9: N [g2]← ∅

10: end if
11: N [g1]← N [g1] ∪ {g}
12: N [g2]← N [g2] ∪ {g}
13: end if
14: end for

470 Defeating State-of-the-Art White-Box Countermeasures

Algorithm 9 GeneralizedTraceProcessing(T, C, ◦, ?, n)
Input: A Boolean circuit C, a computational trace T = (v1, . . . , vt), and

two operators ◦, ? ∈ {⊕,⊗}, and an integer n
Output: A new computational trace T ′

1: N◦ ← DetectOutcome(C, ◦)
2: M? ← DetectCoOperands(C, ?)
3: T ′ ← ∅
4: for each g exists in N◦ do
5: G ← N◦[g]
6: G′ ←

⋃
g∈GM?[g]

7: T ′ ← T ′ ∪
{⊕

g∈G′′ vg : G′′ ⊂ G′, |G′′| ≤ n
}

8: end for

Further Improvements. The principle of our data-dependency attack can be used in
many additional ways. Essentially, our technique enables to derive a cluster of intermediate
variables related to each gate in a circuit. By targeting close neighbors of a gate from a
gadget processing the encoding of some target intermediate variable, we might succeed
in getting all the shares in a small cluster. By doing this, we essentially prevent the
exponential explosion of the window size w which could be leveraged in any kind of
gray-box attack (such as LDA or HDDA for instance). In fact, the explosion still exists in
some attacks but over localized small windows of traces instead of the full trace. There are
many possible ways to extend the attack above by playing with Algorithm 5, Algorithm 8
and Algorithm 9. In the trace pre-processing algorithm, we can for instance iteratively
apply the data-dependency algorithm a few times, such that the new trace encompasses a
relevant cluster of intermediate variables.

5 Practical Attacks
This section reports practical attack experiments from white-box implementations (a.k.a.
challenges) submitted to the WhibOx 2019 competition [whib]. Specifically, we exhibit
successful key recovery attacks against the three wining challenges due to Biryukov and
Udovenko. We first describe the three implementations and explain how we partially
de-obfuscated them. Then we present the results of our data-dependency higher-order
DCA that could break the three implementations. To reproduce our attacks, we open
source some crucial components in our attacks in the following git repository

https://github.com/CryptoExperts/breaking-winning-challenges-of-whibox2019 .

5.1 Challenges and De-Obfuscation
The three winning white-box implementations of the WhibOx 2019 competition are #100
(hopeful_kirch), #111 (elegant_turing), and #115 (goofy_lichterman).3 As we will
see, these three implementations are protected with a combination of linear and non-
linear masking together with additional obfuscation and shuffling (for two of them). We
summarize the performances achieved by the three implementations according to our
(desktop computer) measurements in Table 2. The performance score is a parameter
derived from the code size, RAM consumption and execution time, and which weights the
points score by an implementation (while being unbroken) over the time. We recall its
exact formula in Appendix A.

3See https://whibox-contest.github.io/2019/dashboard

https://github.com/CryptoExperts/breaking-winning-challenges-of-whibox2019
https://whibox-contest.github.io/2019/dashboard

Louis Goubin, Matthieu Rivain and Junwei Wang 471

Table 2: Performances of the winning implementations measured under iMac (27-inch,
late 2012) with a 3.4 GHz Intel Core i7 processor and macOS Mojave Version 10.14.6.

#100 #111 #115

Source Code Size (MB) 17.42 49.10 48.42
Binary Size (MB) 16.29 8.34 11.08
RAM (MB) 16.28 9.16 11.90
Execution Time (s) 0.352 0.052 0.068
Performance Score (us) 3.03 7.65 6.49
Performance Score (whibox) 3.07 7.73 6.50

5.1.1 De-Obfuscation

We explain hereafter the reverse engineering effort we had to take in order to obtain
implementations that we could easily target with gray box attacks.

Formatting. The three implementations are one-liner programs with an additional op-
timization directive for GCC in the comment (first line of the source file). We first write
a script to turn the one-liner program into a several-line program by inserting a line
break in front of each void and unsigned char, or after each semicolon (;) and brace
({}). This has to be done carefully since C language keywords are used in string variables
and inserting a line break for these cases would break the integrity of the program. We
believe this is used as an anti-de-obfuscation countermeasure. Then we re-indent the code
for further readability. The total number of lines in #100, #111, and #115 are about 21
thousand, 19 thousand, and 20 thousand respectively.

At this step, one can observe that #111 and #115 are two very similar implementations
while #100 is slightly different from them. As a matter of fact, #111 and #115 were
submitted the same day (right before the deadline) with a two-hour gap while #100 was
submitted three days earlier.

Renaming Symbols, Removing Dummies and Duplicates. After formatting the source
code, we could observe that all symbols (including variable names, function names, pa-
rameter names) were in the form of a random combination of three words connected by
underscore characters. For illustration, hereafter are a few lines of the source code of #100:

1 unsigned int *suricata_stanford_hypertext;
2 unsigned int orthography_automation_parallel;
3 void associativity_differential_discrete(void) {
4 nineteen_algorithms_gardening = 0ULL;
5 }
6 void AES_128_encrypt(char *polyalphabetic_set_cyberdating,
7 char *netzine_vocab_foundationer) {
8 inscription_shape_writing((unsigned char *)netzine_vocab_foundationer,
9 (unsigned char *)polyalphabetic_set_cyberdating);

10 return;
11 }

At this point, based on our understanding of the code, we rename all symbols in a
meaningful way. At the same time, we remove all dummy operations (which are never
used) and we merge duplicated functionalities. As shown in Table 2, both source codes of
#111 and #115 are close to 50 MB, but their binaries are much smaller. We notice that
there exist many long strings representing valid C source code in which the symbols have
the same three-word format which makes it hard to distinguish between the inside and the

472 Defeating State-of-the-Art White-Box Countermeasures

outside of strings. Nevertheless, as we could deduce, these strings are useless and removed
at compilation, so that one can safely remove them.

Virtual Machine. At this point, we have a human-readable source code and we can
observe that it includes a wide array. This array is used both as a read-only bytecode
interpreted by a virtual machine and as the program memory to write and read intermediate
variables. The memory location in the array is dynamic and depends on the plaintext and
the usage. However, we could realize the dependency of the memory location in the array
on the plaintext and the usage is breakable. Hence, we isolate the memory for each usage
(i.e., each piece of bytecode) from the long array.

The virtual machine of #100 is pretty simple as shown in Appendix C. Three types
of instructions are implemented: group of bitwise XORs, group of bitwise ANDs (whose
inputs are possibly flipped), and rewinding the memory. The operand width is fixed as 64
bit. The memory is used sequentially and it is rewound until it is fully used by the third
instruction. Hence, we can easily transform the bytecode into its single static assignment
(SSA) using a large memory.

The virtual machines in #111 and #115 are similar to that in #100, except that the
operands can be either 16-bit or 32-bit depending on the bytecode. Besides, #100 only has
one bytecode whereas #111 and #115 have 4 different bytecodes. In the following, we will
discuss these bytecodes separately.

5.1.2 Structure of #100

The bytecode in #100 is sequentially interpreted 4 times on the same plaintext and different
constants inputs. At the end of the program, the outputs of the 4 interpretations are
merged. Obviously, we have four instances of a 64-bit bitslice program which makes 256
independent instances of the same Boolean circuit. This circuit takes as input a variable
part obtained by applying a Boolean circuit to the plaintext at the beginning of the
program and a constant part (hard-coded in the implementation). The variable part is
the same for the 256 instances while the constant part is different for each instance. The
output of each instance is hence of the form f(p, i) for some function f where p is the
input plaintext and i ∈ {0, . . . , 255} represents the constant index. All the outputs are
then XOR-ed together and input to a final Boolean circuit which produces

AESk(p) = h
(⊕255

i=0
f(p, i)

)
,

where h denotes the function computed by the final Boolean circuit. Our intuition is that,
in the ith slot, the f -circuit computes AESki(p) for some key ki, as well as some further
function µ(p, i). Then for some plaintext-dependent index i = g(p), the key ki matches
the right key and a selection process (at the end of the circuit) ensures

f(p, i) =
{
AESk(p) + µ(p, i) if i = g(p)
µ(p, i) otherwise

Then XOR-ing everything, one gets something like⊕255

i=0
f(p, i) = AESk(p)⊕

⊕255

i=0
µ(p, i)︸ ︷︷ ︸

µ′(p)

and the h function merely removes µ′(p).

Louis Goubin, Matthieu Rivain and Junwei Wang 473

We also assume that some error detection mechanism is implemented in the f -circuit.
A detectable fault injection could trigger the program to choose a wrong slot (i.e., not
indexed by g(p)) as the final result or merge the result from many wrong slots.

A difference between #100 and Adoring Poitras is that the slot chosen for correct
execution in the former is fixed for any inputs while the good slot in the latter is determined
pseudorandomly by the input.

5.1.3 Structure of #111 and #115

The sketches of #111 and #115 are described in Algorithm 10 below, in which each
BytecodeX is an interpretation of a bytecode giving rise to a bitslice program with 16
or 32 slots. Specifically, BytecodeBegin is only used at the beginning of the program
and BytecodeEnd is only used at the end of the program, while BytecodeMiddleA
followed by BytecodeMiddleB are sequentially used 9 times in the middle of the program
afterward BytecodeMiddleA is repeated twice. Only BytecodeMiddleB uses 32 slots
while the others use 16 slots.

Algorithm 10 AES(pt)
Input: : plaintext pt and constants cst[11]
Output: : ciphertext ct

1: state ← BytecodeBegin(pt)
2: for i ∈ {1, · · · , 9} do
3: state ← BytecodeMiddleA(state, cst[i-1])
4: state ← BytecodeMiddleB(state)
5: end for
6: state ← BytecodeMiddleA(state, cst[9])
7: state ← BytecodeMiddleA(state, cst[10])
8: ct ← BytecodeEnd(state)

Based on these observations, we assume that BytecodeMiddleA performs the round
key addition and the 16 s-boxes (in parallel) while BytecodeMiddleB performs the linear
layer (i.e., ShiftRows and MixColumns). Since the intermediate values transmitted and
rearranged between two bytecode interpretations and no value merged from different slots,
we also guess that each slot in BytecodeMiddleA corresponds to one s-box computation
so that there is no horizontal shuffling implemented.

5.2 Attacking #100

As explained in Section 5.1.2, #100 supposedly implements a bitsliced circuit where the
correct execution is carried by a single bit slot which is pseudorandomly shuffled (based
on the input plaintext) among the 256 bit slots. In other words, #100 is protected with
horizontal shuffling of degree 256. One could try to directly apply the data-dependency
HO-DCA on binary samples but, according to the analysis of Section 3.2, the shuffling
would imply a reduction of the target correlation score by a factor 1

256 and hence an
increase of the number of traces by a factor 216.

Locating the Slot for Correct Execution. In order to avoid paying this price, we tried
to locate the good slot for each execution. To do so, we tried to locate a gate in the
Boolean circuit for which flipping only one of the 256 bit slots in the output would affect
the final AES ciphertext. After a few trials, we could locate such a gate, which allowed us
to record a set of plaintexts for which we knew the good slot i.e., the value of g(p). For
this set of plaintexts, we could hence record single-slot traces and hence completely defeat

474 Defeating State-of-the-Art White-Box Countermeasures

the horizontal shuffling countermeasure. As a side effect of this shuffling removal, we also
discarded the correlation scores corresponding to dummy keys ki with i 6= g(p).

Trace Recording. Since we have access to the (formatted) source code, we can easily
record computational traces. The full computation trace is momentarily stored in RAM
and directly used to derive a data-dependency computation trace (using Algorithm 6).
This requires a preliminary detection of multipliers (through Algorithm 5) but this can be
done a single time per implementation.

Correct Slot Attack. The results of the correct slot data-dependency HO-DCA are
illustrated in Figure 2. The target variable is the 1st bit of the 3rd s-box in the initial round.
The correlation trace for the good key candidate (plotted in blue) is clearly distinguishable
from other candidates (in gray). This attack used 767 traces limited to the first 18% of
the circuit (as we assumed the first round should occur in that range). Using this attack,
we could recover 7 of the 16 key bytes.

Figure 2: Correlation score when targeting the 1st bit in the 3rd s-box when fixing attacking
correct slot.

We further applied our data-dependency attack for subsets of the set of multipliers.
Specifically, for some target subset cardinality n (presumably corresponding to the linear
masking order), we derive a sample (by XOR-ing all the elements) for each n-cardinality
subset of each set of multipliers. Using this attack we could recover 8 more key bytes. The
last key byte could then be recovered by exhaustive search. Table 3 hereafter summarizes
the key byte that could be recovered by our data-dependency attack with respect to the
target bit and the cardinality of the multiplier (sub)set.

Integrated Attack. Although for our break, we managed to remove shuffling by detecting
the good slot, we could alternately have used the integration attack. According to the
analysis of Section 3.2, using integration against shuffling degree 256, we expect to increase
the number of traces by a factor 256 (instead of 216 without integration). We validated
that we could break #100 with data-dependency integrated HO-DCA using 15,000 traces.
For this attack, the target traces are generated in two steps:

– derive data-dependency traces (using Algorithm 6) made of 256-bit samples which
are computed by XOR-ing the set of multipliers for each gate,

– derive integrated traces whose samples are the Hamming weights of the original
samples.

The attack results are depicted in Figure 3 for the 1st bit of the 3rd s-box of the initial
round. We observe that we can clearly distinguish the good key guess (in blue) from
incorrect key guesses (in gray).

Louis Goubin, Matthieu Rivain and Junwei Wang 475

Table 3: Which bit is vulnerable to each of 16 bytes either in a correct slot attack (by
767 plaintexts) or in an integrated attack (by 15 thousand plaintexts) with a full set
of multipliers or a subset of multipliers with cardinality 2 or 3 or 4. The underlined bit
means the good key guess ranked first in the correlation score, but the advantage is not
significantly high. The blank cell means no bit was vulnerable in the corresponding attack.

correct slot attack integrated
full 2 3 4 full

1 7,8 7 1 8
2 6 6 5 6,8
3 1 1,5 1,4 1 1,4,5,6
4 5,8 1,4,5,7,8 4,5,8 4,5,7 4,5,8
5 1 1 3,5, 6
6 7 1,7,8 1,7 1,2,3,7
7 5 5
8 4,5 4,5 4,5 4,5 4,5,8
9 3,7,8 3,5,7,8

10 1 1,6,7,8 1,7 1,7 1,2,6
11 6 6,7 7 7 6
12 4,5 4,5 8
13 4,5,6 4,5 4,5
14 1 1,2 1 1,2,6
15 1,6,8 6 8
16 5,6 7

Figure 3: Correlation score when targeting at the 1st bit in the 3rd s-box with data-
dependency integrated HO-DCA. The gray line is for the correct key byte 0xb3 and the
blue lines are for the incorrect key guesses.

5.3 Attack #111 and #115

As explained above, implementations #111 and #115 are very similar and we could break
them using the exact same attack path. In the following, we hence only present our attack
results on #115.

Recall our hypothesis is that BytecodeMiddleA implements the s-box and each
bit slot corresponds to one s-box computation within one round. We target the first
invocation in order to recover the first round key. However, while applying our (integrated)
data-dependency attack in this context, we observe a lot of correlation peaks corresponding
to many key candidates, implying that the target computation somehow includes dummy
keys (probably through vertical shuffling).

In order to bypass dummy keys, a possibility is to target deeper rounds but this implies
dealing with an increased computation complexity since the key space is substantially

476 Defeating State-of-the-Art White-Box Countermeasures

larger. We rather suggest attacking the s-box inputs in the last round which each depends
on a key byte of the last round key. The target variable is hence a function of the right
ciphertext and it is unlikely that dummy keys appear in this context since that would
mean that the implementation first computes the right ciphertext and then goes somehow
backward to make appear e.g., s-box inverse with the right ciphertext and dummy last
round key. Using our data-dependency integrated HO-DCA on the last round, we could
recover the full (last round) keys of #111 and #115. Figure 4 gives an illustration of the
obtained correlation traces. We can see that the good candidate is clearly distinguishable.

Figure 4: Correlation score when targeting at the 2nd bit in the first s-box in the last round
with data-dependency integrated HO-DCA using 5 thousand traces where the duplicated
samples have been reduced. The blue curve is for the correct key guess and the gray curves
are for the incorrect key guesses.

6 Conclusion
In this paper, we have revisited state-of-the-art countermeasures employed in practical
white-box cryptography, namely, linear masking, non-linear masking and shuffling, and
particularly discussed possible ways to combine them. We have analyzed different advanced
gray-box attack paths against the combined countermeasures and study their performances
in terms of required traces and computation time. Afterward, we have proposed a new gray-
box attack technique against white-box cryptography which exploits the data-dependency
of the target implementation. We demonstrate that our approach provides substantial
complexity improvements over the existing attacks. Finally, we have showcased this new
technique by breaking the three winning AES-128 white-box implementations from WhibOx
2019 white-box cryptography competition.

The principle of our data-dependency attack is to derive a cluster of intermediate
variables related to each gate in a circuit computation model. By targeting close neighbors
of a gate, such a technique can catch all the shares of an encoded target variable in a
small cluster, which essentially prevents the exponential explosion of the window size
w which could be leveraged in any kind of gray-box attack (such as LDA or HDDA for
instance). There are many different possible ways to extend this attack by adapting the
proposed algorithms to further contexts. Our results stress the essential role played by
circuit obfuscation techniques in the security of white-box implementations.

Acknowledgements
The authors would like to thank Wieland Fischer and the anonymous referees for their
valuable comments. This work was partially supported by the French FUI AAP25 IDECYS+
project.

Louis Goubin, Matthieu Rivain and Junwei Wang 477

References
[BBB+19] Davide Bellizia, Francesco Berti, Olivier Bronchain, Gaëtan Cassiers, Sébastien

Duval, Chun Guo, Gregor Leander, Gaëtan Leurent, Itamar Levi, Charles
Momin, Olivier Pereira, Thomas Peters, François-Xavier Standaert, and
Friedrich Wiemer. Spook: Sponge-based leakage-resistant authenticated en-
cryption with a masked tweakable block cipher. 2019.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016, pages 116–129. ACM Press, October 2016.

[BCD06] Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. Perturbing and
protecting a traceable block cipher. In Herbert Leitold and Evangelos P.
Markatos, editors, Communications and Multimedia Security, 10th IFIP TC-6
TC-11 International Conference, CMS 2006, Heraklion, Crete, Greece, October
19-21, 2006, Proceedings, volume 4237 of Lecture Notes in Computer Science,
pages 109–119. Springer, 2006.

[BGEC04] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a white
box AES implementation. In Helena Handschuh and Anwar Hasan, editors,
SAC 2004, volume 3357 of LNCS, pages 227–240. Springer, Heidelberg, August
2004.

[BGR18] Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. Tight private circuits:
Achieving probing security with the least refreshing. In Thomas Peyrin and
Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS,
pages 343–372. Springer, Heidelberg, December 2018.

[BHMT16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. Differential
computation analysis: Hiding your white-box designs is not enough. In Benedikt
Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume 9813 of LNCS,
pages 215–236. Springer, Heidelberg, August 2016.

[Bih97] Eli Biham. A fast new DES implementation in software. In Eli Biham, editor,
FSE’97, volume 1267 of LNCS, pages 260–272. Springer, Heidelberg, January
1997.

[BRVW19] Andrey Bogdanov, Matthieu Rivain, Philip S. Vejre, and Junwei Wang. Higher-
order DCA against standard side-channel countermeasures. In Ilia Polian and
Marc Stöttinger, editors, COSADE 2019, volume 11421 of LNCS, pages 118–
141. Springer, Heidelberg, April 2019.

[BU18] Alex Biryukov and Aleksei Udovenko. Attacks and countermeasures for
white-box designs. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part II, volume 11273 of LNCS, pages 373–402. Springer,
Heidelberg, December 2018.

[CCD00] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential
power analysis in the presence of hardware countermeasures. In Çetin Kaya Koç
and Christof Paar, editors, CHES 2000, volume 1965 of LNCS, pages 252–263.
Springer, Heidelberg, August 2000.

478 Defeating State-of-the-Art White-Box Countermeasures

[CEJv03] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-box cryptography and an AES implementation. In Kaisa Nyberg and
Howard M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 250–270.
Springer, Heidelberg, August 2003.

[CEJvO02] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. A
white-box DES implementation for DRM applications. In Joan Feigenbaum,
editor, Security and Privacy in Digital Rights Management, ACM CCS-9 Work-
shop, DRM 2002, Washington, DC, USA, November 18, 2002, Revised Papers,
volume 2696 of Lecture Notes in Computer Science, pages 1–15. Springer, 2002.

[CPRR14] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.
Higher-order side channel security and mask refreshing. In Shiho Moriai, editor,
FSE 2013, volume 8424 of LNCS, pages 410–424. Springer, Heidelberg, March
2014.

[DR13] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

[DRP13] Yoni De Mulder, Peter Roelse, and Bart Preneel. Cryptanalysis of the Xiao-Lai
white-box AES implementation. In Lars R. Knudsen and Huapeng Wu, editors,
SAC 2012, volume 7707 of LNCS, pages 34–49. Springer, Heidelberg, August
2013.

[GJS+19] Dahmun Goudarzi, Jérémy Jean Jean, Kölbl Stefan, Peyrin Thomas, and
Rivain Matthieu. Pyjamask. 2019.

[GMQ07] Louis Goubin, Jean-Michel Masereel, and Michaël Quisquater. Cryptanalysis
of white box DES implementations. In Carlisle M. Adams, Ali Miri, and
Michael J. Wiener, editors, SAC 2007, volume 4876 of LNCS, pages 278–295.
Springer, Heidelberg, August 2007.

[GP99] Louis Goubin and Jacques Patarin. DES and differential power analysis (the
“duplication” method). In Çetin Kaya Koç and Christof Paar, editors, CHES’99,
volume 1717 of LNCS, pages 158–172. Springer, Heidelberg, August 1999.

[GPRW18] Louis Goubin, Pascal Paillier, Matthieu Rivain, and Junwei Wang. How to
reveal the secrets of an obscure white-box implementation. Cryptology ePrint
Archive, Report 2018/098, 2018. https://eprint.iacr.org/2018/098.

[GPRW20] Louis Goubin, Pascal Paillier, Matthieu Rivain, and Junwei Wang. How to
reveal the secrets of an obscure white-box implementation. J. Cryptographic
Engineering, 10(1):49–66, 2020.

[GR17] Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking
be in software? In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 567–597. Springer,
Heidelberg, April / May 2017.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, Heidelberg, August 2003.

[JS17] Anthony Journault and François-Xavier Standaert. Very high order masking:
Efficient implementation and security evaluation. In Wieland Fischer and
Naofumi Homma, editors, CHES 2017, volume 10529 of LNCS, pages 623–643.
Springer, Heidelberg, September 2017.

https://eprint.iacr.org/2018/098

Louis Goubin, Matthieu Rivain and Junwei Wang 479

[Kar11] Mohamed Karroumi. Protecting white-box AES with dual ciphers. In
Kyung Hyune Rhee and DaeHun Nyang, editors, ICISC 10, volume 6829
of LNCS, pages 278–291. Springer, Heidelberg, December 2011.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
388–397. Springer, Heidelberg, August 1999.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, CRYPTO’96, volume 1109 of
LNCS, pages 104–113. Springer, Heidelberg, August 1996.

[LRD+14] Tancrède Lepoint, Matthieu Rivain, Yoni De Mulder, Peter Roelse, and Bart
Preneel. Two attacks on a white-box AES implementation. In Tanja Lange,
Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS,
pages 265–285. Springer, Heidelberg, August 2014.

[Man04] Stefan Mangard. Hardware countermeasures against DPA – A statistical
analysis of their effectiveness. In Tatsuaki Okamoto, editor, CT-RSA 2004,
volume 2964 of LNCS, pages 222–235. Springer, Heidelberg, February 2004.

[MGH09] Wil Michiels, Paul Gorissen, and Henk D. L. Hollmann. Cryptanalysis of a
generic class of white-box implementations. In Roberto Maria Avanzi, Liam
Keliher, and Francesco Sica, editors, SAC 2008, volume 5381 of LNCS, pages
414–428. Springer, Heidelberg, August 2009.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, ed-
itors, EUROCRYPT 2013, volume 7881 of LNCS, pages 142–159. Springer,
Heidelberg, May 2013.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of AES. In Stefan Mangard and François-Xavier Standaert, editors, CHES 2010,
volume 6225 of LNCS, pages 413–427. Springer, Heidelberg, August 2010.

[RPD09] Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-order masking
and shuffling for software implementations of block ciphers. In Christophe
Clavier and Kris Gaj, editors, CHES 2009, volume 5747 of LNCS, pages
171–188. Springer, Heidelberg, September 2009.

[RSD06] Chester Rebeiro, A. David Selvakumar, and A. S. L. Devi. Bitslice implemen-
tation of AES. In David Pointcheval, Yi Mu, and Kefei Chen, editors, CANS
06, volume 4301 of LNCS, pages 203–212. Springer, Heidelberg, December
2006.

[RW19] Matthieu Rivain and Junwei Wang. Analysis and improvement of differential
computation attacks against internally-encoded white-box implementations.
IACR TCHES, 2019(2):225–255, 2019. https://tches.iacr.org/index.php/
TCHES/article/view/7391.

[SPRQ06] O. . Standaert, E. Peeters, G. Rouvroy, and J. . Quisquater. An overview of
power analysis attacks against field programmable gate arrays. Proceedings of
the IEEE, 94(2):383–394, Feb 2006.

[VMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against side-channel attacks: A comprehensive
study with cautionary note. In Xiaoyun Wang and Kazue Sako, editors,

https://tches.iacr.org/index.php/TCHES/article/view/7391
https://tches.iacr.org/index.php/TCHES/article/view/7391

480 Defeating State-of-the-Art White-Box Countermeasures

ASIACRYPT 2012, volume 7658 of LNCS, pages 740–757. Springer, Heidelberg,
December 2012.

[whia] CHES 2017 Capture the Flag Challenge - The WhibOx Contest - An ECRYPT
White-Box Cryptography Competition. https://whibox-contest.github.
io/2017/.

[whib] CHES 2019 Capture the Flag Challenge - The WhibOx Contest Edition 2.
https://whibox-contest.github.io/2019/.

[XL09] Y. Xiao and X. Lai. A secure implementation of white-box aes. In 2009 2nd
International Conference on Computer Science and its Applications, pages 1–6,
Dec 2009.

A Performance Score of a Challenge
The performance score of a challenge is measured by the SYSTEM when validating
its consistency at posting time. Challenges with a higher performance score collect
STRAWBERRY and CARROT points faster. The score is assigned as follows.
Execution time. The SYSTEM measures the average CPU time consumed by the challenge
program and determines the fraction

ftime = average time
1 second .

Code size. The SYSTEM measures the size of the executable and determines the fraction

fsize = binary size
20 MB .

RAM usage. The SYSTEM measures the average RAM consumption of the executable
and determines the fraction

fmemory = avarage RAM
20 MB .

The performance score of the challenge is evaluated as

log2

(
2

ftime · fsize · fmemory

)
.

Note that the performance score of a challenge that meets the allowed maximal limits
is equal to 1 . Challenges that are either smaller, faster or less memory-consuming get a
higher perfomance score.

B Lemma’s Proofs
Proof (Lemma 1). For two balanced n-ary Boolean function f and g, their Pearson’s
correlation is

Cor(f + g) = 1
2nB(f + g)

where B(f) = 2n − 2 · |f | is the bias (or imbalance) of a Boolean function f and |f | is the
weight of f . Since X and X ⊕

⊕n
i=1 Ai ·Bi are both balanced,

Cor
(
X,X ⊕

n⊕
i=1

Ai ·Bi

)
= Cor

(
0,

n⊕
i=1

Ai ·Bi

)
= 1− 1

22n−1

∣∣∣∣∣
n⊕
i=1

Ai ·Bi

∣∣∣∣∣ .

https://whibox-contest.github.io/2017/
https://whibox-contest.github.io/2017/
https://whibox-contest.github.io/2019/

Louis Goubin, Matthieu Rivain and Junwei Wang 481

It is obvious that the weight of a 2-ary function A1 ·B1 is |A1 ·B1| = 21−1(21 − 1) = 1.
Now we assume the weight of a (2n)-ary function

⊕n
i=1 Ai ·Bi is∣∣∣∣∣

n⊕
i=1

Ai ·Bi

∣∣∣∣∣ = 2n−1(2n − 1) ,

then by induction, the weight of a (2n+ 2)-ary function
⊕n+1

i=1 Ai ·Bi is

∣∣∣∣∣
n+1⊕
i=1

Ai ·Bi

∣∣∣∣∣ =
(
2n−1(2n − 1)

)
∗ 3 +

(
22n − 2n−1(2n − 1)

)
∗ 1 = 2n(2n+1 − 1) .

All in all, Cor (X,X ⊕
⊕n

i=1 Ai ·Bi) = 1− 1
22n−1 · 2n−1(2n − 1) = 1

2n .

Proof (Lemma 2). By definition we have σ2(X∗) = σ2(Xj) and

Cov(Y,X∗) = (1− 1
t
) · Cov(Y,Xi∗ 6=j) + 1

t
Cov(Y,Xj) = 1

t
Cov(Y,Xj) ,

which directly yields Equation 7.

Proof (Lemma 3). On one hand, we have Cov(Y,
∑
iXi) = Cov(Y,Xj) , and on the other

hand, we have σ2(
∑
iXi) = tσ2(Xj) .

C Virtual Machine in #100
1 void vm_for_100(u64 * memory, int steps) {
2 u64 * ptr = memory + 136;
3

4 while (step--) {
5 if (read_a_bit() == 0) {
6 // execute a certain number of bitwise XORs
7 u32 offset1 = read_18_bits();
8

9 int counter = 1;
10 while (read_a_bit() == 0) {
11 counter++;
12 }
13

14 while (counter--) {
15 u32 offset2 = read_18_bits();
16 *ptr++ = memory[offset1] ^ memory[offset2];
17 pos++;
18 }
19 } else {
20 u8 b2 = read_a_bit();
21 if (b2 == 0) {
22 // execute number of bitwise (x & y) or (x & ~y) or (~x & y) or (~x & ~y)
23 u32 offset1 = read_18_bits();
24 u64 mask1 = read_a_bit() ? 0xffffffffffffffff : 0;
25

26 counter = 1;
27 while (read_a_bit() == 0) {
28 counter++;
29 }
30 while (counter--) {

482 Defeating State-of-the-Art White-Box Countermeasures

31 u32 offset2 = read_18_bits();
32 u64 mask2 = read_a_bit() ? 0xffffffffffffffff : 0;
33 *ptr++ = (memory[offset1] ^ mask1) & (memory[offset2] ^ mask2);
34 pos++;
35 }
36 } else {
37 // rewind the memory
38 ptr = memory + read_18_bits();
39 }
40 }
41 }
42 }

	Introduction
	Combination of Countermeasures
	Linear Masking
	Non-linear masking
	Combination of Linear and Non-Linear Masking
	Shuffling, Parallelization and Dummy Operations

	Advanced Gray-Box Attacks
	Higher-Degree Decoding Analysis
	Higher-Order DCA
	Integrated Higher-Order DCA

	Data-Dependency HO-DCA
	Data-Dependency Traces
	Application to Combined Masking
	Generalized Data-Dependency HO-DCA

	Practical Attacks
	Challenges and De-Obfuscation
	Attacking #100
	Attack #111 and #115

	Conclusion
	Performance Score of a Challenge
	Lemma's Proofs
	Virtual Machine in #100

