
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 3, pp. 336–357. DOI:10.13154/tches.v2020.i3.336-357

Cortex-M4 optimizations for {R,M}LWE
schemes

Erdem Alkim1,2, Yusuf Alper Bilgin3,4, Murat Cenk4 and François Gérard5

1 Department of Computer Engineering, Ondokuz Mayıs University, Samsun, Turkey,
erdemalkim@gmail.com

2 Fraunhofer SIT, Darmstadt, Germany
3 Aselsan Inc., Ankara, Turkey, y.alperbilgin@gmail.com

4 Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey,
mcenk@metu.edu.tr

5 Université libre de Bruxelles, Brussels, Belgium, fragerar@ulb.ac.be

Abstract. This paper proposes various optimizations for lattice-based key encapsu-
lation mechanisms (KEM) using the Number Theoretic Transform (NTT) on the
popular ARM Cortex-M4 microcontroller. Improvements come in the form of a faster
code using more efficient modular reductions, optimized small-degree polynomial
multiplications, and more aggressive layer merging in the NTT, but also in the form
of reduced stack usage. We test our optimizations in software implementations of
Kyber and NewHope, both round 2 candidates in the NIST post-quantum project,
and also NewHope-Compact, a recently proposed variant of NewHope with smaller
parameters. Our software is the first implementation of NewHope-Compact on the
Cortex-M4 and shows speed improvements over previous high-speed implementations
of Kyber and NewHope. Moreover, it gives a common framework to compare
those schemes with the same level of optimization. Our results show that NewHope-
Compact is the fastest scheme, followed by Kyber, and finally NewHope, which
seems to suffer from its large modulus and error distribution for small dimensions.
Keywords: ARM Cortex-M4 · Post-quantum key encapsulation · lattice-based
cryptography · RLWE · MLWE · NTT · Kyber · NewHope · NewHope-Compact

1 Introduction
The interest in post-quantum cryptography, i.e., cryptography resisting adversaries
equipped with both classical and quantum computers, has grown significantly among
the research community in the last few years. This growth is partially driven by the
NIST post-quantum standardization project aiming to create a formal environment in
which concrete instantiations of several post-quantum techniques for signatures and key
encapsulation can be analyzed and compared to each other concerning several metrics.
The first round of the project took place mainly during 2018 and assessed different possible
quantum-safe algorithms. In early 2019, 26 out of the 69 initial algorithms advanced
to the second round of the project. In this second round, the practical performance
of the candidates will play an important role in the selection for a hypothetical future
standardization.

While most of the candidates already have optimized versions of their code targeting
large CPUs, which often feature vector extensions such as AVX2, implementations for
such architectures usually do not consider the memory usage or code size as a bottleneck.
Instead, they usually are solely optimized for the computation time. However, small
embedded devices can be greatly impacted by the switch toward a post-quantum paradigm.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-01-15 Accepted: 2019-03-15 Published: 2020-06-19

https://doi.org/10.13154/tches.v2020.i3.336-357
mailto:erdemalkim@gmail.com
mailto:y.alperbilgin@gmail.com
mailto:mcenk@metu.edu.tr
mailto:fragerar@ulb.ac.be
http://creativecommons.org/licenses/by/4.0/


Erdem Alkim , Yusuf Alper Bilgin , Murat Cenk and François Gérard 337

They often offer less memory, low computing power, and even have the drawback to be
more susceptible to side-channel attacks. Hence, in recent papers, researchers focused more
and more on small devices, e.g., based on the popular ARM Cortex-M4 processor, to assess
the performance on embedded platforms. This microcontroller has the advantage of having
large enough memory to support public-key algorithms, while being still reasonably small
and cheap in the grand scheme of computing. Its popularity led to the development of pqm4
[KRSS], a library aiming to offer a common framework for benchmarking implementations
of post-quantum algorithms on this platform.

Contributions: In this paper, we describe an optimized Cortex-M4 implementation of
NewHope, Kyber, and a recently proposed variant of those schemes called NewHope-
Compact. We present various optimizations, mainly in terms of speed and stack usage
on the ARM microcontroller. Since those schemes share structural similarities, general
improvements are applicable to all of them. Our implementation outperforms the current
state-of-the-art for Kyber and NewHope while giving a unified framework to compare
the three schemes, as they use the same level of optimization, which was not the case in
previous works [KRSS]. Our contributions are listed as follows:

• We propose a 2-cycle modular reduction implementation for the Montgomery
arithmetic, which translates subtraction to addition to allow the use of special
instructions.

• We show that small-degree polynomial multiplications can be implemented efficiently
by using lazy-reduction techniques. Hence, we show that early termination of the
Number Theoretic Transform (NTT) can be implemented more efficiently when the
base multiplication has a degree higher than 2.

• We show that even though the target architecture has only 14 usable registers, 16
coefficients can be used during the butterfly layers. This allowed us to merge up to
four layers of the NTT and reduce the number of load and store instructions.

• We give several trade-offs between speed and other metrics. We show that the stack
usage of key generation can be reduced by adding the error vector on-the-fly at the
cost of an extra NTT computation. We also implement a well known idea to store
the secret key as a seed and re-expand it during decapsulation.

Availability of the software: All source code is available at https://github.com/
erdemalkim/NewHope-Compact-M4. The source code of Kyber and NewHope have
already been pushed to pqm4.

Organization of this paper: Section 2 gives some brief background on the key-
encapsulation schemes NewHope, NewHope-Compact, and Kyber. It also describes
recent advances on the NTT and the algorithms most commonly used for efficient and
constant-time implementations of modular reductions inside the NTT. Section 3 provides
the details of our implementation and optimizations to achieve a better performance while
using an as small as possible stack space. It also gives a trade-off between secret-key size
and speed. Our performance results for NewHope, NewHope-Compact, and Kyber
as well as a comparison with previous implementations of those schemes are presented in
Section 4. Finally, in Section 5, we conclude the paper.

2 Preliminaries
In this section, we provide the required background that is necessary for understanding
the remainder of this paper.

https://github.com/erdemalkim/NewHope-Compact-M4
https://github.com/erdemalkim/NewHope-Compact-M4


338 Cortex-M4 optimizations for {R,M}LWE schemes

Algorithm 1 NewHope-CPA-PKE key
generation
Output: public key pk = (b̂′, ρ)
Output: secret key sk = ŝ

1: seed
$← {0, · · · , 255}32

2: ρ, σ ← SHAKE256(64, seed)
3: â← GenA(ρ)
4: s← Sample(σ, 0)
5: e← Sample(σ, 1)
6: b̂← â ◦ NTT(s) + NTT(e)
7: return pk = (b̂, ρ), sk = ŝ

Algorithm 3 NewHope-CPA-PKE decryp-
tion
Input: ciphertext c = (û, h)
Input: secret key sk = ŝ
Output: message µ ∈ {0, · · · , 255}32

1: v′ ← Decompress(h)
2: return µ = Decode(v′ − NTT−1(û ◦ ŝ))

Algorithm 2 NewHope-CPA-PKE encryp-
tion
Input: public key pk = (b̂, ρ)
Input: message µ encoded in Rq
Input: seed coin ∈ {0, · · · , 255}32

Output: ciphertext (û′, h)

1: â← GenA(ρ)
2: s′ ← Sample(coin, 0)
3: e′ ← Sample(coin, 1)
4: e′′ ← Sample(coin, 2)
5: t̂← NTT(s′)
6: û← â ◦ t̂+ NTT(e′)
7: v′ ← NTT−1(b̂ ◦ t̂) + e′′ + µ
8: return c = (û,Compress(v′))

2.1 Notation
Let R = Z[X]/(Xn+1) be the ring of integer polynomials modulo Xn+1. Then, we define
Rq = Zq[X]/(Xn + 1) as a special case of R such that every coefficient is reduced modulo
q. Note that n and q are selected in such a way that performing an efficient NTT of an
element in Rq is possible. For that reason, n is selected as a power of 2 such that Xn + 1
is the 2n-th cyclotomic polynomial, and q is selected as a prime allowing an efficient NTT
implementation. We represent an element a ∈ Rq as a =

∑n−1
i=0 aiX

i, where ai is in Zq.
Moreover, bold lower-case letters such as v denote a column vector and bold upper-case
letters such as A denote a matrix with entries in Rq. The representations of polynomials,
vectors, and matrices in the NTT domain are denoted as â, v̂, and Â, respectively.

2.2 NewHope
NewHope [AAB+19, ADPS16b] is one of the NIST post-quantum standardization
candidates whose security is based on the hardness of solving the Ring Learning With
Errors (RLWE) problem [LPR10, LPR13]. This cryptosystem includes both an adaptive
chosen-plaintext attack (CPA) secure key-encapsulation mechanism (KEM), referred
to as NewHope-CPA-KEM, and an adaptive chosen-ciphertext attack (CCA) secure
KEM, referred to as NewHope-CCA-KEM. Both versions are based on the previously
proposed NewHope-Simple [ADPS16a] scheme, which was designed as a semantically
secure public-key encryption (PKE) scheme and referred to as NewHope-CPA-PKE. Key
generation, encryption, and decryption functions of NewHope-CPA-PKE are presented
in Algorithm 1, Algorithm 2, and Algorithm 3. The constructions of NewHope-CPA-
KEM and NewHope-CCA-KEM using NewHope-CPA-PKE are out of the scope of
this work; we refer to [AAB+19, Alg. 16-21] for more information.

Typically, the most time-consuming part of all Learning With Errors (LWE) variant
cryptosystems is the hashing used for the randomness generation. This randomness
is required inside the GenA and the Sample functions. Moreover, both CPA and CCA
secure versions of KEM constructions also require hashing. Note that the encode, decode,



Erdem Alkim , Yusuf Alper Bilgin , Murat Cenk and François Gérard 339

Table 1: Parameters of NewHope512 and NewHope1024 and derived high-level
properties [AAB+19].

Parameter Set NewHope512 NewHope1024
Dimension n 512 1024
Modulus q 12289 12289
Noise Parameter k 8 8
NTT parameter γ 10968 7
Decryption error probability 2−213 2−216

Claimed post-quantum bit security 101 233
NIST Security Strength Category 1 5

compress, and decompress functions perform bit/byte-level manipulation, thus making them
relatively inexpensive. Apart from hashing, the main cost of NewHope is multiplication
in Rq. NewHope selects its parameters n and q to enable fast polynomial multiplication
in Rq by utilizing the NTT. The parameter sets are provided in Table 1. The modulus q
is selected such that q ≡ 1 (mod 2n), ensuring the existence of the n-th root of unity ω
and the 2n-th root of unity γ =

√
ω, which is a prerequisite for the NTT.

Polynomial multiplication utilizing the NTT: A forward NTT is performed to transform
all of the coefficients to the NTT domain, and the inverse of this operation, NTT−1, is
performed to carry all coefficients to the normal domain again. The formulae for these
two operations are given as follows:

NTT(a) = â =
n−1∑
i=0

âiX
i, where âi =

n−1∑
j=0

ajω
ij mod q,

NTT−1(â) = a =
n−1∑
i=0

aiX
i, where ai =

(
n−1

n−1∑
j=0

âjω
−ij) mod q.

The multiplication of a, b ∈ Rq can be computed as ab = NTT−1(NTT(a) ◦ NTT(b)),
where ◦ denotes the coefficient-wise multiplication. To perform the NTT and the NTT−1

operations faster, the Kyber and NewHope reference implementations used two different
approaches. Kyber makes use of the Cooley-Tukey butterfly [CT65] in the NTT and the
Gentleman-Sande butterfly [GS66] in the NTT−1, while NewHope utilizes the Gentleman-
Sande butterfly in both cases. The main reason that NewHope selects the second one
is that it allows more aggressive lazy reductions when unsigned integers are used in the
implementation. However, the NewHope reference implementation requires both input
and output of the NTT−1 to be in the normal order, hence requiring an extra bitreversal.

NewHope-Compact: Alkim, Bilgin, and Cenk proposed a compact and fast instantiation
of NewHope called NewHope-Compact [ABC19]. They presented three new parameter
sets, which are shown in Table 2. As can be seen from the new parameter sets, they
reduced the modulus q from 12289 to 3329 while preserving the same security level by
the adjustment of the noise parameter k. Due to the change in q, the 2n-th root of unity
γ does not exist anymore, i.e., q 6≡ 1 (mod 2n). However, even in this situation, recent
results [ABC19, ABD+19, LS19, ZXZ+18] show that a fast NTT is still possible. The use
of the NTT in this situation is achieved in [ABC19] by selecting γ as the 256-th root of
unity so that a 7-level NTT is possible. Then, at the end, instead of having n = 512 or 1024



340 Cortex-M4 optimizations for {R,M}LWE schemes

Table 2: Parameters of NewHope-Compact512, NewHope-Compact768 and
NewHope-Compact1024 and derived high-level properties [ABC19].

Parameter Set NH-Compact512 NH-Compact768 NH-Compact1024
Dimension n 512 768 1024
Modulus q 3329 3457 3329
Noise Parameter k 2 2 2
NTT parameter γ 17 55 17

Decryption error
probability 2−256 2−170 2−181

Claimed post-quantum
bit security 100 163 230

NIST Security
Strength Category 1 3 5

integer coefficients, i.e., degree zero polynomials, NewHope-Compact has 128 degree
three or degree seven polynomials, respectively. Then, coefficient-wise multiplications in
the NTT domain are performed on small-degree polynomials modulo (X4 − r) for n = 512
or (X8 − r) for n = 1024, where r is a power of γ, instead of multiplication of integer
coefficients. They used a one-iteration Karatsuba method [WP06] for the multiplication
of small-degree polynomials. The pseudocode of this step can be found in [ABC19, Alg.
5]. Note that the only parts changed from NewHope to NewHope-Compact are the
definition of the NTT and the coefficient-wise multiplication. Therefore, one can still
refer to Algorithm 1, Algorithm 2, and Algorithm 3 for the definition of key generation,
encryption, and decryption, respectively, since these algorithms are written from a high-level
perspective, and the mentioned changes are hidden inside internal functions.

Another contribution of [ABC19], as can be seen in Table 2, is the proposal of a new
security level for NewHope, which is referred to as NewHope-Compact768. This new
security level is made possible by using a different ring structure Zq[X]/(X768 − x384 + 1),
first proposed by [LS19]. NewHope-Compact selects q as 3457, which allows a similar
implementation with other parameter sets. They applied a trick at the first level of the
NTT to switch the regular ring structure Rq and a similar one at the last level of the
NTT−1. This trick uses the factorization of (X2−X + 1) as (X − ζ1) and (X − ζ2), where
ζ1 and ζ2 are both sixth roots of unity. We refer to [ABC19, Appendix A] and [LS19, Sec.
4.1] for more details. In the end, the one-iteration Karatsuba method is applied to perform
coefficient-wise multiplications for the small-degree polynomials modulo (X6 − r), where r
is a power of γ.

2.3 Kyber
Kyber [ABD+19, BDK+18] is a post-quantum KEM whose security relies on the hardness
of the Module Learning With Errors (MLWE) problem [LS15]. Kyber constructs a
CCA-secure KEM Kyber.CCAKEM by using a CPA-secure PKE, which is referred to
as Kyber.CPAPKE, using a variant of the Fujisaki-Okamoto transform [FO99]. We
refer to [ABD+19, Alg. 7-9] for a description of Kyber.CCAKEM. The key generation,
encryption, and decryption functions of Kyber.CPAPKE are presented in Algorithm 4,
Algorithm 5, and Algorithm 6, respectively.

Similar to other LWE-based systems, such as NewHope, the most time-consuming
part of Kyber is the hashing used for randomness generation. Aside from that, the
most costly operation is the multiplication in Rq. Kyber also utilizes the NTT to speed
up this operation. The modulus q and the dimension n are selected as q = 3329 and



Erdem Alkim , Yusuf Alper Bilgin , Murat Cenk and François Gérard 341

Algorithm 4 Kyber.CPAPKE key
generation
Output: public key pk = (b̂, ρ)
Output: secret key sk = ŝ

1: seed
$← {0, · · · , 255}32

2: ρ, σ ← SHAKE256(64, seed)
3: Â← GenMatrixA(ρ)
4: s← SampleVec(σ, 0)
5: e← SampleVec(σ, 1)
6: b̂← Â ◦ NTT(s) + NTT(e)
7: return pk = (b̂, ρ), sk = ŝ

Algorithm 6 Kyber.CPAPKE decryption
Input: ciphertext c = (u′, h)
Input: secret key sk = ŝ
Output: message µ ∈ Rq

1: u← Decompress(u′)
2: v′ ← Decompress(h)
3: return µ = v′ − NTT−1(ŝT ◦ NTT(u))

Algorithm 5 Kyber.CPAPKE encryption
Input: public key pk = (b̂, ρ)
Input: message µ ∈ Rq
Input: seed coin ∈ {0, · · · , 255}32

Output: ciphertext (û′, h)

1: Â← GenMatrixA(ρ)
2: s′ ← SampleVec(coin, 0)
3: e′ ← SampleVec(coin, 1)
4: e′′ ← SampleVec(coin, 2)
5: t̂← NTT(s′)
6: u← NTT−1(ÂT ◦ t̂) + e′
7: v′ ← NTT−1((b̂T ◦ t̂) + e′′ + µ
8: return (Compress(u),Compress(v′))

n = 256 for all parameter sets of Kyber. This enables a 7-level NTT with the parameter
γ = 17. After performing the 7-level NTT, there are 128 degree-one polynomials. Therefore,
coefficient-wise multiplications are performed on these degree-one polynomials modulo
(X2 − r), where r is a power of γ, by using the schoolbook method.

2.4 FFT Trick
In this work, we used what is known in the recent literature as the FFT trick [Sei18]. The
idea is to map the ring

Zq[X]/〈Xn − γn〉

to
Zq[X]/〈Xn/2 − γn/2〉 × Zq[X]/〈Xn/2 + γn/2〉

by computing the straightforward CRT map

p 7→ (p mod Xn/2 − γn/2, p mod Xn/2 + γn/2).

Since Xn/2 + γn/2 = Xn/2 − γn+n/2, the same map can be computed again on both
components until reaching a product of rings in which the multiplication is cheap.

The core operation is to reduce a polynomial p modulo both Xn/2 + ζ and Xn/2 − ζ
(where ζ is an arbitrary power of γ) at the same time which is called a butterfly and is
depicted in Figure 1. The computation of the NTT consists of applying n/2 butterflies to
pairs of coefficients of the whole polynomial iteratively between 1 and log2 n times, each
iteration being referred to as a layer. Figure 2 depicts a full NTT consisting of 9 layers
mapping the ring Zq[X]/〈X512 + 1〉 to a product of rings of the form Zq[X]/〈X − ζ〉. In
NewHope-Compact and Kyber, the NTT is stopped earlier because Zq does not offer
enough high-order roots of unity to compute all the layers. This means that the NTT
itself is less expensive, but the base operation in the product of rings is more costly. This
base operation is a polynomial multiplication in rings of the form Zq[X]/〈Xa − r〉 for a in
{2, 4, 6, 8} depending on the algorithm and parameter set used.



342 Cortex-M4 optimizations for {R,M}LWE schemes

pi

pi+n/2

pi − ζ · pi+n/2

pi + ζ · pi+n/2

Figure 1: Cooley-Tukey Butterfly

(X512 + 1)
∏1

i=0
(X256 + f1(ζ, i))

∏127
i=0

(X4 + f7(ζ, i))
∏255

i=0
(X2 + f8(ζ, i))

∏511
i=0

(X + f9(ζ, i))

...
...

...
...

...

...
...

...
...

. . .p259 p̂259

. . .p258 p̂258

. . .p257 p̂257

. . .p256 p̂256

. . .p3 p̂3

. . .p2 p̂2

. . .p1 p̂1

. . .p0 p̂0

Figure 2: Full NTT on a degree 511 polynomial. The function fj(ζ, i) = ζbrv(2j−1+i) selects
the correct root to compute the isomorphism. All those roots are usually precomputed
and correctly ordered in a table. Techniques to reduce q skip some levels: for example,
using q = 3329 as in NewHope-Compact requires to skip the last two layers (grey).

2.5 Montgomery and Barrett Reductions

Montgomery [Mon85] and Barrett [Bar86] reductions are beneficial for efficient and constant-
time implementations of reductions in Rq. Efficient versions for signed integers of these
reduction algorithms were presented in [Sei18, Alg. 3, 5], and they are recalled in
Algorithm 7 and Algorithm 8. Moreover, assembly implementations of these reduction
algorithms on the Cortex-M4 are provided in Algorithm 9, [BKS19, Alg. 7], and
Algorithm 10. There are two important things to consider when using these efficient
reduction algorithms: Firstly, while the Montgomery reduction gives outputs between −q
and q, the Barrett reduction gives outputs between 0 and q. Secondly, the Montgomery
reduction cannot handle all signed words. It accepts inputs in the range of −β2 q to β

2 q,
where β is selected as 216 for efficient implementations.



Erdem Alkim , Yusuf Alper Bilgin , Murat Cenk and François Gérard 343

Algorithm 7 Signed Montgomery reduction [Sei18] using Montgomery factor β = 216.
Input: odd q where 0 < q < β

2 , and a where −β2 q ≤ a = a1β + a0 <
β
2 q and 0 < a0 < β

Output: r′ where r′ = β−1a (mod q), and −q < r′ < q

1: m← a0q
−1 (mod± β) . signed low product, q−1 precomputed

2: t1 ←
⌊
mq
β

⌋
. signed high product

3: r′ ← a1 − t1

Algorithm 8 Signed Barrett reduction [Sei18] using β = 216.
Input: odd q where 0 < q < β

2 , and a where −β2 ≤ a <
β
2

Output: r where r = a (mod q), and 0 ≤ r ≤ q

1: v ←
⌊

2log(q)−1·β
q

⌉
. precomputed

2: t←
⌊

av
2log(q)−1·β

⌋
. signed high product and arithmetic right shift

3: t← tq mod β . signed low product
4: r ← a− t

Algorithm 9 Signed Montgomery reduction [BKS19] using Montgomery factor β = 216.
Input: a where −β2 q ≤ a <

β
2 q

Output: reduced a → r′ where r′ = β−1a (mod q), and −q < r′ < q

1: smulbb t, a, q−1 . t← (a mod β) · q−1

2: smulbb t, t, q . t← (t mod β) · q
3: usub16 a, a, t . atop ←

⌊
a

216

⌋
−
⌊
t

216

⌋

Algorithm 10 Barrett reduction on packed argument using β = 216.
Input: a (32 bit signed integer where atop and abottom contains two different coefficients)
Output: r = rtop | rbottom where rtop ≡ atop (mod q), rbottom ≡ abottom (mod q),
0 ≤ rtop, rbottom ≤ q and 0 ≤ q < 215

1: movw v, const . v ← const where const=
⌊ 2blog(q)c−1·2β

q

⌉
and precomputed

2: smulbb t1, a, v . t1 ← abottom · v
3: smultb t2, a, v . t2 ← atop · v
4: asr t1, t1, #(log(β) + blog(q)c − 1) . t1 ← t1 >> (log(β) + blog(q)c − 1)
5: asr t2, t2, #(log(β) + blog(q)c − 1) . t2 ← t2 >> (log(β) + blog(q)c − 1)
6: smulbb t1, t1, q . t1 ← t1 · q
7: smulbb t2, t2, q . t2 ← t2 · q
8: pkhbt t, t1, t2, lsl#16 . t← (t1&0xFFFFu)|(t2 << 16)
9: usub16 r, a, t . rtop ← atop − ttop and rbottom ← abottom − tbottom



344 Cortex-M4 optimizations for {R,M}LWE schemes

2.6 ARM Cortex-M4
Our target platform is the STM32F4DISCOVERY [STM] development board featuring
a 32-bit ARM Cortex-M4 [ARM], which is the selected platform by NIST to evaluate
post-quantum candidates on microcontrollers. The Cortex-M4 implements the ARMv7E-
M instruction set and provides special Digital Signal Processing (DSP) instructions.
These DSP extensions offer Single Instruction Multiple Data (SIMD) instructions that
can perform arithmetic operations on two halfwords or four bytes in parallel. These
instructions have been shown to be very beneficial to speed up post-quantum algorithms
[AJS16, BFM+18, BKS19, KRS19, KRSS, KMRV18, SBG+18]. This architecture comes
with the restriction of a limited number of registers, which is 16 general-purpose 32-bit
registers, out of which only 14 are available for the developer. The Cortex-M4 is also used
by the benchmarking and testing framework pqm4 [KRSS].

3 Implementation Details
This section first describes our optimizations to speed-up the computation of the polynomial
multiplication in Rq. This includes both the computation of the NTT and the NTT−1

as well as coefficient-wise multiplication of polynomials modulo (Xd − r) where d = 1 in
NewHope, d = 2 in Kyber, and d = 4, 6, and 8 in NewHope-Compact for n = 512,
768, and 1024, respectively. Then, we present our implementation techniques that decrease
the stack usage of NewHope and NewHope-Compact. We use on-the-fly generation of
â during arithmetic operations in the NTT domain proposed by [BKS19] for Kyber. We
also introduce a new method for key generation, which adds the error polynomial in the
normal domain instead of in the NTT domain. Finally, we provide a trade-off between the
size of the secret key and the performance.

3.1 Optimization of Polynomial Multiplication for Speed
Polynomial multiplication in Rq is one of the most time-consuming parts of KEMs whose
security relies on RLWE/Ring Learning With Rounding (RLWR) or MLWE/Module
Learning With Rounding (MLWR) problems. Some of them, specifically NewHope
and Kyber, utilize the NTT for ring arithmetic in order to have a fast and efficient
implementation. We present an optimized assembly implementation of polynomial
multiplication on the Cortex-M4, which can be used by all RLWE/RLWR-MLWE/MLWR
schemes utilizing the NTT for the ring arithmetic and have a modulus smaller than 215.
Although some of the techniques described in this section are specific to the rings used
by NewHope, NewHope-Compact, or Kyber, adapting an implementation of one to
another with some minor changes is possible. We indicate such points when appropriate.

Representation of polynomials and packing: Similar to [BKS19], we represent polyno-
mials in Rq as an array composed of signed 16-bit integers. This representation was
first introduced in an AVX2 implementation of Kyber by [Sei18]. In their reference
implementations, Kyber and NewHope-Compact are already implemented by using
signed halfword integers. However, [AJS16] preferred using unsigned values for NewHope
on the Cortex-M4. As discussed previously in Section 2.2, NewHope utilizes the
Gentleman-Sande butterfly in both the NTT and the NTT−1, while the other two
schemes use the Cooley-Tukey butterfly in the NTT and the Gentleman-Sande butterfly
in the NTT−1. We decided to follow the approach used by Kyber and NewHope-
Compact, since it has been shown in [Sei18] that using this approach is more efficient
when the coefficients of the polynomials are represented as signed halfwords. Moreover,
the Cortex-M4 is a 32-bit architecture, while the polynomial coefficients are below 16 bits.



Erdem Alkim , Yusuf Alper Bilgin , Murat Cenk and François Gérard 345

Therefore, in order to fully utilize the properties of the Cortex-M4 platform, we packed
two coefficients into one register. Thereby, we can utilize SIMD instructions and perform
addition/subtraction on two halfwords in parallel by using uadd16 or usub16. Moreover,
similar to [BKS19], we implement a double butterfly, which takes a packed register as
input and returns a packed butterfly result.

Montgomery, Barrett, and lazy reductions: The Montgomery reduction, which is given
in Algorithm 9, is implemented by [BKS19] in three clock cycles. In this work, we
optimize the implementation of the Montgomery reduction such that it can be performed
in only two clock cycles. We achieve this by storing −q−1 instead of q−1 and using the
smlabb instruction which multiplies two halfwords and adds the 32-bit result to another
32-bit value in one clock cycle. This implementation is given in Algorithm 11. The
Kyber implementation of [BKS19] performs 3200 Montgomery reductions (1792 in the
two NTT, 896 in NTT−1, 512 in base multiplication) in a full polynomial multiplication
(NTT−1(NTT(a) ◦ NTT(b))). Therefore, this change saves 3200 clock cycles for a full
polynomial multiplication in Rq.

Algorithm 11 Signed Montgomery reduction using Montgomery factor β = 216.
Input: a where −β2 q ≤ a <

β
2 q

Output: reduced a → r′ where r′ = β−1a (mod q), and −q < r′ < q

1: smulbb t, a,−q−1 . t← (a mod β) · (−q−1)
2: smlabb a, t, q, a . atop ←

⌊ (t mod β)·q+a
216

⌋
Similarly to [BKS19], we used the Barrett reduction given by [Sei18, Alg. 5]. The

assembly implementation of this reduction on a packed argument is given in Algorithm 10.
It requires nine clock cycles on our Cortex-M4 microcontroller. We also implemented
a Montgomery reduction on a packed argument (Algorithm 12). It needs eight clock
cycles, which is slightly faster than the Barrett reduction. Each halfword of the input of
Algorithm 12 is multiplied by β to be able to get the same result as the Barrett reduction.
Note that their outputs are not in the same range. Hence, after the last layer of the NTT
and the NTT−1, where we need our output to be between 0 and q, we use the Barrett
reduction. In other cases, we use the faster Montgomery reduction.

Algorithm 12 Signed Montgomery reduction on packed argument using Montgomery
factor β = 216.
Input: a (32 bit signed integer where atop and abottom contains two different coefficients)
Output: r = rtop | rbottom where rtop ≡ atop (mod q), rbottom ≡ abottom (mod q)

1: movw v, const . v ← const where const=β (mod q) and precomputed
2: smulbb t1, a, v
3: smulbb r1, t1,−q−1 . r1 ← (t1 mod β) · (−q−1)
4: smlabb r1, r1, q, t1 . r1top ←

⌊ (r1 mod β)·q+t1
216

⌋
5: smultb t2, a, v
6: smulbb r2, t2,−q−1 . r2 ← (t2 mod β) · (−q−1)
7: smlabb r2, r2, q, t2 . r2top ←

⌊ (r2 mod β)·q+t2
216

⌋
8: pkhtb r, r2, r1, asr #16 . r ← (r2top |(r1top >> 16))

Depending on the size of the modulus and the register size of the underlying architecture,
it is not always necessary to reduce the results after an addition or subtraction. Skipping
unnecessary reductions is called lazy reduction. It is common that optimized NTT



346 Cortex-M4 optimizations for {R,M}LWE schemes

implementations heavily use this technique to speed-up the code. However, those lazy
reductions are mostly performed after an addition or subtraction, as stated before. In this
work, we also perform lazy reductions during component-wise multiplications, also referred
to as base multiplications, for moduli 3329 and 3457 used in Kyber and NewHope-
Compact.

The base multiplication for Kyber is given in Algorithm 13. Each (mod q) in
Algorithm 13 corresponds to a Montgomery reduction. As we can see, five Montgomery
reductions are needed in each base multiplication. We noticed that if both of the coefficients
that are multiplied are already reduced modulo q, then the result is much lower than the
value that the Montgomery reduction can handle, i.e., 215 · q (see Proposition 1). Thus,
we can sum up the results of several multiplications before performing a Montgomery
reduction, e.g., we can compute (c[0]← ((a[0] ·b[0])+((a[1] ·b[1]) mod q) ·r) mod q) instead
of applying line 2 of Algorithm 13. Therefore, we save one Montgomery reduction per
coefficient, i.e., two per base multiplication. In total, there are 128 base multiplications in
a polynomial multiplication in Rq. Thus, we save 256 Montgomery reductions, i.e., 768
clock cycles for the implementation of [BKS19] and 512 clock cycles for our implementation
for a polynomial multiplication of Kyber.

Moreover, we can use this lazy-reduction technique for NewHope-Compact. The base
multiplications for NewHope-Compact512, NewHope-Compact768, and NewHope-
Compact1024 require 4, 6, and 8 sequential additions of the multiplication results,
which can be handled as shown in Proposition 1. Therefore, we can skip 3, 5, or 7
Montgomery reductions per coefficient, which sums up to 1536, 3840, or 7168 Montgomery
reductions in total for NewHope-Compact512, NewHope-Compact768, or NewHope-
Compact1024, respectively. Note that we can also omit the Montgomery reductions
after the multiplications in the first layer of the Cooley-Tukey butterflies, where the
inputs are polynomials with small coefficients that are sampled from the centered binomial
distribution. The results of the first multiplications can only grow up to ±2q for Kyber
and NewHope-Compact and up to ±q for NewHope. However, this technique cannot
be used if the input polynomial is not a polynomial having small coefficients, i.e., not
sampled from the centered binomial distribution. We have such cases in Kyber by
design because of the ciphertext compression. We also cause this case in NewHope and
NewHope-Compact with the stack-usage optimization explained in Section 3.2.

Algorithm 13 Multiplication of polynomials in Zq[X]/(X2 − r) for Kyber.
Input: a and b ∈ Zq[X]/(X2 − r) where r is a power of γ.
Output: c ∈ Zq[X]/(X2 − r).

1: function basemul(a, b)
2: c[0]← (a[0] · b[0]) mod q + ((a[1] · b[1]) mod q) · r) mod q
3: c[1]← (a[0] · b[1]) mod q + (a[1] · b[0]) mod q
4: return c
5: end function

Proposition 1. Let −3329 < ai, bi < 3329 where 0 ≤ i ≤ 8, and c =
∑8
i=0 ai · bi. c is in

the range of (−215 · 3329) to (215 · 3329)
Proof. Let ai = 3328 and bi = 3328 for 0 ≤ i ≤ 8 be the maximum allowed values. Then,∑8
i=0 ai · bi = 99680256. This is very close to 215 ·3329 which is the maximum value for the

input of the Montgomery reduction. In fact, adding another multiplication of coefficients
to the sum, i.e., 33282 + 99680256 = 110755840, will exceed 215 · 3329 = 109084672.

Merging NTT layers: Merging multiple NTT layers reduces the number of load and
store instructions and gives a noticeable performance improvement on the Cortex-M4



Erdem Alkim , Yusuf Alper Bilgin , Murat Cenk and François Gérard 347

[AJS16, BKS19]. While [AJS16] uses eight registers for eight coefficients and performs
three layers of the NTT, [BKS19] uses only four registers for eight coefficients and performs
two layers of the NTT without storing and reloading. Both use the remaining registers to
store the constants required in the Montgomery and Barrett reductions as well as the loop
counter. In this work, we use eight registers to keep 16 coefficients and perform three or
four layers of the NTT, depending on the distance between the coefficients being used in
the same butterfly on the next layer. In other words, we load coefficients into these eight
registers in such a way that a maximum of NTT layers can be performed before storing the
results. Thanks to the structure of the NTT used in NewHope and NewHope-Compact,
we can merge four layers, since at some point, we need coefficients with distance one, and
loading consecutive coefficients from the memory is free with the ldr instruction.

Moreover, Kyber uses seven layers of a 256-point NTT, which is different from
NewHope-Compact, having seven layers of a 128-point NTT. Consequently, while
NewHope-Compact has distance one coefficients on the last layer, Kyber requires
distance two coefficients. Thus, the last four layers cannot be merged. Therefore, we
merged seven layers as 3+3+1 for Kyber.

Although eight registers are used to store coefficients, we can still spare some registers
to store the constants required for the Montgomery reductions, specifically q and −q−1.
However, we have to reload the Barrett constant (line 1 of Algorithm 10) or the Montgomery
constant (line 1 of Algorithm 12) at every use, but note that we do not need them heavily
thanks to lazy reductions. We follow a different approach for the loop counter, which
will be described in the loop unrolling paragraph. Hence, we save more than we lose, i.e.,
loading more coefficients and performing more layers in every loop is better than loading
the Barrett constant only once and keeping it in the register to be used for all Barrett
reductions.

Precomputation of twiddle factors: The powers of the NTT constant γ are often referred
to as twiddle factors. It is a common approach to precompute all of these twiddle factors
in the Montgomery domain and store them in flash memory. In this work, we use the
Montgomery factor β = 216, similar to [BKS19, Sei18]. We reorder these constants before
storing them in the flash memory to have them appearing in memory in the same order as
they are used during the computation. Hence, we can easily load the next one without
computing its address. The load instruction on the Cortex-M4 has the ability to move
the pointer to the next twiddle factor while fetching the current value from memory.
Thus, moving to the next factor has no extra cost. Since the first Montgomery reduction
for NewHope and NewHope-Compact can be skipped, as mentioned before, the first
twiddle factor for these two schemes should not be stored in the Montgomery domain
when this optimization is used. Moreover, since we use the Gentleman-Sande butterfly
for the NTT−1, we perform the division with n on half of the coefficients during the last
butterfly by just multiplying the twiddle factor(s) for the last layer with n−1.

Unrolling: We unroll the outer loop of the NTT and iterate over the layers as usual.
[AJS16, BKS19] spare one register for the loop counter. While [AJS16] uses this loop
counter both to check the number of iterations remaining in the loop and to decide which
precomputed twiddle factor to use, [BKS19] uses it only to detect when to end the loop.
We decided not to spare a register for this loop counter and instead use this freed register
to load more coefficients in every loop and merge more NTT layers. Then, we can naively
use the .rept precompiler directive instead of this loop counter. However, since the .rept
only repeats the same code, it increases the code size dramatically. Hence, we went back
to the loop counter idea again. However, instead of keeping it in a register, we spill it
to the stack. Consequently, the code size stays reasonable while we can still load more
coefficients in every loop. As an obvious observation, using the .rept directive is slightly



348 Cortex-M4 optimizations for {R,M}LWE schemes

faster. Hence, it might be useful for some applications where there is plenty of empty
memory for storing the code.

Link-time optimization: Link-time optimization is an important option to control
optimization, although it may increase the code size. The usual approach without link-time
optimization is that each source file is compiled with some optimization level to generate
different object files. Then, these optimized object files are linked together to compose an
executable file. Although this approach does a good job optimizing source code, it turns
out that the linker can perform even better optimization when link-time optimization
(-flto) is enabled. This option can give a performance boost of around 10%. The critical
performance gain is achieved from cross-module function inlining, which is not directly
possible without -flto. This will tend to increase the code size since inlining functions
across source files introduces code duplication. However, it should also be noted that
link-time optimization is more effective at identifying unused code or code that has no
impact on the output.

The pqm4 platform does not use -flto as default option since it increases stack
consumption or results in a slower computation of some schemes while improving the
performance of Kyber [BKS19]. Therefore, we have also tested the effect of -flto on
performance for our implementations of Kyber, NewHope, and NewHope-Compact
and realized that they all benefit from it and have a performance boost. However,
since assembly-optimized polynomial multiplication was already implemented carefully by
inlining all necessary functions such as modular reductions, adding -flto has no effect on
its performance.

3.2 Optimization of NewHope and NewHope-Compact for Stack
Usage

On embedded devices, RAM usage is often a significant bottleneck. Outside of real-time
systems, one can always wait for a slow algorithm, but if the algorithm needs more memory
than available on the device, it cannot be used. While the Cortex-M4 on our board offers
quite a large amount of memory, we decided to optimize for stack usage as well.

Our goal was to reduce the minimum amount of stack space required to compute the
cipher while keeping performance mostly unaffected. While it is possible to follow a more
aggressive approach to reduce stack usage, such implementations would be considerably
slower than ours. The three main metrics regarding implementation are speed, stack usage,
and code size. The one to optimize depends on the context in which the cipher will be
used. In our work, we tried to optimize the first two while keeping the last one reasonable.

Key generation: The core of the key generation (Algorithm 1) is the computation of
b̂ ← â ◦ NTT(s) + NTT(e). Since each coefficient of the output of the NTT depends on
all coefficients of the input, all coefficients of s and e must have been generated before
proceeding to the addition. Hence, at least two full polynomials should be stored in memory.
To reduce the memory usage, we used the observation that polynomial multiplication can be
performed on-the-fly in the NTT domain and, likewise, adding an error to a polynomial can
be performed on-the-fly in the normal domain. Indeed, the operation ◦ works sequentially
on parts of its inputs (one coefficient at the time for NewHope and four, six, or eight
for NewHope-Compact depending on the parameter set used) and does not need all of
them in memory at the same time. Similarly, each coefficient of the error polynomial can
be computed and added separately, but only if the addition considered is in the normal
domain. This is why instead of computing

b̂← â ◦ NTT(s) + NTT(e),



Erdem Alkim , Yusuf Alper Bilgin , Murat Cenk and François Gérard 349

we compute
b̂← NTT(NTT−1(â ◦ NTT(s)) + e)

and perform the multiplication and the addition on-the-fly. This requires one more NTT−1,
but allows to store only one polynomial in memory, containing s and b̂ subsequently. This
approach reduces stack usage significantly and since our benchmarks show that computing
one extra optimized NTT−1 only increases the key generation time by around 5%, we
believe that this is a good trade-off. This trick can be similarly applied to Kyber. Note
that the small relative cost of this technique is specific to our context and is mainly due to
the fact that hashing is the main performance bottleneck. This issue will be discussed in
more detail in Section 4. If a faster hash function is used, the decrease in performance will
be higher than 5%. That being said, the absolute cost of the trick is always the same with
one NTT−1.

Encryption: The encryption procedure (Algorithm 2) is mainly driven by the following
computations:

1. t̂← NTT(s′)

2. û← â ◦ t̂+ NTT(e′)

3. v′ ← NTT−1(DecodePoly(b̂′) ◦ t̂) + e′′ + Encode(µ)

The first two yield a situation similar to the key generation but unfortunately require
two polynomials on the stack frame. Indeed, since t̂ appears in the second and the last
computation, the result of â ◦ t̂ cannot be stored in the same memory space as t̂ (and
since it would need to go through a NTT−1, it does need to be fully stored). Once û is
computed, it can be packed in the ciphertext and free one of the two polynomials. The last
computation is quite friendly for stack usage. Since both the base multiplication and the
addition operate on small portions of the polynomial, e′′ + Encode(µ) can be computed
coefficient-wise and b̂ can be partially unpacked from the inputs. Thus, Line 3 could
technically be computed with one polynomial plus a small overhead in the stack frame.
Since two polynomials were already allocated previously and only maximal stack usage is
relevant, we actually fully unpack b̂. Finally, the stack usage is bigger than the one of the
key generation because of the extra polynomial stored.

Decryption: The decryption of NewHope (Algorithm 3) is quite lightweight in terms of
stack usage. Unfortunately, the algorithms introduced in the preliminaries are the CPA
version of the cipher. Since the CCA transform runs the encryption procedure during
decryption, the stack usage is essentially the same as for encryption.

3.3 Trade-offs Between Secret Key Size and Speed
There are different trade-offs between the secret key size and the performance of the
scheme. [ABD+19, BDK+18] proposed to store the seed used for all randomness in the
key generation if the size of the secret key is critical. However, this requires to perform
key generation again during decapsulation and gives a significant performance penalty.
As also stated by [ABD+19, BDK+18], another optimization could be storing the secret
key in the normal domain instead of the NTT domain. Hence, each coefficient can be
compressed to 3 bits, since their possible values are in between −2 and 2. Note that our
NTT implementation is fast on the Cortex-M4, so we decided that such optimizations are
good trade-offs for this platform. We also observed that sampling the secret polynomial
s is fast enough, although it is one of the most time-consuming part of such algorithms
is the hashing used for the randomness generation. Note that sampling the secret key



350 Cortex-M4 optimizations for {R,M}LWE schemes

from the centered binomial distribution is lightweight in comparison to the generation
of the public parameter a since we can extract two coefficients from only one byte by
using the centered binomial distribution while uniform sampling needs two bytes to
extract only one coefficient. Hence, we decided to store only the 32-byte secret-key
seed. Then, the secret key is sampled and transformed to the NTT domain again during
decapsulation. These operations reduce the secret key size by 736 bytes for Kyber512 and
NewHope-Compact512, 864 bytes for NewHope512, 1120 bytes for Kyber768 and
NewHope-Compact768, 1504 bytes for Kyber1024 and NewHope-Compact1024,
and 1760 bytes for NewHope1024. However, they increase the decapsulation time by
around 7% for Kyber, 9% for NewHope-Compact, and 18% for NewHope, while
decreasing the key generation time slightly.

4 Results and Comparison
Our optimizations were implemented in the three sibling schemes NewHope, NewHope-
Compact, and Kyber. Comparing different schemes across parameter sets is often
complicated because performance is always strongly correlated with the targeted security
level. Most of the implemented schemes propose parameter sets for NIST security levels 1,
3, and 5, which correspond to 128, 192, and 256 bits of security. Fortunately, since all the
schemes involved in our tests are similar and based on {R,M}LWE, the dimension of the
underlying lattice problem can be roughly translated into NIST security levels. Hence, we
compare them for dimensions 512, 768 (if available), and 1024, which correspond to the
three aforementioned security levels.

4.1 Speed Comparison
The results of our benchmarks in terms of speed can be found in Table 3. The code
was compiled and run in the same conditions as the schemes benchmarked in pqm4
[KRSS]. We use the latest arm-none-eabi-gcc release (version 9.2.1) that is currently
available. We compare the two candidates NewHope and Kyber against their previous
Cortex-M4 optimized implementations available in pqm4 and also add the newcomer
NewHope-Compact. One can see that NewHope and Kyber perform around 10%
better with our optimizations, while using less stack space (see Table 4). Furthermore,
NewHope-Compact is more than 40% faster compared to NewHope and more than 25%
faster compared to Kyber for all security levels. This is explained by the two following
observations:

• NewHope-Compact is a variant of NewHope using a smaller modulus and
distribution, which means an increased performance during polynomial multiplication
because of lazy reductions and less hashing needed to sample from the error
distribution.

• NewHope-Compact is based on RLWE, while Kyber is based on MLWE. Hence,
even though they share similar parameter sets, the inherent performance penalty of
using the less structured version of LWE hurts Kyber.

Moreover, some design decisions affect the performance or the stack usage of the scheme.
These design decisions are unrolling NTT loops by using the .rept directive instead of
the loop counter (Section 3.1), optimizing the stack usage (Section 3.2), and the trade-off
between the size of the secret key and performance (Section 3.3). These three decisions can
be easily enabled or disabled. The effects of the last two choices on the performance and
the stack usage are given in Table 3. Using the .rept directive instead of the loop counter
decreases the cycle count by n per NTT call, where n is the degree of the polynomial



Erdem Alkim , Yusuf Alper Bilgin , Murat Cenk and François Gérard 351

Table 3: Cycle count comparison for the {R,M}LWE schemes improved by our work. G:
key generation, E: encapsulation, D: decapsulation.

Scheme Previous work This work
Speed

This work
Stack Opt.

This work
Short sk

NewHope

512
G: 588 683 a

E: 918 558 a

D: 904 800 a

G: 561 161
E: 865 243
D: 820 130

G: 578 850
E: 865 856
D: 820 742

G: 555 625
E: 865 018
D: 968 961

1024
G: 1 161 112 a

E: 1 777 918 a

D: 1 760 470 a

G: 1 117 398
E: 1 687 272
D: 1 612 960

G: 1 157 331
E: 1 689 375
D: 1 614 804

G: 1 106 350
E: 1 686 964
D: 1 918 747

NH-Cmpct

512 -
G: 335 991
E: 531 453
D: 484 416

G: 349 692
E: 532 423
D: 484 945

G: 330 826
E: 531 282
D: 526 805

768 -
G: 501 885
E: 782 315
D: 717 250

G: 524 181
E: 784 117
D: 718 950

G: 494 364
E: 782 471
D: 786 664

1024 -
G: 658 581
E: 1 022 903
D: 940 023

G: 686 225
E: 1 025 503
D: 941 076

G: 648 206
E: 1 022 773
D: 1 030 809

Kyber

512
G: 514 291 b

E: 652 769 b

D: 621 245 b

G: 452 919
E: 586 380
D: 542 576

G: 461 693
E: 586 754
D: 543 332

G: 446 876
E: 586 403
D: 579 594

768
G: 976 757 b

E: 1 146 556 b

D: 1 094 849 b

G: 860 227
E: 1 031 603
D: 967 124

G: 872 140
E: 1 030 764
D: 966 848

G: 850 228
E: 1 030 679
D: 1 021 439

1024
G: 1 575 052 b

E: 1 779 848 b

D: 1 709 348 b

G: 1 394 148
E: 1 603 776
D: 1 522 900

G: 1 410 591
E: 1 603 988
D: 1 523 175

G: 1 381 514
E: 1 603 772
D: 1 595 530

a [KRSS], https://github.com/mupq/pqm4/, commit be0c421aaecaad4443071bfcf62ad397d4f40832.
b [BKS19]

for the selected parameters. However, the code size increases by a factor of 10 to 50.
Optimizing the stack usage decreases the memory used by key generation while increasing
the cycle count of the same function. Finally, applying the method described in Section 3.3
to reduce the size of the secret key increases the cycle count of the decapsulation while
decreasing it for the key generation.

4.2 Dominance of Hashing

The speed difference shown in Table 3 might look slim at first sight. This is due to
the fact that, as pointed out by previous works, those schemes have been optimized so
much that the bottleneck is now the generation of random numbers through hashing
instead of the polynomial multiplication procedure. Table 5 shows the time spent hashing
for all algorithms and parameter sets. As we can see, with a minimum of 66% for the
decapsulation of NewHope-Compact, all the algorithms are severely dominated by
hashing. Even if polynomial multiplications were somehow instantaneous, the results of
Table 3 would be somewhat similar.

https://github.com/mupq/pqm4/


352 Cortex-M4 optimizations for {R,M}LWE schemes

Table 4: Stack usage comparison for the {R,M}LWE schemes improved by our work. G:
key generation, E: encapsulation, D: decapsulation.

Scheme NewHope
(This work)

NewHope
[KRSS]a

NH-Cmpct
(This work)

Kyber
(This work)

Kyber
[BKS19]

512
G: 2 056
E: 2 864
D: 2 880

G: 5 960
E: 9 168
D: 10 296

G: 2 160
E: 2 984
D: 2 984

G: 2 392
E: 2 344
D: 2 360

G: 2 952
E: 2 552
D: 2 560

768 - -
G: 2 600
E: 3 936
D: 3 936

G: 3 240
E: 2 856
D: 2 864

G: 3 848
E: 3 128
D: 3 072

1024
G: 3 072
E: 4 904
D: 4 920

G: 11 080
E: 17 360
D: 19 576

G: 3 176
E: 5 024
D: 5 024

G: 3 776
E: 3 744
D: 3 760

G: 4 360
E: 3 584
D: 3 592

a
https://github.com/mupq/pqm4/, commit be0c421aaecaad4443071bfcf62ad397d4f40832.

Table 5: Time spent hashing. G: key generation, E: encapsulation, D: decapsulation.

Scheme Dimension 512 Dimension 768 Dimension 1024

NewHope
G: 75%
E: 80%
D: 72%

-
G: 73%
E: 78%
D: 71%

NewHope-Compact
G: 75%
E: 78%
D: 67%

G: 72%
E: 77%
D: 66%

G: 73%
E: 77%
D: 66%

Kyber
G: 76%
E: 80%
D: 69%

G: 77%
E: 80%
D: 72%

G: 78%
E: 80%
D: 73%

4.3 Comparing Polynomial Multiplications

The reader might wonder why to bother optimizing polynomial multiplications further
if it is not the bottleneck anymore. The reason is twofold: First, Keccak (SHA-3) is
used to expand the seed in every scheme implemented. However, the choice of the seed
expansion algorithm is somewhat orthogonal to the scheme and does not affect post-
quantum assumptions. Hence, using a faster hash function would reduce the impact of
hashing on the performance. Furthermore, it might be unnecessary to use a cryptographic
hash function to generate the public parameters. For instance, [BFM+18] uses a faster,
non-cryptographic RNG to speed-up a scheme based on LWE. Second, even if Keccak is
used, since its usage will likely grow in all future cryptographic applications, we might
eventually see hardware acceleration for it on a lot of architectures. This would naturally
drastically decrease the time spent hashing in our schemes and make the polynomial
multiplication the most important optimization target again. Recall that, as stated in
Section 3.2, this would increase the relative cost of the reduced stack usage trick used in
the key generation. Nevertheless, we think that outside of unrealistically fast polynomial
generation, the trade-off can still be useful.

Since our work is the first Cortex-M4 implementation of NewHope-Compact, we
do not have any point of comparison for our technique for this scheme. Table 6 shows
the speed-up for the dimension of the NTT used in all parameter sets of NewHope and
Kyber and the cycle count of all subroutines of the polynomial multiplication for each
algorithm and dimension. The total cost of multiplication operations for each scheme is
presented in Table 7. This table was obtained by summing all the time spent in the three

https://github.com/mupq/pqm4/


Erdem Alkim , Yusuf Alper Bilgin , Murat Cenk and François Gérard 353

multiplication subroutines: NTT, NTT−1, and ◦. Note that the stack optimized version of
our implementation is used in this table to show its actual impact on the performance.
It can be seen that Kyber and NewHope-Compact have similar performance, while
NewHope is slower. This is mainly due to the extra layers of the NTT and the increased
number of reductions caused by the larger modulus. Note that our NTT−1 cycles do not
include any bitreversal operation, because we need NTT−1 to output a bitreversed order
for the stack optimization (Section 3.2). To be able to verify test vectors with the reference
implementation of NewHope, we have implemented a separate bitreversal operation that
takes roughly 4n-cycle for the selected parameter set, which is not included in the NTT−1.
It can be seen that our implementation of the NewHope NTT is slightly slower compared
to the implementation from [KRSS], while we have noticeably better performance for the
NTT−1. Table 7 shows that even though we have a slower NTT, the total number of cycles
spent in polynomial operations is reduced compared to [KRSS].

Table 6: Comparison of the polynomial multiplication functions of all the schemes. Kyber
actually uses the exact same NTT code for all dimensions.

Scheme Dimension NTT NTT−1 ◦

NewHope

512 28662 22836 4736
512 ([KRSS]a) 29767 35813 5459

1024 63387 49880 9396
1024 ([KRSS]a) 59752 71942 10836
1024 ([AJS16]) 86769 97340 14977

NewHope-Compact
512 12799 13052 7052
768 19647 21226 12749
1024 25536 26039 18510

Kyber 256 6847 6975 2317
256 ([BKS19]) 7754 9377 3076

a
https://github.com/mupq/pqm4/, commit be0c421aaecaad4443071bfcf62ad397d4f40832.

Table 7: Total time spent in polynomial multiplication subroutines (NTT, NTT−1, and ◦).

Scheme Dimension KeyGen Encaps Decaps

NewHope

512 84896 89632 117204
512 ([KRSS]a) 64993 106265 147537

1024 186050 195446 254722
1024 ([KRSS]a) 130340 213118 295896

NewHope-Compact
512 45702 52754 72858
768 73269 86018 119993
1024 95621 114131 158680

Kyber

512 50606 48521 73824
512 ([BKS19]) 43320 62095 93132

768 82860 76245 110712
768 ([BKS19]) 74208 97682 139549

1024 119748 108603 152234
1024 ([BKS19]) 111248 139421 192118

a
https://github.com/mupq/pqm4/, commit be0c421aaecaad4443071bfcf62ad397d4f40832.

https://github.com/mupq/pqm4/
https://github.com/mupq/pqm4/


354 Cortex-M4 optimizations for {R,M}LWE schemes

5 Conclusion
In this work, we proposed several optimizations for {R,M}LWE schemes on the Cortex-M4.
Among them, some are direct improvements over the current literature, while others are
trade-offs that are up to the user of the scheme to deem needed or not. The core speed
optimizations are due to a more aggressive layer-merging strategy and a minimization of
the number of reductions in the base multiplication. Our implementation has already been
integrated into the pqm4 library. We also provide a comparison of the proposed trade-offs.
The code is written in a modular fashion that allows the user to easily switch between
versions.

Our results show that all optimization techniques have advantages and disadvantages
and might be useful for different applications. Note that our default option includes only
the stack usage optimization since our goal is having a fast implementation while using a
stack space as small as possible. One interesting point is that our NTT implementation for
NewHope has slightly slower performance than the one reported in [KRSS], suggesting
that there is still room for improvement.

The time spent during polynomial operations has two main bottlenecks, namely modular
reduction and memory access operations among layers of the NTT. This paper solves
these bottlenecks by proposing a 2-cycle implementation of the Montgomery modular
reduction and by increasing the number of merged layers. While this paper focuses on
this strategy, keeping coefficients in 16-bit signed integers requires performing modular
reduction regularly. It would be interesting to see if using 32-bit signed integers with
proper modular reduction can improve the performance. This approach would require to
store one coefficient per register, which means that fewer layers can be merged, but the
number of modular reductions might be reduced since lazy reduction can be applied more
aggressively. Such an implementation was recently proposed for the RISC-V architecture
[AEL+20]. The authors propose an implementation which uses the Barrett reduction after
both addition/subtraction and multiplication. Their reduction implementation can reduce
32-bit numbers, so it allows more aggressive use of lazy reduction at the cost of using
more registers. The Cortex-M4 has a 32-bit multiplier. Hence, it might be interesting to
evaluate the performance of that implementation on the Cortex-M4.

Acknowledgments
The authors would like to thank anonymous TCHES reviewers for their valuable comments
on drafts of this paper. We are grateful to Peter Pessl and Ruben Niederhagen for helping
us to improve our paper.

The work of EA was partially supported by the German Federal Ministry of Education
and Research and the Hessen State Ministry for Higher Education, Research and the
Arts within their joint support of the National Research Center for Applied Cybersecurity
ATHENE, and was partially carried out during his tenure of the ERCIM ‘Alain Bensoussan’
Fellowship Programme.

References
[AAB+19] Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas, Antonio de la Piedra,

Thomas Pöppelmann, Peter Schwabe, Douglas Stebila, Martin R. Albrecht,
Emmanuela Orsini, Valery Osheter, Kenneth G. Paterson, Guy Peer, and
Nigel P. Smart. NewHope - Algorithm Specifications And Supporting
Documentation (version 1.03). Technical report, NIST Post-Quantum
Cryptography Standardization Project, 2019. https://newhopecrypto.org/.

https://newhopecrypto.org/


Erdem Alkim , Yusuf Alper Bilgin , Murat Cenk and François Gérard 355

[ABC19] Erdem Alkim, Yusuf Alper Bilgin, and Murat Cenk. Compact and simple
RLWE based key encapsulation mechanism. In Peter Schwabe and Nicolas
Thériault, editors, Progress in Cryptology – LATINCRYPT 2019: 6th
International Conference on Cryptology and Information Security in Latin
America, volume 11774 of Lecture Notes in Computer Science, pages 237–256,
Santiago de Chile, Chile, October 2–4 2019. Springer, Heidelberg, Germany.
https://doi.org/10.1007/978-3-030-30530-7_12.

[ABD+19] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-KYBER - Algorithm Specifications And Supporting Docu-
mentation (version 2.0). Technical report, NIST Post-Quantum Cryptography
Standardization Project, 2019. https://pq-crystals.org/kyber/.

[ADPS16a] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. NewHope
without reconciliation. Cryptology ePrint Archive, Report 2016/1157, 2016.
http://eprint.iacr.org/2016/1157.

[ADPS16b] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In Thorsten Holz and Stefan Savage,
editors, USENIX Security 2016: 25th USENIX Security Symposium, pages
327–343, Austin, TX, USA, August 10–12 2016. USENIX Association. https:
//eprint.iacr.org/2015/1092.

[AEL+20] Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen, and Richard
Petri. ISA extensions for finite field arithmetic - accelerating Kyber and
NewHope on RISC-V. Cryptology ePrint Archive, Report 2020/049, 2020.
https://eprint.iacr.org/2020/049.

[AJS16] Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. NewHope on ARM
Cortex-M. In Claude Carlet, M. Anwar Hasan, and Vishal Saraswat,
editors, Security, Privacy, and Applied Cryptography Engineering - 6th
International Conference, SPACE 2016, Hyderabad, India, December 14-18,
2016, Proceedings, volume 10076 of Lecture Notes in Computer Science, pages
332–349. Springer, 2016. https://eprint.iacr.org/2016/758.

[ARM] ARM. ARM Cortex-M4. https://www.arm.com/products/
silicon-ip-cpu/cortex-m/cortex-m4.

[Bar86] Paul Barrett. Implementing the Rivest Shamir and Adleman public key encryp-
tion algorithm on a standard digital signal processor. In Andrew M. Odlyzko,
editor, Advances in Cryptology - CRYPTO ’86, Santa Barbara, California,
USA, 1986, Proceedings, volume 263 of Lecture Notes in Computer Science,
pages 311–323. Springer, 1986. https://doi.org/10.1007/3-540-47721-7_
24.

[BDK+18] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS - Kyber: A CCA-secure module-lattice-based KEM. In 2018
IEEE European Symposium on Security and Privacy, EuroS&P 2018, London,
United Kingdom, April 24-26, 2018, pages 353–367. IEEE, 2018. https:
//eprint.iacr.org/2017/634.

[BFM+18] Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and
Martijn Stam. Fly, you fool! faster frodo for the ARM Cortex-M4. Cryptology
ePrint Archive, Report 2018/1116, 2018. https://eprint.iacr.org/2018/
1116.

https://doi.org/10.1007/978-3-030-30530-7_12
https://pq-crystals.org/kyber/
http://eprint.iacr.org/2016/1157
https://eprint.iacr.org/2015/1092
https://eprint.iacr.org/2015/1092
https://eprint.iacr.org/2020/049
https://eprint.iacr.org/2016/758
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m4
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m4
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/3-540-47721-7_24
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2018/1116
https://eprint.iacr.org/2018/1116


356 Cortex-M4 optimizations for {R,M}LWE schemes

[BKS19] Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. Memory-efficient
high-speed implementation of Kyber on cortex-M4. In Johannes Buchmann,
Abderrahmane Nitaj, and Tajje eddine Rachidi, editors, AFRICACRYPT
19: 11th International Conference on Cryptology in Africa, volume 11627 of
Lecture Notes in Computer Science, pages 209–228, Rabat, Morocco, July 9–11
2019. Springer, Heidelberg, Germany. https://eprint.iacr.org/2019/489.

[CT65] James W. Cooley and JohnW. Tukey. An algorithm for the machine calculation
of complex fourier series. Mathematics of Computation, 19(90):297–301, 1965.
http://www.jstor.org/stable/2003354.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In Michael J. Wiener, editor, Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume
1666 of Lecture Notes in Computer Science, pages 537–554. Springer, 1999.
https://doi.org/10.1007/3-540-48405-1_34.

[GS66] W. M. Gentleman and G. Sande. Fast fourier transforms: For fun and
profit. In Proceedings of the November 7-10, 1966, Fall Joint Computer
Conference, AFIPS ’66 (Fall), pages 563–578, New York, NY, USA, 1966.
ACM. http://doi.acm.org/10.1145/1464291.1464352.

[KMRV18] Angshuman Karmakar, Jose M. Bermudo Mera, Sujoy Sinha Roy, and
Ingrid Verbauwhede. Saber on ARM CCA-secure module lattice-based key
encapsulation on ARM. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2018(3):243–266, 2018. https://eprint.iacr.org/2018/
682.

[KRS19] Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. Faster
multiplication in Z2m [x] on cortex-M4 to speed up NIST PQC candidates. In
Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung,
editors, ACNS 19: 17th International Conference on Applied Cryptography and
Network Security, volume 11464 of Lecture Notes in Computer Science, pages
281–301, Bogota, Colombia, June 5–7 2019. Springer, Heidelberg, Germany.
https://eprint.iacr.org/2018/1018.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://
github.com/mupq/pqm4.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, Advances in
Cryptology - EUROCRYPT 2010, 29th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Monaco / French
Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in
Computer Science, pages 1–23. Springer, 2010. https://doi.org/10.1007/
978-3-642-13190-5_1.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. J. ACM, 60(6):43:1–43:35, 2013. https:
//doi.org/10.1145/2535925.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015. https:
//eprint.iacr.org/2012/090.

https://eprint.iacr.org/2019/489
http://www.jstor.org/stable/2003354
https://doi.org/10.1007/3-540-48405-1_34
http://doi.acm.org/10.1145/1464291.1464352
https://eprint.iacr.org/2018/682
https://eprint.iacr.org/2018/682
https://eprint.iacr.org/2018/1018
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1145/2535925
https://doi.org/10.1145/2535925
https://eprint.iacr.org/2012/090
https://eprint.iacr.org/2012/090


Erdem Alkim , Yusuf Alper Bilgin , Murat Cenk and François Gérard 357

[LS19] Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast ntru using
NTT. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2019(3):180–201, 2019. https://eprint.iacr.org/2019/040.

[Mon85] Peter L. Montgomery. Modular multiplication without trial division.
Mathematics of Computation, 44(170):519–521, 1985. http://www.
ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/
S0025-5718-1985-0777282-X.pdf.

[SBG+18] Markku-Juhani O. Saarinen, Sauvik Bhattacharya, Óscar García-Morchón,
Ronald Rietman, Ludo Tolhuizen, and Zhenfei Zhang. Shorter messages
and faster post-quantum encryption with Round5 on cortex M. In Begül
Bilgin and Jean-Bernard Fischer, editors, Smart Card Research and Advanced
Applications, 17th International Conference, CARDIS 2018, Montpellier,
France, November 12-14, 2018, Revised Selected Papers., volume 11389 of
Lecture Notes in Computer Science, pages 95–110. Springer, 2018. https:
//eprint.iacr.org/2018/723.

[Sei18] Gregor Seiler. Faster AVX2 optimized NTT multiplication for Ring-LWE
lattice cryptography. Cryptology ePrint Archive, Report 2018/039, 2018.
https://eprint.iacr.org/2018/039.

[STM] STMicroelectronics. STM32F4DISCOVERY kit. https://www.st.com/en/
evaluation-tools/stm32f4discovery.html.

[WP06] André Weimerskirch and Christof Paar. Generalizations of the Karatsuba
algorithm for efficient implementations. IACR Cryptology ePrint Archive,
2006:224, 2006. http://eprint.iacr.org/2006/224.

[ZXZ+18] Shuai Zhou, Haiyang Xue, Daode Zhang, Kunpeng Wang, Xianhui Lu, Bao
Li, and Jingnan He. Preprocess-then-NTT Technique and Its Applications to
Kyber and NewHope. In Fuchun Guo, Xinyi Huang, and Moti Yung, editors,
Information Security and Cryptology - 14th International Conference, Inscrypt
2018, Fuzhou, China, December 14-17, 2018, Revised Selected Papers, volume
11449 of Lecture Notes in Computer Science, pages 117–137. Springer, 2018.
https://eprint.iacr.org/2018/995.

https://eprint.iacr.org/2019/040
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
https://eprint.iacr.org/2018/723
https://eprint.iacr.org/2018/723
https://eprint.iacr.org/2018/039
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
http://eprint.iacr.org/2006/224
https://eprint.iacr.org/2018/995

	Introduction
	Preliminaries
	Notation
	NewHope
	Kyber
	FFT Trick
	Montgomery and Barrett Reductions
	ARM Cortex-M4

	Implementation Details
	Optimization of Polynomial Multiplication for Speed
	Optimization of NewHope and NewHope-Compact for Stack Usage
	Trade-offs Between Secret Key Size and Speed

	Results and Comparison
	Speed Comparison
	Dominance of Hashing
	Comparing Polynomial Multiplications

	Conclusion

