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Abstract. This paper presents a set of efficient and parameterized hardware accel-
erators that target post-quantum lattice-based cryptographic schemes, including a
versatile cSHAKE core, a binary-search CDT-based Gaussian sampler, and a pipelined
NTT-based polynomial multiplier, among others. Unlike much of prior work, the
accelerators are fully open-sourced, are designed to be constant-time, and can be
parameterized at compile-time to support different parameters without the need for
re-writing the hardware implementation. These flexible, publicly-available accelera-
tors are leveraged to demonstrate the first hardware-software co-design using RISC-V
of the post-quantum lattice-based signature scheme qTESLA with provably secure
parameters. In particular, this work demonstrates that the NIST’s Round 2 level 1
and level 3 qTESLA variants achieve over a 40-100x speedup for key generation, about
a 10x speedup for signing, and about a 16x speedup for verification, compared to the
baseline RISC-V software-only implementation. For instance, this corresponds to
execution in 7.7, 34.4, and 7.8 milliseconds for key generation, signing, and verification,
respectively, for qTESLA’s level 1 parameter set on an Artix-7 FPGA, demonstrating
the feasibility of the scheme for embedded applications.
Keywords: Lattice-based cryptography · Post-quantum cryptography · qTESLA ·
Hardware accelerators · Hardware-software co-design · FPGA · RISC-V

1 Introduction
Most common cryptographic protocols such as RSA and ECC will become insecure once a
sufficiently large and fault-tolerant quantum computer is built with the capability to run
Shor’s algorithm [Sho94] and its variants. To address this security threat, cryptographers
have been working on alternative algorithms which are not known to be vulnerable to
attacks using quantum computers – the so-called post-quantum or quantum-safe cryp-
tographic algorithms. In order to advance this effort, in 2017 NIST launched a new
standardization process with the goal of selecting the next generation of quantum-safe
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public-key cryptographic algorithms [Nat17]. The initial phase of this process, which ended
with the selection of 17 key encapsulation mechanisms (KEMs) and 9 digital signature
schemes, mainly focused on aspects related to security and cryptanalysis, and gave much
less emphasis to efficiency characteristics. However, as NIST’s Round 2 progresses since
its start in 2019, performance analysis of the various candidates on different software and
hardware platforms is becoming a more crucial aspect of the evaluation.

Among the various post-quantum families, lattice-based cryptography [Ajt96, Reg05]
represents one of the most promising and popular alternatives. For instance, from the 9
NIST Round 2 digital signature candidates that were selected, 3 belong to this cryptographic
family: Dilithium [LDK+19], Falcon [PFH+19], and qTESLA [BAA+19]. For this work,
we selected qTESLA, which is a signature scheme based on the hardness of the ring
learning with errors (R-LWE) problem that comes with built-in defenses against some
implementation attacks such as simple side-channel and fault attacks, and against key
substitution (KS) attacks [ABB+20]. Since instantiations of qTESLA are provably-secure
by construction, the signature scheme enjoys an important security guarantee: the security
hardness of a given instantiation is provably-guaranteed as long as its corresponding R-LWE
instance remains secure. This feature, however, comes at a price which is reflected in the
larger sizes, especially of public keys, and a slower performance.

In this work, we focus on the development of efficient and flexible lattice-based cryptography
accelerators and their application to realize the first hardware-software co-design of provably-
secure instances of qTESLA using a RISC-V core1. Our work demonstrates that even
demanding, provably-secure schemes can be realized efficiently with proper use of hardware-
software co-design.

Related Work and Contributions. There are many hardware designs in the literature
targeting the computing blocks that are necessary for the implementation of lattice-based
systems, such as the Gaussian sampler and the number theoretic transform (NTT) [PDG14,
HKR+18]. However, a recurrent issue is that most existing works, especially in the case
of the NTT, are not fully scalable or parameterized and are, hence, limited to specific
cryptographic schemes [PDG14,RVM+14,OG17,KLC+17]. Post-quantum cryptography
(PQC), including lattice-based cryptography, is still an active research area and, as a
consequence, there is a proliferation of schemes and a rapid evolution in the parameters
that are used in practical instantiations, as can be observed in the ongoing NIST PQC
standardization process. This issue is markedly problematic and expensive for hardware.
Hence, unlike much of prior work, the accelerators developed in this work are designed
to be fully parameterized at compile-time to help implement different parameters and
support different lattice-based schemes.

Concretely, we present the following accelerators:

• a unified hardware core for both SHAKE-128/256 and cSHAKE-128/256,
• a novel, parameterized binary-search CDT sampler in hardware,
• a novel, hardware pipelined NTT-based polynomial multiplier, and
• a parameterized sparse polynomial multiplier in hardware.

Additionally, we provide a lightweight Hmax-Sum hardware module for qTESLA.

These flexible accelerators are then used to realize the first RISC-V based hardware-
software co-design of qTESLA with the provably-secure parameter sets. This successfully
demonstrates the significant impact of offloading complex functions from software to
hardware accelerators. The modules are fully parameterized and, hence, allow us to quickly
change parameters and re-synthesize the design. For example, in our design, it is made

1https://github.com/SpinalHDL/VexRiscv/

https://github.com/SpinalHDL/VexRiscv/
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easy to switch from qTESLA’s Round 2 provably-secure parameters to prior heuristic
parameters, if desired.

In addition, in contrast to most existing hardware designs, the full hardware code developed
in this work is publicly released and available at https://caslab.csl.yale.edu/code/
qtesla-hw-sw-platform.

Finally, a relevant feature of our design is the use of a simple and standard 32-bit
interconnect to the microcontroller. This design feature aims at providing platform
flexibility and showing that hardware accelerators can achieve good performance even with
this conservative choice. This is different from many designs proposed in the literature. At
an extreme end, some hardware designs for lattice-based cryptography focus on low power
and low cycle counts, at the cost of custom interfaces and very low clock frequencies. In
particular, [BUC19] proposes a design that achieves a very low cycle count for lattice-based
schemes, but this is in part due to the use of a single-cycle bus interface, and not due to the
accelerator hardware design itself. Despite the low cycle count, the actual execution time
in [BUC19] is higher than comparable operations in our design due to their longer critical
path delay. Other designs use standard interfaces and a hardware-software co-design
approach, but are not flexible in the choice of parameters [FDAG19]. We remark that since
our hardware-software co-design is open-sourced, users can also improve the performance
further by using a specialized bus or interconnect.

Among recent existing work with similar goals to ours, Banerjee et al. [BUC19] proposed
Sapphire, a configurable lattice crypto-processor coupled with a RISC-V processor that
has been tested on an ASIC using several NIST candidates. Sapphire supports qTESLA,
but the results correspond to outdated parameters that are no longer part of the NIST
PQC process. Also, our implementation of qTESLA’s key generation performs much better
because Banerjee et al.’s Gaussian sampler is based on a merge-sort CDT algorithm that
is intended for software-use only. Furthermore, our design takes advantage of the faster
sparse polynomial multiplications.

Farahmand et al. [FDAG19] proposed a hardware-software co-design architecture to
benchmark various lattice-based KEMs. To speed up the design process they use the
popular Zynq UltraScale+ SoC which contains a hard processor core coupled to the FPGA
fabric. Thus, they benefit from the high working clock frequencies of the Arm processor
built into the FPGA. However, their work only supports designs with modulus q being a
power-of-two or NTRU-based KEMs. Hence, their arithmetic blocks do not support any
of the Round 2 lattice-based digital signature candidate proposals. Furthermore, they only
include a simple schoolbook multiplier.

Paper Outline. We first review the lattice-based signature scheme qTESLA and explain
the selection of our functions to be implemented in hardware in Section 2. Afterwards,
we present the five proposed hardware accelerators in Section 3. Section 4 presents an
in-depth experimental evaluation of each hardware module and the final qTESLA design,
as well as a comparison to the state-of-the-art. We conclude this paper in Section 5.

2 Preliminaries
This section gives a brief introduction to the lattice-based signature scheme qTESLA. It
also provides background on software profiling used to identify most suitable functions for
hardware acceleration, and gives details about these functions.

https://caslab.csl.yale.edu/code/qtesla-hw-sw-platform
https://caslab.csl.yale.edu/code/qtesla-hw-sw-platform
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2.1 qTESLA
qTESLA is a provably-secure post-quantum signature scheme, based on the hardness of
the decisional R-LWE problem [BAA+19]. The scheme is based on the “Fiat-Shamir with
Aborts” framework by Lyubashevsky [Lyu09] and is an efficient variant of the Bai-Galbraith
signature scheme [BG14] adapted to the setting of ideal lattices. A distinctive feature of
qTESLA is that its parameters are provably secure, i.e., they are generated according to
the security reduction from R-LWE.

Notation. We define the rings R = Z[x]/〈xn + 1〉 and Rq = Zq[x]/〈xn + 1〉, where
n is the dimension and Zq = Z/qZ for a prime modulus q ≡ 1 mod 2n. We fur-
ther define the sets Hn,h = {

∑n−1
i=0 fix

i ∈ R | fi ∈ {−1, 0, 1},
∑n−1
i=0 |fi| = h} and

Rq,[B] = {
∑n−1
i=0 fix

i ∈ R | fi ∈ [−B,B]} for fixed system parameters h and B. For
some even (odd) modulus m ∈ Z≥0 and an element c ∈ Z, c′ = c mod±m denotes the
unique element −m/2 < c′ ≤ m/2 (resp., −bm/2c ≤ c′ ≤ bm/2c) with c′ = c mod m.
We also define the rounding functions [·]L : Z → Z, c 7→ (c mod±q) mod±2d, and
[·]M : Z→ Z, c 7→ (c mod±q − [c]L)/2d for a fixed system parameter d. These definitions
are extended to polynomials by applying the operators to each polynomial coefficient, i.e.,
[f ]L =

∑n−1
i=0 [fi]L xi and [f ]M =

∑n−1
i=0 [fi]M xi for a given f =

∑n−1
i=0 fix

i ∈ R. Given
f ∈ R, we define the function maxi(f) which returns the i-th largest absolute coefficient
of f . For an element c ∈ Z, we have that ‖c‖∞ = |c mod±q|, and define the infinity norm
for a polynomial f ∈ R as ‖f ‖∞ = max

i
‖fi‖∞. To denote sampling each coefficient of a

polynomial f with centered discrete Gaussian distribution Dσ with standard deviation σ,
we write f ←σ R.

Besides the number of polynomial coefficients n and the modulus q, the R-LWE setup also
involves defining the number of R-LWE samples that are used by the scheme instantiation,
which we denote by k. The values E and S define the coefficient bounds for the error
and secret polynomials, B determines the interval from which the random coefficients
of the polynomial y are chosen during signing, and bGenA ∈ Z>0 represents the number
of blocks requested in the first cSHAKE call during generation of the so-called public
polynomials a1, . . . , ak [BAA+19]. Finally, we define two additional system parameters: λ,
which denotes the targeted bit-security of a given instantiation, and κ, which denotes the
input and output bit length of the hash and pseudo-random functions (PRFs).

The signature scheme qTESLA. qTESLA is parameterized by λ, κ, n, k, q, σ, E, S, B,
d, h, and bGenA, discussed above. The pseudo-code of qTESLA’s key generation, sign and
verify algorithms are presented in Algorithms 1, 2 and 3, respectively. A brief description
of the algorithms, highlighting the most important operations of the scheme, follows.
For complete information and details about the different qTESLA functions, readers are
referred to [BAA+19].

From a computational perspective, as in the case of other lattice-based schemes, qTESLA’s
main operations are polynomial operations defined over the rings R and Rq. Consequently,
a main focus of this work is the efficient implementation of the NTT, which allows an
efficient realization of the expensive polynomial multiplications, because q ≡ 1 mod 2n for
qTESLA scheme.

Another important operation is Gaussian sampling, which for qTESLA is used only for
key generation. Gaussian sampling is used to generate the secret and error polynomials
in R with centered discrete Gaussian distribution Dσ. The polynomials produced by the
Gaussian sampler (denoted by GaussSampler) have to pass two security checks, namely,
checkE and checkS, which make sure that

∑h
i=1 maxi(f) (called Hmax-Sum in the remain-

der) is less than or equal to the fixed bounds E and S, respectively. For the generation of
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Algorithm 1 qTESLA’s key genera-
tion [BAA+19]
Require: -
Ensure: sk = (s, e1, . . . , ek, sa, sy, g) and

pk = (t1, . . . , tk, sa)
1: counter← 1
2: seed←$ {0, 1}κ
3: ss, se1 , . . . , sek , sa, sy ← PRF1(seed)
4: a1, . . . , ak ← GenA(sa)
5: do
6: s← GaussSampler(ss, counter)
7: counter← counter + 1
8: while checkS(s) 6= 0
9: for i = 1, . . . , k do
10: do
11: ei ← GaussSampler(sei , counter)
12: counter← counter + 1
13: while checkE(ei) 6= 0
14: ti ← ais+ ei mod q

15: g ← G(t1, . . . , tk)
16: sk ← (s, e1, . . . , ek, sa, sy, g)
17: pk ← (t1, . . . , tk, sa)
18: return sk, pk

Algorithm 2 qTESLA’s sign [BAA+19]
Require: m, sk = (s, e1, . . . , ek, sa, sy, g)
Ensure: (z, c′)
1: counter← 1
2: r ←$ {0, 1}κ
3: rand← PRF2(sy, r,G(m))
4: y ← ySampler(rand, counter)
5: a1, . . . , ak ← GenA(sa)
6: for i = 1, . . . , k do
7: vi = aiy mod±q
8: c′ ← H(v1, . . . , vk,G(m), g)
9: c , {pos_list, sign_list} ← Enc(c′)
10: z ← y + sc
11: if z /∈ Rq,[B−S] then
12: counter← counter + 1
13: Restart at step 4
14: for i = 1, . . . , k do
15: wi ← vi − eic mod±q
16: if ‖[wi]L‖∞ ≥ 2d−1 − E ∨ ‖wi‖∞ ≥
bq/2c − E then

17: counter← counter + 1
18: Restart at step 4
19: return (z, c′)

Algorithm 3 qTESLA’s verify [BAA+19]
Require: m, (z, c′), pk = (t1, . . . , tk, sa)
Ensure: {0,−1} . accept, reject signature

1: c , {pos_list, sign_list} ← Enc(c′)
2: a1, . . . , ak ← GenA(sa)
3: for i = 1, . . . , k do
4: wi ← aiz − tic mod±q
5: if z /∈ Rq,[B−S] ∨ c′ 6= H(w1, . . . , wk,G(m),G(t1, . . . , tk)) then
6: return −1
7: return 0

the public keys, we need to derive the public polynomials a1, . . . , ak ∈ Rq. This operation
is denoted by the function GenA : {0, 1}κ → Rkq . The random seed sa that is used to
generate the public polynomials is transmitted to the signing and verification algorithms
through the secret and public keys, respectively. We highlight that the fresh generation
of a1, . . . , ak using a random seed saves bandwidth, makes the introduction of backdoors
more difficult and minimizes the impact of all-for-the-price-of-one attacks [BAA+19]. We
also point out that the secret key includes a value denoted by g, which is the hash of
the polynomials t1, . . . , tk (which are part of the public key), computed via the function
G : {0, 1}∗ → {0, 1}320 [ABB+20]. This is then used during the hashing operation to derive
the challenge value c′ at signing. This design feature protects against key substitution
attacks [BWM99], by guaranteeing that any attempt by an attacker of modifying the
public key will be detected during verification when checking c′.

During signing, the sampling function ySampler samples a polynomial y ∈ Rq,[B]. To
produce the randomness rand used to generate y, one uses a secret-key value sy and some
fresh randomness r. The use of sy makes qTESLA resilient to fixed-randomness attacks
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such as the one demonstrated against Sony’s Playstation 3 [CPBS10], and the random
value r guarantees the use of a fresh y at each signing operation, which makes qTESLA’s
signatures probabilistic and, hence, more difficult to attack through side-channel analysis.
In addition, the fresh y protects against some powerful fault attacks against deterministic
signature schemes [PSS+17,BP18]. Signing and verification also require the generation
of the challenge c′ by using the hash-based function H, which computes [v1]M , . . . , [vk]M
for some polynomials vi (or wi during verification) and hashes these together with the
digests G(m) and G(t1, ..., tk). This value is then mapped deterministically (using the
function Enc) to a pseudo-randomly generated polynomial c ∈ Hn,h which is encoded
as the two arrays pos_list ∈ {0, . . . , n − 1}h and sign_list ∈ {−1, 1}h representing the
positions and signs of the nonzero coefficients of c, respectively. At signing, in order for
the potential signature (z ← sc+ y, c′) to be returned by the signing algorithm, it needs
to pass a security check, which verifies that z /∈ Rq,[B−S], and a correctness check, which
verifies that ‖[wi]L‖∞ < 2d−1 − E and ‖wi‖∞ < bq/2c − E. At verification, if for a given
signature (z, c′) it holds that z ∈ Rq,[B−S] and c′ matches the value computed using the
function H as described above, the signature is accepted; otherwise, it is rejected.

Hashing and pseudo-random generation are required by several computations in the scheme.
This functionality is provided by the extendable output functions SHAKE [Dwo15], in
the realization of the functions G and H, and cSHAKE [KCP16], in the realization of the
functions PRF1, PRF2, ySampler, GaussSampler, GenA and Enc. Although implementers are
free to pick a cryptographic PRF of their choice to implement PRF1, PRF2, ySampler, and
GaussSampler, we chose to reuse the same (c)SHAKE core to also support these functions
in order to save area. According to the specifications [BAA+19], the use of cSHAKE-128
is fixed for GenA and Enc. For the remaining functions, level 1 and level 3 parameter sets
use (c)SHAKE-128 and (c)SHAKE-256, respectively.

Table 1: Parameters of the two qTESLA parameter sets (Round 2).

λ κ n k q σ h E = S B d bGenA
qTESLA-p-I 95 256 1024 4 343, 576, 577 8.5 25 554 219 − 1 22 108
qTESLA-p-III 160 256 2048 5 856, 145, 921 8.5 40 901 221 − 1 24 180

Parameter Sets. qTESLA’s NIST PQC submission for Round 2 includes two param-
eter sets: qTESLA-p-I and qTESLA-p-III, which target NIST security levels 1 and 3,
respectively, and are assumed to provide post-quantum security equivalent to AES-128
and AES-192, respectively. We recall the instantiations with their relevant parameters in
Table 1. The parameters for qTESLA-p-I lead to a signature, public key and secret key
of 2, 592 bytes, 14, 880 bytes and 5, 224 bytes, respectively. The corresponding figures for
qTESLA-p-III are 5, 664 bytes, 38, 432 bytes and 12, 392 bytes, respectively.

2.2 Basis Software Implementation
In our design, we used qTESLA’s most recent portable C reference implementation that
was submitted to the NIST PQC standardization process (Round 2) as the basis software
implementation2. It is a state-of-the-art 32/64-bit software implementation of qTESLA,
targeting a low clock cycle count. This is the fastest reference software implementation
of qTESLA we are aware of. We chose the definitions of the targeted architecture and
basic data types to ensure that the code runs correctly on 32-bit architectures (i.e., on our
RISC-V target) and we used the available compiler flags to enable the highest optimization

2The software is available at https://github.com/qtesla/qTesla, commit-id d8fd7a5.

https://github.com/qtesla/qTesla
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levels of the GCC compiler. We remark that further optimizations using low-level, hand-
written assembly code will probably lead to faster code. As a reference point, assembly
optimizations using vector instructions on an x64 Intel processor achieve a 1.5× speedup in
comparison to the reference implementation of qTESLA [ABB+20]. However, we caution
readers that this improvement is obtained on a platform completely different to the RISC-V
platform targeted in this work. Moreover, speedups obtained with assembly optimizations
are also highly dependent, among other aspects, on the particular cryptographic scheme.
For example, based on the benchmarking results on an ARM Cortex-M4 platform [KRSS19],
when using low-level, hand-written assembly optimizations, Kyber-768 [SAB+19] achieves
around 1.5× speedup while the speedup for ntruhrss701 [ZCH+19] is over 11× (compared
to their respective portable C reference implementations). For this work, developing such
assembly optimizations for RISC-V is considered out of scope.

2.3 Software Profiling
To determine potential functions for promising speedups using hardware acceleration, we
profiled qTESLA’s reference software implementation. We profiled the code with gprof
on a 3.4GHz Intel Core i7-6700 (Skylake) CPU with TurboBoost disabled. As a result,
we found that the two most expensive operations are (c)SHAKE and the NTT-based
polynomial multiplication: about 39.4% of the computing time is spent by the Keccak
function performing cSHAKE and SHAKE computations, and about 27.9% of the time is
spent by the polynomial multiplier performing NTT computations. Other costly operations
include the sparse polynomial multiplications (6.3% of the total cost) and the Gaussian
sampler (4.5% of the total cost). Accordingly, these four functions were selected for
hardware acceleration. Interestingly, after acceleration, we discovered that the Hmax-Sum
function became a new bottleneck, and it was accelerated as well. This highlights the
importance of repeated profiling in order to reassess the performance of functions that are
originally considered inexpensive.

2.4 Functions Selected for Acceleration
Based on the profiling results in Section 2.3, we designed accelerators for (c)SHAKE, NTT-
based polynomial multiplier, Gaussian sampler, sparse multiplication and Hmax-Sum. The
first 3 of these functions are also targeted because they are commonly found in lattice-based
cryptography and can be used to accelerate other cryptographic schemes.

(c)SHAKE. SHAKE [Dwo15] and cSHAKE [KCP16] are extendable output functions
(XOF) based on the Keccak algorithm [BDPA13,BDPVA11], which is also the basis of
NIST’s SHA-3 standard [Dwo15]. XOFs are similar to hash functions, but while hash
functions only produce a fixed length output, XOFs produce a variable amount of output
bits.

Keccak is a parameterizable sponge function, where b denotes the state size, r the rate,
and c the capacity and b = r + c. For current NIST algorithms based on Keccak, the
state is set to b = 25 × 26 = 1600, while c (and r) vary. Therefore, NIST’s algorithms
are usually described in the form Keccak[c](message, outputlength). For SHAKE128 and
cSHAKE128, c = 128 and for the other two variants c = 256. Based on Keccak, they can
be defined as:

SHAKE-c(M,d) =Keccak[c](M ||1111, d)
cSHAKE-c(M,N,S, d) =Keccak[c](bytepad(encode_string(N)||

encode_string(S), c/8)||M ||00, d).
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N is a so-called function-name string, defined by NIST, and S a customization bit string.
It is further defined that, if N and S are empty strings, cSHAKE = SHAKE.

Sponge functions such as Keccak have an absorption and a squeezing phase. In the
absorption phase r bits are combined with the internal state using XOR, followed by a
computation of the internal Keccak permutation. Hence, if n bits have to be absorbed,
dnr e absorptions have to be performed. Similarly, in the squeezing phase r bits of output are
produced, followed by one or more executions of the Keccak permutation, if more than r
bits are requested. Due to this general design, it is possible to use the same implementation
of the internal permutation for all needed SHAKE and cSHAKE implementations, if the
inputs are properly prepared and padded.

Polynomial Multiplication. Setting q ≡ 1 mod 2n enables the use of the efficient NTT
for polynomial multiplication, which we define next.

Let ω and φ be primitive n-th and 2n-th roots of unity in Zq, respectively, where φ2 = ω.
Then, for a polynomial c =

∑n−1
i=0 cix

i the forward NTT transform is defined as

NTT : R = Zq[x]/〈xn + 1〉 → Rq, c 7→ c̃ =
n−1∑
i=0

n−1∑
j=0

cjφ
jωij

xi.

Likewise, the inverse NTT transform is defined as

NTT−1 : Rq → R = Zq[x]/〈xn + 1〉, c̃ 7→ c =
n−1∑
i=0

n−1φ−i
n−1∑
j=0

c̃jω
−ij

xi.

In qTESLA, the NTT is used to carry out the polynomial multiplications in line 7 of
Algorithm 2 and in line 4 of Algorithm 3. In particular, given that public polynomials
a1, . . . , ak are assumed to be generated directly in the NTT domain, multiplications have
the form ai · b in Rq, for some b ∈ Rq, and can be computed as NTT−1(ai ◦ NTT(b)),
where ◦ is the coefficient-wise multiplication.

Sparse Polynomial Multiplication. In addition to standard polynomial multiplications
which are dealt with the NTT, qTESLA also performs polynomial multiplications with the
sparse polynomial c ∈ Hn,h, in lines 10 and 15 of Algorithm 2 and in line 4 of Algorithm 3.
Recall that c is encoded as two lists pos_list and sign_list ∈ {−1, 0, 1}h which represent
the positions and signs of its nonzero coefficients, respectively. These multiplications can be
specialized with an algorithm that exploits the sparseness; see [ABB+20, Alg. 11].

Discrete Gaussian Sampler. Discrete Gaussian samplers are parameterized by the pre-
cision of the samples (which we denote by β), the standard deviation σ of the Gaussian
distribution, and the tail-cut τ , such that the range of the samples is [−στ, στ ]∩Z. There
are several sampling techniques, such as reject, Bernoulli, Ziggurat, CDT, and Knuth-Yao.
Among them, the cumulative distribution table (CDT) of the normal distribution [Pei10]
is one of the most efficient methods when σ is relatively small, as is the case in, e.g., the
R-LWE encryption schemes by Lyubashevsky et al. [LPR10] and by Linder and Peik-
ert [LP11] and the NIST PQC candidates FrodoKEM [NAB+19] and qTESLA [BAA+19].
In addition, this method is also easy to implement securely in constant-time and avoids
the need for floating point operations, which are especially expensive in hardware.

The method consists of pre-computing a table CDT[i] := b2β Pr[c 6 i | c ←σ Z]c for i ∈
[0, . . . , t−1] offline, using the smallest t such that Pr[|c| > t | c←σ Z] < 2−β . Then, during
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Table 2: CDT parameters used in qTESLA’s Round 2 implementation (targeted precision β :
implemented precision in bits : number of rows t : table size in bytes).

Parameter set CDT parameters
qTESLA-p-I 64 : 63 : 78 : 624
qTESLA-p-III 128 : 125 : 111 : 1776

the online computation one picks a uniform sample u←$ Z/2βZ generated by a PRNG,
scans the table, and finally returns the value s such that CDT[s] 6 u < CDT[s+1]. To cover
the full sampling range, a random bit is used to assign the sign to the Gaussian sample s.
Table 2 includes the specific CDT parameters used in qTESLA implementations.

Hmax-Sum. In qTESLA, after sampling a secret polynomial ei or s during key generation,
the polynomial has to be checked to see if the sum of its largest h coefficients is smaller
than a pre-defined bound E or S. If the sum is smaller than the bound, then the sampled
polynomial is accepted as valid. Otherwise, it is rejected and the procedure is repeated
again. We denote this procedure as the Hmax-Sum function.

3 Hardware Acceleration
In this section, we describe the details of the proposed hardware modules.

3.1 SHAKE
Our SHAKE core is based on the scalable slice-oriented SHA-3 architecture introduced
in [JA11,JS13]. In our design, we extended the basic architecture to include the padding
function and support for both cSHAKE and SHAKE with variable rate. As shown in [JS13],
the architecture scales very well, depending on the number of slices processed per cycle.
The slice-orientation allows several possibilities of folding the permutation by a factor of
2l with 0 ≤ l ≤ 6. With this strategy, the area is reduced, while an acceptable throughput
and throughput-area ratio is maintained.

Our main goal in this work is to build a hardware accelerator which is directly connected
to a processor core with a 32-bit interconnect, using its available standard interfaces.
Therefore, we chose to explore the mid-range implementations since the extreme ends have
several drawbacks in our use case. For the smallest cores, the main drawback is that they
are quite slow (e.g., [FV14] reports execution in more than 18,000 cycles and [JS19] in
more than 2,600 cycles). For high-speed cores, a high amount of parallelism, unrolling or
pipelining are used [HRG11], which would waste lots of resources in our scenario given
that the interconnect would be a bottleneck. For example, if a faster design such as the
one from [SEM19] is used to implement SHAKE-128, it would take at least 1344

32 = 42
cycles to load the data over a 32-bit wide interface, but only between 2 and 24 cycles for
the processing itself. Consequently, for our design we chose the low-end to mid-range with
0 ≤ l ≤ 5 (skipping l = 6, as in this case loading a new message block would take more
time than the actual computation).

Our architecture is summarized in the dataflow diagram in Figure 1. In comparison to
the original SHA-3 architecture [JA11, JS13], the following major changes have been
made:

• Support for cSHAKE and SHAKE, instead of SHA-3.
• Support for both 128-bit and 256-bit parameter sets.
• Direct integration of the padding functionality into the core.
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SW-HW Bridge

Control Logic 

Padding Logic Keccak Permutation State Distributed RAM

(c)SHAKE

 

Padded 
input data

  
Input frame

  
Output frame

Figure 1: Dataflow diagram of the SHAKE hardware module. Red arrows represent control
signals, green arrows represent data signals, and blue arrows represent the external I/O.

Protocol. Our core communicates with the processor using a new protocol with several
different 32-bit frames for data transmission:

• A command frame to distinguish between the four different operation modes cSHAKE-
128, cSHAKE-256, SHAKE-128, and SHAKE-256. This command frame also specifies
the output length generated by the SHAKE core.

• A customization frame to transfer the cSHAKE customization string to the core.
Our implementation follows the cSHAKE-simple strategy and supports a 16-bit
customization string [AAB+].

• A length frame, which specifies the length of the incoming data block. This length
information has to be either equal to the rate of the selected function, or less. If the
block to be transferred is the last message block to be absorbed, an additional end
flag in this length frame is set.

• A message frame that contains the message block to be absorbed. For a message
block of length m ≤ r, dm32e frames have to be transmitted.

The interface uses a handshake mechanism borrowed from AXI4-Lite [Ltd19] to implement
the data transfer.

Control Logic. The control logic uses the incoming frames to control the padding logic,
the permutation, and indirectly the distributed RAM used as state memory. If the core
is idle and a command frame is received, the control logic switches to the appropriate
internal state and expects as the next frame either the customization frame, if cSHAKE is
requested, or the length frame. The rate r for the relevant variant and the requested output
length d are stored internally. The rate r and the information, if SHAKE or cSHAKE has
to be performed, is later used to calculate the number of bits to absorb per message block
and the number of bits to squeeze. The information also controls the different encodings
of the customization string and the padding (since SHAKE and cSHAKE use slightly
different padding schemes).

If cSHAKE is requested, a customization frame is processed next. The necessary absorption
phase for the customization string is quicker than absorbing a full message block. According
to the cSHAKE encoding rules, the total length to be absorbed is only 64 bits for a 16-bit
customization string. Therefore, it is possible to absorb the customization string in only 64

2l

cycles, independently of the actual rate, plus the time to execute the Keccak permutation
once. After absorbing the string, the length frame is expected. A length frame describes
how many message frames have to be transmitted to the SHAKE core and also if it is the
last message block. Each message frame is directly absorbed, needing r

2l cycles per block,
depending on the configuration of the core. If the last message frame is received, the
SHAKE or cSHAKE padding, as well as Keccak’s padding, is applied. Afterwards, the
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Table 3: Performance of the proposed SHAKE hardware module and comparison with state-of-
the-art related work.

Design Features Platform Slices/LUTs/FFs TP/Area Fmax
(Func./Pad./Standard IO) (MBit/s/slice) (MHz)

p=1 (c)SHAKE-128/256, X, X Artix-7 249/811/490 0.29 178
p=2 (c)SHAKE-128/256, X, X Artix-7 273/908/450 0.48 163
p=4 (c)SHAKE-128/256, X, X Artix-7 312/1069/361 0.81 158
p=8 (c)SHAKE-128/256, X, X Artix-7 404/1466/270 1.31 164
p=16 (c)SHAKE-128/256, X, X Artix-7 657/2401/226 1.62 165
p=32 (c)SHAKE-128/256, X, X Artix-7 1149/4436/180 1.79 161

p=1 [Jun16] SHA-3-256, —, X Artix-7 172/—/— 0.42 179
p=2 [Jun16] SHA-3-256, —, X Artix-7 207/—/— 0.62 159
p=4 [Jun16] SHA-3-256, —, X Artix-7 247/—/— 1.19 179
p=8 [Jun16] SHA-3-256, —, X Artix-7 293/—/— 1.61 145
p=8 [Jun16] SHA-3-256, X, X Artix-7 482/—/— 2.03 180
p=16 [Jun16] SHA-3-256, —, X Artix-7 463/—/— 2.1 150
p=32 [Jun16] SHA-3-256, —, X Artix-7 900/—/— 1.99 138
[Arr19] SHA-3-256, —, — Virtex-6 49/193/41 0.22 198
[Arr19] SHA-3-256, —, — Virtex-6 60/174/71 0.42 426
[SEM19] SHA-3-256, —, — Virtex-6 1432/—/— 10.33 327

core automatically starts to squeeze out the requested amount of output data and sends
it back to the processor. Each step in the squeezing phase consists of transferring r bits
over the communication link, followed by one computation of the Keccak permutation, if
more bits need to be squeezed.

Sending data back to the processor is much simpler, as it is only necessary to transfer the
data in 32-bit chunks over the interface without any additional protocol overhead.

Padding Logic. The padding needs to fill up a message block to a multiple of the rate r.
Since our core supports bit-wise input lengths, this leads to 25×2l multiplexers, depending
on the number of slices processed in parallel. These multiplexers switch between the input
data, ‘0’ and ‘1’, depending on the length of the message to be absorbed. Beside the length
of the message block, the output of the multiplexer depends on the selected operation
mode of the SHAKE core, because the padding differs between SHAKE and cSHAKE.
Additionally, if the padding does not fit into the message block, an extra message block
needs to be absorbed.

Permutation. The implementation of the permutation follows the original slice-oriented
design from [JS13]. In summary, the implementation uses the following ideas. Firstly, if
2l slices are processed in parallel in each cycle, only a smaller part of the total Keccak
permutation – namely, 2l

64 of the combinational logic – must be implemented, but then
reiterated for 64

2l cycles for a complete round. The required combinational logic is imple-
mented in the permutation module, while the required bit-shuffling is implemented using
an addressing scheme in the state RAM module.

One important complicating factor for the implementation is data dependencies between
consecutive slices. These dependencies require that the permutation keep some internal
state between consecutive clock cycles, and also between two consecutive rounds, which
adds some overhead to the otherwise straightforward implementation of the combinational
logic part.
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Evaluation and Related Work. Table 3 shows the evaluation results for our SHAKE core
and some state-of-the-art results from the literature. The approximate number of clock
cycles for SHAKE and cSHAKE is calculated as follows:

cyclesSHAKE = 1 + dm1

r
e(1 + r + 1600

2l ) + dm2

r
e(r + 1600

2l )− 1600
2l

cyclescSHAKE = 64 + 1600
2l + cyclesSHAKE

where m1 is the length of the message to be absorbed, r is the rate, p = 2l is the number
of slices processed in parallel, and m2 is the output length. Both m1 and m2 are given in
bits. The number is only approximated, since it assumes that no extra message block for
the padding is needed.

For the purpose of comparing the throughput with previous works on SHA-3, we assume
that long messages are processed and only a short output with m2 < r is requested. Also,
Table 3 only includes results corresponding to SHA-3-256’s rate. As expected, the area
consumption of our core goes up compared to the implementation reported in [Jun16].
However, the general trend is very similar, with an offset between 70 and 249 slices, which
is due to the increased feature set, i.e., the original core does not implement any padding
functionality, and only includes one fixed hash function, namely SHA-3-256.

As expected, our design cannot compete with the smallest design from [Arr19], nor with
the high-throughput core from [SEM19] in their respective benchmark categories. However,
as mentioned earlier, both design targets would lead to a sub-optimal performance in our
use case with a standard 32-bit interface, because either the processing time of a low-end
core would not provide sufficient speed or a high-speed core would waste resources since it
would spend most of the time waiting for new input. Overall, we can see that an extended
feature set of a Keccak core can be implemented with a reasonable overhead.

Applicability to Other Cryptographic Schemes. SHAKE and cSHAKE are versatile
crypto primitives with broad applications in cryptographic protocols. Importantly, similar
to our qTESLA’s profiling results in Section 2.3, SHAKE and cSHAKE have been found to
be responsible for significant portions of the computing cost of several of the post-quantum
schemes in the NIST PQC process, including FrodoKEM [NAB+19], Saber [DKRV19],
NewHope [PAA+19], Kyber [SAB+19], and others. Thus, our SHAKE core offers a flexible
and efficient architecture with different area and performance trade-offs that can be easily
used to accelerate the hash and XOF computations of (post-quantum) schemes for different
applications.

3.2 Gaussian Sampler
As discussed in Section 2.4, we chose a CDT-based Gaussian sampler for our design due
to its simplicity and efficiency in hardware when the standard deviation σ is relatively
small. This sampler can be implemented with different search algorithms, such as full-scan
search, binary search, and others. Since binary search does not run in constant-time
on general-purpose computers due to the presence of cache memory, qTESLA’s software
implementation [ABB+20] employs full-scan search to prevent timing and cache attacks.
However, for hardware implementations, by exploiting the fact that the memory access
time is fixed and constant, we can speed up the CDT-based Gaussian sampler by use of
binary search.

We present our novel time-invariant CDT-based Gaussian sampling algorithm using binary
search in Algorithm 4. In the algorithm, CDT is a pre-computed table intended to be saved
into a memory block in hardware, the input to the Gaussian sampler is a random number
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Algorithm 4 Binary-search CDT-based Gaussian sampler
Require: a random number x of precision β generated by a PRNG.
Ensure: a signed Gaussian sample s of bit length dlog2(t)e+ 1.
. Fix pre-computed CDT table with t entries of precision β.
. Split CDT into two power-of-two parts s.t. the first sub-table’s last entry index “end_1” and
the second sub-table’s first entry index “first_2” are:

1: end_1 ← 2dlog2(t)e−1 − 1
2: first_2 ← t− 2dlog2(t)e−1

3: sign ← MSB(x), MSB(x)← 0
4: if x < CDT[end_1 + 1] then
5: min← 0, max← end_1 + 1 // To search sub-table [0, end_1]
6: else
7: min← first_2, max← t // To search sub-table [first_2, t − 1]
8: while min +1 6= max do
9: if x < CDT[(min + max)/2] then
10: max← (min + max)/2
11: else
12: min← (min + max)/2
13: return s← sign ? (−min) : (min)

x of precision β generated by a PRNG, and the output is a signed Gaussian sample s of
width dlog2(t)e+ 1, where t is the depth of CDT; see Table 2. The sign is determined by
the most significant bit of x. The basic idea of the algorithm is to use the CDT table to
fix two overlapping “power-of-two” sub-tables with the same size 2dlog2(t)e−1, and then run
a binary search in which the first, lower-address sub-table is given priority. For example,
for t = 624 the CDT table is split into the sub-tables of ranges [0, 511] and [112, 623]. The
former table is given priority and, hence, inputs falling in the overlapping range execute
binary search on it. Since memory access time is constant in our setting and the sampler
runs the same number of iterations for all possible inputs, the algorithm is protected
against timing attacks.

Figure 2 depicts the hardware architecture of our discrete Gaussian sampler GaussSampler,
which fetches uniform random numbers from the cSHAKE-based PRNG and outputs
samples to the outside modules. One PRNG FIFO is added in the design to buffer the input
random numbers. Similarly, one Output FIFO is added and used to buffer the output samples.
All the interfaces between the sub-modules are all implemented in AXI-like format. This
ensures that these sub-modules can easily communicate and coordinate the computations
with each other by following the same handshaking protocol. Our GaussSampler module is
implemented in a fully parameterized fashion: users can freely tune the design parameters
β, σ and τ depending on their scheme. Details of the sub-modules in Figure 2 follow
next.

Control Logic. When a valid request is received by the Control Logic, it immediately
triggers the PRNG module to generate new random numbers. When these random numbers
are generated, they are fed into the PRNG FIFO. Once there are values in the FIFO, the
Control Logic starts the binary search step by raising the start input signal in BinSearch.
After a valid sample gets generated by BinSearch, it is further sent to the Output FIFO. The
samples in the Output FIFO are further read by the outside modules. By introducing the
input and output FIFOs in the design, we can make sure that PRNG can keep generating
new pseudo-random numbers while BinSearch is working on the binary search computations
based on the previously generated random numbers. The computations of different sub-
modules are easily and well coordinated by handshaking with each other through their
AXI-like interfaces.
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Figure 2: Dataflow diagram of the GaussSampler and HmaxSum hardware modules. The
HmaxSum module can be conditionally added in the design to accelerate the qTESLA com-
putations.

cSHAKE PRNG. The PRNG module uses the SHAKE module described in Section 3.1 to
generate secure pseudo-random numbers. This module accepts a string seed as input data,
which is further fed to the SHAKE module together with a customization bit string for
cSHAKE computations. In order to generate random numbers of width β, β

32 -bit outputs
from SHAKE are buffered and further sent out as a valid random number.

Binary Search. As shown in Figure 2, the BinSearch module stores the pre-computed
values of the CDT table in a BRAM block, which is configured as single-ported with width
β and depth t. The design of the binary search module closely follows Algorithm 4. Three
registers are defined in the design: cur stores the current address of the CDT memory
entry that is being read; min and max store the range of the memory section that need
to be searched for. Apart from these registers, a size-β Comparator is also needed for the
comparison between the input random number from PRNG and the actual CDT value
stored at memory address cur. Depending on the comparison result, the cur value is
updated accordingly. In order to eliminate the idle cycles in the computation unit and
at the same maintain a relatively short logic path in the design, we pre-computed all the
possible values of cur and stored them in two separate registers pred1 and pred2. One of
the values in these registers are then used to update the value of cur once the comparison
finishes. This design choice guarantees that the total runtime of one full binary search
reaches the theoretical computational complexity dlog2(t)e. More importantly, we achieve
a good maximum frequency in the final design, as shown in Table 4.

Input/Output FIFOs. The PRNG FIFO and Output FIFO are deployed in our design
in order to flexibly adjust the overall performance of the GaussSampler module when
integrated with different outside modules. A larger PRNG FIFO allows the buffering of
more pseudo-random numbers from the PRNG while a larger Output FIFO makes sure that
the BinSearch module can generate more outputs even if the outside module is not fetching
the output on time. Depending on the input and output data rates, these two FIFOs can
adjust their sizes independently to make sure that the overall performance is optimal. A
series of experiments was carried out in our work in order to determine the best sizes for
these two FIFOs. We found that, given the hardware-software interface overhead, large
input/output FIFOs do not contribute to a better performance, and thus we pick 8 and 2
as the sizes for PRNG FIFO and Output FIFO, respectively. These two sizes are also used
for all the sampler-dependent evaluations in this work.
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Table 4: Performance of the GaussSampler module and comparison with state-of-the-art related
work. The synthesis results for our and related work exclude the PRNG overhead. The “total
cycles” in [HKR+18,TWS19] excludes the PRNG, whereas our work does include it. Results for
Artix-7 with ∗ correspond to the device model XC7A100TCSG324, otherwise they correspond to
XC7A200TFBG676.

Design σ/β/τ Batch Device Total cycles PRNG Slices/LUTs Fmax
size(b) (n samp.) cycles /FFs/BRAMs (MHz)

Ours,
qTESLA-p-I

8.5/64/9.17 512 Artix-7 19,046 18,948 113/278/295/2.5 131
8.5/64/9.17 1024 Artix-7 18,451 18,370 118/279/296/2.5 134

Ours,
qTESLA-p-
III

8.5/128/13.0 512 Artix-7 83,040 82,952 217/485/487/4.5 128
8.5/128/13.0 1024 Artix-7 81,904 81,860 191/450/487/4.5 123
8.5/128/13.0 2048 Artix-7 81,335 81,314 191/470/490/4.5 123

Ours 3.33/64/9.5 512 Artix-7∗ 9,506 9,474 114/268/283/2.5 101
[HKR+18] 3.33/64/9.5 512 Virtex-6 2,560 (w/o PRNG) 15/53/17/1 193
[TWS19] 3.33/64/9.5 512 Artix-7∗ 50,700 (w/o PRNG) -/893/796/3 113

Evaluation and Related Work. Table 4 shows the performance and synthesis results
of our GaussSampler module when synthesized with the qTESLA-p-I and qTESLA-p-III
parameters. The exact cycle count of our GaussSampler design for generating n samples
depends on the actual interface, and in our case, we provide cycles in an ideal setting, i.e.,
the outside modules are always holding valid inputs and are ready to read out outputs.
Given the fixed interface delay, our Gaussian sampler runs in constant-time. For lattice-
based schemes, usually a relatively large number of random samples are needed. For
qTESLA-p-I and qTESLA-p-III, n = 1024 and n = 2048 samples are needed in one
Gaussian sampling function call. To get these samples, GaussSampler can generate samples
in batches of size b. For the cycle reports, we show both the total cycle count, i.e., cycle
counts for the whole Gaussian sampling operation, as well as the cycle counts for running
the standalone PRNG module in order to generate n pseudo-random numbers.

As shown in Table 4, the best cycle count is achieved when b = n, as each new Gaussian
sampling function call requires to absorb a new customization bit string during the cSHAKE
computation. Further, we can see that the total cycle count of the sampler is very close
to the PRNG cycle count. This shows that the computations of PRNG and BinSearch are
perfectly interleaved by use of the input and output FIFOs.

In Howe et al. [HKR+18], constant-time hardware designs of Gaussian samplers based on
different methods are presented, including a binary-search CDT sampler. While Howe
et al. demonstrate that the runtime for generating one Gaussian sample by use of their
CDT-based Gaussian sampler can reach the theoretical bound dlog2(t)e, it is hard to apply
their design to real-life applications since, in their case the PRNG and the binary search
steps are carried out in sequence and there is no architectural support for the data and
control signal synchronizations between different modules. Also, we note that they use a
significantly faster, but arguably less cryptographically secure [FV14], PRNG based on
Trivium. In contrast, our GaussSampler module uses the NIST-approved, cryptographically
strong cSHAKE primitive as the underlying PRNG. Moreover, our design is fully pipelined
and highly modular, and users can easily replace the SHAKE core with their own PRNG
design, if desired.

The authors in [TWS19] presented a merge-sort based Gaussian sampler following an older
version of the qTESLA software implementation. Their design provides a fixed memory
access pattern which eliminates some potential timing and power side-channel attacks.
However, the merge-sort based sampling method is much more expensive compared to our
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Figure 3: Dataflow diagram of the PolyMul hardware module.

binary search based approach in terms of both cycle counts and area usage, as shown in
Table 4.

Applicability to Other Lattice-Based Schemes. Our Gaussian sampler hardware mod-
ule is very flexible and can be directly used in many lattice-based constructions with
relatively small σ, as is the case of, for example, the NIST PQC key encapsulation candi-
date FrodoKEM [NAB+19] and the binary variant of the lattice-based signature scheme
Falcon [PFH+19].

3.3 Polynomial Multiplier
Figure 3 shows the dataflow of the hardware module PolyMul, including four main sub-
modules: Controller, NTT, ModMul, and PointwiseMul. The Controller module contains
all of the controlling logic while the other sub-modules serve different computation pur-
poses: NTT is used for forward or inverse NTT transformation, ModMul is the modular
Montgomery multiplier, and PointwiseMul is used for the coefficient-wise polynomial multi-
plications.

The core of PolyMul is the hardware implementation of the NTT algorithm. Hence, in this
section we first discuss and describe our memory efficient NTT algorithm that is suitable
for hardware implementations. Afterwards, we describe the other three sub-modules.
At the end of the section we evaluate the performance, explain the applicability of the
accelerator to other schemes, and discuss related work.

Memory Efficient and Unified NTT Algorithm. Most hardware implementations of the
NTT-based polynomial multipliers are based on a unified NTT algorithm [RVM+14,DB16,
KLC+17] in which both the forward and inverse NTT transformations are performed
using the Cooley-Tukey (CT) butterfly algorithm (denoted as CT-NTT algorithm in what
follows). Using the same algorithm, however, requires a pre-scaling operation followed
by a bit-reversal step on the input polynomials in NTT and NTT−1, and one additional
polynomial post-scaling operation after NTT−1. In recent years, the CT-NTT algorithm
has been greatly optimized, e.g., in [RVM+14,DB16]. Unfortunately, these optimizations
increase the complexity of the hardware implementation.

In this work, we took a different direction: we unified the algorithms proposed by Pöp-
pelmann, Oder and Güneysu in [POG15] for lattice-based schemes. In their software
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implementation, [POG15] adopted an NTT algorithm which relies on a CT butterfly for
NTT and a Gentlemen-Sande (GS) butterfly for NTT−1. By using the two butterfly algo-
rithms, the bit-reversal steps are naturally eliminated. Moreover, polynomial pre-scaling
and post-scaling operations can be merged into the twiddle factors by taking advantage of
the different structures within the CT and GS butterflies.

A direct implementation of the CT and GS algorithms to support polynomial multiplication
is inexpensive in software. However, when mapping them to hardware, the two separate
algorithms would require two different hardware modules, leading to twice as much
hardware logic when compared to a CT-NTT based hardware implementation. In our
work, we unify the CT and GS butterflies based on the observation that both algorithms
require the same number of rounds and within each round, a fixed number of iterations are
applied. This leads to a unified module that performs both NTT and NTT−1 computations
with reduced hardware resources while keeping the performance advantage of using the
two butterflies. Our unified algorithm, called CT-GS-NTT in the remainder, is depicted
in Algorithm 5. Depending on the operation type (NTT or NTT−1), the control indices
m0,m1 and the coefficients a[j], a[j +m] are conditionally updated based on the CT or
GS butterfly.

Roy et al. [RVM+14] presented a new memory access scheme by carefully storing polynomial
coefficients in pairs. Inspired by their idea, we incorporate a variant of their memory
access scheme in our unified CT-GS-NTT algorithm to reduce the required memory; see
lines 5–16 of Algorithm 5.

Apart from the logic units, four memory blocks are needed in our NTT design: mem_x
stores the input polynomial a, which is already represented in the NTT domain, mem_y
stores the input polynomial b, which later needs to be transformed by the NTT module,
mem_zeta and mem_zetainv store the pre-computed twiddle factors needed in the NTT
and NTT−1 transformations, respectively. mem_x and mem_y are both configured as
dual-port RAMs with width 2 · (dlog2(q)e + 1) and depth n/2, while mem_zeta and
mem_zetainv are configured as single-port ROMs with width (dlog2(q)e+ 1) and depth n.
Details of the sub-modules are expanded next.

Controller Module. The controller module in PolyMul is responsible for coordinating
the different sub-modules. For the execution of a polynomial multiplication of the form
x ·y = NTT−1(x◦NTT(y)), the polynomial y is first received and written to mem_y. Then,
the forward NTT transformation on y begins by use of the NTT module. The computation
result NTT(y) is written back to mem_y. While the forward NTT transformation is
ongoing, the polynomial x can be sent and stored in mem_x. Once mem_x gets updated
with polynomial x and mem_y gets updated with the result NTT(y), the PointwiseMul
module is triggered. The PointwiseMul module writes back its result to mem_x, which is
later used in computing NTT−1. The final result of NTT−1 is kept in mem_x, from which
it can be sent in 32-bit chunks over the interconnect bus.

NTT Module. The NTT module is designed according to our unified CT-GS-NTT
algorithm in Algorithm 5. It uses a Butterfly unit as a building block and interacts with
two memories: one stores the polynomial, and the other one stores the pre-computed
twiddle factors. The polynomial memory is organized in a way that each memory content
contains a coefficient pair, as defined in Algorithm 5. The organization of the polynomial
memory ensures that two concurrent memory reads prepare two pairs of the coefficients
needed for two butterfly operations. In this way, we can fully utilize the Butterfly unit.
The architecture of NTT is fully pipelined. By use of our NTT module, one forward NTT
or inverse NTT operation takes around (n2 · log2(n)) cycles (plus a small fixed overhead for
filling the pipelines).
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Algorithm 5 Memory-efficient and unified CT-GS-NTT Algorithm
Require: a =

∑n−1
i=0 aix

i ∈ Rq, with ai ∈ Zq; pre-computed twiddle factors W
Ensure: NTT(a) or NTT−1(a) ∈ Rq
. Depending on NTT or NTT−1, n/2 or 1 is assigned to m0; similarly in the lines below
1: m0 ← n/2 or 1; m1 ← 1/2 or 2; n0 ← 1 or 0; n1 ← n or n/2
2: k ← 0, j ← 0
3: for m = m0;n0 < m < n1;m = m ·m1 do // First (log2(n) − 1) NTT rounds
4: for i = 0; i < n

2 ; i = j + m
2 do

5: w ←W [k]
6: for j = i; j < i+ m

2 ; j = j + 1 do
7: (t1, u1)← (a[j], a[j +m]) // From mem[j]
8: (t2, u2)← (a[j +m ·m1], a[j +m+m ·m1]) // From mem[j + m · m1]
9: r1 ← w · u1 or w · (t1 − u1)
10: r2 ← w · u2 or w · (t2 − u2)
11: a[j]← t1 + r1 or t1 + u1
12: a[j +m]← t1 − r1 or r1
13: a[j +m ·m1]← t2 + r2 or t2 + u2
14: a[j +m+m ·m1]← t2 − r2 or r2
15: mem[j]← (a[j], a[j +m ·m1])
16: mem[j +m ·m1]← (a[j +m], a[j +m+m ·m1])
17: k ← k + 1
18: for i = 0; i < n

2 ; i = i+ 1 do // Last NTT round
19: w ←W [k]
20: (t1, u1)← (a[i], a[i+m]) // From mem[i]
21: r1 ← w · u1 or w · (t1 − u1)
22: a[j]← t1 + r1 or t1 + u1
23: a[j + 1]← t1 − r1 or r1
24: mem[i]← (a[i], a[i+m])
25: k ← k + 1 or k ← k

26: return a

Modular Multiplier. Typically, integer multiplication is followed by modular reduction
in Zq in lattice-based implementations operating over the ring Rq (this, for example, is
the case of qTESLA’s software implementation). Hence, we designed a ModMul module
that combines both operations. Since our design does not exploit any special property of
the modulus q, our modular multiplier supports a configurable modulus. Figure 4 shows
the dataflow of the ModMul module.

For the reduction operation we use Montgomery reduction [Mon85], as shown in Algorithm 6.
The input operands are two signed integers x, y ∈ Zq, and the modular multiplication result
is z = x · y mod q with output range (−q, q]. One modular multiplication involves three
integer multiplication operations, one bit-wise AND operation, one addition operation,
and one right shift operation. One final correction operation is also needed to make sure
that the result is in the range (−q, q].

To be able to do one modular multiplication within each clock cycle, while maintaining a
short logic path, we implemented a pipelined modular multiplier module in hardware. As
shown in Figure 4, three integer multipliers are instantiated in the ModMul module: one
multiplier accepting two input operands of bit length dlog2(q)e+ 1, one multiplier with an
operand fixed to the constant qinv, and one multiplier with inputs q and an operand of
some width b (typically, b is the multiple of the computer word-size immediately larger
than dlog2(q)e). The multiplication results of these multipliers are all buffered before being
used in the next step to make sure that the longest critical path stays within the multiplier.
The final result is also buffered. Therefore, one modular multiplication takes four cycles
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Figure 4: Dataflow diagram of the ModMul module. Register buffers are shown as small blue
boxes in the diagram.

Algorithm 6 Signed modular multiplication with Montgomery reduction
Require: x, y ∈ (−q, q] and qinv = −q−1 mod 2b for a suitable value b
Ensure: z = x · y mod q with z ∈ (−q, q]
1: z = x · y
2: t = (z · qinv) ∧ (2b − 1)
3: t = t · q
4: z = z + t
5: z = z � b
6: if (z > q) then
7: z = z − q
8: return z

to complete. However, since the ModMul module is fully pipelined, right after the inputs
are fed into the design, new inputs can always be sent in the very next clock cycle. This
ensures that within each clock cycle one modular multiplication operation can be finished
on average.

Pointwise Multiplication. The PointwiseMul module simply multiplies two polynomials
in an entry-wise fashion. Once the forward NTT transformation on input polynomial y
finishes, the memory contents in mem_y are updated with NTT(y). Then the PointwiseMul
module is triggered: memory contents from mem_y and mem_x are read out, multiplied,
reduced, and finally get written back to mem_x. This process is carried out repeatedly
until all the memory contents are processed. For both NTT and PointwiseMul modules,
the modular multiplications are realized by interacting with the same ModMul.

Evaluation. Table 5 provides the performance and synthesis results of our modular
multiplier as well as the polynomial multiplier. As we can see, when synthesized with the
parameters (n, q) required by qTESLA-p-I and qTESLA-p-III, the cycles achieved by the
PolyMul module are close to the theoretically estimated n · log2(n) + n

2 cycles. The area
utilization for the qTESLA-p-III design only increases slightly when compared to that of
qTESLA-p-I, and both have similar maximum frequency.

Related Work. Most of the existing designs of NTT-based polynomial multipliers are
implemented for fixed parameters. While this might lead to efficient hardware implemen-
tation, the implementations are not easily reusable by other than the targeted schemes
or as soon as new parameters arise. To be able to discuss the differences of these works
and our fully parameterizable design, we first compare with a compact, state-of-the-art
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Table 5: Performance of the hardware modules ModMul and PolyMul (with and without ModMul
included) and comparison with related state-of-the-art work.

Parameters Tunable Platform Cycles Slices/LUTs/FFs Fmax
(n, q) (n, q) /DSPs/BRAMs (MHz)

ModMul

(—, 343576577) X,X Artix-7 1 102/212/313/0/11 151
(—, 856145921) X,X Artix-7 1 96/219/243/0/11 147

PolyMul, w/o ModMul

(1024, 343576577) X,X Artix-7 11, 455 502/1735/758/6/0 126
(2048, 856145921) X,X Artix-7 24, 785 506/1736/783/8/0 124

PolyMul, w/ ModMul

(1024, 343576577) X,X Artix-7 11, 455 582/1977/991/6/11 124
(2048, 856145921) X,X Artix-7 24, 785 555/1981/1021/8/11 124

PolyMul, w/ ModMul, comparison with related work

(1024, 65537), Ours X,X Spartan-6 11, 455 545/1576/361/4/5 90
(1024, 65537) [DB16] X,— Spartan-6 11, 826 251/—/—/4.5/1 241
(2048, 65537), Ours X,X Spartan-6 24, 785 543/1601/368/8/5 90
(2048, 65537) [DB16] X,— Spartan-6 25, 654 269—/—/9/1 207
(1024, 12289), Ours X,X Artix-7 11, 455 271/944/467/3/3 141
(1024, 12289) [KLC+17] —,— Artix-7 5494 —/2832/1381/8/10 150

NTT-based polynomial multiplier [DB16]. This design shares one butterfly operator for
NTT and NTT−1 computations and therefore is better suited for embedded systems, which
fits to our design target.

The design [DB16] adopts a CT-NTT based approach, and exploits some optimizations,
such as the improved memory scheme [RVM+14]. However, their design is based on a
fixed modulus q, where q is the biggest Fermat prime q = 216 + 1 = 65537. The shape of q
supports very cheap reduction essentially using additions and shifts and, therefore, can be
finished within one clock cycle. In this case, the pipelines within the polynomial multiplier
in [DB16] are quite straightforward to design as the most expensive modular reduction
operation gets its result within the same clock cycle. This explains for the most part the
synthesis results gap observed in Table 5 between [DB16] and our design.

Another line of optimizations is to use multiple butterfly units to parallelize the NTT,
such as in [KLC+17] where four butterfly units are used to support the parameters
(n, q) = (1024, 12289). We synthesized our PolyMul module with the same parameters
for comparison. As shown in Table 5, the use of multiple butterfly units working in
parallel improves the performance in terms of cycles, but increases significantly the area
overhead.

Fair comparisons with these works [DB16,KLC+17] are hard to achieve as none of them
support flexible parameters (n, q). Our design does not pose any constraints on the
polynomial size n or the modulus q, given its fully pipelined architecture.

Applicability to Other Lattice-Based Schemes. Our NTT module is flexible in the sense
that it can support any NTT implementation with q ≡ 1 mod 2n over the ring Rq with
n being a power-of-two. Hence, it can be used to accelerate the NTT computations
of, e.g., the lattice-based signature scheme Dilithium [LDK+19] and the KEM scheme
NewHope [PAA+19].
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Algorithm 7 Sparse Polynomial Multiplication
Require: a =

∑n−1
i=0 aix

i ∈ Rq with ai ∈ Zq, and list arrays pos_list ∈ {0, ..., n − 1}h and
sign_list ∈ {−1, 1}h containing the positions and signs, resp., of the nonzero elements of a
polynomial c ∈ Hn,h

Ensure: f = a · c ∈ Rq
1: Set all coefficients of f to 0
2: for i = 0, ..., h− 1 do
3: pos← pos_list[i]
4: for j = 0, ..., pos− 1 do
5: fj ← fj − sign_list[i] · aj+n−pos

6: for j = pos, ..., n− 1 do
7: fj ← fj + sign_list[i] · aj−pos

8: return f

3.4 Sparse Polynomial Multiplier
In qTESLA, the sparse polynomial multiplication involves a dense polynomial a =∑n−1
i=1 aix

i ∈ Rq and a sparse polynomial c =
∑n−1
i=1 cix

i, where ci ∈ {−1, 0, 1} with
exactly h coefficients being non-zero. Two arrays pos_list and sign_list are used to
store the information of the indices and signs of the non-zero coefficients of c, respectively.
In the software implementation of qTESLA, Algorithm 7 is used for sparse polynomial
multiplications to improve the efficiency by exploiting the sparseness of c.

Polynomial multiplication in Rq can be seen as the following matrix-vector product:

a · c =


a0 −an−1 · · · −a2 −a1
a1 −a0 · · · −a3 −a2
...

...
. . .

...
...

an−2 an−3 · · · a1 −an−1
an−1 an−2 · · · a0 a0


︸ ︷︷ ︸

=:A


c0
c1
...

cn−2
cn−1

 .

Since the polynomial c is very sparse, the sparse polynomial multiplication can be imple-
mented in a column-wise fashion. First, a non-zero coefficient ci is identified. Its index
i determines which column of the matrix A will be needed for the computation while
the value of ci ∈ {−1, 1} determines whether it is a column-wise subtraction or addition.
Once ci is chosen, the ith column of A needs to be constructed based on the non-sparse
polynomial a and the index i. While constructing the ith column of A, the column-wise
computation between the intermediate result and the newly constructed column Ai can
happen in parallel. Computations above are repeated until the columns of A mapping to
the h non-zero entries in c are all reconstructed and processed.

In the software implementation of qTESLA, two sparse polynomial functions are defined:
SparseMul8 and SparseMul32, depending on the size of the coefficients of a. For our
hardware implementation it is advantageous to implement one unified module where all
coefficients are assumed to be in [−q, q).

Hardware Module. For the implementation of our hardware module SparseMul, we
followed the idea above but added more flexibility in the design. Moreover, our sparse
polynomial multiplier is pipelined and fully parameterized. In particular, users can choose
the following two parameters: the size of the polynomial n and the number of non-zero
coefficients h in the sparse polynomial c. In addition, the performance parameter p can
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Figure 5: Dataflow diagram of the SparseMul hardware module.

be used to achieve a trade-off between performance and area where p ∈ {2, 4, . . . , h2 }.
Essentially, p determines the number of columns of the matrix A that are to be processed
and computed in parallel.

To enable such parallelism, p2 dual-port memory blocks (denoted by mem_dense in Figure 5)
each keeping a copy of a’s coefficients are needed. Note that since mem_dense are of dual
ports, two memory reads can be issued in parallel and thus two columns of A can be
constructed in parallel. mem_dense are instantiated with ROMs configured with width
(dlog2 qe + 1) and depth n. To store the information of the sparse polynomial c, given
its sparsity, we allocated a much smaller memory chunk mem_sparse which is of width
p · (log2 n+ 1) and depth dhp e. Each entry of mem_sparse contains p {index, sign} tuples
mapping to p non-zero coefficients in c. To be able to read and update the intermediate
results in parallel during computation, mem_res is allocated for storing the intermediate
results and it has the same configuration as mem_dense.

Apart from the memory blocks, one controller module and one data processing module are
needed. The controller module issues read and write requests to all the memory modules
and passes data through the rest of the modules. Once the SparseMul module starts,
the controller module issues a read request to mem_sparse. The output of mem_sparse
contains p tuples of {index, sign}. Based on these index values, the controller module
starts issuing separate reads continuously to each mem_dense. In parallel, the controller
issues continuous read requests to mem_res (initialized with zeroes) starting from memory
address 0. The data processing unit keeps taking p memory outputs from the mem_dense
memories as input. These values first get conditionally negated based on the construction
of matrix A and later get further accumulated based on the sign values. The accumulation
result later gets corrected to range [−q, q) through log2(p) comparisons. The corrected
result then gets added to the intermediate result (the output of the mem_res memory),
corrected to range [−q, q) and finally written back to mem_res in order. Once all the
memory contents of mem_res get updated, a new memory read request is issued to
mem_sparse whose output then specifies the next p columns of A to be processed. This
process repeats for dhp e times. When SparseMul finishes, the resulting polynomial f = a · c
is stored in mem_res memory.

Evaluation. In total, it takes around n · dhp e cycles to finish the sparse polynomial
multiplication by use of the SparseMul hardware module. As shown in Table 6, the
achieved cycle counts are close to the theoretical bound. As the performance parameter p
doubles, the cycle count halves, approximately. However, the area overhead of the design
also increases as the parallelism of the SparseMul design increases, especially for p ≥ 8.
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Table 6: Performance of the hardware module SparseMul.

Design Cycles Slices LUTs FFs Fmax BRAMs Time×Area
(MHz) (RAMB36)

qTESLA-p-I, n = 1024, h = 25

p=2 13, 404 127 393 240 134 2 1, 702, 308
p=4 7225 212 661 375 138 3 1, 531, 700
p=8 4133 336 1063 610 135 5 1, 388, 688
p=16 2069 573 1819 1050 139 9 1, 185, 537

qTESLA-p-III, n = 2048, h = 40

p=2 41, 101 143 431 252 174 4 5, 877, 444
p=4 20, 561 222 702 391 175 6 4, 564, 542
p=8 10, 286 356 1138 643 173 10 3, 661, 815
p=16 6175 618 1926 1109 138 18 3, 816, 150

Depending on the user’s requirements, the design parameter p can be freely tuned to
achieve a certain area-performance trade-off.

Applicability to Other Lattice-Based Schemes. To our knowledge, this is the first
hardware module of a fully parameterized sparse polynomial multiplier targeting the
multiplication between a dense polynomial a and a sparse polynomial c with h non-zero
coefficients from {−1, 1}. Since SparseMul is fully parameterized, it could be adapted
to other schemes performing a similar computation. Examples of modern schemes us-
ing some variant of these sparse multiplications are, for example, the signature scheme
Dilithium [LDK+19] and the KEM scheme LAC [LLJ+19].

3.5 Hmax-Sum

Algorithm 8 Hmax-Sum Problem
Require: a =

∑n−1
i=0 aix

i.
Ensure: sum of the h largest coefficients of a ∈ Rq.
1: sum← 0
2: for i = 0; i < h; i = i+ 1 do // Initialize the size-h array.
3: hmax_array[i]← 0
4: for i = 0; i < n; i = i+ 1 do
5: min_data← hmax_array[0]
6: for j = 0; j < h; j = j + 1 do // Find the least value in the array.
7: comp← (hmax_array[j] < min_data)
8: if (comp = true) then
9: min_data← hmax_array[j]
10: min_index← j

11: update← (a[i] > min_data)
12: if (update = true) then // Update the array.
13: hmax_array[min_index]← a[i]
14: sum← (sum−min_data + a[i])
15: return sum

To solve the Hmax-Sum problem, a natural solution is to first find out the largest h
coefficients of the polynomial and then to compute the sum of them. The software
implementation of qTESLA adopts this method: bubble sort is repeatedly used for h
rounds. All the coefficients are first written in a list. For the first round, the elements in
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Table 7: Performance of the GaussSampler, HmaxSum, and GaussSampler + HmaxSum hardware
modules; the last combination of modules gives the best performance due to parallelized execution.

Module Cycles Slices LUTs FFs Memory Fmax
(PRNG Incld.) (RAMB36) (MHz)

qTESLA-p-I

GaussSampler 18, 451 118 279 296 2.5 134
HmaxSum 28, 686 27 83 66 0 356
GaussSampler + HmaxSum 29, 293 144 362 360 2.5 130

qTESLA-p-III

GaussSampler 81, 335 191 470 490 4.5 123
HmaxSum 88, 093 40 94 70 0 389
GaussSampler + HmaxSum 88, 676 236 560 558 4.5 125

the list are scanned, compared and conditionally swapped until the biggest element sinks
to the end of the list. This element then gets removed from the list and added to the sum.
The above steps are repeated h times.

A naive implementation of the above method can be easily migrated to hardware, but it
would require allocating memory of size O(n) since all polynomial coefficients have to be
stored. In our work, we observed that such a large memory requirement can be reduced to
O(h) as described next and shown in Algorithm 8. First a size-h array hmax is initialized.
When a coefficient is fed to the algorithm, a full scan of the hmax array is carried out
with the target of finding out the value min_data and the index min_index of the smallest
element in hmax. Afterwards, the input coefficient is compared with min_data: if the
input coefficient is bigger, min_data stored at index min_index in the array is updated
with the coefficient. In parallel, the sum is updated according to line 14 of Algorithm 8.
This algorithm ensures that the hmax array always stores the biggest coefficients that have
been scanned.

Implementation. Based on Algorithm 8, we designed the following hardware module
HmaxSum (see Figure 2): when a reset signal is received, the memory of depth h (mem_h)
within the module is initialized with zeroes. Afterwards, valid coefficients can be sent
to HmaxSum through its AXI-like interface. To find out the smallest memory content, a
full-scan is carried out on mem_h and after the scan finishes, the value and the address
of the smallest element are stored in two separate registers min_data and min_addr.
Afterwards, a comparison between the input coefficient and min_data is carried out, and
the memory content stored at memory address min_addr is conditionally updated: if the
input coefficient is larger, the memory content stored at address min_addr is overwritten
with the coefficient value. In parallel, the sum register is conditionally updated. After
all the input coefficients of a polynomial are processed by HmaxSum, the value of sum is
returned as the result.

Evaluation. Apart from low memory requirements, another advantage of adopting Algo-
rithm 8 is that the HmaxSum module can run in parallel with the GaussSampler module.
Once a valid sample is generated by GaussSampler, HmaxSum can immediately start pro-
cessing it. As shown in Table 7, when running the HmaxSum module alone, it is quite
expensive in terms of cycles as the complexity of Algorithm 8 is O(n · h). However,
parallelizing the execution of GaussSampler and HmaxSum leads to almost the same cycle
count as running HmaxSum alone. In terms of area utilization, the HmaxSum module is
quite lightweight and, hence, introduces a very small overhead.
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4 Performance Evaluation and Comparison
Based on our flexible, to-be open-sourced modules we implemented a hardware-software
co-design of the qTESLA algorithm with provably secure parameter sets. To demonstrate
the effectiveness of the hardware accelerators, while targeting system-on-chip type designs
with standard 32-bit interfaces, we prototyped the hardware-software co-design on a RISC-
V based Murax SoC. Figure 6 shows the block diagram of the SoC, with the hardware
accelerators highlighted in gray. The whole design was further implemented on an Artix-7
FPGA board from Xilinx.

The SoC uses the VexRiscv3 32-bit RISC-V CPU implementation written in SpinalHDL4. It
supports the RV32IM instruction set and implements a 5-stage in-order pipeline. The open-
source RISC-V implementation was selected so the whole design can be freely distributed.
Other processors such as Arm on Zynq board, however, can easily be used with our work
(requiring only minor modifications to the interfaces). The closed-source Cortex-M series
may be most similar to the open-source RISC-V used in this work, in terms of performance,
and we compare to designs based on Cortex-M where possible.

4.1 FPGA Evaluation Platform
We evaluated our design using an Artix-7 AC701 FPGA as test-platform which is a
platform recommended by NIST for PQC hardware evaluations. This board has a Xilinx

3https://github.com/SpinalHDL/VexRiscv/
4https://spinalhdl.github.io/SpinalDoc/

https://github.com/SpinalHDL/VexRiscv/
https://spinalhdl.github.io/SpinalDoc/
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XC7A200T-2FBG676C device. We used Vivado Software Version 2018.3 for synthesis.
Figure 7 shows the evaluation setup for our experiments. Since the AC701 board has
very limited number of GPIOs pins, we connected an FMC XM105 Debug Card to the
FMC connector on the FPGA. This allows for sufficient GPIO pins to connect JTAG
and UART to the SoC instantiated in the FPGA (in addition to the usual JTAG used
to program the FPGA itself). We tested our implementations on the AC701 board at
its default clock of 90 MHz. However, to achieve a fair comparison, our speedup reports
presented in the following sections are based on the maximum frequency reported by the
synthesis tools.

We also successfully tested our implementations on a DE1-SoC evaluation board from
Terasic which has an Intel (formerly Altera) Cyclone V SoC 5CSEMA5F31C6 device.
The same cycle counts and similar synthesis results are achieved on this platform as our
implementation is neither platform-specific nor dependent on a specific FPGA vendor.
This shows the open-source design can be easily ported to different development platforms
and does not depend on a specific hardware setup.

4.2 Hardware-Software Interface used in Evaluation
To accelerate the compute-intensive operations in qTESLA, the dedicated hardware
accelerators described in Section 3 are added to the SoC as peripherals. The SoC uses an
32-bit APB bus for connecting its peripherals to the main processor core. Our hardware
modules are connected to this APB bus, as shown in Figure 8.

Different peripherals on the APB bus can be accessed by the software through control
and data registers that are memory mapped to different addresses. On the software side,
programs use read and write instructions to pre-defined addresses to access the peripherals.
On the hardware side, the 32-bit interface bus includes a decoder for controlling which
peripheral a read or write should go to. Further, for each accelerator, an Apb3Bridge
module is developed to translate the APB signals to/from the control signals of the
accelerator. When porting the design to another standard bus, only the Apb3Bridge
modules would require modification.
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Table 8: Performance of different functions on software, hardware and HW-SW co-design. The
“Speedup” columns are expressed in terms of cycle counts.

Function SW HW HW-SW IO Speedup Speedup
Cycles Cycles Cycles Overhead(%) SW/HW SW/HW-SW

qTESLA-p-I

SHAKE128 44, 683 505 1586 214.1 88.5 28.2
GaussSampler 3, 540, 807 18, 451 26, 286 42.5 191.9 134.7
GaussSampler + HmaxSum 4, 009, 628 29, 293 29, 397 0.4 136.9 136.4
PolyMul 558, 365 11, 455 31, 473 174.8 48.7 17.7
SparseMul8 365, 207 7225 28, 181 290.1 50.5 13.0
SparseMul32 571, 165 7225 28, 180 290.0 79.1 20.3

qTESLA-p-III

SHAKE256 45, 581 473 1562 230.2 96.4 29.2
GaussSampler 16, 707, 765 81, 335 81, 505 0.2 205.4 205.0
GaussSampler + HmaxSum 18, 195, 064 88, 676 88, 748 0.1 205.2 205.0
PolyMul 1, 179, 949 24, 785 63, 743 157.2 47.6 18.5
SparseMul8 1, 160, 213 20, 561 62, 216 202.6 56.4 18.6
SparseMul32 1, 780, 940 20, 561 62, 226 202.6 86.6 28.6

Software Modifications. We modified the corresponding software functions in qTESLA’s
software reference implementation to replace them with function calls to our hardware
accelerators. When the hardware accelerators are added in the Murax SoC, the adapted
software functions simply communicate to/from the accelerators. The new functions
maintain the same parameters as their original counterparts. Thus, only the function
definitions are changed, and software is re-compiled to use the hardware.

4.3 Evaluation of qTESLA
The hardware accelerators described in Section 3 can be added to the Murax SoC by use
of the APB bridge modules as described in Section 4.2 to accelerate the operations in the
qTESLA scheme. Due to the modularity in the design of the SoC, the hardware accelerators
can be easily added to and removed from the SoC before synthesis. Depending on the users’
requirements, any of the hardware accelerators (e.g., SHAKE, GaussSampler, GaussSampler
+ HmaxSum, PolyMul and SparseMul) can be added to the design for accelerating part of
the compute-intensive operations in qTESLA. Different hardware accelerators can also be
combined and added to accelerate different computations. Below we evaluate the three
operations: key generation, signature generation, and signature verification with different
combinations of the accelerators.

4.3.1 Speedup over Software Functions

Table 8 shows the performance of calling the SHAKE-128 and SHAKE-256 functions from
the pure software, pure hardware, and hardware-software co-design. The input length is
fixed to 32 bytes and the output length is fixed to 128 bytes, as a testing example. As
we can see from the table, the SHAKE hardware accelerator achieves very good speedups
in terms of clock cycles compared to running the corresponding functions on the pure
software. Smaller speedups are achieved when the SHAKE module is added to the Murax
SoC as an accelerator due to the IO overhead for sending the inputs and returning the
outputs between the software and the hardware. With the IO overhead taken into account,
function calls to the SHAKE function in the “Murax + SHAKE” design still leads to an
over 28× speedup over the pure software implementation.
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Table 8 also shows the performance of calling the Gaussian Sampler function from the pure
software, pure hardware, and hardware-software co-design. The input seed is fixed to 32
bytes and the output length is fixed to 1024 and 2048 for qTESLA-p-I and qTESLA-p-III,
respectively, as is the case in the qTESLA software reference implementation. As we can
see, when the Gaussian Sampler function is called in the design “Murax + GaussSampler”,
over 134× and 205× speedups are achieved compared to calling the functions on the pure
software for qTESLA-p-I and qTESLA-p-III, respectively. The reason for achieving such
high speedups is threefold: from the algorithm level, we adopted a binary-search based CDT
sampling algorithm in our design while the qTESLA software reference implementation uses
a more conservative full-scan based CDT sampling algorithm. In terms of implementation,
our fully pipelined hardware design brings a very good hardware acceleration over a pure
software-based implementation. Moreover, when the GaussSampler module is added as
an accelerator to the Murax SoC, the valid outputs from the hardware accelerator are
returned to the software in parallel with the hardware computation phase. In this case,
the IO overhead is very well hidden and the speedups brought by the hardware accelerator
can be well exploited.

Table 8 then shows the performance of calling the Gaussian Sampler and Hmax-Sum
functions from the pure software, pure hardware, and hardware-software co-design. As
we can see, when these two functions are called in the design “Murax + GaussSampler +
HmaxSum”, over 136× and 205× speedups are achieved compared to calling the functions
on the pure Murax SoC for qTESLA-p-I and qTESLA-p-III, respectively. We find it
interesting to note that by introducing a lightweight HmaxSum accelerator to the “Murax +
GaussSampler” design, the IO overhead for calling the Gaussian sampling function is almost
negligible as the output returning phase is perfectly overlapped with the computations of
the HmaxSum module.

Next, Table 8 shows the performance of calling the polynomial multiplication function
from the pure software, pure hardware, and hardware-software co-design. As shown in the
table, running one polynomial multiplication operation by use of the PolyMul accelerator
takes more than 47× less cycles compared to the pure software implementation. However,
when the function is called from the “Murax + PolyMul” design, two polynomials with
large coefficients have to be sent to the hardware and one polynomial has to be returned to
the software, leading to a rather big IO overhead. Therefore, only 17× and 18× speedups
are achieved for qTESLA-p-I and qTESLA-p-III, respectively.

Table 8 finally shows the performance of calling the sparse polynomial multiplication func-
tions SparseMul8 and SparseMul32 from the pure software, pure hardware, and hardware-
software co-design. As we can see, running one SparseMul8 operation by use of the hardware
accelerator takes the same number of cycles as running one SparseMul32 operation since
the same SparseMul module is used. When calling the sparse polynomial functions in
the “Murax + SparseMul” design, one polynomial with large coefficients and two small
arrays have to be sent to the hardware and one big polynomial has to be returned to the
software, yielding a big IO overhead. With these IO overhead taken into account, when
the SparseMul8 and SparseMul32 functions are called in the “Murax + SparseMul” design,
over 20× and 28× speedups are achieved compared to running the same function in pure
software for qTESLA-p-I and qTESLA-p-III, respectively.

4.3.2 Key Generation Evaluation

Table 9 shows the performance and maximum frequency of running qTESLA’s key gen-
eration on different designs. The cycles are reported as the average cycle counts for 100
executions. The column “speedup” reports the speedup of the time when adding the
hardware module(s) of the corresponding row compared to running on the pure Murax SoC
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(first row). As we can see, adding a SHAKE accelerator gives over 2.4× and 2.2× speedups
compared to running the key generation operation on the pure Murax SoC for qTESLA-p-I
and qTESLA-p-III, respectively. Larger speedups are achieved when the GaussSampler
accelerator is added to the design as Gaussian sampling is the most compute-intensive
operation in the key generation step. By adding an extra lightweight HmaxSum accelerator
into the “Murax + GaussSampler” design, around 16× and 37× speedups are achieved
which is a larger improvement compared to adding a standalone GaussSampler accelerator
in the design. This is due to the fact that when the GaussSampler accelerator is added,
the most expensive Gaussian Sampler function gets greatly sped up and this in turn
leaves the less expensive Hmax-Sum function costly in the “Murax + GaussSampler” design.
Interestingly, while adding the PolyMul accelerator improves the cycle counts, the speedup
compared to running on the pure Murax SoC is 0.83, i.e., adding (only) PolyMul slows
down the runtime. This is due to the fact that the maximum frequency of the design
drops when a hardware accelerator is integrated. Adding a SparseMul accelerator to the
Murax SoC does not bring any speedup in terms of cycles as there is no sparse polynomial
multiplication during key generation. The best speedups are achieved when all the available
hardware accelerators are added (“Murax + All”): an around 40× speedup is achieved
for qTESLA-p-I and an around 100× speedup is achieved for qTESLA-p-III. The best
time-area product for key generation is also achieved in the “Murax + All” design.

4.3.3 Signature Generation and Signature Verification Evaluation

Table 10 and Table 11 show the performance and maximum frequency of running the
qTESLA sign and verify operations on different designs. We report the average cycle
counts for 100 executions. The column “speedup” reports the speedup of the time when
adding the hardware module(s) of the corresponding row compared to running on the
pure Murax SoC (first row). As the signing and verification steps in qTESLA do not
involve Gaussian sampling, adding a GaussSampler accelerator to the design is equivalent
to adding a SHAKE accelerator. The small difference in the cycle counts comes from the
wrapper function that embeds SHAKE in the GaussSampler accelerator. Thus, the clock
cycles achieved on a “Murax + GaussSampler” design for signing and verification are similar
to those achieved on a “Murax + SHAKE” design. Apart from SHAKE computations,
NTT-based polynomial multiplication and sparse polynomial multiplication are two of the
most compute-intensive computations in signature generation and verification. As we can
see from the tables, adding a PolyMul accelerator to the design brings a good reduction
in clock cycles (and a speedup of 1.12) for signature generation compared to the pure
software, while adding a SparseMul accelerator improves the cycle counts for verification
(leading to a speedup of 1.25). The best speedups are achieved when all available hardware
accelerators are added to the design (“Murax + All”): for qTESLA-p-III, speedups of
10.59× and 16.21× are achieved for signing and verification operations, respectively. The
best time-area product for the signature generation and verification is also achieved in the
“Murax + All” design.

4.4 Comparison with Related Work
Table 12 provides a detailed comparison of our design with other designs targeting mod-
ern lattice-based digital signature schemes running on embedded systems. A thorough
benchmarking of NIST PQC schemes on the ARM Cortex-M4 platform was presented
in 2019 [KRSS19], and it reports the testing results of different variants of qTESLA,
Dilithium and Falcon. However, the provably-secure variants of qTESLA, namely qTESLA-
p-I and qTESLA-p-III, are excluded from their report due to the memory constraint of
the Cortex-M4 device. Unlike closed-source processors like Cortex-M4, the open-source
Murax SoC can be easily integrated and adapted into specific processor setups as needed,



298 Parameterized Hardware Accelerators for Lattice-Based Cryptography

Table 9: Performance of qTESLA key generation on software and different HW-SW co-designs.
All = GaussSampler + HmaxSum + PolyMul + SparseMul. The “Speedup” column is provided in
terms of time.

Design Cycles Fmax Time Time×Area Speedup
(MHz) (ms) (slice×ms)

qTESLA-p-I

Murax 48, 529, 602 156 310.9 328, 299 1.00
+ SHAKE 18, 214, 784 145 125.5 164, 472 2.48
+ GaussSampler (incl. SHAKE) 6, 653, 608 137 48.7 73, 436 6.38
+ GaussSampler + HmaxSum 2, 525, 853 126 20.1 30, 792 15.47
+ PolyMul (incl. ModMul) 46, 933, 182 126 373.8 602, 596 0.83
+ SparseMul 48, 529, 602 134 361.8 424, 795 0.86
+ All 925, 431 121 7.7 18, 651 40.64

qTESLA-p-III

Murax 297, 103, 198 156 1903.3 2, 009, 841 1.00
+ SHAKE 120, 731, 265 145 831.5 1, 090, 134 2.29
+ GaussSampler (incl. SHAKE) 28, 394, 350 126 224.8 350, 687 8.47
+GaussSampler + HmaxSum 6, 494, 464 126 51.7 83, 606 36.79
+ PolyMul (incl. ModMul) 292, 924, 220 125 2340.8 3, 829, 482 0.81
+ SparseMul 297, 103, 153 161 1849.8 2, 199, 459 1.03
+ All 2, 305, 220 121 19.0 47, 001 100.14

Table 10: Performance of qTESLA signature generation on software and different HW-SW
co-designs. All = GaussSampler + HmaxSum + PolyMul + SparseMul. The “Speedup” column is
provided in terms of time.

Design Cycles Fmax Time Time×Area Speedup
(MHz) (ms) (slice×ms)

qTESLA-p-I

Murax 47, 180, 534 156 302.2 319, 171 1.00
+ SHAKE 22, 914, 215 145 157.8 206, 905 1.91
+ GaussSampler (incl. SHAKE) 23, 348, 731 137 171.0 257, 697 1.77
+ GaussSampler + HmaxSum 24, 580, 234 126 195.6 299, 647 1.55
+ PolyMul (incl. ModMul) 34, 013, 026 126 270.9 436, 707 1.12
+ SparseMul 41, 356, 497 134 308.4 362, 007 0.98
+ All 4, 165, 160 121 34.4 83, 944 8.78

qTESLA-p-III

Murax 105, 525, 187 156 676.0 713, 865 1.00
+ SHAKE 54, 013, 152 145 372.0 487, 710 1.82
+ GaussSampler (incl. SHAKE) 55, 308, 030 126 437.9 683, 084 1.54
+ GaussSampler + HmaxSum 53, 024, 762 126 422.4 682, 611 1.60
+ PolyMul (incl. ModMul) 78, 377, 348 125 626.3 1, 024, 655 1.08
+ SparseMul 86, 540, 888 161 538.8 640, 664 1.25
+ All 7, 745, 088 121 63.9 157, 916 10.59

e.g., users can set the size of on-chip RAM or enable optional plugins depending on their
requirements.

As explained earlier in the paper, the performance of qTESLA-p-I and qTESLA-p-III
is slower compared to the reference software implementations of Dilithium and Falcon
in exchange for the provably secure feature. As shown in [ABB+20], the performance of
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Table 11: Performance of qTESLA signature verification on software and different HW-SW
co-designs. All = GaussSampler + HmaxSum + PolyMul + SparseMul. The “Speedup” column is
provided in terms of time.

Design Cycles Fmax Time Time×Area Speedup
(MHz) (ms) (slice×ms)

qTESLA-p-I

Murax 17, 871, 157 156 114.5 120, 895 1.00
+ SHAKE 4, 625, 094 145 31.9 41, 763 3.59
+ GaussSampler (incl. SHAKE) 4, 625, 505 137 33.9 51, 052 3.38
+ GaussSampler + HmaxSum 4, 623, 861 126 36.8 56, 368 3.11
+ PolyMul (incl. ModMul) 16, 274, 763 126 129.6 208, 960 0.88
+ SparseMul 15, 793, 283 134 117.8 138, 243 0.97
+ All 946, 520 121 7.8 19, 076 14.63

qTESLA-p-III

Murax 48, 309, 625 156 309.5 326, 810 1.00
+ SHAKE 14, 899, 621 145 102.6 134, 535 3.02
+ GaussSampler (incl. SHAKE) 14, 892, 149 126 117.9 183, 927 2.63
+ GaussSampler + HmaxSum 14, 889, 776 126 118.6 191, 684 2.61
+ PolyMul (incl. ModMul) 44, 130, 687 125 352.6 576, 934 0.88
+ SparseMul 39, 915, 065 161 248.5 295, 490 1.25
+ All 2, 315, 950 121 19.1 47, 220 16.21

qTESLA-p-I when running on an Intel Core-i7 CPU is about 3× slower compared to the
Dilithium-II scheme. Similarly, when compared with the reference software implementation
of Falcon-512 on an Intel Core-i7 CPU, the performance of qTESLA-p-III is around 5×
slower for signing and 20× slower for verification.

By integrating our dedicated hardware accelerators to the Murax SoC, the performance
of qTESLA-p-I on the “Murax +All” platform achieves a big improvement compared to
the pure software implementation, as shown in Table 12. As there is no existing work
on hardware designs of Dilithium, an apples-to-apples comparison between qTESLA on
hardware and Dilithium on hardware is currently not possible. However, if we regard the
performance of Dilithium-II running on the ARM Cortex-M4 device as being efficient,
then we can conclude that, with proper use of hardware accelerators, provably-secure
schemes like qTESLA can also be considered practical and that these schemes can be
competitive in terms of efficiency when running on embedded systems. In particular,
running qTESLA-p-III on “Murax +All” achieves a comparable efficiency to the Cortex-
M4 benchmarking result for Dilithium-III. When compared to the Falcon-512 scheme,
qTESLA-p-III running on our “Murax +All” platform is around 62× and 3.5× faster in
terms of key generation and signing time, respectively. Again, a fair comparison between
qTESLA on hardware and Falcon on hardware is currently not possible, as there is no
publicly-available hardware implementation of Falcon. However, we emphasize again that
the proposed hardware accelerators are not restricted to use in qTESLA and, hence, can
benefit other schemes such as Dilithium and Falcon. In summary, by taking advantage of
the hardware acceleration, the practical feasibility of running the provably-secure qTESLA
variants qTESLA-p-I and qTESLA-p-III on resource-constrained embedded systems is
successfully demonstrated in the present paper.

In 2019, a RISC-V based hardware-software co-design [BUC19] focused on lattice-based
schemes was proposed and demonstrated the performance of some qTESLA variants with
prior heuristic parameters. As we can see in Table 12, as the design in [BUC19] focuses on
low-power and low-cycles ASIC applications, their work presents very small clock cycles for
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Table 12: Comparison with related work on lattice-based digital signature schemes for embedded
systems. All the tests running on platform “Murax+HW” are based on the “Murax + All” design,
see Section 4.3.3. o denotes the use of an old qTESLA reference implementation with outdated
instantiations. Platforms noted with p are all synthesized on an Artix-7 AC701 FPGA. The “—”
indicates the Cortex-M4 platform is not able to support qTESLA-p-I and qTESLA-p-III due to
memory limits.

Design Platform Freq. KeyGen./Sign/Verify KeyGen./Sign/Verify
(MHz) ×103 Cycles Time (ms)

NIST Security Level = 1

qTESLA-p-I, our Murax+HWp 121 925/4165/947 7.7/34.4/7.8
qTESLA-p-I, — Cortex-M4 — — —
Dilithium-II [KRSS19] Cortex-M4 168 1400/6157/1461 8.3/36.6/8.7

NIST Security Level = 3

qTESLA-p-III, our Murax+HWp 121 2305/7745/2316 19.0/63.9/19.1
qTESLA-p-III, — Cortex-M4 — — —
Dilithium-III [KRSS19] Cortex-M4 168 2282/9289/2229 13.6/55.3/13.3
Falcon-512 [KRSS19] Cortex-M4 168 197,794/38,090/474 1177.3/226.7/2.8

Designs not matching latest NIST Security Levels

qTESLA-Io, our Murax+HWp 125 181/781/137 1.4/6.2/1.1
qTESLA-Io [BUC19] RISC-V+HWp 10 4847/168/39 484.7/16.8/3.9
qTESLA-Io [KRSS19] Cortex-M4 168 6748/5831/788 40.2/34.7/4.7

qTESLA-I signing and verification operations by packing more computations into one clock
cycle. However, such a design choice leads to a very low frequency; e.g., their HW-SW
co-design [BUC19] can only run at 10MHz on an Artix-7 FPGA. Moreover, [BUC19] only
partly accelerated qTESLA’s key generation since they followed the merge-sort based CDT
algorithm for Gaussian sampling as used in the reference software implementation. To
better compare our results with this design, we synthesized the “Murax +All” design for
qTESLA-I 5, modified the software reference implementation of qTESLA-I, and successfully
demonstrated its performance by running it on an Artix-7 FPGA. Given the much higher
frequency achieved in our design, as shown in Table 12, running qTESLA-I on our design
is 346×, 2.7×, and 3.5× faster for key generation, signature generation, and verification,
respectively, when compared to the results achieved in [BUC19].

Hardware evaluations for other qTESLA instantiations using a High-Level Synthesis (HLS)-
based hardware design methodology have been also explored [SBNK19]. However, the
hardware designs generated by the HLS tool are too inefficient for embedded systems, e.g.,
for the smallest qTESLA-I parameters, it takes over 16× more LUTs compared to our
“Murax +All” design when synthesized on the same Artix-7 FPGA.

4.4.1 Comparison to Digital Signature Schemes Beyond NIST’s Candidates

When comparing with hardware acceleration for schemes not submitted to NIST’s PQC
standardization effort, arguably the most important work is the RISC-V based HW-SW
co-design of XMSS [WJW+19] — a stateful hash-based scheme that was published as
Request for Comments (RFC) 8931 in 2018. Several hardware accelerators based on the
SHA256 hash function were provided in their work for accelerating the computations in
XMSS. Comparing performance of [WJW+19] with our qTESLA design paints about the

5We would like to emphasize that this result should only be used for comparison purposes since
qTESLA-I is outdated and withdrawn from the NIST submission.
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same picture as for the original software implementations: while qTESLA’s key generation
is much faster, qTESLA’s sign and verification algorithms are slower compared to the
corresponding XMSS algorithms. Interestingly the speedup from SW to HW-SW is larger
for qTESLA than the speedup achieved for XMSS due to the efficient design of our
GaussSampler accelerator.

A few publications [PDG14,GLP14] also focused on the pure FPGA based implementation
targeting a specific lattice-based digital signature scheme. Their implementation only
focuses on the signing and verification operations. More importantly, their design only
supports fixed parameter set of (n, q) and this renders their hardware based designs not
usable nowadays as the parameters and the construction of the schemes evolve.

5 Conclusion and Future Work
This paper presented a set of efficient and constant-time hardware accelerators for lattice-
based operations. The key accelerator modules implemented are: a versatile cSHAKE core,
a novel and elegant binary-search CDT-based Gaussian sampler, and a novel pipelined NTT-
based polynomial multiplier with unified Cooley-Tukey and Gentlemen-Sande butterflies.
In addition, sparse polynomial multiplier and Hmax-Sum modules were implemented. All
of the modules can be fully parameterized at compile-time to help implement different
sets of parameters without the need to re-write the hardware code. The accelerators were
interfaced with the processor using a standard 32-bit interconnect bus, demonstrating
ability to gain significant performance improvements without using unusual or custom
interfaces. These flexible accelerators were then used to implement the first hardware-
software co-design of the provably-secure lattice-based signature scheme qTESLA, namely
qTESLA-p-I and qTESLA-p-III. We achieved over a 40-100x speedup for key generation,
about a 10x speedup for signing, and about a 16x speedup for verification, compared
to the baseline RISC-V software-only implementation. The hardware-software co-design
demonstrated that with the hardware acceleration, the computationally intensive qTESLA-
p-I and qTESLA-p-III can run as fast or faster than other lattice-based signature schemes
(with smaller parameters or without provable parameters). In contrast to most hardware
designs, this is also a fully open-source work and all of the hardware code is publicly
available at https://caslab.csl.yale.edu/code/qtesla-hw-sw-platform.

The hardware accelerators provided in this work are also of interest for other lattice-based
schemes, e.g., Dilithium and Falcon. Given that no research efforts in hardware have been
made for these schemes, it would be interesting to see how they can benefit from the
hardware accelerators proposed in this work. Another interesting line of research would be
to analyze the side-channel resistance of the hardware accelerators and of the hardware-
software co-design platform proposed in this work. Our design is fully constant-time
and thus is resistant to timing side-channel attacks. However, other side channel attacks
such as those exploiting statistical information of power and electromagnetic emanations
are not covered in this work. Therefore, to protect against these more advanced attacks
additional countermeasures might be necessary. In this context, since qTESLA signatures
are probabilistic, it would also be interesting to analyze the level of protection that this
feature provides in practice.
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