
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 3, pp. 243–268. DOI:10.13154/tches.v2020.i3.243-268

Single-Trace Attacks on Keccak
Matthias J. Kannwischer1, Peter Pessl2 and Robert Primas2

1 Radboud University, Nijmegen, The Netherlands
matthias@kannwischer.eu,

2 Graz University of Technology, Austria
peter@pessl.cc, rprimas@gmail.com

Abstract. Since its selection as the winner of the SHA-3 competition, Keccak, with
all its variants, has found a large number of applications. It is, for instance, a common
building block in schemes submitted to NIST’s post-quantum cryptography project.
In many of these applications, Keccak processes ephemeral secrets. In such a setting,
side-channel adversaries are limited to a single observation, meaning that differential
attacks are inherently prevented. If, however, such a single trace of Keccak can
already be sufficient for key recovery has so far been unknown.
In this paper, we change the above by presenting the first single-trace attack targeting
Keccak. Our method is based on soft-analytical side-channel attacks and, thus,
combines template matching with message passing in a graphical model of the attacked
algorithm. As a straight-forward model of Keccak does not yield satisfactory results,
we describe several optimizations for the modeling and the message-passing algorithm.
Their combination allows attaining high attack performance in terms of both success
rate as well as computational runtime.
We evaluate our attack assuming generic software (microcontroller) targets and thus
use simulations in the generic noisy Hamming-weight leakage model. Hence, we
assume relatively modest profiling capabilities of the adversary. Nonetheless, the
attack can reliably recover secrets in a large number of evaluated scenarios at realistic
noise levels. Consequently, we demonstrate the need for countermeasures even in
settings where DPA is not a threat.
Keywords: keccak · side-channel attacks · power analysis · single-trace attacks · belief
propagation · post-quantum cryptography

1 Introduction
In 2012, Keccak [BDPV11] was announced as the winner of the SHA-3 competition.
Subsequently, NIST published FIPS202 [NIS15] which standardized the hash-function
family SHA-3 and the extendable-output function (XOF) family SHAKE. Since then,
SHA-3, SHAKE, and many other Keccak-based algorithms have found ample use, often
as a building block in new constructions. For instance, a large number of submissions to the
NIST post-quantum cryptography standardization process [NIS16b] make use of Keccak
in one way or another. Similarly, some submissions to the NIST lightweight cryptography
competition [NIS19] and the CAESAR competition for authenticated encryption [CAE]
use small-state versions of Keccak as a building block or employ design strategies similar
to that of Keccak.

In many of these newfound applications, Keccak processes some form of secret input.
This extends far beyond the classic scenario of a keyed hash (as a MAC) and includes

∗Author list in alphabetical order; see https://www.ams.org/profession/leaders/culture/
CultureStatement04.pdf.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-01-15 Accepted: 2019-03-15 Published: 2020-06-19

https://doi.org/10.13154/tches.v2020.i3.243-268
mailto:matthias@kannwischer.eu
mailto:peter@pessl.cc
mailto:rprimas@gmail.com
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
http://creativecommons.org/licenses/by/4.0/

244 Single-Trace Attacks on Keccak

many scenarios where Keccak is used as, e.g., a PRF or a (keyed) PRNG. All this makes
studying Keccak in terms of side-channel vulnerabilities an important task. Previous
work in this direction demonstrated the applicability of Differential Power Analysis (DPA)
and proposed countermeasures against this type of attack [ZKSH12,BDN+13,TS13].

Interestingly, however, Keccak is often used such that it only deals with ephemeral
secrets, e.g., secret nonces and seeds for PRNGs. Their recovery would typically still
constitute a complete break of security and can, in some settings such as nonces in Fiat-
Shamir-type signature schemes [FS86], even allow trivial reconstruction of a long-term
secret. However, as this ephemeral setting limits adversaries to a single measurement per
secret, the powerful class of differential side-channel attacks is completely ruled out. In
some other applications of Keccak, the same key is used in multiple algorithm executions,
but only ever mixed with unchanging public inputs (the data complexity is limited to 1).
While recording multiple traces in this setting allows noise reduction using averaging, DPA
is still not an option.

With this broad and powerful class of attacks not being applicable, it is tempting to
spend fewer resources on side-channel countermeasures or even use unprotected implemen-
tations. However, single-trace attacks are still a potential threat under these conditions. If
such attacks on Keccak are actually realistic is thus far unknown, as is consequently also
the required protection effort.

Our Contribution. In this paper, we shed light on the above problem by presenting the
first single-trace side-channel attack on Keccak. It allows the recovery of secret inputs in
certain scenarios and can thus break security even in very restricted settings.

Before presenting the attack, we survey applications of Keccak and study its usage
as a building block in various cryptographic schemes. We primarily focus this study on
applications within submissions to NIST’s post-quantum cryptography project. There,
we point out several scenarios in which (ephemeral) secrets are passed to Keccak, but
attacks are restricted to using a single trace.

Attacking such scenarios requires maximizing the information extracted from a trace.
We make use of soft-analytical side-channel attacks (SASCA) [VGS14], which can potentially
exploit the leakage of all processed intermediate variables. In SASCA, one first performs
side-channel template matching [CRR02] on said intermediates. All leakage priors are then
combined by modeling the attacked algorithm/implementation using a so-called factor
graph and finally invoking the belief-propagation algorithm (BP). As it turns out, factor
graphs allowing efficient attacks on Keccak differ significantly from those used for, e.g.,
AES in previous works [VGS14,GS15]. We thus discuss all our design choices aimed at
attaining high attack performance for generic software implementations of Keccak. We
also present several optimizations to BP aimed at keeping the computational complexity
of the attack practical.

We then identify several factors that influence the attack performance, such as the
key length, the structure of the Keccak state prior to calling the permutation, and the
wordsize of the attacked processor. We evaluate our attack in all these settings using
simulations in the generic noisy Hamming-weight leakage model and show that single-trace
attacks are indeed a considerable threat, at least for smaller devices. While the situation
for larger (32-bit) devices is less clear, we argue that unprotected implementations are still
not an option and that at least basic countermeasures, such as shuffling, are required.

Availability of software. We place all the Python code used for the attack simulation in
the public domain. It is available at https://github.com/keccaksasca/keccaksasca.

Outline. In Section 2, we briefly recall our attack target Keccak as well as our primary
attack tool SASCA. In Section 3, we survey many recent applications of Keccak and

https://github.com/keccaksasca/keccaksasca

Matthias J. Kannwischer, Peter Pessl and Robert Primas 245

point out scenarios where single-trace attacks are of importance. We then describe our
attack in detail and also discuss various optimizations that increase attack performance
in Section 4. We present the outcome of our attack evaluation in Section 5. Finally, we
conclude in Section 6 with a discussion on future work and potential countermeasures.

2 Background
In this section, we recall our attack target, namely Keccak, as well as Soft-Analytical
Side-Channel Attacks, which are our primary attack tool.

2.1 Keccak
Keccak is a sponge-based hash function that was selected as the winner of the SHA-3
competition. Following the sponge construction, Keccak operates on a b-bit state, which
is split in two parts of sizes r (rate) and c (capacity), respectively. The capacity c acts
as the security parameter, whereas the rate r = b − c determines the input block size.
The state is initialized to zero, Keccak then proceeds in two phases. During the initial
absorbing phase, input blocks of r bits are repeatedly XORed into the first r bits of the
state. After each block, a b-bit permutation is applied to the state. Once all input blocks
have been absorbed, one or multiple blocks can be extracted from the first r bits of the
state to obtain the desired hash output (squeezing phase).

For the permutation, Keccak-f [b] is used. Keccak-f organizes the b-bit state into
5× 5 lanes of 2` bits, where ` ranges from 0 to 6. Each bit can thus be addressed using
three coordinates (x, y, z), with (x, y) defining the lane and z determining the position
inside the lane. Apart from lanes, the Keccak authors defined names for several other
pieces of the state. For instance, bits with constant z coordinate form a plane, constant
(y, z) gives a row, and bits at constant (x, z) form a column. We defer the depiction of the
described parts and the description of other pieces to Appendix A. The 3D state needs to
be serialized for absorbing/squeezing; this serialization is done by concatenating the lanes
following the index given by x+ 5y.

Keccak-f is an iterated permutation, the number of rounds is determined by the
width of the permutation and set to 12 + 2`.1 In each round, the five operations θ, ρ, π, χ, ι
are applied to the state in the presented order. For their detailed descriptions, we refer the
reader to the specification of Keccak-f [BDPV11,NIS15] and the illustration of θ, ρ, π,
and χ in Appendix B. Therefore, we only briefly describe each operation in the following.

• θ first computes the XOR-parity of each column; the result is dubbed the parity
plane. For each column, it then adds the parity of two neighboring columns ((x−1, z)
and (x+ 1, z − 1)) to obtain the so-called θ-effect. This θ-effect is then finally added
to each bit of the respective column.

• ρ rotates each lane in the state by a different offset.
• π permutes the bit positions within each slice, i.e., reorders the lanes.
• χ is the only non-linear operation in Keccak-f . It is a 5-bit substitution box

operating on rows of the state. As seen in Figure 6 of Appendix B, it is defined using
bitwise operations and has a degree of 2.

• ι is the addition of a round constant into the first lane (x = 0, y = 0).

In FIPS202 [NIS15], NIST standardized a subset of Keccak for use as SHA-3 and
as the extendable-output functions (XOF) SHAKE. NIST SP800–185 [NIS16a] describes

1In the Keccak-p permutation, the number of rounds is a free parameter and not coupled to the state
size. Keccak-f is thus a subset of Keccak-p.

246 Single-Trace Attacks on Keccak

further Keccak-based constructions, such as KMAC and the customizable XOF cSHAKE.
NIST followed the suggestion of the Keccak authors and set the state size b to 1600
(` = 6, i.e., 64-bit lanes) for all standardized instances. We thus solely focus on b = 1600
in this paper, but also note that our attack implementation supports other state sizes as
well. The other main Keccak parameter, namely the capacity c, differs between instances.
For SHA-3, it is set to two times the output length, e.g., for the 256-bit hash function
SHA3-256, one sets c = 512 and r = 1600 − 512 = 1088. The standardized SHAKE
instances SHAKE128 and SHAKE256 use a capacity of 256 and 512, respectively.

Apart from the NIST-sanctioned instances, Keccak is also the basis of many other
proposed schemes. The KangarooTwelve XOF [BDP+18], for instance, combines a round-
reduced Keccak-f permutation with tree hashing. Other examples are the authenticated
encryption schemes Keyak [BDP+16b] and Ketje [BDP+16a]. Keccak has also been
adapted to lightweight applications: Isap [DEM+19] and Elefant [BCDM19] use it with
smaller states.

2.2 Side Channels & Belief Propagation
In this work, we focus on attack scenarios where the adversary can only gather a very
small number of side-channel observations, say only a single one, per secret.

While this setting rules out the use of, e.g., Differential Power Analysis [KJJ99],
Template Attacks [CRR02] are still a viable option. There, the attacker first profiles
the side-channel characteristics of the device and then matches these profiles (templates)
against the attacked trace to retrieve information on certain intermediates. More concretely,
for each targeted intermediate T , one obtains probabilities conditioned on the side-channel
leakage `, i.e., Pr (T = t|`).

In the single-trace setting, it is crucial to extract as much information per trace as
possible. This can be achieved by performing a template matching on many or all processed
intermediates. Then, one wants to find the most likely key given all obtained distributions.
Finding the exact solution to the latter problem is infeasible, as it would essentially require
enumerating all possible keys.

Soft-Analytical Side-Channel Attacks (SASCA), proposed by Veyrat-Charvillon et
al. [VGS14], aim at solving this problem. They describe the attacked cryptographic
algorithm, or, more correctly, its implementation, with a so-called factor graph. This
probabilistic graphical model contains all processed intermediates, describes their relations
as specified by the cryptographic algorithm, and allows adding side-channel information
for any intermediate. Then, the belief-propagation (BP) algorithm is used to determine
marginal probability distributions for subkeys. Finally, the key is recovered by reading off
the most likely value for each subkey. Before describing BP in more depth, we first briefly
discuss the graphical modeling.

Factor graphs. Factor graphs are always bipartite and contain two distinct set of nodes:
variables and factors. In the context of SASCA, each processed intermediate variable
(including algorithm input and output) is represented with a variable node. Factor nodes
describe the interactions between variable nodes; edges are drawn to each variable node a
factor depends on.

In SASCA, the set of factor nodes can be further subdivided in two. The first subset of
factors describes the interactions of the variables as defined by the cryptographic algorithm.
These factors are deterministic and have, with the example of a 2-input XOR, the following
form:

f⊕(x, y, z) =
{

1 if x⊕ y = z

0 otherwise.

Matthias J. Kannwischer, Peter Pessl and Robert Primas 247

The second subset models the obtained leakage `. These factors are non-deterministic and
usually of form f`(x) = Pr (X = x|`). Public algorithm inputs and outputs can also be
modeled using such factors.

Belief propagation. After having constructed a factor graph, the belief-propagation
algorithm (BP) is run on it. BP has a large number of use cases; a very prominent one
is decoding of low-density parity-check (LDPC) codes. In SASCA, it is used to retrieve
(approximate) marginal probability distributions of subkeys.

BP tackles this in general intractable problem by replacing global marginalization
with easy-to-compute local marginalization in conjunction with message passing. Simply
speaking, it computes marginal probability distributions of each variable given information
from its adjacent nodes and then passes these marginals along edges of the factor graph.
This process is repeated, i.e., marginal probabilities (beliefs) are computed with the now
updated information and again propagated along the edges, until convergence is reached.

In BP, it is crucial to prevent circular reasoning. Thus, outgoing message updates sent
over an edge e must not depend on the incoming message received via e; only messages
received from other edges can be taken into account. This leads to the two following
message-update rules, where we denote x = {x1, . . . , xN} as the set of all variables,
f = {f1, . . . , fM} as the factor set, u as messages, and n,m as variable and factor indices,
respectively.
Messages from variable to factor:

uxn→fm
(xn = v) =

∏
m′∈M(n)\{m}

ufm′→xn
(xn = v), (1)

where v is any value out of the domain of xn andM(n) denotes the indices of factors in
which variable xn participates. In words, these message updates boil down to point-wise
multiplication of the incoming probability vectors. For a variable node x with domain of
size |x| connected to deg(x) factors, updating all outgoing messages in a simple manner
has complexity of deg(x)2 · |x|.

Messages from factor to variable:

ufm→xn
(xn = v) =

∑
w

fm(xn = v,xm\n = w)
∏

n′∈N (m)\m

uxn′→fm
(xn′ = wn′)

 , (2)

where xm denotes the variables that factor fm depends on, N (m) are the indices of these
variables, and xm\n denotes the set of variables in xm without xn. The vector w runs
through all possible value assignments of xm\n. In words, given messages on xm\n, the
above performs marginalization of xn under the combination rules defined by fm. A
message update for an entire factor can thus be performed by iterating over all possible
value assignments for xm. Assuming that all variables share the same domain, then updates
computed via this simple method require |x|deg(f) operations. Note that for deterministic
factors, it suffices to enumerate the assignments of the input variables, e.g., (x, y) for f⊕
given above.

The above two message-update rules are executed alternatingly until convergence
is reached. Then, the marginal probability distributions of all variables, including
subkeys, can be computed by multiplying all incoming messages, i.e., Pr (xn = v) =
1/Z ·

∏
m′∈M(n) ufm′→xn

(xn = v), where the normalization factor Z is set such that∑
v′ Pr (xn = v′) = 1.

Loopy BP. BP can solve the marginalization problem exactly, but only if the factor graph
is acyclic. For factor graphs arising from many real-life use cases, including the modelling

248 Single-Trace Attacks on Keccak

of cryptographic operations for side-channel attacks, this is not the case. There, the same
update rules can still be used in what is then called loopy BP. This variant might not even
converge, but when it does, it often gives sufficiently precise approximations to the true
marginals. The actual performance of loopy BP, i.e., the quality of the approximations and
convergence properties, is inversely proportional to the length of the loops. Put simply,
loops in the factor graph introduce positive feedback, which can cause overconfidence in
certain beliefs and, subsequently, even oscillations, especially when deterministic factors
are involved [KF09].

Thus, factor graphs should ideally avoid at least very short loops. This is not always
possible, potential alternatives include merging (clustering) of nodes, which can come with
a hefty impact on the runtime, and specialized BP variants taking loops into account, such
as generalized belief propagation [YFW00].

Another important factor influencing the performance of BP is the implemented
message schedule. In a synchronous schedule, Eqs. 1 and 2 are alternatively evaluated on
all respective nodes at once. This is often not ideal, an asynchronous schedule tailored to
the specific factor graph often gives much better performance [KF09]. There, one does
not update the entire graph at once, but instead propagates information in more informed
patterns.

A third common optimization technique is message damping; it specifically aims at
counteracting oscillations. There, messages sent over the edges are weighted averages of
previous and new messages. When using α ∈ (0, 1] as the damping factor, unew as the
direct outcome of the above message update rules 1 and 2, and uprev as the previous
message, then the sent message u = α · unew + (1− α) · uprev.

3 Keccak in Practice
To motivate the analysis of Keccak in terms of side-channel vulnerabilities, this section
presents an overview of its usage within various cryptographic schemes. We especially
focus on cases that involve secrets but inherently prevent differential side-channel attacks
by, e.g., using the secret value only once. Scenarios susceptible to DPA are of lower interest,
as their need for side-channel countermeasures is already evident.

As it turns out, many submissions to NISTs post-quantum project [NIS16b] fit the
above criteria. They make frequent use of the functions standardized in FIPS202 [NIS15]
and SP800–185 [NIS16a], i.e., SHA-3, SHAKE, and cSHAKE, in the following all denoted
by H. We identify three common cases:

Keccak as a PRF. Keccak is commonly used to construct a PRF, which uses some
small key together with a known message as H(k||m).

One of the most straightforward constructions from a Keccak PRF is a message
authentication code (MAC), such as KMAC standardized in SP800-185 [NIS16a]. However,
as MACs are obviously susceptible to differential attacks, they are likely to be well protected
in practice, making them less of an interesting target for single-trace attacks.

In the post-quantum context, Keccak-based PRFs are commonly found within
the Fujisaki-Okamoto (FO) transformation [FO99] used to obtain a CCA-secure key-
encapsulation mechanism (KEM) from a CPA-secure one. Both the computation of the
pre-key from the public key and the secret random message as K̂ ← H(m, pk) and the
derivation of the shared secret from the pre-key and the ciphertext as K ← H(K̂, ct) are
interesting targets for a single-trace attack, as they allow to compute the shared secret.
Note that these two PRF operations are required in encapsulation as well as decapsulation,
thus making both the sending and the receiving side to possible targets. A Keccak-based
FO transformation is used in, e.g., a wide-variety of lattice-based cryptographic schemes
like FrodoKEM [NAB+19], Kyber [ABD+19], NewHope [PAA+19], and Saber [DKRV19].

Matthias J. Kannwischer, Peter Pessl and Robert Primas 249

Keccak as a PRNG. A very similar use case of Keccak is to use SHAKE for expanding
a small secret seed to a long bit string. The seed can be combined with a counter, i.e.,
H(seed||counter), if multiple independent values are needed; this also facilitates vectorized
execution of SHAKE. As the seed is combined with a public and changing input, differential
attacks could already be an option. However, as the number of used counter values is
usually small, and the input changes only at a few bits, classical DPA does not appear to
be promising.

In post-quantum schemes, such Keccak-based PRNGs are widely used to reduce the
need to sample and store truly random bits. Also, seed expansion is typically needed within
the FO transformation, as the required re-encryption needs to use the same seed to generate
all required randomness. As more concrete examples, all aforementioned lattice-based
KEMs sample ephemeral secrets (noise polynomials) from a single seed. Recovery of the
ephemeral secret key in these schemes allows to compute the shared secret. However, as
encryption (or re-encryption) is attacked, no information about the long term secret is
obtained.

Furthermore, Keccak is commonly used as a PRNG in Fiat-Shamir-type signatures
like Dilithium [LDK+19] and qTesla [BAA+19]. These schemes use SHAKE to expand a
small secret seed to the masking polynomial y, which is used to prevent signatures from
leaking information about the secret key. The secret seed is either chosen at random
(non-deterministic signing) or derived from the message and a part of the secret key
(deterministic signing). Recovery of the masking polynomial allows the trivial recovery of
the secret signing key from a single signature. Note that in Fiat-Shamir-type signatures,
hashing is also required for deriving the challenge from the commitment. However, the
inputs to this hash are public anyway.2

Another interesting case where Keccak is used as a PRNG are hash-based signature
schemes, e.g., XMSS [HBG+18] and SPHINCS+ [HBD+19]. The large number of one-time
(or few-time) key pairs makes it imperative to generate the secret keys from a small seed.
When recovering the seed of a secret key, an adversary is able to forge signatures for
arbitrary messages. Kannwischer et al. [KGB+18] conclude that differential attacks are
not very promising for attacking the PRNG in hash-based signatures.

Hash-Based Signatures. Apart from its use as a PRNG, the actual hashing in the
one-time signatures and few-time signatures in stateful (XMSS [HBG+18]) and state-
less (SPHINCS+ [HBD+19]) hash-based signatures present another target for single-trace
attacks. Such schemes typically evaluate the hash function (Both XMSS and SPHINCS+

propose parameter sets using SHAKE) on a block of the secret key as a part of the W-OTS+

chains or FORS trees. Recovering these secret key blocks allows forging signatures as well.
While adversaries can record multiple traces for each secret, the known inputs to the hash
function are constant. This means that standard DPA is not possible and that adversaries
are limited to averaging [KGB+18].

4 SASCA on Keccak
The previous section established that there exist many interesting scenarios where side-
channel adversaries are limited to a single Keccak trace. We now present a side-channel
attack allowing key recovery even in such a limited setting.

As stated earlier, our primary attack tool are soft-analytical side-channel attacks
(SASCA). They require modeling the actual implementation of a cryptography primitive

2Due to the use of rejection sampling, this is strictly speaking not fully correct for lattice-based
Fiat-Shamir type signatures. Still, due to the large size of the commitment and the need to recover the
secret from many rejected commitments/challenges, attacking this hash does not appear to be promising.

250 Single-Trace Attacks on Keccak

with a factor graph. In this work, we opt for targeting software (microcontroller) im-
plementations. These often use similar implementation techniques across a large set of
concrete targets, which is why our attack is not tailored for one such implementation in
particular and instead kept somewhat generic.

Hence, we now describe how we construct a factor-graph targeting such generic Keccak
software implementations. That is, we detail the modeling of the five Keccak-f trans-
formations as well as the incorporation of leakage into the graph. Due to the bitwise
description of Keccak-f and the processing of large intermediates that are often not
nicely aligned across functions, our factor graph differs significantly from those targeting
AES [VGS14, GS15].3 For instance, we require a clustering of bits to allow effective
propagation of side-channel information through the graph. This, in turn, leads to update
rules with impractical running time, at least when implementing them in a straight-forward
manner. For this reason, we also give optimized update methods based on different variants
of fast convolution.

4.1 Basic Construction
As seen in Section 2.1, Keccak is commonly described using bitwise operations. Thus,
an intuitive first description could describe the entire b-bit state after each of the 5
round functions with b binary-valued variable nodes. A full Keccak factor graph would
then consist of (1 + 24 · 5)b variable nodes, not counting nodes required for describing
intermediates within the functions.

These variable nodes are then linked with factor nodes describing the Keccak-f
functions. For instance, the non-linear χ permutation can be described using 1600/5 = 320
factors fχ. When denoting (x0 . . . x4) as the input row and (y0 . . . y4) as the respective
output, then fχ is given as:

fχ(x0 . . . x4, y0 . . . y4) =
{

1 if χ(x0 . . . x4) = (y0 . . . y4)
0 otherwise.

The χ permutation is the only non-linear part of Keccak; all other parts can be
modeled with bitwise rewiring and XOR factors given by:

f⊕(x0 . . . xn, y) =
{

1 if
⊕n

i=0 xi = y

0 otherwise.

Optimizations. Even from this basic description, there is some immediate optimization
potential. For instance, the functions ρ and π are essentially a bit permutation, or in other
words, a rewiring of the state. As this does not change the probability distribution of
the individual bits, we can model ρ and π by simply connecting the inputs of χ to the
corresponding outputs of the θ-step. Thus, no dedicated factors and variable nodes are
needed here.

The ι step, where a round constant is added to the lane at position (x = 0, y = 0), can
also be optimized. Concretely, we can merge ι into fχ. For rows in the plane y = 0 where
the round constant takes the value 1, we instantiate a slightly modified fχ which takes the
bit flip already into account. Combined with the optimization of ρ and π, we now only
need to consider two full b-bit states per round, one at the output of both θ and χ.

Drawbacks. While a bitwise factor-graph description is relatively simple, it comes with
a significant drawback. Namely, typical side-channel leakage is not directly on bits, but

3AES operates on bytes; hence the input/output of all functions and all leakage priors are byte aligned.
Also, previous works focused on byte-level leakage and did not consider larger wordsizes [VGS14,GS15].

Matthias J. Kannwischer, Peter Pessl and Robert Primas 251

instead on larger parts of the state. Software implementations typically process the state
lane-wise, thus resulting in leakage on, e.g., 8 or 32-bit parts of lanes. Such information
can, in principle, be easily incorporated into a bitwise factor graph; it suffices to connect
all affected variable-nodes to the leakage factor. However, a bitwise factor graph only
considers bitwise marginal distributions; all information on the joint distribution of bits
is lost and not propagated through the graph. We found that this leads to poor attack
performance.

As an illustration, consider that we know from side channels that a state byte has a
Hamming weight of 1. Thus, each bit has a probability of 7/8 of being zero, which is the
only information propagated in bitwise BP. The fact that one of the 8 bits needs to be one
is not considered in any connected factors and, thus, lost.

4.2 Clustering
To alleviate these shortcomings, we cluster multiple bits of the state into larger variable
nodes. As we evaluate our attack software implementations, which typically process the
state in lanes, each cluster consists of c consecutive bits in a lane. The factors also have
to be adapted such that they work with clusters instead of single bits. We stress that
these clusters do not necessarily coincide with the w-bit leaking intermediates computed
by the processor. Setting c ≥ w allows ideal propagation of joint leakage information, but
is prohibitively expensive in many cases.

The runtime of the variable-to-factor update rules given in Section 2.2 scales linearly
in the size of the variable domain and thus exponentially in c , i.e., 2c. For the factor-
to-variable updates, we have runtimes in the order of 2c·d, with d being the number of
connected variable nodes. This makes large cluster sizes infeasible, so a trade-off between
the accuracy of obtained marginals, on the one hand, and runtime, on the other hand, has
to be found. We chose a default cluster size of c = 8 bits, which still has very acceptable
runtimes while retaining high attack performance in attacks using 32-bit leakage. Our
attack implementation also supports 16-bit clusters, but due to the drastic increase in the
running time, we only use this option in selected scenarios.

4.3 Modeling the Keccak-f Round Functions
Above, we optimized away 3 out of the 5 Keccak-f round functions and introduced
clustering. We now describe how the two remaining permutations, namely θ and χ, can be
efficiently implemented in a clustered manner.

Theta. In the θ step, the parity of two adjacent columns is XORed to each bit of the
state. Figure 1a depicts our factor-graph of this operation for a single column. We use
circles and squares to depict variable and factor nodes, respectively. In the first step, the
input variables, denoted with I, are XORed to give the column parity P. The parity is then
routed to two neighboring columns, where it is XORed with a second parity to give the
θ-effect T. This is finally XORed to all input variables in the column to give the output
variables O.

Note that the computation of the parity P is done with a single factor instead of a
series of 2-input XORs. The latter option would not only introduce many tight loops into
the factor graph but would also lead to slow propagation due to many intermediates. A
single factor, however, is a challenge when it comes to clustering. For a cluster size of
c = 8, this single factor has 240 possible input combinations. While computing the belief
update for this node via simple enumeration of possible inputs might not be infeasible, it
is definitely impractical.

Fortunately, a classic technique from coding theory, which has seen previous use
in the context of side-channel attacks [GS12], allows a drastic speed-up. Consider we

252 Single-Trace Attacks on Keccak

I

I

I

I

I

P

O

O

O

O

O

y = 0

y = 1

y = 2

y = 3

y = 4

T

(a) θ of a single column (x, z)

T

Px = 2

x = 0

x = 1
0..7

P

T

P

8..15

P

T

P

16..23

P

z =

(b) Effects of clustering on computing the θ-effect
on 8-bit processors

Figure 1: Factor graphs for θ. Circles denote variable nodes, factor-nodes are depicted as
squares. Input and output variables are marked as I and O, respectively. Column parities
are denoted as P, the θ-effect, which is computed by XORing the parity of two neighboring
columns, is marked T. The (x, y, z) mark the positions of the bits in the state.

are given the probability distributions of two c-bit variables (clusters) X,Y , and want
to compute the distribution of Z = X ⊕ Y . We can then write Pr (X ⊕ Y = z) =∑
x Pr (X = x) Pr (Y = z ⊕ x). This computation can be interpreted as a form of convo-

lution which uses addition in GF(2) instead of over Z for index computations. Similar
to fast convolutions using the FFT and point-wise multiplications, this XOR-convolution
can be efficiently computed using the fast Walsh-Hadamard transform, which features a
runtime of n logn, with n = 2c [AIL+15]. The entire distribution of Z can be obtained via
two forward transforms of X,Y , a pointwise multiplication of their Walsh-spectra, and
an inverse transform. This process can easily be adapted to more than two inputs; it
suffices to extend the pointwise multiplication to multiple vectors. We use this convolution
technique for all f⊕.

Apart from runtime, there is another aspect that needs to be considered when applying
clustering to θ. The θ-effect is computed by XORing two lanes of the parity plane, where
one of the lanes is rotated by one. This rotation inevitably breaks the alignment between
clusters. As illustrated in Figure 1b, we need to compute the marginal distributions of
both the MSB and the remaining c− 1 bits. and then send them to the appropriate f⊕.

Finally, we note that our factor graph is not able to compute the inverse of θ. This
might limit information propagation from later rounds towards the input. However, since
we found that inverting even a single bit of θ requires knowledge of half the output state,
the information gain by separately modeling the inverse is very limited in a noisy setting.

Chi. The Keccak-f Sbox χ is defined using bitwise logic operations (cf. Section 2.1).
One option is thus to instantiate a factor node for each logic gate. However, with such a
factor graph, χ cannot be inverted. This can already be derived from the fact that the
inverse of χ has an algebraic degree larger than χ itself [BDPV11]. While this invertibility
problem is also present for θ, the inversion of χ only requires five bits at a time and can
thus contribute useful information. Additionally, modeling via simple gates leads to slow
propagation. Observe, for instance, that in Figure 6 of Appendix B, each output bit of χ
is only directly connected to three inputs and no other outputs. Thus, prior information
from these non-connected nodes can only flow indirectly to the target output variable.

Due to these problems, we resort to a description using table-lookups on single-bit
variables. That is, we extract the bitwise marginals from each cluster and then instantiate
fχ as described in Section 4.1. Here, we do not implement clustering due to the prohibitive

Matthias J. Kannwischer, Peter Pessl and Robert Primas 253

cost of 25c. While this comes with a loss of joint information, we do gain direct propagation
between all inputs and outputs, as well as the capability of inverting χ.

4.4 Adding Leakage
As mentioned in Section 2.2, a SASCA factor graph contains two distinct sets of factor nodes.
The first set describes the operations in the attacked algorithm and its implementation;
the second set adds prior probabilities. These priors either stem from known inputs or
from leakage. Known inputs are trivial to add, which is why we now only describe leakage
factors in more depth. Please note that we will discuss the concrete positions of leakages,
i.e., which operations and variables we actually obtain leakage on, later in Section 5.2.
For now, it suffices to know that software implementations of Keccak operate lane-wise,
which is why leakage will be observed for individual processor words making up a lane.

When performing a value-based template matching on a w-bit microcontroller, the
outcome at each targeted position is a probability vector of length 2w. When using
Hamming-weight templates, then one receives w + 1 Hamming-weight likelihoods instead.
For w = 8-bit devices, both value- and Hamming-weight templates are possible. While
the former is more powerful, the latter allows for easier profiling and higher portability
between devices. In any case, if this w = 8-bit leakage is aligned with the c = 8-bit clusters,
then propagation is trivial. The prior factor becomes a leaf and just sends its distribution
to the connected node, thus resembling the standard use of Bayes’ theorem in a template
attack. Non-aligned leakage is connected to at least two clusters. There, the prior factor
is not a leaf, and marginalization is required.

32-bit devices. For larger devices, such as w = 32-bit microcontrollers, several problems
arise. First, value-based templates, albeit still thinkable, become prohibitively expensive.
For this reason, we restrict ourselves to Hamming-weight templates. And second, with
c = 8-bit clusters, no prior can be a leaf node. Simple propagation between the connected
nodes would again require enumeration of all input combinations of the prior factor, which
with a complexity of 232, is impractical.

We instead compute these factor updates as follows. For the sake of explanation,
assume that the 32-bit prior is aligned with four 8-bit clusters (A,B,C,D) and that
we want to compute the update targeting the fourth cluster D. Then, in the first
step, for each cluster, we compute the Hamming-weight probability distribution. This
is done by simply summing up the entries having identical weights. In the second
step, we exploit that when concatenating two words A||B, Hamming weights add such
that HW(A||B) = HW(A) + HW(B). Translated to the probabilistic setting, we have
Pr (HW(A||B) = x) =

∑
a Pr (HW(A) = a) Pr (HW (B) = x− a). This formula describes

a (standard) convolution, which can be efficiently computed. So, we retrieve the Hamming-
weight probabilities of the first 24 bits by convolving the distributions of the first three
8-bit clusters. Finally, when denoting Pr (W |`) as our prior distribution, we can obtain
the update Pr (D = d|A,B,C,W) =

∑
w Pr (W = w) Pr (HW(A||B||C) = w − d).

4.5 Attack Implementation and Parameterization
We implemented our attack, i.e., the construction of a factor graph representing a generic
Keccak implementation and belief propagation on this graph, in Python. All source code
is available at https://github.com/keccaksasca/keccaksasca.

Our implementation includes the optimizations listed in the previous sections. This
includes clustering, damping, runtime improvements using convolutions, and a custom
message schedule detailed below. By default, we set the damping factor α to 0.75. Our
default clustersize c is set to 8 bits, which we found to give good attack performance while
still retaining acceptable runtime. As an additional performance measure, we only attack

https://github.com/keccaksasca/keccaksasca

254 Single-Trace Attacks on Keccak

the first two rounds of Keccak-f . We found that the inclusion of later rounds has only a
negligible impact on the success rate.

Message schedule. Our choice of the message schedule is due to the iterated structure
of Keccak. The variable nodes representing one full b-bit Keccak state can be seen
as the output of one set of deterministic factor nodes, and as the input to another set,
thus giving the factor graph a layered structure. We perform message updates on a
layer-after-layer basis; we first perform updates starting from the very first layer (the input
layer) until we reach the Keccak output, and then reverse this process. We define one
such forward-backward cycle to be one iteration of BP. This schedule allows information
to propagate between all arbitrary node pairs in a single iteration, while limiting the effect
of loops. A similar strategy was previously used in the SASCA attack on lattice-based
cryptography by Pessl and Primas [PP19].

BP exit conditions. The number of required BP iterations is not known beforehand.
Thus we keep performing message updates until one of the following exit conditions is met.

Firstly, BP exits when the entropy in the entire graph reaches zero. That is, each
variable node can be assigned a single value with probability 1. The true posterior of this
value is likely smaller than one, but due to the positive feedback caused by loops, BP tends
to latch onto this single value and boosts its probability to 1. Secondly, BP exits when
marginals do not change anymore between two iterations. In this case, BP has converged,
but the side-channel information is likely not sufficient to allow a successful attack.

Despite all of the above measures, such as damping, there are cases where BP does
not fully converge and runs into oscillations. Thus, as the third exit condition, we limit
the maximum number of iterations, per default to 50. Finally, the overconfidence caused
by loops can cause BP to latch onto incorrect values. Then, two incoming messages at a
variable node might have non-intersecting support, i.e., convey contradicting information.
Here, we have to abort the attack and consider it to have failed.

Attack runtime. After applying all runtime optimizations, using c = 8, and limiting the
attack to the first two rounds of Keccak-f [1600], the runtime of a single iteration ranges
between 2 to 5 seconds on a single core of an Intel Xeon E5-4669 v4 running at 2.2GHz.
The exact time depends on the used configuration, e.g., the wordsize of the attacked
processor. For 16-bit clusters, the runtime rises drastically. Each iteration then requires
approximately one minute while using 44 processor cores. Interestingly, the runtime is
dominated by Eq. 1 due to the term deg(x)2. This could be reduced by storing partial
products and thus using dynamic programming techniques, which we however did not
pursue any further.

Many tests finish after just a few iterations. The vast majority of successful attacks
does not require more than 20 iterations.

5 Attack Evaluation
After having described the inner workings of our attack, we now evaluate its performance in
various settings. First, we aim at identifying generic scenarios covering many typical usages
of Keccak in cryptographic constructions. There, we also uncover possibly unexpected
factors influencing the attack success rate. Then, we specify the leakage functions used for
attack simulations and validate their similarity to leakage stemming from real measurements
on an 8-bit and a 32-bit microprocessor. Finally, we show the results of attack simulations
in the identified scenarios across noise levels.

Matthias J. Kannwischer, Peter Pessl and Robert Primas 255

5.1 Scenarios
As discussed in Section 3, Keccak has found a large number of uses, many of which are
restricted to the single-trace setting. To limit the number of required tests and also give
more generic results, we do not run through all these use cases with their many sub-settings
and large parameter spaces.

Instead, we evaluate a generic scenario where a secret value, such as an ephemeral key
or seed, is found in the first n bits of the Keccak state. This is fulfilled when, e.g., the
secret is the first input to SHA-3. After some preliminary tests, we believe that the actual
position of the secret does not have a very big impact on the attack performance. Thus,
we conjecture that, e.g., SHAKE with a long public output, where the first r bits of the
state are thus known while the last c bits are not, is also covered.

On the importance of the key length. Unlike a standard DPA on a block cipher, the
length of the secret is a major influence on the success rate of the attack. This is because
in Keccak-based schemes, a smaller secret directly implies knowing a larger part of the
input to the 1600-bit permutation. This larger number of known input bits also allows to
exactly determine the value of more internal nodes, which in term increases the (relative
to the key length) number of factors where public and secret information is mixed. Such
factors allow a direct mapping of leakage information to secret-dependent data, which
makes them especially useful.

To determine the exact impact on the success rate, we analyze our attack for two very
common options, i.e., 128-bit and 256-bit secrets. This means that the secret is found in
the first 2 and 4 lanes of the state, respectively.

On the importance of the input state. Apart from the bit-length of the secret, we
observed a second major factor influencing the attack performance, namely the input state
of the attacked Keccak-f permutation. While we assume that the first n bits of the
state always contain a secret, the content of the remaining 1600− n bits can vary greatly
between scenarios.

When, e.g., using SHAKE as a simple seed expander, then only the first n bits of the
input of the permutation, i.e., the secret bits, are nonzero. All known parts are zero, except
for some padding bits and possibly a short domain separator. For the sake of simplicity, we
ignore the latter parts in our simulations and also set them to zero. We dub the resulting
setting all-zero public input.

On the other side of the spectrum are scenarios where at least one Keccak-f per-
mutation is applied to the state before the secret is absorbed. Then, the entire state is
uniformly random. An example of this behavior can be found in cSHAKE, where the
(public) customization string S is padded to multiple of the rate r and absorbed before
processing any input [NIS16a]. A variant of this scenario is SHAKE with public output
covering at least one rate part. In this setting, recovering the capacity c after the first
permutation allows to compute all inputs as well as further outputs. We dub these scenarios
random public input.

As it turns out, attacks in the random public input scenario perform considerably
better than those in the all-zero setting. This might seem unexpected at first but can be
explained as follows. First, recall the factor graph of θ shown in Figure 1a. In the first
round of Keccak-f , the input nodes I correspond to the input of the permutation. As
we assume that secrets are located in the first n bits of the state, we have that I at y = 0
is (potentially) secret, whereas I at all other positions is known. When the known I take
on random values, then message updates towards the θ-effect node T can be interpreted
as a DPA targeting T using 4 traces. When, however, all known I are zero, then all of
these 4 “traces” leak information on the exact same computation (XOR of T onto zero).
Thus, the DPA deteriorates into an averaging scenario, where the multiple observations of

256 Single-Trace Attacks on Keccak

the same computation can only be used for noise reduction.4 Therefore, when using the
Hamming-weight assumption, the adversary is limited to learning T’s Hamming weight,
which is typically a lot less informative than the outcome of a DPA on T.

The above, combined with the fact that in our scenarios, knowledge of the first-round
θ-effect allows full input recovery,5 is the main reason behind the performance differences
demonstrated in the next section. Finally, the common case that only the capacity bits of
Keccak state are zero, which occurs when processing long input while having the secret in
the first block, can be seen as a mix between the above scenarios. There, the performance
will depend on the capacity c. With c = 256, only the node at y = 4 is possibly part
of the capacity and thus constantly zero. As the attacker can still observe 4 different
public inputs for each parity computation, the attack performance will likely follow the
random-input scenario. For c = 512 or even larger, the number of different inputs to the
parity computation decreases; the attack performance will follow suit.

5.2 Choices for our Leakage Functions
Previously, we stated that SASCA requires incorporating leakage information into the
factor graph. For evaluation, it is of course necessary to specify the exact form and
location of said leakages. This depends on the specific target; we aim at software (micro-
controller) implementations of Keccak, such as those found in the Extended Keccak Code
Package [BDH+] (XKCP). Microcontrollers typically leak the Hamming weight (HW) of
processed values, especially SRAM accesses (loads and stores) show this behavior. For
this reason, we assume leakage on intermediates that are typically stored in RAM, i.e.,
not kept purely in registers. As b = 1600, the current state is always kept in RAM, usually
in a lane-based fashion. We now give typical updates of the state.

First, we focus our attack purely on the Keccak-f permutation, meaning that we do
not use leakage stemming from XORing (secret) input onto the state during absorbing.
Then, during each Keccak-f round, the full state is typically accessed at input/output
of θ, at the input/output of χ, and at the input/output of the typically merged π ◦ ρ.
In addition, the parity plane computed during θ is also commonly stored in RAM. The
round-constant addition ι only accesses a single lane; we do not make use of its leakage.
Thus, when only focusing on store operations, we assume leakage on three full state stores
and on the parity plane in each round.

Simulations with noisy Hamming-weight leakage. We evaluate our attack using leakage
simulations. The choice of using simulated leakage is mainly motivated by: (1) improving
the reproducibility of our experiments when using our published code base, and (2) allowing
the analysis of a large parameter space, such as varying noise levels, device architectures,
and input scenarios.

As we focus on software implementations, we use the well known noisy Hamming-weight
leakage model for all our simulations. That is, simulated leakage ` is obtained by adding
a normally distributed error with zero mean and standard deviation σ to the Hamming
weight of the processed value:

` = HW(a) +N (0, σ),

The bit width of a, and hence its maximum Hamming weight, is assumed to be equal to
the processor wordsize w. Keccak lanes are longer than the wordsize in all our scenarios

4This effect also occurs with, e.g., an all-one input or inputs that fill each lane with the same value.
However, due to initial zero-initialization of the sponge state, the zero setting is by far the most likely one.

5With a secret of up to 256 bits, at least one lane of the parity plane can be computed from public
input. The other lanes of the parity plane can be iteratively reconstructed by XORing a θ-effect lane with
a known input lane. Each column contains at most one secret bit; thus knowledge of the parity allows
easy recovery of this one bit.

Matthias J. Kannwischer, Peter Pessl and Robert Primas 257

(l = 64, w ∈ {8, 16, 32}). For this reason, we generate leakage for all l/w words in each
lane independently.

For adversaries, the creation of (univariate) Hamming-weight templates is a relatively
modest requirement, at least compared to other profiling methods. Especially for larger
devices, e.g., 32-bit microcontrollers, profiling the power consumption for all 2w possible
values is prohibitively expensive. Also, compared to multivariate value templates, simpler
univariate templates can be easier to port from a profiling device to the target device. It
is also thinkable to create them directly on the target device, e.g., by evenly dividing the
observed power-consumption range at the predetermined points of interest.

Leakage validation. To validate the above assumptions, and also to determine realistic
ranges for the noise parameter σ, we profile the power consumption of two devices.
More concretely, we estimate the leakage of memory-access instructions on an 8-bit AVR
XMEGA and a 32-bit STM32F405 microprocessor using the ChipWhisperer CW308
UFO Side-Channel-Analysis board [New]. In our leakage assessment, we measured the
power consumption6 of STR (store) instructions occurring in the assembler optimized
implementation of Keccak-f from the Extended Keccak Code Package [BDH+] (XKCP).
Based on these measurements, we then estimate the parameters of the noisy Hamming-
weight leakage model.

Leakage Estimation for 8-bit XMEGA 128D4. In the 8-bit scenario, we profile a STR
instruction in the first round of XKCP’s AVR-optimized Keccak-f implementation and
choose the input of the permutation such that the target instruction stores values with
HWs in the range from 0 to 8, while all other bytes of the state are randomized. We then
collect 100 power traces for processing values with each HW and illustrate the results
in Figure 2a. It clearly shows the dependency between the power consumption and the
Hamming weight of the processed value. After scaling the value range of the real leakage
to that of our model, we can estimate the noise term σ of our model to be about 0.5. The
resulting simulated power consumption is displayed in Figure 2b. As can be seen, the
simulated leakage with noise parameter σ = 0.5 matches the real measurements closely.

0 2 4 6 8
Hamming Weight

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

P
ow

er
C

on
su

m
p

ti
on

(a) Real leakage.

0 2 4 6 8
Hamming Weight

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

P
ow

er
C

on
su

m
p

ti
on

(b) Simulated noisy HW leakage with σ = 0.5.

Figure 2: Real/simulated leakage of a STR instruction on an 8-bit XMEGA128D4 micro-
processor. The value range of the simulated leakage is scaled so that it coincides with the
real measurements.

Leakage Estimation for 32-bit STM32F405. In the 32-bit scenario, we perform the
same measurements as in the 8-bit scenario, with the main difference being the larger range

6Correctly speaking, we measured the voltage at the on-board measurement point. This voltage is
proportional to the power consumption.

258 Single-Trace Attacks on Keccak

of HWs from 0 to 32. In contrast to the 8-bit scenario, XKCP’s 32-bit ARMv7M-optimized
implementations perform bit interleaving that has to be accounted for when choosing the
inputs of the permutation. Furthermore, we observed significant differences in the observed
leakage, depending on whether or not public state bytes can be fixed (e.g., to 0) or need
to be randomized for each profiling trace.

Such effects can partially be explained by the fact that the power consumption of
more capable processors is not instantaneous, but rather depends on the current and a
few previous instructions. Fixed values, like IVs, zeros for padding, or the hash of the
customization string in cSHAKE, frequently occur as input to Keccak-f . Additionally,
many operations within the first one or two rounds only depend on this fixed input.
This can be used during profiling, by using the same fixed public input for all profiling
measurements, noise can partly be accounted for in the first rounds.

We stress that the above is not to be confused with the two cases presented in Section 5.1.
There, we discerned two cases based on the structure of the public input used for the
attack trace. Here, however, we ask the question if the adversary can record profiling traces
with the same public input as used for the attack trace.

We present leakage estimations for both cases, thereby covering the best and worst
case from a leakage perspective. For the fixed-input setting, the entire public state is set
to zero, which we found to give the absolute best results. As illustrated in Figure 3a, the
noise level between the two studied cases can vary significantly and results in a σ that
can vary between 0.4 and 3.0 (see Figure 3b). In most usage scenarios, we expect an
average leakage with a σ well below 3 since the state is either for the most part or entirely
initialized to fixed values in the first round of Keccak-f . We also studied the effects of
averaging each power trace 10 times (see Figure 3c), which is applicable in certain usage
scenarios, and results in a lower σ in the range from about 0.2 to 1.3 (see Figure 3d).

5.3 Simulation Results
To assess the performance of our attack, we now present the outcome of attack simulations
using simulated noisy Hamming-weight leakage at various noise levels σ. We evaluated
both previously discussed scenarios (random vs. zero public input) at different key lengths
(128 and 256 bits). Also, we analyzed the impact of the processor wordsize by using the
Hamming weight of 8, 16, or 32-bit chunks. For each combination, we performed 100
experiments at each considered noise level (unless noted otherwise) and then compute the
success rate. We consider an experiment to be successful if belief propagation can correctly
recover the entire secret. Here, we stress that in the single-trace scenario even a very low
but non-zero success rate can be devastating. This is because adversaries can typically
observe many invocations, each one using a different ephemeral secret, and repeat the
attack for each recorded trace. Recovery of just a single one of these ephemeral keys is
very likely sufficient for a break of security.

We show the outcome of scenarios leading to successful attacks in Figure 4. For brevity,
settings that did not yield any successful experiments are omitted. As to be expected,
the attack performs best on 8-bit platforms. The corresponding graphs are shown in
Figure 4a and Figure 4b for the random public input and the all-zero public input scenario,
respectively. In the best case, i.e., with a 128-bit secret and a random public input, the
attack can deal with σ up to 2 while retaining a perfect success rate. Above that, the
success rate steadily declines and reaches zero for σ = 3. As predicted above, both the
key length as well as the structure of the public input state have a significant impact on
the acceptable noise levels. Still, the attack can easily cope with the expected real-device
leakage of σ ≈ 0.5 (cf. Section 5.2) in all analyzed settings.

As seen in Figure 4c and Figure 4d, increasing the processor word size to 16 bits
again decreases the attack performance. In the random public input setting (Figure 4c),
experiments using very low noise (σ < 0.5) often reported contradictions, i.e., they failed,

Matthias J. Kannwischer, Peter Pessl and Robert Primas 259

0 5 10 15 20 25 30
Hamming Weight

−0.3

−0.2

−0.1

0.0
P

ow
er

C
on

su
m

p
ti

on

Profiling inputs (fixed)

Profiling inputs (random)

(a) Real leakage, no averaging.

0 5 10 15 20 25 30
Hamming Weight

−0.3

−0.2

−0.1

0.0

P
ow

er
C

on
su

m
p

ti
on

Profiling inputs (fixed)

Profiling inputs (random)

(b) Simulated noisy HW leakage with σ = 3
(blue) and σ = 0.4 (red).

0 5 10 15 20 25 30
Hamming Weight

−0.3

−0.2

−0.1

0.0

P
ow

er
C

on
su

m
p

ti
on

Profiling inputs (fixed)

Profiling inputs (random)

(c) Real leakage, each sample is averaged 10
times.

0 5 10 15 20 25 30
Hamming Weight

−0.3

−0.2

−0.1

0.0

P
ow

er
C

on
su

m
p

ti
on

Profiling inputs (fixed)

Profiling inputs (random)

(d) Simulated noisy HW leakage with σ = 1.3
(blue) and σ = 0.2 (red).

Figure 3: Real/simulated leakage of a STR instruction on a 32-bit STM32F405 when
processing 32-bit words with a certain HW, while all other state bytes are set to fixed
values (zeros) or randomly chosen. The value range of the simulated leakage is scaled so
that it coincides with the real measurements.

when using the default clustersize of 8. This can be explained by the high leakage certainties
combined with overconfidence due to loops in the factor graph. These issues can be fixed
by increasing the clustersize to the processor wordsize, i.e., c = w = 16. For the all-zero
public input (Figure 4d), only with the use of 16-bit clusters successes occurred. Due to
the high computational cost of this option, we decreased the number of data points as
well as the number of experiments per σ (to 20 instead of 100). The success rate never
reaches 1 for this scenario, even in low-noise settings. This, again, can be explained by
overconfidence and the occurrence of contradictions at low noise settings. The combination
of an all-zero public input and a 256-bit secret only lead to failed experiments, regardless
of the clustersize.

The effects explained above are amplified when moving to w = 32, where only experi-
ments with a 128-bit secret and a random public input were successful (Figure 4e). The
clustersize did not have a significant impact here, possibly because both supported options
for c are below the wordsize. For this reason, the experiments used c = 8 again. When
considering the large span of leakage ranges reported in Section 5.2, the overall situation
is less conclusive than that for smaller devices. If averaging is an option, then noise can
be reduced to arbitrary low levels, meaning that attacks should be possible. Without
averaging, the success probability likely depends on many factors (such as the structure of
input and whether the input can be fixed for profiling). Thus, the attack might need to be
reevaluated for different devices, subscenarios, and settings.

260 Single-Trace Attacks on Keccak

0 1 2 3
0

0.5

1

128bit
256bit

(a) 8-bit device, random public input

0 1 2 3
0

0.5

1

128bit
256bit

(b) 8-bit device, all-zero public input

0 1 2 3
0

0.5

1

128bit
256bit

(c) 16-bit device, random public input

0 1 2 3
0

0.5

1

128bit

(d) 16-bit device, all-zero public input

0 1 2 3
0

0.5

1

128bit

(e) 32-bit device, random public input

Figure 4: Success rate on simulated traces as function of noise level σ, for various scenarios
(random public input state and all-zero public input), word sizes (8, 16, 32-bit devices),
and key lengths (128 and 256 bit). Settings that did not yield any successful experiments
are not shown.

6 Discussion and Conclusion

The above results clearly show that the threat of single-trace attacks cannot be neglected.
All evaluated subscenarios allowed successful attacks at realistic noise levels, at least on
smaller devices such as 8-bit microcontrollers. For 32-bit devices, the situation is less
conclusive, as the susceptibility depends on many factors.

However, recall that all our evaluations used a simple Hamming-weight leakage model.
The use of more complex profiling methods, such as multivariate value templates or
machine-learning techniques, likely increases performance and could thus allow attacks in
more scenarios. Similar points can be made for the switch to other side channels, such as
(localized) electromagnetic emanations, which might allow capturing even more information
in each trace. We thus argue that unprotected implementations should always be avoided
in applications sensitive to side-channel attacks, at least for software targets.

Matthias J. Kannwischer, Peter Pessl and Robert Primas 261

6.1 Future Work
While this paper presents a first step towards understanding single-trace vulnerabilities of
the Keccak-f permutation, there still exists a large body of questions that were out of
scope of this paper.

Smaller Keccak-f instances. As NIST only standardized Keccak-f [1600], the results
presented here were limited to this particular instance of Keccak-f . However, due to
the large state size, Keccak-f [1600] is arguably unsuitable for lightweight cryptographic
devices, which is why Keccak-based submissions to the NIST lightweight competition
usually use smaller states. For example, Isap uses Keccak-f [400] [DEM+19], while
Elephant uses the even smaller Keccak-f [200] [BCDM19]. Our attack code supports
different state sizes (i.e., lane lengths), but at first glance it seems like smaller Keccak
instances are harder to attack due to the ratio between known/unknown inputs bits being
smaller. Analogous to the arguments used in Section 5.1, this leads to fewer factors where
public and secret information is mixed and thus to potentially worse performance.

Few-trace attacks. We found various cases where the attacker can observe multiple,
but still only very few, calls to Keccak-f with the same key but different other inputs.
This does allow differential attacks in some sense, but standard DPA attacks are still
out of reach. SASCA can make use of such multiple measurements, as already shown by
Veyrat-Charvillon et al. [VGS14]. This can be done by first constructing a factor graph for
each call to the primitive and then merging the graphs at all nodes that do not depend on
the changing parts of the input. Leakage at shared nodes is essentially averaged, whereas
leakage on non-shared nodes stays independent.

As discussed in Section 3, some schemes use ephemeral seeds in conjunction with a
counter. In such a configuration, only a very small part of the input to Keccak-f changes
between invocations, meaning that a large number of nodes in the initial rounds will be
shared and can only be used for averaging. For this reason, we expect that attacks in
this setting will perform similarly to those where the input is unchanging but averaging is
possible. However, a closer look is required for confirming this suspicion.

Key enumeration. One potential way to further improve the attack success rate is to
employ key enumeration. That is, instead of only picking the most probable candidate for
each subkey and thereby recovering the single most likely key, an attacker enumerates and
tests the, e.g., 232, most likely keys [VGRS12,PSG16].

A prerequisite of key enumeration is that the obtained posterior distributions (subkey
distributions conditioned on the leakage) are a reasonable approximation of the true
posteriors. This is likely the case when BP converges. However, in our experiments we
found that in case of convergence, the reported remaining entropy of the key is either
zero or still quite high (e.g., > 240). These scenarios correspond to the first two exit
(convergence) conditions described in Section 4.5. When hitting the first exit condition,
i.e., entropy reaching zero, the key is always correctly recovered, thus there is no need for
key enumeration. In the second case, the high remaining key entropy makes, at least on
first glance, key enumeration not very promising.

Tests that would result in an intermediate remaining entropy would most benefit from
key enumeration. However, exactly these cases appear to be highly prone to oscillations
and were maybe for this reason not observed in the set of converging configurations.
In non-converging cases, the reported posteriors are highly unreliable, thus ruling out
enumeration. It might be possible to alleviate this problem by, e.g., restarting BP and
then performing an early abort.7 As oscillations are sometimes only local whereas large

7Suggested by an anonymous reviewer

262 Single-Trace Attacks on Keccak

parts of the graph still converge [KF09], another fix might be to only use posteriors of
graph sections that do converge and assume a uniform distribution for the remainder.

6.2 Countermeasures

The attack presented in this paper requires only a single trace and can deal with relatively
high noise levels, at least on smaller microcontrollers. It can be applied to various
cryptographic schemes using Keccak as a building block and allows to recover secrets and
compromise the security of those schemes. Therefore, it is apparent that implementations
should be protected against these kind of attacks. We now discuss some potential ways to
counteract the attack.

Masking. There already exist multiple approaches to protect Keccak using boolean
masking [Dae17,GSM17]. While the main goal of masking is to protect against (higher-
order) differential attacks, it also hampers single-trace attacks. This is because the initial
sharing of the input destroys all hard information going into the first Keccak-f round.
This means that, e.g., the message updates towards the θ-effect T become more akin to an
unknown-plaintext template attack [HTM09] instead of a DPA (cf. Section 5.1).

Note, however, that factor graphs can be adapted to masked implementations, thereby
potentially re-enabling attacks. In fact, Grosso and Standaert demonstrated SASCA on
masked AES implementations [GS18], although they did not report successful attacks
in the single-trace scenario. Other previous works showed the feasibility of single-trace
SASCA on masked implementations of lattice-based encryption, albeit at greatly reduced
noise levels when compared to unprotected implementations [PP19]. Hence, masking alone
might not always offer a sufficient level of protection. Still, determining if masking can
really be defeated in certain scenarios, such as 8-bit implementations using only two shares
or masking schemes minimizing the amount of required randomness [GSD+19], requires
further investigations.

Hiding. Hiding, and more specifically shuffling, is frequently suggested as a countermea-
sure against all sorts of algebraic side-channel attacks. By reordering the computations
within the Keccak-f operations, mapping the leakage to the corresponding nodes in the
factor graph becomes significantly more difficult. If enough randomness is introduced, the
attack quickly becomes infeasible. While shuffling was already suggested as a countermea-
sure against SASCA in previous work [VGS14,PPM17], its effectiveness as well as the cost
of fully or partially shuffling Keccak-f remains to be evaluated.

Acknowledgements

This work has been supported by the European Commission through the ERC Starting
Grant 805031 (EPOQUE), and by the Austrian Research Promotion Agency (FFG) via
the K-project DeSSnet, which is funded in the context of COMET - Competence Centers
for Excellent Technologies by BMVIT, BMWFW, Styria and Carinthia, and via the
project ESPRESSO, which is funded by the province of Styria and the Business Promotion
Agencies of Styria and Carinthia.

Matthias J. Kannwischer, Peter Pessl and Robert Primas 263

References
[ABD+19] Roberto Avanzi, Joppe Bos, Láo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim

Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS–Kyber: Algorithm specification and supporting documen-
tation (version 2.0). Submission to the NIST Post-Quantum Cryptography
Standardization Project [NIS16b], 2019. https://pq-crystals.org/kyber.

[AIL+15] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P. Razenshteyn, and
Ludwig Schmidt. Practical and optimal LSH for angular distance. In NIPS,
pages 1225–1233, 2015.

[BAA+19] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Johannes
Buchmann, Edward Eaton, Gus Gutoski, Juliane Kramer, Patrick Longa,
Harun Polat, Jefferson E. Ricardini, and Gustavo Zanon. qTESLA. Submission
to the NIST Post-Quantum Cryptography Standardization Project [NIS16b],
2019. https://qtesla.org/.

[BCDM19] Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart Mennink.
Elephant v1.1. Submission to the NIST Lightweight Crypto Compe-
tition [NIS19], 2019. https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/spec-doc-rnd2/
elephant-spec-round2.pdf.

[BDH+] Guido Bertoni, Joan Daemen, Seth Hoffert, Michael Peeters, Gilles Van
Assche, and Ronny Van Keer. eXtended Keccak Code Package. https:
//github.com/XKCP/XKCP. [Online; accessed 11-July-2019].

[BDN+13] Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen,
and Gilles Van Assche. Efficient and first-order DPA resistant implementations
of keccak. In CARDIS, volume 8419 of Lecture Notes in Computer Science,
pages 187–199. Springer, 2013.

[BDP+16a] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny
Van Keer. Ketje v2. Submission to CAESAR [CAE], 2016. https://keccak.
team/files/Ketjev2-doc2.0.pdf.

[BDP+16b] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny
Van Keer. Keyak v2. Submission to CAESAR [CAE], 2016. https://keccak.
team/files/Keyakv2-doc2.2.pdf.

[BDP+18] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, Ronny Van
Keer, and Benoît Viguier. Kangarootwelve: Fast hashing based on keccak-p.
In ACNS, volume 10892 of Lecture Notes in Computer Science, pages 400–418.
Springer, 2018.

[BDPV11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Ass-
che. The KECCAK reference, 2011. https://keccak.team/files/
Keccak-reference-3.0.pdf.

[CAE] CAESAR: Competition for authenticated encryption: Security, applicability,
and robustness. https://competitions.cr.yp.to/caesar.html.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
CHES, volume 2523 of Lecture Notes in Computer Science, pages 13–28.
Springer, 2002.

https://pq-crystals.org/kyber
https://qtesla.org/
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/elephant-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/elephant-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/elephant-spec-round2.pdf
https://github.com/XKCP/XKCP
https://github.com/XKCP/XKCP
https://keccak.team/files/Ketjev2-doc2.0.pdf
https://keccak.team/files/Ketjev2-doc2.0.pdf
https://keccak.team/files/Keyakv2-doc2.2.pdf
https://keccak.team/files/Keyakv2-doc2.2.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://competitions.cr.yp.to/caesar.html

264 Single-Trace Attacks on Keccak

[Dae17] Joan Daemen. Changing of the guards: A simple and efficient method for
achieving uniformity in threshold sharing. In CHES, volume 10529 of Lecture
Notes in Computer Science, pages 137–153. Springer, 2017.

[DEM+19] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
Bart Mennink, Robert Primas, and Thomas Unterluggauer. ISAP v2.0. Sub-
mission to the NIST Lightweight Crypto Competition [NIS19], 2019. https:
//csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/isap-spec-round2.pdf.

[DKRV19] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. SABER. Submission to the NIST Post-Quantum Cryptography
Standardization Project [NIS16b], 2019. https://www.esat.kuleuven.be/
cosic/pqcrypto/saber/.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In CRYPTO, volume 1666 of Lecture
Notes in Computer Science, pages 537–554. Springer, 1999.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO, volume 263 of Lecture
Notes in Computer Science, pages 186–194. Springer, 1986.

[GS12] Benoît Gérard and François-Xavier Standaert. Unified and optimized linear
collision attacks and their application in a non-profiled setting. In CHES,
volume 7428 of Lecture Notes in Computer Science, pages 175–192. Springer,
2012.

[GS15] Vincent Grosso and François-Xavier Standaert. ASCA, SASCA and DPA with
enumeration: Which one beats the other and when? In ASIACRYPT (2),
volume 9453 of Lecture Notes in Computer Science, pages 291–312. Springer,
2015.

[GS18] Vincent Grosso and François-Xavier Standaert. Masking proofs are tight and
how to exploit it in security evaluations. In EUROCRYPT (2), volume 10821
of Lecture Notes in Computer Science, pages 385–412. Springer, 2018.

[GSD+19] Hannes Groß, Ko Stoffelen, Lauren De Meyer, Martin Krenn, and Stefan
Mangard. First-order masking with only two random bits. In TIS@CCS,
pages 10–23. ACM, 2019.

[GSM17] Hannes Groß, David Schaffenrath, and Stefan Mangard. Higher-order side-
channel protected implementations of KECCAK. In DSD, pages 205–212.
IEEE Computer Society, 2017.

[HBD+19] Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder,
Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kolbl, Tanja
Lange, Martin M Lauridsen, Florian Mendel, Ruben Niederhagen, Christian
Rechberger, Joost Rijneveld, Peter Schwabe, and Jean-Philippe Aumasson.
SPHINCS+. Submission to the NIST Post-Quantum Cryptography Standard-
ization Project [NIS16b], 2019. http://sphincs.org/.

[HBG+18] Andreas Huelsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and
Aziz Mohaisen. XMSS: eXtended Merkle Signature Scheme. RFC 8391, May
2018.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/isap-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/isap-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/isap-spec-round2.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/
http://sphincs.org/

Matthias J. Kannwischer, Peter Pessl and Robert Primas 265

[HTM09] Neil Hanley, Michael Tunstall, and William P. Marnane. Unknown plaintext
template attacks. In WISA, volume 5932 of Lecture Notes in Computer
Science, pages 148–162. Springer, 2009.

[KF09] Daphne Koller and Nir Friedmann. Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009.

[KGB+18] Matthias J. Kannwischer, Aymeric Genêt, Denis Butin, Juliane Krämer, and
Johannes Buchmann. Differential power analysis of XMSS and SPHINCS. In
COSADE, volume 10815 of Lecture Notes in Computer Science, pages 168–188.
Springer, 2018.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

[LDK+19] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-DILITHIUM. Submission
to the NIST Post-Quantum Cryptography Standardization Project [NIS16b],
2019. https://pq-crystals.org/dilithium/.

[NAB+19] Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen Easterbrook,
Brian LaMacchia, Patrick Longa, Ilya Mironov, Valeria Nikolaenko, Christo-
pher Peikert, Ananth Raghunathan, and Douglas Stebila. FrodoKEM.
Submission to the NIST Post-Quantum Cryptography Standardization
Project [NIS16b], 2019. https://frodokem.org/.

[New] NewAE. CW308 UFO target. https://wiki.newae.com/CW308_UFO_Target.

[NIS15] NIST. FIPS PUB 202: SHA-3 Standard: Permutation-based hash and
extendable-output functions. Federal Information Processing Standards Pub-
lication 202, U.S. Department of Commerce, 8 2015.

[NIS16a] NIST. SP800-185 – SHA-3 derived functions: cSHAKE, KMAC, Tu-
pleHash and ParallelHash, 2016. https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-185.pdf.

[NIS16b] NIST Computer Security Division. Post-Quantum Cryptogra-
phy Standardization, 2016. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography.

[NIS19] NIST Computer Security Division. Lightweight Cryptography, 2019. https:
//csrc.nist.gov/projects/lightweight-cryptography.

[PAA+19] Thomas Pöppelmann, Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas,
Antonio de la Piedra, Peter Schwabe, Douglas Stebila, Martin R. Albrecht, Em-
manuela Orsini, Valery Osheter, Kenneth G. Paterson, Guy Peer, and Nigel P.
Smart. NewHope. Submission to the NIST Post-Quantum Cryptography
Standardization Project [NIS16b], 2019. https://newhopecrypto.org/.

[PP19] Peter Pessl and Robert Primas. More practical single-trace attacks on the
number theoretic transform. In LATINCRYPT, volume 11774 of Lecture
Notes in Computer Science, pages 130–149. Springer, 2019.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In CHES, volume 10529 of Lecture
Notes in Computer Science, pages 513–533. Springer, 2017.

https://pq-crystals.org/dilithium/
https://frodokem.org/
https://wiki.newae.com/CW308_UFO_Target
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://newhopecrypto.org/

266 Single-Trace Attacks on Keccak

[PSG16] Romain Poussier, François-Xavier Standaert, and Vincent Grosso. Simple key
enumeration (and rank estimation) using histograms: An integrated approach.
In CHES, volume 9813 of Lecture Notes in Computer Science, pages 61–81.
Springer, 2016.

[TS13] Mostafa M. I. Taha and Patrick Schaumont. Side-channel analysis of mac-
keccak. In HOST, pages 125–130. IEEE Computer Society, 2013.

[VGRS12] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-
Xavier Standaert. An optimal key enumeration algorithm and its application
to side-channel attacks. In Selected Areas in Cryptography, volume 7707 of
Lecture Notes in Computer Science, pages 390–406. Springer, 2012.

[VGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert.
Soft analytical side-channel attacks. In ASIACRYPT (1), volume 8873 of
Lecture Notes in Computer Science, pages 282–296. Springer, 2014.

[YFW00] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Generalized belief
propagation. In NIPS, pages 689–695. MIT Press, 2000.

[ZKSH12] Michael Zohner, Michael Kasper, Marc Stöttinger, and Sorin A. Huss. Side
channel analysis of the SHA-3 finalists. In DATE, pages 1012–1017. IEEE,
2012.

Matthias J. Kannwischer, Peter Pessl and Robert Primas 267

A Keccak State Naming Convention

Figure 5: The Keccak state (taken from [BDPV11]).

268 Single-Trace Attacks on Keccak

B Keccak Permutation

x

y z z

θ ρ

π χ

Figure 6: The Keccak permutation steps (taken from [BDPV11]).

	Introduction
	Background
	Keccak
	Side Channels & Belief Propagation

	Keccak in Practice
	SASCA on Keccak
	Basic Construction
	Clustering
	Modeling the Keccak-f Round Functions
	Adding Leakage
	Attack Implementation and Parameterization

	Attack Evaluation
	Scenarios
	Choices for our Leakage Functions
	Simulation Results

	Discussion and Conclusion
	Future Work
	Countermeasures

	Keccak State Naming Convention
	Keccak Permutation

