
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 3, pp. 169–195. DOI:10.13154/tches.v2020.i3.169-195

JackHammer: Efficient Rowhammer on
Heterogeneous FPGA-CPU Platforms

Zane Weissman1, Thore Tiemann2, Daniel Moghimi1, Evan Custodio3,
Thomas Eisenbarth2 and Berk Sunar1

1 Worcester Polytechnic Institute, MA, USA
zweissman@wpi.edu, amoghimi@wpi.edu, sunar@wpi.edu

2 University of Lübeck, Lübeck, Germany
thore.tiemann@student.uni-luebeck.de, thomas.eisenbarth@uni-luebeck.de

3 Intel Corporation, Hudson, MA, USA
evan.custodio@intel.com

Abstract. After years of development, FPGAs are finally making an appearance on
multi-tenant cloud servers. Heterogeneous FPGA-CPU microarchitectures require
reassessment of common assumptions about isolation and security boundaries, as
they introduce new attack vectors and vulnerabilities. In this work, we analyze the
memory and cache subsystem and study Rowhammer and cache attacks enabled by
two proposed heterogeneous FPGA-CPU platforms from Intel: the Arria 10 GX with
an integrated FPGA-CPU platform, and the Arria 10 GX PAC expansion card which
connects the FPGA to the CPU via the PCIe interface. We demonstrate JackHammer,
a novel, efficient, and stealthy Rowhammer from the FPGA to the host’s main memory.
Our results indicate that a malicious FPGA can perform twice as fast as a typical
Rowhammer from the CPU on the same system and causes around four times as
many bit flips as the CPU attack. We demonstrate the efficacy of JackHammer from
the FPGA through a realistic fault attack on the WolfSSL RSA signing implementation
that reliably causes a fault after an average of fifty-eight RSA signatures, 25%
faster than a CPU Rowhammer. In some scenarios our JackHammer attack produces
faulty signatures more than three times more often and almost three times
faster than a conventional CPU Rowhammer. Finally, we systematically analyze
new cache attacks in these environments following demonstration of a cache covert
channel across FPGA and CPU.

Keywords: FPGA · side-channel · cache attack · Rowhammer · cloud security

1 Introduction
In recent years, as improvements in the performance of microprocessors have slowed,
developers have looked to other computing resources. FPGAs, graphics processing units
(GPUs) and application-specific integrated circuits (ASICs) have all been adapted to
accelerate applications such as high-frequency trading and machine learning. FPGAs are
particularly interesting for cloud computing applications, as they can be reconfigured
for the needs of different users at different times. Amazon Web Services [Ama17] and
Alibaba Cloud [Ali19] already offer FPGA instances with ultra-high performance Xilinx
Virtex UltraScale+ and Intel Arria 10 GX FPGAs to the consumer market. These FPGAs
are designed for high I/O bandwidth and high compute capacity, making them ideal for
server workloads. New Intel FPGAs offer cache-coherent memory systems for even better
performance when data is being passed back and forth between CPU and FPGA.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-01-15 Accepted: 2019-03-15 Published: 2020-06-19

https://doi.org/10.13154/tches.v2020.i3.169-195
mailto:zweissman@wpi.edu
mailto:amoghimi@wpi.edu
mailto:sunar@wpi.edu
mailto:thore.tiemann@student.uni-luebeck.de
mailto:thomas.eisenbarth@uni-luebeck.de
mailto:evan.custodio@intel.com
http://creativecommons.org/licenses/by/4.0/

170 JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms

The flexibility of FPGA systems can also open up new attack vectors for malicious
users in public clouds or more efficiently exploit existing ones. Integrated FPGA platforms
connect the FPGA right into the processor bus interconnect giving the FPGA direct access
into cache and memory [Huf18]. Similarly, high-end FPGAs can be integrated into a server
as an accelerator, e.g. connected via PCIe interface [Int18b, Xil19]. Such combinations
provide unprecedented performance over a high-throughput and low-latency connection
with the versatility of a reprogrammable FPGA infrastructure shared among cloud users.
However, the tight integration may also expose users to new adversarial threats.

This work exposes hardware vulnerabilities in hybrid FPGA-CPU systems with a
particular focus on cloud platforms where the FPGA and the CPU are in distinct security
domains: one potentially a victim and the other an attacker. We examine Intel’s Arria 10
GX FPGA as an example of a current generation of FPGA accelerator platform designed
in particular for heavy and/or cloud-based computation loads. We thoroughly analyze
the memory interfaces between such platforms and their host CPUs. These interfaces,
which allow the CPU and FPGA to interact in various direct and indirect ways, include
hardware on both the FPGA and CPU, application libraries and software drivers executed
by the CPU, and logical interfaces implemented on the FPGA outside of but accessible to
the user-configurable region. We propose attacks that exploit practical use cases of these
interfaces to target adjacent systems such as the CPU memory and cache.

1.1 Our Contributions
We demonstrate novel attacks between the memory interface of Intel Arria 10 GX platforms
and their host CPUs. Furthermore, we demonstrate a Rowhammer mounted from the
FPGA against the CPU to cause faults in the WolfSSL RSA signature implementation,
and to leak a private RSA modulus factor. In summary:
I We thoroughly reverse-engineer and analyze the cache behavior and investigate the

viability of cache attacks on realistic FPGA-CPU hybrid systems.
I Based on our study of the cache subsystem, we build JackHammer, a Rowhammer from

the FPGA that bypasses caching to hammer the main memory. We compare JackHam-
mer with the CPU Rowhammer and show that JackHammer is twice as fast as a CPU
attack, causing faults that the CPU Rowhammer is unable to replicate. JackHammer
remains stealthy to CPU monitors since it bypasses the CPU microarchitecture.

I Using both JackHammer and conventional CPU Rowhammer, we demonstrate a fault
attack on recent versions of RSA implementation in the WolfSSL library and recover
private keys. We show that the base blinding used in this RSA implementation leaves
the algorithm vulnerable to the Bellcore fault injection attack.

I We systematically analyze cache attack techniques on different scenarios: FPGA to
CPU, CPU to FPGA, and FPGA to FPGA, and demonstrate a cache covert channel
that can transmit up to 1.5 – 1.8MBit/s from the FPGA to the CPU.

Vulnerability Disclosure We informed the WolfSSL team about the vulnerability to
Bellcore-style RSA fault injection attacks on November 25, 2019. WolfSSL acknowledged
the vulnerability on the same day, and released WolfSSL 4.3.0 with a fix for the vulnerability
on December 20, 2019. The vulnerability can be tracked via CVE-2019-19962 [mit19].

1.2 Experimental Setup
We experiment with two distinct FPGA-CPU platforms with Intel Arria 10 FPGAs: 1)
integrated into the CPU package and 2) Programmable Acceleration Card (PAC). The
integrated Intel Arria 10 is based on a prototype E5-2600v4 CPU with 12 physical cores.
The CPU has a Broadwell architecture in which the last level cache (LLC) is inclusive of
the L1/L2 caches. The CPU package has an integrated Arria 10 GX 1150 FPGA running

Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, B. Sunar 171

Algorithm 1 Chinese remainder theorem RSA signature.
1: procedure sign(m: message, d: private exponent, p: private factor, q: private factor)
2: Sp ← mdp mod p . equivalent to md mod p
3: Sq ← mdq mod q . equivalent to md mod q
4: Iq ← q−1 mod p . inverse of q
5: return S ← Sq + q ((Sp − Sq)Iq mod p)

at 400MHz. All measurements done on this platform are strictly done from userspace
only, as access is kindly provided by Intel through their Intel Lab (IL) Academic Compute
Environment.1 The IL environment also gives us access to platforms with PACs with Arria
10 GX 1150 FPGA installed and running at 200MHz. These systems have Intel Xeon
Platinum 8180 CPUs that come with non-inclusive LLCs. We carried out the Rowhammer
experiments on our local Dell Optiplex 7010 system with an Intel i7-3770 CPU, and a
single DIMM of Samsung M378B5773DH0-CH9 1333MHz 2GB DDR3 DRAM equipped
with the same Intel PAC running with a primary clock speed of 200MHz.2

The operating system (OS) running in the IL is a 64-bit Red Hat Enterprise Linux
7 with Kernel version 3.10. The OPAE version was compiled and installed on July 15th,
2019 for both the FPGA PAC and the integrated FPGA platform. We used Quartus 17.1.1
and Quartus 16.0.0 to synthesize AFUs for the PACs and integrated FPGAs, respectively.
The bitstream version of the non-user-configurable Board Management Controller (BMC)
firmware is 1.1.3 on the FPGA PAC and 5.0.3 on the integrated FPGA. The OS on our
Optiplex 7010 workstation is Ubuntu 16.04.4 LTS with Linux kernel 4.13.0-36. On this
system, we installed the latest stable release of OPAE, 1.3.0, and on its FPGA PAC, we
installed the compatible 1.1.3 BMC firmware bitstream.

2 Background
2.1 RSA-CRT Signing
RSA signatures are computed by raising a plaintext m to a secret power d modulo N = pq,
where p and q are prime and secret, and N is public [BDL97]. These numbers must all be
large for RSA to be secure, which makes the exponentiation rather slow. However, there is
an algebraic shortcut for modular exponentiation: the Chinese Remainder Theorem (CRT),
used in many RSA implementations, including in the WolfSSL we attack in Section 5 and
in OpenSSL [CDFG18]. The basic form of the RSA-CRT signature algorithm is shown in
Algorithm 1. The CRT algorithm is much faster than simply computing md mod N because
dp and dq are of order p and q respectively while d is of order N , which, being the product
of p and q, is significantly greater than p or q; it is around four times faster to compute
the two exponentiations mdp and mdq than it is to compute md outright [ABF+03].

2.2 Cache Attacks
Cache attacks have been proposed attacking various applications [OKSK15, BH09, GES17,
GZES17, BvdPSY14, TSS+03]. In general, cache attacks use timing of the cache behavior
to leak information. Modern cache systems use a hierarchical architecture that includes
smaller, faster caches and bigger, slower caches. Measuring the latency of a memory
access can often confidently determine which levels of cache contain a certain memory
address (or if the memory is cached at all). Many modern cache subsystems also support

1https://wiki.intel-research.net/
2The PAC is intended to support 400MHz clock speed, but the current version of the Intel Acceleration

Stack has a bug that halves the clock speed.

https://wiki.intel-research.net/

172 JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms

coherency, which ensures that whenever memory is overwritten in one cache, copies of that
memory in other caches are either updated or invalidated. Cache coherency may allow
an attacker to learn about a cache line that is not even directly accessible [IES16]. Cache
attacks have become a major focus of security research in cloud computing platforms where
users are allocated CPUs, cores, or virtual machines which, in theory, should offer perfect
isolation, but in practice may leak information to each other via shared caches [İGI+16].
An introduction to various cache attack techniques is given below:
Flush+Reload Flush+Reload (F+R) [YF14] has three steps: 1) The attacker uses the
clflush instruction to flush the cache line that is to be monitored. After flushing this
cache line, 2) she waits for the victim to execute. Later, 3) she reloads the flushed line
and measures the reload latency. If the latency is low, the cache line was served from the
cache hierarchy, so the cache line was accessed by the victim. If the access latency is high,
the cache line was loaded from main memory, meaning that the victim did not access it.
F+R can work across cores and even across sockets, as long as the LLC is coherent, as
is the case with many modern multi-CPU systems. Flush+Flush (F+F) [GMWM16] is
similar to F+R, but the third step is different: the attacker flushes the cache line again
and measures the execution time of the flush instruction instead of the memory access.

Orthogonal to F+R, if the attacker does not have access to an instruction to flush a
cache line, she can instead evict the desired cache line by accessing cache lines that form
an eviction set in an Evict+Reload (E+R) [LGS+16] attack. Eviction sets are described
shortly. E+R can be used if the attacker shares the same CPU socket (but not necessarily
the same core) as the victim and if the LLC is inclusive.3 F+R, F+F, and E+R are limited
to shared memory scenarios, where the victim and attacker share data or instructions, e.g.
when memory de-duplication is enabled.
Prime+Probe Prime+Probe (P+P) gives the attacker less temporal resolution than
the aforementioned methods since the attacker checks the status of the cache by probing a
whole cache set rather than flushing or reloading a single line. However, this resolution is
sufficient in many cases [OST06, RTSS09, ZJRR12, IES15a, OKSK15, LGS+16, MIE17].
P+P has three steps: 1) The attacker primes the cache set under surveillance with dummy
data by accessing a proper eviction set, 2) she waits for the victim to execute, 3) she
accesses the eviction set again and measures the access latency (probing). If the latency
is above a certain threshold, some parts of the eviction set was evicted by the victim
process, meaning that the victim accessed cache lines belonging to the cache set under
surveillance [LYG+15]. Unlike F+R, E+R, and F+F, P+P does not rely on shared memory.
However, it is noisier, only works if the victim is located on the same socket as the attacker,
and relies on inclusive caches. An alternative attack against non-inclusive caches is to
target the cache directory structure [YSG+19].
Evict+Time In scenarios where the attacker can not probe the target cache set or line,
but she can still influence the target cache line, an Evict+Time (E+T) is still possible
depending on the target application. In an E+T attack, the attacker only evicts the
victim’s cache line and measures the aggregate execution time of the victim’s operation,
hoping to observe a correlation between the execution time of an operation such as a
cryptographic routine and the cache access pattern.
Eviction Sets Caches store data in units of cache lines that can hold 2b bytes each (64
bytes on Intel CPUs). Caches are divided into 2s sets, each capable of holding w cache
lines. w is called the way-ness or associativity of the cache. An eviction set is a set of
congruent cache line addresses capable of filling a whole cache set. Two cache lines are
considered congruent if they belong to the same cache set. Memory addresses are mapped
to cache sets depending on the s bits of the physical memory address directly following the

3A lower-level cache is called inclusive of a higher-level cache if all cache lines present in the higher-level
cache are always present in the lower-level cache.

Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, B. Sunar 173

b cache line offset bits, which are the least significant bits. Additionally, some caches are
divided into n slices, where n is the number of CPU cores. In the presence of slices, each
slice has 2s sets with w ways each. Previous work has reverse-engineered the mapping of
physical address bits to cache slices on some Intel processors [IES15b]. A minimal eviction
set contains w addresses and therefore fills an entire cache set when accessed.

2.3 Rowhammer
DRAM cells discharge over time, and the memory controller has to refresh the cells to avoid
accidental data corruption. Generally, DRAM cells are laid out in banks and rows, and
each row within a bank has two adjacent rows, one on either side. In a Rowhammer attack,
memory addresses in the same bank as the target memory address are accessed in quick
succession. When memory adjacent to the target is accessed repeatedly, the electrostatic
interference generated by the physical process of accessing the memory can elevate the
discharge for bits stored in the target memory. A “single-sided” Rowhammer performs
accesses to just one of these rows to generate bit flips in the target row; a “double-sided”
Rowhammer performs accesses to both adjacent rows and is generally more effective in
producing bit flips. Rowhammer relies on the ability to find blocks of memory accessible
to the malicious program (or in this work, hardware) that are in the same memory bank
as a given target address. The standard way of finding these memory addresses is by
exploiting row buffer conflicts as a timing side-channel [FGBR18]. Pessl et al. [PGM+16]
reverse-engineered the bank mapping algorithms of several CPU and DRAM configurations
which allows an attacker to deterministically calculate all of the physical addresses that
share the same bank if the chipset and memory configuration are known.

2.4 Related Attacks
Classical power analysis techniques like Kocher et al.’s differential power analysis [KJJ99]
have been applied in new attacks on inter-chip FPGAs [ZS18, SGMT18b, SGMT18a].
Such integrated and inter-chip FPGAs are available in various cloud environments and
system-on-chips (SoCs) products. In particular, Zhao et al. [ZS18] demonstrated how
to build an on-chip power monitor using ring oscillators (ROs) which can be used to
attack the host CPU or other FPGA tenants. In multi-tenant FPGA scenarios where
partial reconfiguration by two separate security domains is possible, more powerful attacks
become possible. For instance, the long wires on the FPGA can spy on adjacent wires
using ROs [GER19, RPD+18, PRP+19]. Ramesh et al. [RPD+18] exploited the speed
of ROs to infer the carried bit in the adjacent wire and demonstrated a key recovery
attack on AES. ROs can also be used as power wasters to create voltage drop and timing
faults [GOT17, KGT18]. Note that such attacks rely on FPGA multi-tenancy which is not
widely used yet. In contrast, in this work, we only assume that the FPGA-CPU memory
subsystem is shared among tenants.

3 Analysis of Intel FPGA-CPU Systems
This section explains the hardware and software interfaces that the Intel Arria 10 GX
FPGA platforms use to communicate with their host CPUs and the firmware, drivers, and
architectures that underlay them. Figure 1 gives an overview of such architecture.
Introduction to Intel Terminology Intel refers to a single logical unit implemented
in FPGA logic and having a single interface to the CPU as an Accelerator Functional Unit
(AFU). So far, available FPGA platforms only support one AFU per Partial Reconfiguration
Unit (PRU, also called the Green Region). The AFU is an abstraction similar to a program
that captures the logic implemented on an FPGA. The FPGA Interface Manager (FIM) is

174 JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms

L1/L2

L3 / Last Level Cache

IOMMUFIU

FPGA PRU AFUCPU Package

D
R
A
M U
PI

PC
Ie

CCI-P

Core 0

Cache

PAC

PCIe

L1/L2
Core 1

FIU

FPGA
PRU

AFU

C
C
I-
P

IO
M
M
U

OPAE
FPGA Drivers

FPGA API
Application

OS

Figure 1: Overview of the architecture of Intel FPGAs. The software part of the Intel
Acceleration Stack called OPAE is highlighted in orange. Its API is used by applications
(yellow) to communicate with the AFU. The Green Region marks the part of the FPGA
that is re-configurable from userspace at runtime. The Blue Region describes the static
soft core of the FPGA. It exposes the CCI-P interface to the AFU.

part of the non-user-configurable portion (Blue Region) of the FPGA and contains external
interfaces like memory and network controllers as well as the FPGA Interface Unit (FIU),
which bridges those external interfaces with internal interfaces to the AFU.

3.1 Intel FPGA Platforms
Intel’s Arria 10 GX Programmable Acceleration Card (PAC) is a PCIe expansion
card for FPGA acceleration [Int18b]. The Arria 10 GX FPGA on the card communicates
with its host processor over a single PCIe Gen3x8 bus. Memory reads and writes from the
FPGA to the CPU’s main memory use physical addresses; in virtual environments, the PCIe
controller on the CPU side implements an I/O memory management unit (IOMMU) to
translate physical addresses in the virtual machine (what Intel calls I/O Virtual Addresses
or IOVA) to physical addresses in the host. Alongside the FPGA, the PAC carries 8GB of
DDR4, 128MB of flash memory, and USB for debugging.

An alternative accelerator platform is the Xeon server processor with an inte-
grated Arria 10 FPGA in the same package [Huf18]. The FPGA and CPU are closely
connected through two PCIe Gen3x8 links and an UltraPath Interconnect (UPI) link. UPI
is Intel’s high-speed CPU interconnect (replacing its predecessor QPI) in Skylake and later
Intel CPU architectures [Mul17]. The FPGA has a 128KiB directly mapped cache that is
coherent with the CPU caches over the UPI bus. Like the PCIe link on the PAC, both the
PCIe links and the UPI link use I/O virtual addressing, appearing as physical addresses
to virtualized environments. As the UPI link bypasses the PCIe controller’s IOMMU, the
FIU implements its own IOMMU and Device TLB to translate physical addresses for reads
and writes using UPI [Int18a].

3.2 Intel’s FPGA-CPU Compatibility Layers

Open Programmable Acceleration Engine (OPAE) Intel’s latest generations of
FPGA products are designed for use with the OPAE [Int17] which is part of the Intel
Acceleration Stack. The principle behind OPAE is that it is an open-source, hardware-
flexible software stack designed for interfacing with FPGAs that use Intel’s Core Cache
Interface (CCI-P), a hardware host interface for AFUs that specifies transaction requests,
header formats, timing, and memory models [Int18a]. OPAE provides a software interface
for software developers to interact with a hosted FPGA, while CCI-P provides a hardware
interface for hardware developers to interact with a host CPU. Excluding a few platform-
specific hardware features, any CCI-P compatible AFU should be synthesizable (and the
result should be logically identical) for any CCI-P compatible FPGA platform; OPAE is
built on top of hardware- and OS-specific drivers and as such is compatible with any

Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, B. Sunar 175

Table 1: Overview of the caching hints configurable over CCI-P on an integrated FPGA.
*_I hints invalidate a cache line in the local cache. Reading with RdLine_S stores the
cache line in the shared state. Writing with WrLine_M caches the line modified state.

Cache Hint RdLine_I RdLine_S WrLine_I WrLine_M WrPush_I

Desc. No FPGA
caching

Leave FPGA
cache in S state

No FPGA
caching

Leave FPGA
cache in M state

Intent to cache
in LLC

Available UPI, PCIe UPI UPI, PCIe UPI UPI, PCIe

system with the appropriate drivers available. As described below, the OPAE/CCI-P system
provides two main methods for passing data between the host CPU and the FPGA.

Memory-mapped I/O (MMIO) OPAE can send 32- or 64-bit MMIO requests to the
AFU directly or it can map an AFU’s MMIO space to OS virtual memory [Int17]. CCI-P
provides an interface for incoming MMIO requests and outgoing MMIO read responses.
The AFU may respond to read and write requests in any way that the developer desires,
though an MMIO read request will time out after 65,536 cycles of the primary FPGA
clock. In software, MMIO offsets are counted as the number of bytes and expected to be
multiples of 4 (or 8, for 64-bit reads and writes), but in CCI-P, the last two bits of the
address are truncated, because at least 4 bytes are always being read or written. There
are 16 available address bits in CCI-P, meaning that the total available MMIO space is 216

32-bit words, or 256KiB [Int18a].

Direct memory access (DMA) OPAE can request the OS to allocate a block of memory
that can be read by the FPGA. There are a few important details in the way this memory
is allocated: most critically, it is allocated in a contiguous physical address space. The
FPGA will use physical addresses to index the shared memory, so physical and virtual
offsets within the shared memory must match. On systems using Intel Virtualization
Technology for Directed I/O (VT-d), which employs the IOMMU to provide an IOVA to
PCIe devices, the memory will be allocated in continuous IOVA space. Either way, this
ensures that the FPGA will see an accessible and continuous buffer of the requested size.
For buffer sizes up to and including one 4 kB memory page, a normal memory page will be
allocated to the calling process by the OS and configured to be accessible by the FPGA
with its IOVA or physical address. For buffer sizes greater than 4 kB, OPAE will call the
OS to allocate a 2MB or 1GB huge page. Keeping the buffer in a single page ensures that
it will be contiguously allocated in physical memory.

3.3 Cache and Memory Architecture on the Intel FPGAs

Arria 10 PAC The Arria 10 PAC has access to the CPU’s memory system as well as its
own local DRAM with a separate address space from that of the CPU and its memory.
The PAC’s local DRAM is always directly accessed, without a separate caching system.
When the PAC reads from the CPU’s memory, the CPU’s memory system will serve the
request from its LLC if possible. If the memory that is read or written is not present in
the LLC, the request will be served by the CPU’s main DRAM. The PAC is unable to
place cache lines into the LLC with reads, but writes from the PAC update the LLC.

Integrated Arria 10 The integrated Arria 10 FPGA has access to the host memory.
Additionally, it has its own 128 kB cache that is kept coherent with the CPU’s caches over
UPI. Memory requests over PCIe take the same path as requests issued by an FPGA PAC.
If the request is routed over UPI, the local coherent FPGA cache is checked first, on a
cache miss, forwarding the request to the CPU’s LLC or main memory.

176 JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms

3.3.1 Reverse-engineering Caching Hint Behavior

An AFU on the Arria 10 GX can exercise some control over caching behavior by adding
caching hints to memory requests. The available hints are summarized in Table 1. For
memory reads, RdLine_I is used to not cache data locally and RdLine_S to cache data
locally in the shared state. For memory writes, WrLine_I is used to prevent local caching on
the FPGA, WrLine_M leaves written data in the local cache in the modified state. WrPush_I
does not cache data locally but hints the cache controller to cache data in the CPU’s LLC.
The CCI-P documentation lists all caching hints as available for memory requests over
UPI [Int18a]. When sending requests over PCI, only RdLine_I, WrLine_I, and WrPush_I
can be used while other hints are ignored. However, based on our experiments, not all
cache hints are implemented exactly to specification.

To confirm the behavior of caching hints available for DMA writes, we designed an
AFU that writes a constant string to a configurable memory address using a configurable
caching hint and bus. We used the AFU to write a cache line and afterward timed a
read access to the same cache line on the CPU. These experiments confirm that nearly
100% of the cache lines written to by the AFU are placed in the LLC, as access times stay
below 100 CPU clock cycles while main memory accesses take 175 cycles on average. This
behavior is independent of the caching hint, the bus, or the platform (PAC, integrated
Arria 10). The result is surprising as the caching hint meant to cache the data in the
cache of the integrated Arria 10 and the caching hint meant for writing directly to the
main memory are either ignored by the Blue Region and the CPU or not implemented
yet. Intel later verified that the Blue Region in fact ignores all caching hints that apply to
DMA writes. Instead, the CPU is configured to handle all DMA writes as if the WrPush_I
caching hint is set. The observed LLC caching behavior is likely caused by Intel’s Data
Direct I/O (DDIO), which is enabled by default in recent Intel CPUs. DDIO is meant to
give peripherals direct access to the LLC and thus causes the CPU to cache all memory
lines written by the AFU. DDIO restricts cache access to a subset of ways per cache set,
which reduces the attack surface for Prime+Probe attacks. Nonetheless, attacks against
other DDIO-enabled peripherals are possible [TVT19, KGA+19].

4 JackHammer Attack

Contribution In this section, we present and evaluate a simple AFU for the Arria 10 GX
FPGA that is capable of performing Rowhammer against its host CPU’s DRAM as much as
two times faster and four times more effectively than its host CPU can. In a Rowhammer,
a significant factor in the speed and efficacy of an attack is the rate at which memory can
be repeatedly accessed. On many systems, the CPU is sufficiently fast to cause some bit
flips, but the FPGA can repeatedly access its host machine’s memory system substantially
faster than the host machine’s CPU can. Both the CPU and FPGA share access to the
same memory controller, but the CPU must flush the memory after each access to ensure
that the next access reaches DRAM; memory reads from the FPGA do not affect the
CPU cache system so no time is wasted flushing memory with the FPGA implementation.
We further measure the performance of CPU and FPGA Rowhammer implementations
with caching both enabled and disabled, and find that disabling caching brings CPU
Rowhammer speed near that of our FPGA Rowhammer implementation. Crucially, the
architectural difference also means that it is much more difficult for a program on the
CPU to detect the presence of an FPGA Rowhammer than that of a CPU Rowhammer —
the FPGA’s memory accesses leave far fewer traces on the CPU.

Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, B. Sunar 177

Arria 10 PAC @ 200 MHz Core i7-3770 @ 3392 MHz

Platform

1

1.2

1.4

1.6

1.8
H

a
m

m
e
rs

 p
e
r

s
e

c
o
n

d

10
7

Figure 2: Distributions of hammering rates
(memory requests per second) on FPGA
PAC and i7-3770.

Arria 10 PAC @ 200 MHz i7-3770 @ 3392 MHz

Platform

0

0.2

0.4

0.6

0.8

1

1.2

F
lip

s
 p

e
r

s
e

c
o

n
d

Figure 3: Distributions of flip rates on
FPGA PAC and i7-3770.

4.1 JackHammer: Our FPGA Implementation of Rowhammer
JackHammer supports configuration through the MMIO interface. When the JackHammer
AFU is loaded, the CPU first sets the target physical addresses that the AFU will repeatedly
access. It is recommended to set both addresses for a double-sided attack, but if the second
address is set to 0, JackHammer will perform a single-sided attack using just the first
address. The CPU must also set the number of times to access the targeted addresses.

When the configuration is set, the CPU signals the AFU to repeat memory accesses
and issue them as fast as it can, alternating between addresses in a double-sided attack.
Note that unlike a software implementation of Rowhammer, the accessed addresses do not
need to be flushed from cache — DMA read requests from the FPGA do not cache the
cache line in the CPU cache, though if the requested memory is in the last-level cache, the
request will be served to the FPGA by the cache instead of by memory (see Section 3.3
for more details on caching behavior). In this attack, the attacker needs to ensure that the
cache lines used for inducing bit flips are never accessed by the CPU during the attack.
The number of times to access the target addresses can be read again to get the number of
remaining accesses; this is the simplest way to check in software whether or not the AFU
has finished sending these accesses. When the last read request has been sent by the AFU,
the total amount of time taken to send all of the requests is recorded.4

4.2 JackHammer on the FPGA PAC vs. CPU Rowhammer
Figure 2 shows a box plot of the 0th, 25th, 50th, 75th, and 100th percentile of measured
“hammering rates” on the Arria 10 FPGA PAC and its host i7-3770 CPU. Each measurement
in these distributions is the average hammering rate over a run of 2 billion memory
requests. Our JackHammer implementation is substantially faster than the standard
CPU Rowhammer, and its speed is far more consistent than the CPU’s. The FPGA can
manage an average throughput of one memory request, or “hammer,” every ten 200MHz
FPGA clock cycles (finishing 2 billion hammers in an average of 103.25 seconds); the CPU
averages one hammer every 311 3.4GHz CPU clock cycles (finishing 2 billion hammers
in an average of 183.41 seconds). Here we can see that even if the FPGA were clocked
higher, it would still spend most of its time waiting for entries in the PCIe transaction
buffer in the non-reconfigurable region to become available.

Figure 3 shows measured bit flip rates in the victim row for the same experiment. Runs
where zero flips occurred during hardware or software hammering were excluded from the
flip rate distributions, as they are assumed to correspond with sets of rows that are in

4The time to send all the requests is not precisely the time to complete all the requests, but it is very
close for sufficiently high numbers of requests. The FPGA has a transaction buffer that holds up to 64
transactions after they have been sent by the AFU. The buffer does take some time to clear, but the
additional time is negligible for our performance measurements of millions of requests.

178 JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms

Billions of hammers

0

50

100

N
u

m
b

e
r

o
f

fl
ip

s

.2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2

Maximum

90th Percentile

80th Percentile

70th Percentile

60th Percentile

50th Percentile

40th Percentile

30th Percentile

20th Percentile

10th Percentile

Minimum

Figure 4: Distributions of total flips after
200 million to 2 billion hammers on PAC.

Billions of hammers

0

50

100

N
u

m
b

e
r

o
f

fl
ip

s

.2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2

Maximum

90th Percentile

80th Percentile

70th Percentile

60th Percentile

50th Percentile

40th Percentile

30th Percentile

20th Percentile

10th Percentile

Minimum

Figure 5: Distributions of total flips after
200 million to 2 billion hammers on i7-3770.

0

0.2

0.4

0.6

0.8

1

1.2

F
lip

s
 a

ft
e
r

2
 m

ill
io

n
 h

a
m

m
e
rs

10 15 20 25 30 35 40

Index in array of all conflicting addresses

Figure 6: Time series plotting number of flips on a row-by-row basis, showing an example
of the consistent placement of small-valued outliers (samples 23 and 36 on this graph)
relative to their much larger neighbors. These rows only ever incur a few flips, compared
to most “flippy” rows which incur dozens of flips, and always are located two rows away
from a block of rows that flip much more.

the same logical bank, but not directly adjacent to each other. The increased hammering
speed of JackHammer produces a more than proportional increase in flip rate, which is
unsurprising due to the highly nature of Rowhammer. As the Rowhammer is underway,
electrical charge is drained from capacitors in the victim row. However, the memory
controller also periodically refreshes the charge in the capacitors. When there are more
memory accesses to adjacent rows within each refresh window, it is more likely that a bit
flip occurs before the next refresh. This is why the FPGA’s increased memory throughput
is more effective for conducting Rowhammer against the same DRAM chip.

Another way to look at hammering performance is by counting the total number of
flips produced by a given number of hammers. Figure 4 and Figure 5 show minimum,
maximum, and every 10th percentile of the number of flips produced by the AFU and CPU
respectively for a range of total number of hammers from 200 million to 2 billion. These
graphs demonstrate how much more effectively the FPGA PAC can generate bit flips in
the DRAM even after the same number of memory accesses. For hammering attempts
that resulted in a non-zero number of bit flips, the AFU exhibits a wide distribution of flip
count in the range of 200 million to 800 million hammers which then rapidly narrows in
the range of 800 million to 1.2 billion and finally levels out by 1.8 billion hammers. This
set of distributions seems to indicate that “flippable” rows will ultimately reach about
80-120 total flips after enough hammering, but it can take anywhere from 200 million
hammers (about 10 seconds) to 2 billion hammers (about 100 seconds) to reach that limit.

There are also a few rows that only incur a few flips. These samples appear in a
consistent pattern demonstrated in Figure 6, which plots a portion of the data used to
create Figure 4 in detail. Each impulse in this plot represents the number of flips after a
single run of 2 billion hammers on a particular target row. In Figure 6, at indices 23 and
36, two of these outliers are visible, each appearing two indices after several samples in
the standard 80-120 flip range. These outliers could indicate rows that are affected vary
slightly by hammering on rows that are nearby but not adjacent.

Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, B. Sunar 179

Platform

1.6

1.7

1.8

1.9

2

2.1
H

a
m

m
e
rs

 p
e
r

s
e
c
o
n
d

10
7

Integrated Arria 10 @ 400

Mhz

Integrated Xeon E5-2600v4

@ ~3400 MHz

Figure 7: Distributions of hammering rates
(memory requests per second) on integrated
Arria 10 and Xeon E5-2600 v4.

Platform

1

2

3

H
a
m

m
e
rs

 p
e
r

s
e
c
o
n
d

10
7

Cachable

Arria 10 PAC

Cachable

Xeon

E5-2670 v2

Uncachable

Arria 10 PAC

Uncachable

Xeon

E5-2670 v2

Figure 8: Distributions of hammering rates
(memory requests per second) with cachable
and uncachable memory.

4.3 JackHammer on the Integrated Arria 10 vs. CPU Rowhammer
The JackHammer AFU we designed for the integrated platform is the same as the AFU
for the PAC, except that the integrated platform has access to more physical channels
for the memory reads. The PAC only has a single PCIe channel; the integrated platform
has one UPI channel and two PCIe channels, as well as an “automatic” setting which lets
the interface manager select a physical channel automatically. Therefore we present the
hammering rates on this platform with two different settings — alternating PCIe lanes on
each access and using the automatic setting.

However, this platform is only available to us on Intel’s servers, so we have only been
able to test on one DRAM setup and have been unable to get bit flips on this DRAM.5
The integrated Arria 10 shares the package with a modified Xeon v4-style CPU. The
available servers are equipped with an X99 series motherboard with 64GB of DDR4
memory. Figure 7 shows distributions of measured hammering rates on the integrated
Arria 10 platform. Compared to the Arria 10 PAC, the integrated Arria 10’s hammering
rate is more varied, but with a similar mean rate.

4.4 The Effect of Caching on Rowhammer Performance
We hypothesized that a primary reason for the difference in Rowhammer performance
between JackHammer on the FPGAs and a typical Rowhammer implementation on the
CPUs is that when one of the FPGAs reads a line of memory from DRAM, it is not cached,
so the next read will miss the cache and be directed to the DRAM as well. On the other
hand, when the CPUs access a line of memory, it is cached, and the memory line must
be flushed from cache before the next read is issued, or the next read will hit the cache
instead of DRAM, and the physical row in the DRAM will not be “hammered.”

To evaluate our hypothesis that caching is an important factor in the performance
disparity we observed between FPGA- and CPU-based Rowhammer, we used the PTEdi-
tor [Sch19] kernel module to set allocated pages as uncachable before testing hammering
performance. We edited the setup of the Rowhammer performance tests to allocate many
4 kB pages and set all of those as uncachable instead of one 2MB huge page, as the kernel
module we used to set the pages as uncachable was not correctly configuring the huge pages
as uncachable. However, it is still easy to find a large continuous range of physical addresses
— when these pages are allocated by OPAE, the physical address is directly available to
the software. So the software simply allocates thousands of 4 kB pages, sorts them, and

5There are several reasons why this could be the case. Some DRAM is simply more resistant to
Rowhammer by its physical nature. DDR4 memory, which can be found in this system, sometimes has
hardware features to block Rowhammer style attacks [JC-17]; though some methods have been developed
to circumvent these protections [GLS+18], these methods ultimately still rely on the ability of the attacker
to repeatedly access the DRAM very quickly, so we consider those methods outside of the scope of this
research, which is focused on the relative ability of the FPGA platforms to quickly access DRAM.

180 JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms

FPGA

FIU

CPU

Main Memory

Core 0 Core 1

WolfCrypt
RSA

RSA KeyMemory for
Hammering

Malicious
App

Rowhammer
AFU

2 The malicious app
prepares the shared

(with AFU) memory for
hammering.

3 The AFU hammers
the memory shared

with the malicious app,
while the victim is
performing RSA.

1 The victim
application initializes

the RSA Key.

4 The RSA signature
will become faulty due
to the induced bit flips

in the key.

LLC

Figure 9: WolfSSL RSA Fault Injection Attack.

then finds the biggest continuous range within them and attempts to find colliding row
addresses within that range. The JackHammer AFU required no modifications from the
initial performance tests; the assembly code to hammer from the CPU was edited to not
flush the memory after reading it, since the memory will not be cached in the first place.

We performed this experiment by placing the FPGA PAC on a Dell Poweredge R720
system with a Xeon E5-2670 v2 CPU fixed to a clock speed of 2500MHz and two 4GB
DIMMs of DDR3 DRAM clocked at 1600MHz. Figure 8 shows the performance of the
FPGA PAC and this system’s CPU with caching enabled and disabled. Disabling caching
produces a significant speedup in hammering for both the PAC and the CPU, but especially
for the CPU, which saw a 188% performance increase. With caching enabled, the median
hammering rate of the PAC was more than twice that of the CPU, but with caching
disabled, the median hammering rate of the PAC was only 22% faster than that of the
CPU. Of course, memory accesses on modern systems are extremely complex (even with
caching disabled), so there are likely some factors affecting the changes in hammering rate
that we cannot describe, but our experimental evidence supports our hypothesis that time
spent flushing the cache is a major factor slowing down CPU Rowhammer implementations
compared to FPGA implementations.

5 Fault Attack on RSA using JackHammer
Rowhammer has been used for fault injections on cryptographic schemes [BM16, BM18]
or for privilege escalation [GLS+18, vdVFL+16, SD15]. Using JackHammer, we demon-
strate a practical fault injection attack from the Arria 10 FPGA to the WolfSSL RSA
implementation running on its host CPU. In the RSA fault injection attack proposed by
Boneh et al. [BDL97], an intermediate value in the Chinese remainder theorem modular
exponentiation algorithm is faulted, causing an invalid signature to be produced. Similarly,
we attack the WolfSSL RSA implementation using JackHammer from the FPGA PAC
and Rowhammer from the host CPU, and compare the efficiency of the two attacks. The
increased hammering speed and flip rate of the Arria 10 FPGA makes the attack more
practical in the time frame of about 9 RSA signatures.

Figure 9 shows the high-level overview of our attack: the WolfSSL RSA application runs
on one core, while a malicious application runs adjacent to it, assisting the JackHammer
AFU on the FPGA in setting up the attack. JackHammer causes a hardware fault in the
main memory, and when the WolfSSL application reads the faulty memory, it produces a
faulty signature and leaks the private factors used in the RSA scheme.

5.1 RSA Fault Injection Attacks
We implement a fault injection attack against the Chinese remainder theorem implementa-
tion of the RSA algorithm, commonly known as the Bellcore attack [BDL97]. Algorithm 1

Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, B. Sunar 181

shows the Chinese remainder theorem (CRT) RSA signing scheme where the signature S
is computed by raising a message m to the private exponent dth power, modulo N . dp and
dq, are precomputed as d mod p− 1 and d mod q − 1, where p and q are the prime factors
of N [ABF+03]. When one of the intermediates Sq or Sp is computed incorrectly, an
interesting case arises. Consider the difference between a correctly computed signature S
of a message m and an incorrectly computed signature S′ of the same message, computed
with an invalid intermediate S′p. The difference S − S′ leaves a factor of q times the
difference Sp − S′p, so the GCD of S − S′ and N is the other factor p [ABF+03]. This
reduces the problem of factoring N to a simple subtraction and GCD operation, so the
private factors (p, q) are revealed if the attacker has just one valid signature and one faulty
signature, each signed on the same message m. These factors can also be recovered with
just one faulty signature if the message m and public key e are known; it is also equal to
the GCD of S′e −m and N .
Fault Injection Attack with RSA Base Blinding A common modification to any
RSA scheme is the addition of base blinding, effective against simple and differential
power analysis side-channel attacks, but vulnerable to a correlational power analysis attack
demonstrated by [WvWM11]. Base blinding is used by default in our target WolfSSL
RSA-CRT signature scheme. In this blinding process, the message m is blinded by a
randomly generated number r by computing mb = m · re mod n. The resulting signature
Sb = (m · re)d mod n = md · r mod n must then be multiplied by the inverse of the random
number r to generate a valid signature S = Sb · r−1 mod n.

This blinding scheme does not prevent against the Bellcore fault injection attack.
Consider a valid signature blinded with random factor r1 and an invalid signature blinded
with r2. When the faulty signature is subtracted by the valid signature, the valid and
blinded intermediates Spb are each unblinded and cancel as before, as shown in Equation 1.

S − S′ =
[
Sqb + q ·

(
(Spb − Sqb) · q−1 mod p

)]
· r−1

1 mod N

−
[
Sqb + q ·

(
(S′pb − Sqb) · q−1 mod p

)]
· r−1

2 mod N

= q · [
(
Spb · q−1 mod p

)
· r−1

1 −
(
S′pb · q−1 mod p

)
· r−1

2] mod N

(1)

Ultimately, there is still a factor of q in the the difference S − S′ which can be extracted
with a GCD as before.

5.2 Our Attack

Approach and Justification We developed a simplified attack model to test the
effectiveness of the Arria 10 Rowhammer in a fault injection scenario. Our model simplifies
the setup of the attack so that we can efficiently measure the performance of both CPU
Rowhammer and JackHammer. We sign the same message with the same key repeatedly
while the Rowhammer exploit runs, and count the number of correct signatures until a
faulty signature is generated, which is used to leak the private RSA key.
Attack Setup In summary, our simplified attack model works as follows: The attacker
first allocates a large block of memory and checks it for conflicting row addresses. It then
quickly tests which of those rows can be faulted with hammering using JackHammer. A list
of rows that incur flips is saved so that it can be iterated over. The program then begins
the “attack,” iterating through each row that incurred flips during the test, and through
the sixty-four 1024-bit offsets that make up the row. During the attack, the JackHammer
AFU is instructed to repeatedly access the rows adjacent to the target row. Meanwhile, in
the “victim” program, the targeted data (the precomputed intermediate value d mod q− 1)
is copied to the target address, which is computed as an offset of the targeted row. The
victim then enters a loop where it reads back the data from the target row and uses it
as part of an RSA key to create a signature from a sample message. Additionally, the

182 JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms

“attacker” opens a new thread on the CPU which repeatedly flushes the target row on a
given interval. It is necessary for the attacker to flush the target row because the victim is
repeatedly reading the targeted data and placing it in cache, but the fault will only ever
occur in main memory. For the victim program to read the faulty data from DRAM, there
cannot be an unaffected copy of the same data in cache or the CPU will simply read that
copy. As we show below, the performance of the attack depends significantly on the time
interval between flushes.

One of the typical complications of a Rowhammer fault injection attack is ensuring
that the victim’s data is located in a row that can be hammered. In our simplified model,
we choose the location of the victim data manually within a row that we have already
determined to be one that incurs flips under a Rowhammer attack so that we may easily
test the effectiveness of the attack at various rows and various offsets within the rows.
In a real attack, the location of the victim program’s memory can be controlled by the
attacker with a technique known as page spraying [SD15], which is simply allocating a
large number of pages and then deallocating a select few, filling the memory in an attempt
to cause the victim program to allocate the right pages. Improvements in this process
can be made; for example, [BM16] demonstrated how cache attacks can be used to gather
information about the physical addresses of data being used by the victim process.

The other simplification in our model is that we force the CPU to read from DRAM
using the clflush instruction to flush the targeted memory from cache. In an end-to-end
attack, the attacker would use an eviction set to evict the targeted memory since it is not
directly accessible in the attack process’s address space. However, the effect is ultimately
the same — the targeted data is forcibly removed from the cache by the attacker.

5.3 Performance of the Attack
In this section, we show that our JackHammer implementation with optimal settings can
cause a faulty signature an average of 17% faster than a typical CPU-based, software-driven
Rowhammer implementation with optimal settings. In some scenarios, the performance is
as much as 4.8 times that of the software implementation. However, under some conditions,
the software implementation can be more likely to cause a fault over a longer period of
time. Our results indicate that increasing the DRAM row refresh rate provides significant
but not complete defense against both implementations.

The performance of this fault injection attack is highly dependent on the time interval
between evictions, and as such we present all of our results in this section as functions of
the eviction interval. Each eviction triggers a subsequent reload from memory when the
key is read for the next signature, which refreshes the capacitors in the DRAM. Whenever
DRAM capacitors are refreshed, any accumulated voltage error in each capacitor (due to
Rowhammer or any other physical effect) is either solidified as a new faulty bit value or
reset to a safe and correct value. Too short of an interval between evictions will cause
the DRAM capacitors to be refreshed too quickly to be flipped with a high probability.
On the other hand, however, longer intervals can mean the attack is waiting to evict the
memory for a longer time while a bit flip has already occurred. It is crucial to note, also,
that DRAM capacitors are automatically refreshed by the memory controller on a 64 ms
interval6 [GMM16]. On some systems, this interval is configurable: faster refresh rates
reduce the rate of memory errors, including those induced by Rowhammer, but they can
impede maximum performance because the memory spends more time doing maintenance
refreshes rather than serving read and write request. For more discussion on modifying
row refresh rates as a defense against Rowhammer, see Section 7.

In Table 2 we present two metrics with which we compare JackHammer and a standard
CPU Rowhammer implementation. This table shows the mean number of signatures until

6More specifically, DDR3 and DDR4 specifications indicate 64ms as the maximum allowable time
between DRAM row refreshes.

Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, B. Sunar 183

Table 2: Performance of our JackHammer exploit compared to a standard software
CPU Rowhammer with various eviction intervals. JackHammer is able to acheive better
performance in many cases because it bypasses caching architecture, sending more memory
requests during the eviction interval and causing bit flips at a higher rate.

Eviction Mean signatures to fault Successful fault rate
Interval CPU JackHammer % Inc. Speed CPU JackHammer % Inc. Rate

16 280 186 51% 0.4% 0.2% -46%
32 627 219 185% 0.2% 0.8% 264%
48 273 124 120% 14% 19% 39%
64 81 76 7% 17% 26% 56%
96 74 58 27% 46% 49% 8%
128 73 70 4% 52% 50% -1.2%
256 106 115 -7% 57% 55% -3%

Best performance 73 58 25% 57% 55% -3%

16 32 48 64 96

Eviction latency (ms)

0

100

200

300

400

500

600

700

M
e

a
n

 s
ig

n
a

tu
re

s
 t

o
 f

a
u

lt Hardware

Software

Figure 10: Mean number of signatures to fault at various eviction intervals.

a faulty signature is produced and the ultimate probability of success of an attack within
1000 signatures against a random key in a randomly selected chunk of memory within
a row known to be vulnerable to Rowhammer. With an eviction interval of 96ms, the
JackHammer attack achieves the lowest average number of signatures before a fault, at
only 58, 25% faster than the best performance of the CPU Rowhammer. The CPU attack
is impeded significantly by shorter eviction latency, while the JackHammer implementation
is not, indicating that on systems where the DRAM row refresh rate has been increased to
protect against memory faults and Rowhammers, JackHammer likely offers substantially
improved attack performance. Figure 10 highlights the mean number of signatures until a
faulty signature for the 16ms to 96ms range of eviction latency.

6 Cache Attacks on Intel FPGA-CPU Platforms
In Section 3.3.1, we reverse-engineered the behavior of the memory subsystem on current
Arria 10 based FPGA-CPU platforms. In this section, we systematically analyze cache
attacks exploitable by an AFU- or CPU-based attacker attacking the CPU or FPGA,
respectively, and demonstrate a cache covert channel from FPGA to CPU. At last, we
discuss the viability of intra-FPGA cache attacks. Table 3 summarizes our findings.

To measure memory access latency on the FPGA, we designed a timer clocked at
200MHz/400MHz. The advantage of this hardware timer is that it runs uninterruptible in
parallel to all other CPU or FPGA operations. Therefore, the timer precisely counts FPGA
clock cycles, while timers on the CPU, such as rdtsc, may yield noisier measurements due
to interruptions by the OS and the CPU’s out-of-order pipeline.

6.1 Cache Attacks from FPGA PAC to CPU
The Intel PAC has access to one PCIe lane that connects it to the main memory of the
system through the CPU’s LLC. The CCI-P documentation [Int18a] mentions a timing

184 JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms

130 140 150 160 170 180

FPGA clock cycles (200 MHz)

0

0.1

0.2

0.3
R

e
la

ti
v
e

 f
re

q
u

e
n

c
y

LLC

Memory

Figure 11: Latency for PCIe read requests
on an FPGA PAC served by the CPU’s LLC
or main memory.

0 50 100 150 200 250

FPGA clock cycles (400 MHz)

0

0.2

0.4

0.6

0.8

1

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y

Local cache

LLC

Main memory

Figure 12: Latency for UPI read requests on
an integrated Arria 10 served by the FPGA’s
local cache, CPU’s LLC, or main memory.

difference for memory requests served by the CPU’s LLC and those served by the main
memory. Using our timer we verified the suggested differences as shown in Figure 11.
Accesses to the LLC take between 139 and 145 cycles; accesses to main memory take 148
to 158 cycles. These distinct distributions of access latency form the basis of cache attacks,
as they enable an attacker to tell which part of the memory subsystem served a particular
memory request. Our results indicate that FPGA-based attackers can precisely distinguish
memory responses served by the LLC from those served by main memory.

In addition to probing, some way of influencing the state of the cache is needed to
perform cache attacks. We investigated all possibilities of cache interaction offered by the
CCI-P interface on an FPGA PAC and found that cache lines read by the AFU from the
main memory will not get cached. While this behavior is not usable for cache attacks, it
boosts Rowhammer performance as we saw in Section 4. On the other hand, cache lines
written by an AFU on the PAC end up in the LLC with nearly 100% probability. The
reason for this behavior was already discussed together with the analysis of the caching
hints. This can be used to evict other cache lines from the cache and perform eviction
based attacks like Evict+Time, Evict+Reload, and Prime+Probe. For E+T, DMA writes
can be used to evict a cache line and our hardware timer measures the victim’s execution
time. Even though an AFU cannot load data into the LLC, E+R can be performed as the
purpose of reloading a cache line is to learn the latency and not literally reloading the cache
line. So the primitives for E+R on the FPGA are DMA writes and timing DMA reads
with a hardware timer. P+P can be performed using DMA writes and timing reads. In the
case where DDIO limits the number of accessible ways per cache set, other DDIO-enabled
peripherals are attackable. Flush-based attacks like Flush+Reload or Flush+Flush cannot
be performed by an AFU as CCI-P does not offer a flush instruction.

6.2 Cache Attacks from Integrated Arria 10 FPGA to CPU
The integrated Arria 10 has access to two PCIe lanes (each functioning much like the PCIe
lane on the FPGA PAC) and one UPI lane connecting it to the CPU’s memory subsystem.

Table 3: Summary of our cache attacks analysis: OPAE accelerates eviction set construction
by making huge pages and physical addresses available to userspace.

Attacker Target Channel Attack

FPGA PAC AFU CPU LLC PCIe E+T, E+R, P+P
Integrated FPGA AFU CPU LLC UPI E+T, E+R, P+P
Integrated FPGA AFU CPU LLC PCIe E+T, E+R, P+P

CPU FPGA Cache UPI F+R, F+F
Integrated FPGA AFU FPGA Cache CCI-P E+T, E+R, P+P

Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, B. Sunar 185

1800

2000

C
P

U
 c

lo
c
k

c
y
c
le

s

-0.5

0

0.5

1

T
h
re

s
h
o
ld

n
o
rm

a
liz

a
ti
o
n

20 40 60 80 100 120 140 160 180 200

Measurement

0

0.5

1

C
la

s
s
if
ic

a
ti
o
n

S
a
m

p
lin

g
 c

lo
c
k

1

0 0

1

0

1 1

0

1

0 0

1

0

1 1

0

1

0 0

1

0

1 1

0

1

0 0

1

0

1 1

0

1

Figure 13: Covert channel measurements and decoding. The AFU sends each bit three
times, which results in three peaks at the receiver if a ‘1’ is transmitted (middle plot).

It also has its own additional cache on the FPGA accessible over UPI (cf. Section 3.3).
By timing memory requests from the AFU using our hardware timer, we show that

distinct delays for the different levels of the memory subsystem exist. Both PCIe lanes
have delays similar to those measured on a PAC (cf. Figure 11). Our memory access
latency measurements for the UPI lane, depicted in Figure 12, show an additional peak
for requests being answered by the FPGA’s local cache. The two peaks for LLC and main
memory accesses are likely narrower and further apart than in the PCIe case because UPI,
Intel’s proprietary high-speed processor interconnect, is an on-chip and inter-CPU bus only
connecting CPUs and FPGAs. On all interfaces, read requests, again, are not usable for
evicting cache lines from the LLC. DMA writes, however, can be used to alter the LLC on
the CPU. Because the UPI and PCIe lanes behave much like the PCIe lane on a PAC, we
state the same attack scenarios (E+T, E+R, P+P) to be viable on the integrated Arria 10.

6.2.1 Constructing a Covert Channel from AFU to CPU

The fact that an AFU can place data in at least one way per LLC slice allows us to
construct a covert channel from the AFU to a co-operating process on the CPU using
side effects of the LLC. To do so, we designed an AFU that writes a fixed string to a
pre-configured cache line whenever a ‘1’ is transmitted and stays quiet whenever a ‘0’ is
sent. Using this technique, the AFU sends messages which can be read by the CPU. For
the rest of this section, we will refer to the address the AFU writes to as the target address.

The receiver process7 first constructs an eviction set for the set/slice-pair the target
address is in. To find an eviction set, we run a slightly modified version of Algorithm 1
using Test 1 in [VKM19]. Using the OPAE API to allocate hugepages and get physical
addresses (cf. Section 3.2) allows us to construct the eviction set from a rather small set of
candidate addresses all belonging to the same set.

We construct the covert channel on the integrated platform as the LLC of the CPU is
inclusive. Additionally, the receiver has access to the target address via shared memory to
have the receiver test its eviction set against the target address directly. This way, we do
not need to explicitly identify the target address’s LLC slice. In a real-world scenario, either
the slice selection function has to be known [HWH13, IES15b, İGI+15] or eviction sets for
all slices have to be constructed by seeking conflicting addresses [LYG+15, OKSK15]. The
time penalty introduced by monitoring all cache sets can be prevented by multi-threading.

Next, the receiver primes the LLC with the eviction set found and probes the set in an
endless loop. Whenever the execution time of a probe is above a certain threshold, the
receiver assumes that the eviction of one of its eviction set addresses was the result of

7This process is not the software process directly communicating with the AFU over OPAE/CCI-P.

186 JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms

the AFU writing to the target address and therefore interprets this as receiving a ‘1’. If
the probe execution time stays below the threshold, a ‘0’ is detected as no eviction of the
eviction set addresses occurred. An example measurement of the receiver and its decoding
steps are depicted in Figure 13.

To ease decoding and visualization of results, the AFU sends every bit thrice and the
CPU uses six probes to detect all three repetitions. This high level of redundancy comes
at the expense of speed, as we achieve a bandwidth of about 94.98 kBit/s, which is low
when compared to other work [WXW12, LYG+15, MWS+17]. The throughput can be
increased by reducing the three redundant writes per bit from the AFU as well as by
increasing the transmission frequency further to reduce the redundant CPU probes per
AFU write. Also, multiple cache sets can be used in parallel to encode several bits at once.
The synchronization problem can be solved by using one cache set as the clock, where
the AFU writes an alternating bit pattern [TVT19]. An average probe on the CPU takes
1855 clock cycles. With the CPU operating in the range of 2.8 – 3.4GHz, this results in a
theoretic throughput of 1.5 – 1.8MBit/s. On the other side, the AFU can on average send
one write request every 10 clock cycles without filling the CCI-P PCIe buffer and thereby
losing the write pattern. In theory, this makes the AFU capable of sending 40MBit/s over
the covert channel when clocked at 400MHz.8

Even though caching hints for memory writes are being ignored by the Blue Region, an
AFU can place data in the LLC because the CPU is configured to handle write requests
as if WrPush_I is set, allowing for producing evictions in the LLC. We corroborated our
findings by establishing a covert channel between the AFU and the CPU with a bandwidth
of 94.98 kBit/s. By exposing physical addresses to the user and by enabling hugepages,
OPAE further eases eviction set finding from userspace.

6.3 Cache Attacks from CPU to Integrated Arria 10 FPGA
We also investigated the CPU’s capabilities to run cache attacks against the coherent
cache on the integrated Arria 10 FPGA. First, we measured the memory access latency
depending on the location of the address accessed using the rdtsc instruction. The results
in Figure 14a show that the CPU can clearly distinguish where an accessed address is
located. Therefore, the CPU is capable of probing a memory address that may or may
not be present in the local FPGA cache. It is interesting to note that requests to main
memory return faster than those going to the FPGA cache. This can be explained by
the much slower clock speed of the FPGA running at 400MHz while the CPU operates
at 1.2–3.4GHz. Another explanation is that our test platform is one of the prototypes
and the coherency protocol implementation of the Blue Region is still buggy. As nearly
all known cache attack techniques rely on some form of probing phase, the capability to
distinguish location of data is a good step in the direction of having a fully working cache
attack from the CPU against the FPGA cache.

Besides the capability of probing the FPGA cache, we also need a way of flushing,
priming, or evicting cache lines to put the FPGA cache into a known state. While the
AFU can control which data is cached locally by using caching hints, there is no such
option documented for the CPU. Therefore, priming the FPGA cache to evict cache lines
is not possible. This disables all eviction-based cache attacks. However, as the CPU has
a clfush instruction, we can use it to flush cache lines from the FPGA cache, because
it is coherent with the LLC. Hence, we can flush and probe cache lines located in the
FPGA cache. This enables us to run a Flush+Reload attack against the victim AFU
where the addresses used by the AFU get flushed before the execution of the AFU. After
the execution, the attacker then probes all previously flushed addresses to learn which

8This is a worst-case scenario where every transmitted bit is a ‘1’-bit. For a random message, this
estimation goes up again as ‘0‘-bits do not fill the buffer, allowing for faster transmission.

Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, B. Sunar 187

0 100 200 300 400

CPU clock cycles

0

0.2

0.4

0.6

0.8

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y

Main memory

LLC

FPGA cache

(a) Memory access latency on the CPU with
data being present in FPGA local cache,
CPU LLC, or main memory.

200 400 600 800 1000 1200 1400

CPU clock cycles

0

0.05

0.1

0.15

0.2

0.25

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y

Absent

Present

(b) The flush execution time on the CPU
with the flushed address being absent or
present in the FPGA cache.

Figure 14: Memory access and flush execution latency measured from a Broadwell CPU
with integrated Arria 10.

addresses were used during the AFU execution. Another possible cache attack is the more
efficient Flush+Flush attack. Additionally, we expect the attack to be more precise as
flushing a cache line that is present in the FPGA cache takes about 500 CPU clock cycles
longer than flushing a cache line that is not (cf. Figure 14b), while the latency difference
between memory and FPGA cache accesses adds up to only about 50-70 CPU clock cycles.

In general, the applicability of F+R and F+F is limited to shared memory scenarios.
For example, two users on the same CPU might share an instantiation of a library that uses
an AFU for acceleration of a process that should remain private, like training a machine
learning model with confidential data or performing cryptographic operations.

6.4 Intra-FPGA Cache Side-Channels
As soon as FPGAs support simultaneous multi-tenancy, that is, the capability to place
two AFUs from different users on the same FPGA at the same time, the possibility of
intra-FPGA cache attacks arises. As the cache on the integrated Arria 10 is directly
mapped and only 128 kB in size, finding eviction sets becomes trivial when giving the
attacker AFU access to huge pages. As this is the default behavior of the OPAE driver
when allocating more than one memory page at once, we assume that it is straightforward
to run eviction based attacks like Evict+Time or Prime+Probe against a neighboring AFU
to e.g. extract information about a machine learning model. Flush-based attacks would
still be impossible due to the lack of a flush instruction in CCI-P.

7 Countermeasures
Hardware Monitors Microarchitectural attacks against CPUs leave traces in hardware
performance counters (HPCs) like cache hit and miss counters. Previous works have
paired these HPCs with machine learning techniques to build real-time detectors for these
attacks [BIME18, CSY16, ZZL16, GMES19]. In some cases, CPU HPCs may be able to
trace incoming attacks from FPGAs. While HPCs do not exist in the same form on the
Arria 10 GX platforms, they could be implemented by the FIM. A system combining FPGA
and CPU HPCs could provide thorough monitoring of the FPGA-CPU interface.
Increasing DRAM Row Refresh Rate An approach to reduce the impact of Rowham-
mer is increasing the DRAM refresh rate. DDR3 and DDR4 specifications require that each
row is refreshed at least every 64ms, but many systems can be configured to refresh each
row every 32 or 16 ms for better memory stability. When we measured the performance of
our fault injection attack in Section 5, we measured the performance with varying intervals
between evictions of the targeted data, simulating equivalent intervals in row refresh rate,
since each eviction causes a subsequent row refresh when the memory is read by the victim

188 JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms

program. Table 2 shows that under 1% of attempted Rowhammers from both CPU and
FPGA were successful with an eviction interval of 32ms, compared to 14% of CPU attacks
and 26% of FPGA attacks with an interval of 64ms, suggesting that increasing the row
refresh rate would significantly impede even the more powerful FPGA Rowhammer.
Cache Partitioning and Pinning Several cache partitioning mechanisms have been
proposed to protect CPUs against cache attacks. While some are implementable in soft-
ware [KPMR12, YWCL14, ZRZ16, KLA+18] others require hardware support [LGY+16,
GRLZ+17, GLS+17]. When trying to protect FPGA caches against cache attacks,
hardware-based approaches should be taken into special consideration. For example,
the FIM could partition the FPGA’s cache into several security domains, such that each
AFU can only use a subset of the cache lines in the local cache. Another approach would
introduce an additional flag to the CCI-P interface telling the local caching agent which
cache lines to pin to the cache.
Disabling Hugepages and Virtualizing AFU Address Space Intel is aware of the
fact that making physical addresses available to userspace through OPAE has negative
security consequences [Int17]. Additionally to exposing physical addresses, OPAE makes
heavy use of hugepages to ensure physical address continuity of buffers shared with the
AFU. However, it is well known that disabling hugepages increases the barrier of finding
eviction sets [IES15a, LYG+15] which in turn makes cache attacks and Rowhammer more
difficult. We suggest disabling OPAE’s usage of hugepages. To do so, the AFU address
space has to be virtualized independent of the presence of virtual environments.
Protection Against Bellcore Attack Defenses against fault injection attacks proposed
in the original Bellcore whitepaper [BDL97] include verifying the signature before releasing
it, and random padding of the message before signing, which ensures that no unique message
is ever signed twice and that the exact plaintext cannot be easily determined. OpenSSL
protects against the Bellcore attack by verifying the signature with its plaintext and public
key and recomputing the exponentiation by a slower but safer single exponentiation instead
of by the CRT if verification does not match [CDFG18]. After we reported the vulnerability
to WolfSSL, they issued a patch in version 4.3.0 including a signature verification to protect
against Bellcore-style attacks.

8 Conclusion
In this work, we show that modern FPGA-CPU hybrid systems can be more vulnerable
to well-known hardware attacks that are traditionally seen on CPU-only systems. We
show that the shared cache systems of the Arria 10 GX and its host CPU present possible
CPU to FPGA, FPGA to CPU, and FPGA to FPGA attack vectors. For Rowhammer,
we show that the Arria 10 GX is capable of causing more DRAM faults in less time than
modern CPUs. Our research indicates that defense against hardware side-channels is
just as essential for modern FPGA systems as it is for modern CPUs. Of course, the
security of any device physically installed in a system, like a network card or graphics card,
is important, but FPGAs present additional security challenges due to their inherently
flexible nature. From a security perspective, a user-configurable FPGA on a cloud system
needs to be treated with at least as much care and caution as a user-controlled CPU
thread, as it can exploit many of the same vulnerabilities.

Acknowledgments
This research received partial funding, hardware donations, and extremely useful advice
from Intel and its employees. We would like to especially thank Alpa Trivedi from Intel.

Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, B. Sunar 189

Daniel Moghimi was supported by the National Science Foundation under grant no. CNS-
1814406. This work was partially supported by the German Research Foundation (DFG)
project number 427774779.

References
[ABF+03] Christian Aumüller, Peter Bier, Wieland Fischer, Peter Hofreiter, and Jean-

Pierre Seifert. Fault attacks on RSA with CRT: Concrete results and practical
countermeasures. In Burton S. Kaliski, Çetin K. Koç, and Christof Paar,
editors, Cryptographic Hardware and Embedded Systems - CHES 2002, pages
260–275, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[Ali19] Alibaba Cloud. FPGA-based compute-optimized instance families. https:
//www.alibabacloud.com/help/doc-detail/108504.html, 2019. Access:
2019-10-15.

[Ama17] Amazon Web Services. Amazon EC2 F1 instances. https://aws.amazon.
com/ec2/instance-types/f1/, 2017. Access: 2019-10-12.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance
of Checking Cryptographic Protocols for Faults. In Walter Fumy, editor,
Advances in Cryptology — EUROCRYPT ’97, pages 37–51, Berlin, Heidelberg,
1997. Springer Berlin Heidelberg.

[BH09] Billy Bob Brumley and Risto M. Hakala. Cache-Timing Template Attacks.
In Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009,
pages 667–684, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[BIME18] Samira Briongos, Gorka Irazoqui, Pedro Malagón, and Thomas Eisenbarth.
CacheShield: Detecting Cache Attacks through Self-Observation. In Pro-
ceedings of the Eighth ACM Conference on Data and Application Security
and Privacy, CODASPY ’18, pages 224–235, New York, NY, USA, 2018.
Association for Computing Machinery.

[BM16] Sarani Bhattacharya and Debdeep Mukhopadhyay. Curious Case of Rowham-
mer: Flipping Secret Exponent Bits Using Timing Analysis. In Benedikt
Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware and
Embedded Systems – CHES 2016, pages 602–624, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[BM18] Sarani Bhattacharya and Debdeep Mukhopadhyay. Advanced Fault Attacks in
Software: Exploiting the Rowhammer Bug. In Sikhar Patranabis and Debdeep
Mukhopadhyay, editors, Fault Tolerant Architectures for Cryptography and
Hardware Security, pages 111–135. Springer Singapore, Singapore, 2018.

[BvdPSY14] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. “Ooh
Aah... Just a Little Bit” : A Small Amount of Side Channel Can Go a Long
Way. In Lejla Batina and Matthew Robshaw, editors, Cryptographic Hardware
and Embedded Systems – CHES 2014, pages 75–92, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

[CDFG18] Sébastien Carré, Matthieu Desjardins, Adrien Facon, and Sylvain Guilley.
OpenSSL Bellcore’s Protection Helps Fault Attack. In 2018 21st Euromicro
Conference on Digital System Design (DSD), pages 500–507, August 2018.

https://www.alibabacloud.com/help/doc-detail/108504.html
https://www.alibabacloud.com/help/doc-detail/108504.html
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/

190 JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms

[CSY16] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detection
of cache-based side-channel attacks using hardware performance counters.
Applied Soft Computing, 49:1162 – 1174, 2016.

[FGBR18] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Grand
Pwning Unit: Accelerating Microarchitectural Attacks with the GPU. In
2018 IEEE Symposium on Security and Privacy (SP), pages 195–210, May
2018.

[GER19] Ilias Giechaskiel, Ken Eguro, and Kasper B. Rasmussen. Leakier Wires:
Exploiting FPGA Long Wires for Covert- and Side-Channel Attacks. ACM
Trans. Reconfigurable Technol. Syst., 12(3), August 2019.

[GES17] Berk Gülmezoğlu, Thomas Eisenbarth, and Berk Sunar. Cache-Based Appli-
cation Detection in the Cloud Using Machine Learning. In Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security,
ASIA CCS ’17, pages 288–300, New York, NY, USA, 2017. Association for
Computing Machinery.

[GLS+17] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller,
and Manuel Costa. Strong and Efficient Cache Side-Channel Protection using
Hardware Transactional Memory. In 26th USENIX Security Symposium
(USENIX Security 17), pages 217–233, Vancouver, BC, August 2017. USENIX
Association.

[GLS+18] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger,
Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom. Another Flip in the
Wall of Rowhammer Defenses. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 245–261, May 2018.

[GMES19] Berk Gülmezoğlu, Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar.
FortuneTeller: Predicting Microarchitectural Attacks via Unsupervised Deep
Learning, 2019.

[GMM16] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js: A
Remote Software-Induced Fault Attack in JavaScript. In Juan Caballero,
Urko Zurutuza, and Ricardo J. Rodríguez, editors, Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 300–321, Cham, 2016.
Springer International Publishing.

[GMWM16] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+Flush: A Fast and Stealthy Cache Attack. In Juan Caballero, Urko
Zurutuza, and Ricardo J. Rodríguez, editors, Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 279–299, Cham, 2016. Springer
International Publishing.

[GOT17] Dennis R. E. Gnad, Fabian Oboril, and Mehdi B. Tahoori. Voltage drop-based
fault attacks on FPGAs using valid bitstreams. In 2017 27th International
Conference on Field Programmable Logic and Applications (FPL), pages 1–7,
September 2017.

[GRLZ+17] Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Irazoqui, Jo-
hann Heyszl, and Thomas Eisenbarth. AutoLock: Why Cache Attacks
on ARM Are Harder Than You Think. In 26th USENIX Security Sympo-
sium (USENIX Security 17), pages 1075–1091, Vancouver, BC, August 2017.
USENIX Association.

Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, B. Sunar 191

[GZES17] Berk Gülmezoğlu, Andreas Zankl, Thomas Eisenbarth, and Berk Sunar.
PerfWeb: How to Violate Web Privacy with Hardware Performance Events.
In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors, Computer
Security – ESORICS 2017, pages 80–97, Cham, 2017. Springer International
Publishing.

[Huf18] Jennifer Huffstetler. Intel processors and FPGAs – better to-
gether. https://itpeernetwork.intel.com/intel-processors-fpga-
better-together/, 2018. accessed: 21-05-19.

[HWH13] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In 2013 IEEE Symposium on
Security and Privacy (SP), pages 191–205, May 2013.

[IES15a] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A Shared Cache
Attack That Works across Cores and Defies VM Sandboxing – and Its
Application to AES. In 2015 IEEE Symposium on Security and Privacy (SP),
pages 591–604, May 2015.

[IES15b] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Systematic Reverse
Engineering of Cache Slice Selection in Intel Processors. In 2015 Euromicro
Conference on Digital System Design (DSD), pages 629–636, August 2015.

[IES16] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross Processor Cache
Attacks. In Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, ASIA CCS ’16, pages 353–364, New York,
NY, USA, 2016. Association for Computing Machinery.

[İGI+15] Mehmet Sinan İnci, Berk Gülmezoğlu, Gorka Irazoqui, Thomas Eisenbarth,
and Berk Sunar. Seriously, get off my cloud! Cross-VM RSA Key Recovery
in a Public Cloud. IACR Cryptology ePrint Archive, 2015.

[İGI+16] Mehmet Sinan İnci, Berk Gülmezoğlu, Gorka Irazoqui, Thomas Eisenbarth,
and Berk Sunar. Cache Attacks Enable Bulk Key Recovery on the Cloud. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware
and Embedded Systems – CHES 2016, pages 368–388, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

[Int17] Intel. Open Programmable Acceleration Engine, 1.1.2 edition, 2017. https:
//opae.github.io/1.1.2/index.html.

[Int18a] Intel. Acceleration Stack for Intel Xeon CPU with FPGAs Core
Cache Interface (CCI-P) Reference Manual, 1.2 edition, December
2018. https://www.intel.com/content/dam/www/programmable/us/en/
pdfs/literature/manual/mnl-ias-ccip.pdf.

[Int18b] Intel. Accelerator cards that fit your performance needs. https://www.intel.
com/content/www/us/en/programmable/solutions/acceleration-
hub/platforms.html, 2018. accessed: 21-05-19.

[JC-17] JC-42.6 Low Power Memories Comittee. Low Power Double Data Rate 4
(LPDDR4). Standard JESD209-4B, JEDEC Solid State Technology Associa-
tion, March 2017.

[KGA+19] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Herbert
Bos, and Kaveh Razavi. NetCAT: Practical Cache Attacks from the Network.
https://download.vusec.net/papers/netcat_sp20.pdf, 2019.

https://itpeernetwork.intel.com/intel-processors-fpga-better-together/
https://itpeernetwork.intel.com/intel-processors-fpga-better-together/
https://opae.github.io/1.1.2/index.html
https://opae.github.io/1.1.2/index.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl-ias-ccip.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl-ias-ccip.pdf
https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/platforms.html
https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/platforms.html
https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/platforms.html
https://download.vusec.net/papers/netcat_sp20.pdf

192 JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms

[KGT18] Jonas Krautter, Dennis R. E. Gnad, and Mehdi B. Tahoori. FPGAhammer:
Remote Voltage Fault Attacks on Shared FPGAs, suitable for DFA on
AES. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2018(3):44–68, August 2018.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Michael Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages
388–397, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[KLA+18] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas,
and Joel Emer. DAWG: A Defense Against Cache Timing Attacks in Specu-
lative Execution Processors. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 974–987, October 2018.

[KPMR12] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. STEALTHMEM:
System-Level Protection Against Cache-Based Side Channel Attacks in the
Cloud. In 21st USENIX Security Symposium (USENIX Security 12), pages
189–204, Bellevue, WA, 2012. USENIX.

[LGS+16] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and
Stefan Mangard. ARMageddon: Cache Attacks on Mobile Devices. In 25th
USENIX Security Symposium (USENIX Security 16), pages 549–564, Austin,
TX, August 2016. USENIX Association.

[LGY+16] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot
Heiser, and Ruby B. Lee. CATalyst: Defeating Last-Level Cache Side Channel
Attacks in Cloud Computing. In 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pages 406–418, March
2016.

[LYG+15] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-
Level Cache Side-Channel Attacks are Practical. In 2015 IEEE Symposium
on Security and Privacy (SP), pages 605–622, May 2015.

[MIE17] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom:
How SGX Amplifies the Power of Cache Attacks. In Wieland Fischer and
Naofumi Homma, editors, Cryptographic Hardware and Embedded Systems –
CHES 2017, pages 69–90, Cham, 2017. Springer International Publishing.

[mit19] CVE-2019-19962. Available from MITRE, CVE-ID CVE-2019-19962., De-
cember 2019.

[Mul17] David Mulnix. Intel Xeon processor scalable family technical
overview. https://software.intel.com/en-us/articles/intel-xeon-
processor-scalable-family-technical-overview, 2017. Accessed: 2019-
07-10.

[MWS+17] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner, Daniel
Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Romer. Hello from
the Other Side: SSH over Robust Cache Covert Channels in the Cloud. In
24th Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, 2017. Internet Society.

[OKSK15] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.
Keromytis. The Spy in the Sandbox: Practical Cache Attacks in JavaScript
and Their Implications. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, CCS ’15, pages 1406–1418, New
York, NY, USA, 2015. Association for Computing Machinery.

https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview

Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, B. Sunar 193

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and Coun-
termeasures: The Case of AES. In David Pointcheval, editor, Topics in
Cryptology – CT-RSA 2006, pages 1–20, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[PGM+16] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.
In 25th USENIX Security Symposium (USENIX Security 16), pages 565–581,
Austin, TX, August 2016. USENIX Association.

[PRP+19] George Provelengios, Chethan Ramesh, Shivukumar B. Patil, Ken Eguro,
Russell Tessier, and Daniel Holcomb. Characterization of Long Wire Data
Leakage in Deep Submicron FPGAs. In Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA ’19,
pages 292–297, New York, NY, USA, 2019. Association for Computing
Machinery.

[RPD+18] Chethan Ramesh, Shivukumar B. Patil, Siva Nishok Dhanuskodi, George
Provelengios, Sébastien Pillement, Daniel Holcomb, and Russell Tessier.
FPGA Side Channel Attacks without Physical Access. In 2018 IEEE 26th
Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 45–52, April 2018.

[RTSS09] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey,
You, Get off of My Cloud: Exploring Information Leakage in Third-Party
Compute Clouds. In Proceedings of the 16th ACM Conference on Computer
and Communications Security, CCS ’09, pages 199–212, New York, NY, USA,
2009. Association for Computing Machinery.

[Sch19] Michael Schwarz. PTEditor: A small library to modify all page-table levels
of all processes from user space for x86_64 and ARMv8. https://github.
com/misc0110/PTEditor, April 2019.

[SD15] Mark Seaborn and Thomas Dullien. Exploiting the DRAM rowhammer bug
to gain kernel privileges. Black Hat, 15, 2015.

[SGMT18a] Falk Schellenberg, Dennis R. E. Gnad, Amir Moradi, and Mehdi B. Tahoori.
An Inside Job: Remote Power Analysis Attacks on FPGAs. In 2018 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 1111–1116,
March 2018.

[SGMT18b] Falk Schellenberg, Dennis R. E. Gnad, Amir Moradi, and Mehdi B. Tahoori.
Remote Inter-Chip Power Analysis Side-Channel Attacks at Board-Level.
In 2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1–7, November 2018.

[TSS+03] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hi-
roshi Miyauchi. Cryptanalysis of DES Implemented on Computers with
Cache. In Colin D. Walter, Çetin K. Koç, and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2003, pages 62–76, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

[TVT19] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. Packet Chasing:
Spying on Network Packets over a Cache Side-Channel. arXiv preprint
arXiv:1909.04841, 2019.

https://github.com/misc0110/PTEditor
https://github.com/misc0110/PTEditor

194 JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms

[vdVFL+16] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss,
Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and
Cristiano Giuffrida. Drammer: Deterministic Rowhammer Attacks on Mobile
Platforms. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, pages 1675–1689, New York, NY,
USA, 2016. Association for Computing Machinery.

[VKM19] Pepe Vila, Boris Köpf, and José Francisco Morales. Theory and Practice of
Finding Eviction Sets. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 39–54, May 2019.

[WvWM11] Marc F. Witteman, Jasper G. J. van Woudenberg, and Federico Menarini.
Defeating RSA Multiply-Always and Message Blinding Countermeasures. In
Aggelos Kiayias, editor, Topics in Cryptology – CT-RSA 2011, pages 77–88,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[WXW12] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the Hyper-space:
High-speed Covert Channel Attacks in the Cloud. In 21st USENIX Security
Symposium (USENIX Security 12), pages 159–173, Bellevue, WA, 2012.
USENIX.

[Xil19] Xilinx. Accelerator Cards. https://www.xilinx.com/products/boards-
and-kits/accelerator-cards.html, 2019. Accessed: 2019-10-15.

[YF14] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In 23rd USENIX Security Sym-
posium (USENIX Security 14), pages 719–732, San Diego, CA, August 2014.
USENIX Association.

[YSG+19] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher,
Roy Campbell, and Josep Torrellas. Attack Directories, Not Caches: Side
Channel Attacks in a Non-Inclusive World. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 888–904, May 2019.

[YWCL14] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. COLORIS: A Dynamic
Cache Partitioning System Using Page Coloring. In 2014 23rd International
Conference on Parallel Architecture and Compilation Techniques (PACT),
pages 381–392, August 2014.

[ZJRR12] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-
VM Side Channels and Their Use to Extract Private Keys. In Proceedings of
the 2012 ACM Conference on Computer and Communications Security, CCS
’12, pages 305–316, New York, NY, USA, 2012. Association for Computing
Machinery.

[ZRZ16] Ziqiao Zhou, Michael K. Reiter, and Yinqian Zhang. A Software Approach
to Defeating Side Channels in Last-Level Caches. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, CCS
’16, pages 871–882, New York, NY, USA, 2016. Association for Computing
Machinery.

[ZS18] Mark Zhao and G. Edward Suh. FPGA-Based Remote Power Side-Channel
Attacks. In 2018 IEEE Symposium on Security and Privacy (SP), pages
229–244, May 2018.

https://www.xilinx.com/products/boards-and-kits/accelerator-cards.html
https://www.xilinx.com/products/boards-and-kits/accelerator-cards.html

Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, B. Sunar 195

[ZZL16] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. CloudRadar: A Real-
Time Side-Channel Attack Detection System in Clouds. In Fabian Monrose,
Marc Dacier, Gregory Blanc, and Joaquin Garcia-Alfaro, editors, Research
in Attacks, Intrusions, and Defenses (RAID), pages 118–140, Cham, 2016.
Springer International Publishing.

	Introduction
	Our Contributions
	Experimental Setup

	Background
	RSA-CRT Signing
	Cache Attacks
	Rowhammer
	Related Attacks

	Analysis of Intel FPGA-CPU Systems
	Intel FPGA Platforms
	Intel's FPGA-CPU Compatibility Layers
	Cache and Memory Architecture on the Intel FPGAs

	JackHammer Attack
	JackHammer: Our FPGA Implementation of Rowhammer
	JackHammer on the FPGA PAC vs. CPU Rowhammer
	JackHammer on the Integrated Arria 10 vs. CPU Rowhammer
	The Effect of Caching on Rowhammer Performance

	Fault Attack on RSA using JackHammer
	RSA Fault Injection Attacks
	Our Attack
	Performance of the Attack

	Cache Attacks on Intel FPGA-CPU Platforms
	Cache Attacks from FPGA PAC to CPU
	Cache Attacks from Integrated Arria 10 FPGA to CPU
	Cache Attacks from CPU to Integrated Arria 10 FPGA
	Intra-FPGA Cache Side-Channels

	Countermeasures
	Conclusion

